2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma
->root
= anon_vma
;
85 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
87 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
101 * atomic_read() rwsem_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
107 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
108 anon_vma_lock_write(anon_vma
);
109 anon_vma_unlock_write(anon_vma
);
112 kmem_cache_free(anon_vma_cachep
, anon_vma
);
115 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
117 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
120 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
122 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
125 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
126 struct anon_vma_chain
*avc
,
127 struct anon_vma
*anon_vma
)
130 avc
->anon_vma
= anon_vma
;
131 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
132 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
160 * This must be called with the mmap_sem held for reading.
162 int anon_vma_prepare(struct vm_area_struct
*vma
)
164 struct anon_vma
*anon_vma
= vma
->anon_vma
;
165 struct anon_vma_chain
*avc
;
168 if (unlikely(!anon_vma
)) {
169 struct mm_struct
*mm
= vma
->vm_mm
;
170 struct anon_vma
*allocated
;
172 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
176 anon_vma
= find_mergeable_anon_vma(vma
);
179 anon_vma
= anon_vma_alloc();
180 if (unlikely(!anon_vma
))
181 goto out_enomem_free_avc
;
182 allocated
= anon_vma
;
185 anon_vma_lock_write(anon_vma
);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm
->page_table_lock
);
188 if (likely(!vma
->anon_vma
)) {
189 vma
->anon_vma
= anon_vma
;
190 anon_vma_chain_link(vma
, avc
, anon_vma
);
194 spin_unlock(&mm
->page_table_lock
);
195 anon_vma_unlock_write(anon_vma
);
197 if (unlikely(allocated
))
198 put_anon_vma(allocated
);
200 anon_vma_chain_free(avc
);
205 anon_vma_chain_free(avc
);
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
218 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
220 struct anon_vma
*new_root
= anon_vma
->root
;
221 if (new_root
!= root
) {
222 if (WARN_ON_ONCE(root
))
223 up_write(&root
->rwsem
);
225 down_write(&root
->rwsem
);
230 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
233 up_write(&root
->rwsem
);
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
240 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
242 struct anon_vma_chain
*avc
, *pavc
;
243 struct anon_vma
*root
= NULL
;
245 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
246 struct anon_vma
*anon_vma
;
248 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
249 if (unlikely(!avc
)) {
250 unlock_anon_vma_root(root
);
252 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
256 anon_vma
= pavc
->anon_vma
;
257 root
= lock_anon_vma_root(root
, anon_vma
);
258 anon_vma_chain_link(dst
, avc
, anon_vma
);
260 unlock_anon_vma_root(root
);
264 unlink_anon_vmas(dst
);
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
273 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
275 struct anon_vma_chain
*avc
;
276 struct anon_vma
*anon_vma
;
279 /* Don't bother if the parent process has no anon_vma here. */
284 * First, attach the new VMA to the parent VMA's anon_vmas,
285 * so rmap can find non-COWed pages in child processes.
287 error
= anon_vma_clone(vma
, pvma
);
291 /* Then add our own anon_vma. */
292 anon_vma
= anon_vma_alloc();
295 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
297 goto out_error_free_anon_vma
;
300 * The root anon_vma's spinlock is the lock actually used when we
301 * lock any of the anon_vmas in this anon_vma tree.
303 anon_vma
->root
= pvma
->anon_vma
->root
;
305 * With refcounts, an anon_vma can stay around longer than the
306 * process it belongs to. The root anon_vma needs to be pinned until
307 * this anon_vma is freed, because the lock lives in the root.
309 get_anon_vma(anon_vma
->root
);
310 /* Mark this anon_vma as the one where our new (COWed) pages go. */
311 vma
->anon_vma
= anon_vma
;
312 anon_vma_lock_write(anon_vma
);
313 anon_vma_chain_link(vma
, avc
, anon_vma
);
314 anon_vma_unlock_write(anon_vma
);
318 out_error_free_anon_vma
:
319 put_anon_vma(anon_vma
);
321 unlink_anon_vmas(vma
);
325 void unlink_anon_vmas(struct vm_area_struct
*vma
)
327 struct anon_vma_chain
*avc
, *next
;
328 struct anon_vma
*root
= NULL
;
331 * Unlink each anon_vma chained to the VMA. This list is ordered
332 * from newest to oldest, ensuring the root anon_vma gets freed last.
334 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
335 struct anon_vma
*anon_vma
= avc
->anon_vma
;
337 root
= lock_anon_vma_root(root
, anon_vma
);
338 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
341 * Leave empty anon_vmas on the list - we'll need
342 * to free them outside the lock.
344 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
))
347 list_del(&avc
->same_vma
);
348 anon_vma_chain_free(avc
);
350 unlock_anon_vma_root(root
);
353 * Iterate the list once more, it now only contains empty and unlinked
354 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
355 * needing to write-acquire the anon_vma->root->rwsem.
357 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
358 struct anon_vma
*anon_vma
= avc
->anon_vma
;
360 put_anon_vma(anon_vma
);
362 list_del(&avc
->same_vma
);
363 anon_vma_chain_free(avc
);
367 static void anon_vma_ctor(void *data
)
369 struct anon_vma
*anon_vma
= data
;
371 init_rwsem(&anon_vma
->rwsem
);
372 atomic_set(&anon_vma
->refcount
, 0);
373 anon_vma
->rb_root
= RB_ROOT
;
376 void __init
anon_vma_init(void)
378 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
379 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
380 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
384 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
386 * Since there is no serialization what so ever against page_remove_rmap()
387 * the best this function can do is return a locked anon_vma that might
388 * have been relevant to this page.
390 * The page might have been remapped to a different anon_vma or the anon_vma
391 * returned may already be freed (and even reused).
393 * In case it was remapped to a different anon_vma, the new anon_vma will be a
394 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
395 * ensure that any anon_vma obtained from the page will still be valid for as
396 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
398 * All users of this function must be very careful when walking the anon_vma
399 * chain and verify that the page in question is indeed mapped in it
400 * [ something equivalent to page_mapped_in_vma() ].
402 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
403 * that the anon_vma pointer from page->mapping is valid if there is a
404 * mapcount, we can dereference the anon_vma after observing those.
406 struct anon_vma
*page_get_anon_vma(struct page
*page
)
408 struct anon_vma
*anon_vma
= NULL
;
409 unsigned long anon_mapping
;
412 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
413 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
415 if (!page_mapped(page
))
418 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
419 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
425 * If this page is still mapped, then its anon_vma cannot have been
426 * freed. But if it has been unmapped, we have no security against the
427 * anon_vma structure being freed and reused (for another anon_vma:
428 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
429 * above cannot corrupt).
431 if (!page_mapped(page
)) {
433 put_anon_vma(anon_vma
);
443 * Similar to page_get_anon_vma() except it locks the anon_vma.
445 * Its a little more complex as it tries to keep the fast path to a single
446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447 * reference like with page_get_anon_vma() and then block on the mutex.
449 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
451 struct anon_vma
*anon_vma
= NULL
;
452 struct anon_vma
*root_anon_vma
;
453 unsigned long anon_mapping
;
456 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
457 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
459 if (!page_mapped(page
))
462 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
463 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
464 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
466 * If the page is still mapped, then this anon_vma is still
467 * its anon_vma, and holding the mutex ensures that it will
468 * not go away, see anon_vma_free().
470 if (!page_mapped(page
)) {
471 up_read(&root_anon_vma
->rwsem
);
477 /* trylock failed, we got to sleep */
478 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
483 if (!page_mapped(page
)) {
485 put_anon_vma(anon_vma
);
489 /* we pinned the anon_vma, its safe to sleep */
491 anon_vma_lock_read(anon_vma
);
493 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
495 * Oops, we held the last refcount, release the lock
496 * and bail -- can't simply use put_anon_vma() because
497 * we'll deadlock on the anon_vma_lock_write() recursion.
499 anon_vma_unlock_read(anon_vma
);
500 __put_anon_vma(anon_vma
);
511 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
513 anon_vma_unlock_read(anon_vma
);
517 * At what user virtual address is page expected in @vma?
519 static inline unsigned long
520 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
522 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
524 if (unlikely(is_vm_hugetlb_page(vma
)))
525 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
527 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
531 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
533 unsigned long address
= __vma_address(page
, vma
);
535 /* page should be within @vma mapping range */
536 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
542 * At what user virtual address is page expected in vma?
543 * Caller should check the page is actually part of the vma.
545 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
547 unsigned long address
;
548 if (PageAnon(page
)) {
549 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
551 * Note: swapoff's unuse_vma() is more efficient with this
552 * check, and needs it to match anon_vma when KSM is active.
554 if (!vma
->anon_vma
|| !page__anon_vma
||
555 vma
->anon_vma
->root
!= page__anon_vma
->root
)
557 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
559 vma
->vm_file
->f_mapping
!= page
->mapping
)
563 address
= __vma_address(page
, vma
);
564 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
569 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
575 pgd
= pgd_offset(mm
, address
);
576 if (!pgd_present(*pgd
))
579 pud
= pud_offset(pgd
, address
);
580 if (!pud_present(*pud
))
583 pmd
= pmd_offset(pud
, address
);
584 if (!pmd_present(*pmd
))
591 * Check that @page is mapped at @address into @mm.
593 * If @sync is false, page_check_address may perform a racy check to avoid
594 * the page table lock when the pte is not present (helpful when reclaiming
595 * highly shared pages).
597 * On success returns with pte mapped and locked.
599 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
600 unsigned long address
, spinlock_t
**ptlp
, int sync
)
606 if (unlikely(PageHuge(page
))) {
607 /* when pud is not present, pte will be NULL */
608 pte
= huge_pte_offset(mm
, address
);
612 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
616 pmd
= mm_find_pmd(mm
, address
);
620 if (pmd_trans_huge(*pmd
))
623 pte
= pte_offset_map(pmd
, address
);
624 /* Make a quick check before getting the lock */
625 if (!sync
&& !pte_present(*pte
)) {
630 ptl
= pte_lockptr(mm
, pmd
);
633 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
637 pte_unmap_unlock(pte
, ptl
);
642 * page_mapped_in_vma - check whether a page is really mapped in a VMA
643 * @page: the page to test
644 * @vma: the VMA to test
646 * Returns 1 if the page is mapped into the page tables of the VMA, 0
647 * if the page is not mapped into the page tables of this VMA. Only
648 * valid for normal file or anonymous VMAs.
650 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
652 unsigned long address
;
656 address
= __vma_address(page
, vma
);
657 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
659 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
660 if (!pte
) /* the page is not in this mm */
662 pte_unmap_unlock(pte
, ptl
);
667 struct page_referenced_arg
{
670 unsigned long vm_flags
;
671 struct mem_cgroup
*memcg
;
674 * arg: page_referenced_arg will be passed
676 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
677 unsigned long address
, void *arg
)
679 struct mm_struct
*mm
= vma
->vm_mm
;
682 struct page_referenced_arg
*pra
= arg
;
684 if (unlikely(PageTransHuge(page
))) {
688 * rmap might return false positives; we must filter
689 * these out using page_check_address_pmd().
691 pmd
= page_check_address_pmd(page
, mm
, address
,
692 PAGE_CHECK_ADDRESS_PMD_FLAG
, &ptl
);
696 if (vma
->vm_flags
& VM_LOCKED
) {
698 pra
->vm_flags
|= VM_LOCKED
;
699 return SWAP_FAIL
; /* To break the loop */
702 /* go ahead even if the pmd is pmd_trans_splitting() */
703 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
710 * rmap might return false positives; we must filter
711 * these out using page_check_address().
713 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
717 if (vma
->vm_flags
& VM_LOCKED
) {
718 pte_unmap_unlock(pte
, ptl
);
719 pra
->vm_flags
|= VM_LOCKED
;
720 return SWAP_FAIL
; /* To break the loop */
723 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
725 * Don't treat a reference through a sequentially read
726 * mapping as such. If the page has been used in
727 * another mapping, we will catch it; if this other
728 * mapping is already gone, the unmap path will have
729 * set PG_referenced or activated the page.
731 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
734 pte_unmap_unlock(pte
, ptl
);
739 pra
->vm_flags
|= vma
->vm_flags
;
744 return SWAP_SUCCESS
; /* To break the loop */
749 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
751 struct page_referenced_arg
*pra
= arg
;
752 struct mem_cgroup
*memcg
= pra
->memcg
;
754 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
761 * page_referenced - test if the page was referenced
762 * @page: the page to test
763 * @is_locked: caller holds lock on the page
764 * @memcg: target memory cgroup
765 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
767 * Quick test_and_clear_referenced for all mappings to a page,
768 * returns the number of ptes which referenced the page.
770 int page_referenced(struct page
*page
,
772 struct mem_cgroup
*memcg
,
773 unsigned long *vm_flags
)
777 struct page_referenced_arg pra
= {
778 .mapcount
= page_mapcount(page
),
781 struct rmap_walk_control rwc
= {
782 .rmap_one
= page_referenced_one
,
784 .anon_lock
= page_lock_anon_vma_read
,
788 if (!page_mapped(page
))
791 if (!page_rmapping(page
))
794 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
795 we_locked
= trylock_page(page
);
801 * If we are reclaiming on behalf of a cgroup, skip
802 * counting on behalf of references from different
806 rwc
.invalid_vma
= invalid_page_referenced_vma
;
809 ret
= rmap_walk(page
, &rwc
);
810 *vm_flags
= pra
.vm_flags
;
815 return pra
.referenced
;
818 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
819 unsigned long address
, void *arg
)
821 struct mm_struct
*mm
= vma
->vm_mm
;
827 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
831 if (pte_dirty(*pte
) || pte_write(*pte
)) {
834 flush_cache_page(vma
, address
, pte_pfn(*pte
));
835 entry
= ptep_clear_flush(vma
, address
, pte
);
836 entry
= pte_wrprotect(entry
);
837 entry
= pte_mkclean(entry
);
838 set_pte_at(mm
, address
, pte
, entry
);
842 pte_unmap_unlock(pte
, ptl
);
845 mmu_notifier_invalidate_page(mm
, address
);
852 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
854 if (vma
->vm_flags
& VM_SHARED
)
860 int page_mkclean(struct page
*page
)
863 struct address_space
*mapping
;
864 struct rmap_walk_control rwc
= {
865 .arg
= (void *)&cleaned
,
866 .rmap_one
= page_mkclean_one
,
867 .invalid_vma
= invalid_mkclean_vma
,
870 BUG_ON(!PageLocked(page
));
872 if (!page_mapped(page
))
875 mapping
= page_mapping(page
);
879 rmap_walk(page
, &rwc
);
883 EXPORT_SYMBOL_GPL(page_mkclean
);
886 * page_move_anon_rmap - move a page to our anon_vma
887 * @page: the page to move to our anon_vma
888 * @vma: the vma the page belongs to
889 * @address: the user virtual address mapped
891 * When a page belongs exclusively to one process after a COW event,
892 * that page can be moved into the anon_vma that belongs to just that
893 * process, so the rmap code will not search the parent or sibling
896 void page_move_anon_rmap(struct page
*page
,
897 struct vm_area_struct
*vma
, unsigned long address
)
899 struct anon_vma
*anon_vma
= vma
->anon_vma
;
901 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
902 VM_BUG_ON(!anon_vma
);
903 VM_BUG_ON_PAGE(page
->index
!= linear_page_index(vma
, address
), page
);
905 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
906 page
->mapping
= (struct address_space
*) anon_vma
;
910 * __page_set_anon_rmap - set up new anonymous rmap
911 * @page: Page to add to rmap
912 * @vma: VM area to add page to.
913 * @address: User virtual address of the mapping
914 * @exclusive: the page is exclusively owned by the current process
916 static void __page_set_anon_rmap(struct page
*page
,
917 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
919 struct anon_vma
*anon_vma
= vma
->anon_vma
;
927 * If the page isn't exclusively mapped into this vma,
928 * we must use the _oldest_ possible anon_vma for the
932 anon_vma
= anon_vma
->root
;
934 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
935 page
->mapping
= (struct address_space
*) anon_vma
;
936 page
->index
= linear_page_index(vma
, address
);
940 * __page_check_anon_rmap - sanity check anonymous rmap addition
941 * @page: the page to add the mapping to
942 * @vma: the vm area in which the mapping is added
943 * @address: the user virtual address mapped
945 static void __page_check_anon_rmap(struct page
*page
,
946 struct vm_area_struct
*vma
, unsigned long address
)
948 #ifdef CONFIG_DEBUG_VM
950 * The page's anon-rmap details (mapping and index) are guaranteed to
951 * be set up correctly at this point.
953 * We have exclusion against page_add_anon_rmap because the caller
954 * always holds the page locked, except if called from page_dup_rmap,
955 * in which case the page is already known to be setup.
957 * We have exclusion against page_add_new_anon_rmap because those pages
958 * are initially only visible via the pagetables, and the pte is locked
959 * over the call to page_add_new_anon_rmap.
961 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
962 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
967 * page_add_anon_rmap - add pte mapping to an anonymous page
968 * @page: the page to add the mapping to
969 * @vma: the vm area in which the mapping is added
970 * @address: the user virtual address mapped
972 * The caller needs to hold the pte lock, and the page must be locked in
973 * the anon_vma case: to serialize mapping,index checking after setting,
974 * and to ensure that PageAnon is not being upgraded racily to PageKsm
975 * (but PageKsm is never downgraded to PageAnon).
977 void page_add_anon_rmap(struct page
*page
,
978 struct vm_area_struct
*vma
, unsigned long address
)
980 do_page_add_anon_rmap(page
, vma
, address
, 0);
984 * Special version of the above for do_swap_page, which often runs
985 * into pages that are exclusively owned by the current process.
986 * Everybody else should continue to use page_add_anon_rmap above.
988 void do_page_add_anon_rmap(struct page
*page
,
989 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
991 int first
= atomic_inc_and_test(&page
->_mapcount
);
993 if (PageTransHuge(page
))
994 __inc_zone_page_state(page
,
995 NR_ANON_TRANSPARENT_HUGEPAGES
);
996 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
997 hpage_nr_pages(page
));
999 if (unlikely(PageKsm(page
)))
1002 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1003 /* address might be in next vma when migration races vma_adjust */
1005 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1007 __page_check_anon_rmap(page
, vma
, address
);
1011 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1012 * @page: the page to add the mapping to
1013 * @vma: the vm area in which the mapping is added
1014 * @address: the user virtual address mapped
1016 * Same as page_add_anon_rmap but must only be called on *new* pages.
1017 * This means the inc-and-test can be bypassed.
1018 * Page does not have to be locked.
1020 void page_add_new_anon_rmap(struct page
*page
,
1021 struct vm_area_struct
*vma
, unsigned long address
)
1023 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1024 SetPageSwapBacked(page
);
1025 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1026 if (PageTransHuge(page
))
1027 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1028 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1029 hpage_nr_pages(page
));
1030 __page_set_anon_rmap(page
, vma
, address
, 1);
1031 if (!mlocked_vma_newpage(vma
, page
)) {
1032 SetPageActive(page
);
1033 lru_cache_add(page
);
1035 add_page_to_unevictable_list(page
);
1039 * page_add_file_rmap - add pte mapping to a file page
1040 * @page: the page to add the mapping to
1042 * The caller needs to hold the pte lock.
1044 void page_add_file_rmap(struct page
*page
)
1047 unsigned long flags
;
1049 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1050 if (atomic_inc_and_test(&page
->_mapcount
)) {
1051 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1052 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1054 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1058 * page_remove_rmap - take down pte mapping from a page
1059 * @page: page to remove mapping from
1061 * The caller needs to hold the pte lock.
1063 void page_remove_rmap(struct page
*page
)
1065 bool anon
= PageAnon(page
);
1067 unsigned long flags
;
1070 * The anon case has no mem_cgroup page_stat to update; but may
1071 * uncharge_page() below, where the lock ordering can deadlock if
1072 * we hold the lock against page_stat move: so avoid it on anon.
1075 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1077 /* page still mapped by someone else? */
1078 if (!atomic_add_negative(-1, &page
->_mapcount
))
1082 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1083 * and not charged by memcg for now.
1085 if (unlikely(PageHuge(page
)))
1088 mem_cgroup_uncharge_page(page
);
1089 if (PageTransHuge(page
))
1090 __dec_zone_page_state(page
,
1091 NR_ANON_TRANSPARENT_HUGEPAGES
);
1092 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1093 -hpage_nr_pages(page
));
1095 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1096 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1097 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1099 if (unlikely(PageMlocked(page
)))
1100 clear_page_mlock(page
);
1102 * It would be tidy to reset the PageAnon mapping here,
1103 * but that might overwrite a racing page_add_anon_rmap
1104 * which increments mapcount after us but sets mapping
1105 * before us: so leave the reset to free_hot_cold_page,
1106 * and remember that it's only reliable while mapped.
1107 * Leaving it set also helps swapoff to reinstate ptes
1108 * faster for those pages still in swapcache.
1113 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1117 * @arg: enum ttu_flags will be passed to this argument
1119 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1120 unsigned long address
, void *arg
)
1122 struct mm_struct
*mm
= vma
->vm_mm
;
1126 int ret
= SWAP_AGAIN
;
1127 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1129 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1134 * If the page is mlock()d, we cannot swap it out.
1135 * If it's recently referenced (perhaps page_referenced
1136 * skipped over this mm) then we should reactivate it.
1138 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1139 if (vma
->vm_flags
& VM_LOCKED
)
1142 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1145 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1146 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1152 /* Nuke the page table entry. */
1153 flush_cache_page(vma
, address
, page_to_pfn(page
));
1154 pteval
= ptep_clear_flush(vma
, address
, pte
);
1156 /* Move the dirty bit to the physical page now the pte is gone. */
1157 if (pte_dirty(pteval
))
1158 set_page_dirty(page
);
1160 /* Update high watermark before we lower rss */
1161 update_hiwater_rss(mm
);
1163 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1164 if (!PageHuge(page
)) {
1166 dec_mm_counter(mm
, MM_ANONPAGES
);
1168 dec_mm_counter(mm
, MM_FILEPAGES
);
1170 set_pte_at(mm
, address
, pte
,
1171 swp_entry_to_pte(make_hwpoison_entry(page
)));
1172 } else if (PageAnon(page
)) {
1173 swp_entry_t entry
= { .val
= page_private(page
) };
1176 if (PageSwapCache(page
)) {
1178 * Store the swap location in the pte.
1179 * See handle_pte_fault() ...
1181 if (swap_duplicate(entry
) < 0) {
1182 set_pte_at(mm
, address
, pte
, pteval
);
1186 if (list_empty(&mm
->mmlist
)) {
1187 spin_lock(&mmlist_lock
);
1188 if (list_empty(&mm
->mmlist
))
1189 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1190 spin_unlock(&mmlist_lock
);
1192 dec_mm_counter(mm
, MM_ANONPAGES
);
1193 inc_mm_counter(mm
, MM_SWAPENTS
);
1194 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1196 * Store the pfn of the page in a special migration
1197 * pte. do_swap_page() will wait until the migration
1198 * pte is removed and then restart fault handling.
1200 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1201 entry
= make_migration_entry(page
, pte_write(pteval
));
1203 swp_pte
= swp_entry_to_pte(entry
);
1204 if (pte_soft_dirty(pteval
))
1205 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1206 set_pte_at(mm
, address
, pte
, swp_pte
);
1207 BUG_ON(pte_file(*pte
));
1208 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1209 (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1210 /* Establish migration entry for a file page */
1212 entry
= make_migration_entry(page
, pte_write(pteval
));
1213 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1215 dec_mm_counter(mm
, MM_FILEPAGES
);
1217 page_remove_rmap(page
);
1218 page_cache_release(page
);
1221 pte_unmap_unlock(pte
, ptl
);
1222 if (ret
!= SWAP_FAIL
)
1223 mmu_notifier_invalidate_page(mm
, address
);
1228 pte_unmap_unlock(pte
, ptl
);
1232 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1233 * unstable result and race. Plus, We can't wait here because
1234 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1235 * if trylock failed, the page remain in evictable lru and later
1236 * vmscan could retry to move the page to unevictable lru if the
1237 * page is actually mlocked.
1239 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1240 if (vma
->vm_flags
& VM_LOCKED
) {
1241 mlock_vma_page(page
);
1244 up_read(&vma
->vm_mm
->mmap_sem
);
1250 * objrmap doesn't work for nonlinear VMAs because the assumption that
1251 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1252 * Consequently, given a particular page and its ->index, we cannot locate the
1253 * ptes which are mapping that page without an exhaustive linear search.
1255 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1256 * maps the file to which the target page belongs. The ->vm_private_data field
1257 * holds the current cursor into that scan. Successive searches will circulate
1258 * around the vma's virtual address space.
1260 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1261 * more scanning pressure is placed against them as well. Eventually pages
1262 * will become fully unmapped and are eligible for eviction.
1264 * For very sparsely populated VMAs this is a little inefficient - chances are
1265 * there there won't be many ptes located within the scan cluster. In this case
1266 * maybe we could scan further - to the end of the pte page, perhaps.
1268 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1269 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1270 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1271 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1273 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1274 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1276 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1277 struct vm_area_struct
*vma
, struct page
*check_page
)
1279 struct mm_struct
*mm
= vma
->vm_mm
;
1285 unsigned long address
;
1286 unsigned long mmun_start
; /* For mmu_notifiers */
1287 unsigned long mmun_end
; /* For mmu_notifiers */
1289 int ret
= SWAP_AGAIN
;
1292 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1293 end
= address
+ CLUSTER_SIZE
;
1294 if (address
< vma
->vm_start
)
1295 address
= vma
->vm_start
;
1296 if (end
> vma
->vm_end
)
1299 pmd
= mm_find_pmd(mm
, address
);
1303 mmun_start
= address
;
1305 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1308 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1309 * keep the sem while scanning the cluster for mlocking pages.
1311 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1312 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1314 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1317 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1319 /* Update high watermark before we lower rss */
1320 update_hiwater_rss(mm
);
1322 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1323 if (!pte_present(*pte
))
1325 page
= vm_normal_page(vma
, address
, *pte
);
1326 BUG_ON(!page
|| PageAnon(page
));
1329 if (page
== check_page
) {
1330 /* we know we have check_page locked */
1331 mlock_vma_page(page
);
1333 } else if (trylock_page(page
)) {
1335 * If we can lock the page, perform mlock.
1336 * Otherwise leave the page alone, it will be
1337 * eventually encountered again later.
1339 mlock_vma_page(page
);
1342 continue; /* don't unmap */
1345 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1348 /* Nuke the page table entry. */
1349 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1350 pteval
= ptep_clear_flush(vma
, address
, pte
);
1352 /* If nonlinear, store the file page offset in the pte. */
1353 if (page
->index
!= linear_page_index(vma
, address
)) {
1354 pte_t ptfile
= pgoff_to_pte(page
->index
);
1355 if (pte_soft_dirty(pteval
))
1356 pte_file_mksoft_dirty(ptfile
);
1357 set_pte_at(mm
, address
, pte
, ptfile
);
1360 /* Move the dirty bit to the physical page now the pte is gone. */
1361 if (pte_dirty(pteval
))
1362 set_page_dirty(page
);
1364 page_remove_rmap(page
);
1365 page_cache_release(page
);
1366 dec_mm_counter(mm
, MM_FILEPAGES
);
1369 pte_unmap_unlock(pte
- 1, ptl
);
1370 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1372 up_read(&vma
->vm_mm
->mmap_sem
);
1376 static int try_to_unmap_nonlinear(struct page
*page
,
1377 struct address_space
*mapping
, void *arg
)
1379 struct vm_area_struct
*vma
;
1380 int ret
= SWAP_AGAIN
;
1381 unsigned long cursor
;
1382 unsigned long max_nl_cursor
= 0;
1383 unsigned long max_nl_size
= 0;
1384 unsigned int mapcount
;
1386 list_for_each_entry(vma
,
1387 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1389 cursor
= (unsigned long) vma
->vm_private_data
;
1390 if (cursor
> max_nl_cursor
)
1391 max_nl_cursor
= cursor
;
1392 cursor
= vma
->vm_end
- vma
->vm_start
;
1393 if (cursor
> max_nl_size
)
1394 max_nl_size
= cursor
;
1397 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1402 * We don't try to search for this page in the nonlinear vmas,
1403 * and page_referenced wouldn't have found it anyway. Instead
1404 * just walk the nonlinear vmas trying to age and unmap some.
1405 * The mapcount of the page we came in with is irrelevant,
1406 * but even so use it as a guide to how hard we should try?
1408 mapcount
= page_mapcount(page
);
1414 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1415 if (max_nl_cursor
== 0)
1416 max_nl_cursor
= CLUSTER_SIZE
;
1419 list_for_each_entry(vma
,
1420 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1422 cursor
= (unsigned long) vma
->vm_private_data
;
1423 while (cursor
< max_nl_cursor
&&
1424 cursor
< vma
->vm_end
- vma
->vm_start
) {
1425 if (try_to_unmap_cluster(cursor
, &mapcount
,
1426 vma
, page
) == SWAP_MLOCK
)
1428 cursor
+= CLUSTER_SIZE
;
1429 vma
->vm_private_data
= (void *) cursor
;
1430 if ((int)mapcount
<= 0)
1433 vma
->vm_private_data
= (void *) max_nl_cursor
;
1436 max_nl_cursor
+= CLUSTER_SIZE
;
1437 } while (max_nl_cursor
<= max_nl_size
);
1440 * Don't loop forever (perhaps all the remaining pages are
1441 * in locked vmas). Reset cursor on all unreserved nonlinear
1442 * vmas, now forgetting on which ones it had fallen behind.
1444 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.nonlinear
)
1445 vma
->vm_private_data
= NULL
;
1450 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1452 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1457 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1458 VM_STACK_INCOMPLETE_SETUP
)
1464 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1466 return is_vma_temporary_stack(vma
);
1469 static int page_not_mapped(struct page
*page
)
1471 return !page_mapped(page
);
1475 * try_to_unmap - try to remove all page table mappings to a page
1476 * @page: the page to get unmapped
1477 * @flags: action and flags
1479 * Tries to remove all the page table entries which are mapping this
1480 * page, used in the pageout path. Caller must hold the page lock.
1481 * Return values are:
1483 * SWAP_SUCCESS - we succeeded in removing all mappings
1484 * SWAP_AGAIN - we missed a mapping, try again later
1485 * SWAP_FAIL - the page is unswappable
1486 * SWAP_MLOCK - page is mlocked.
1488 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1491 struct rmap_walk_control rwc
= {
1492 .rmap_one
= try_to_unmap_one
,
1493 .arg
= (void *)flags
,
1494 .done
= page_not_mapped
,
1495 .file_nonlinear
= try_to_unmap_nonlinear
,
1496 .anon_lock
= page_lock_anon_vma_read
,
1499 VM_BUG_ON_PAGE(!PageHuge(page
) && PageTransHuge(page
), page
);
1502 * During exec, a temporary VMA is setup and later moved.
1503 * The VMA is moved under the anon_vma lock but not the
1504 * page tables leading to a race where migration cannot
1505 * find the migration ptes. Rather than increasing the
1506 * locking requirements of exec(), migration skips
1507 * temporary VMAs until after exec() completes.
1509 if (flags
& TTU_MIGRATION
&& !PageKsm(page
) && PageAnon(page
))
1510 rwc
.invalid_vma
= invalid_migration_vma
;
1512 ret
= rmap_walk(page
, &rwc
);
1514 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1520 * try_to_munlock - try to munlock a page
1521 * @page: the page to be munlocked
1523 * Called from munlock code. Checks all of the VMAs mapping the page
1524 * to make sure nobody else has this page mlocked. The page will be
1525 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1527 * Return values are:
1529 * SWAP_AGAIN - no vma is holding page mlocked, or,
1530 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1531 * SWAP_FAIL - page cannot be located at present
1532 * SWAP_MLOCK - page is now mlocked.
1534 int try_to_munlock(struct page
*page
)
1537 struct rmap_walk_control rwc
= {
1538 .rmap_one
= try_to_unmap_one
,
1539 .arg
= (void *)TTU_MUNLOCK
,
1540 .done
= page_not_mapped
,
1542 * We don't bother to try to find the munlocked page in
1543 * nonlinears. It's costly. Instead, later, page reclaim logic
1544 * may call try_to_unmap() and recover PG_mlocked lazily.
1546 .file_nonlinear
= NULL
,
1547 .anon_lock
= page_lock_anon_vma_read
,
1551 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1553 ret
= rmap_walk(page
, &rwc
);
1557 void __put_anon_vma(struct anon_vma
*anon_vma
)
1559 struct anon_vma
*root
= anon_vma
->root
;
1561 anon_vma_free(anon_vma
);
1562 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1563 anon_vma_free(root
);
1566 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1567 struct rmap_walk_control
*rwc
)
1569 struct anon_vma
*anon_vma
;
1572 return rwc
->anon_lock(page
);
1575 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1576 * because that depends on page_mapped(); but not all its usages
1577 * are holding mmap_sem. Users without mmap_sem are required to
1578 * take a reference count to prevent the anon_vma disappearing
1580 anon_vma
= page_anon_vma(page
);
1584 anon_vma_lock_read(anon_vma
);
1589 * rmap_walk_anon - do something to anonymous page using the object-based
1591 * @page: the page to be handled
1592 * @rwc: control variable according to each walk type
1594 * Find all the mappings of a page using the mapping pointer and the vma chains
1595 * contained in the anon_vma struct it points to.
1597 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1598 * where the page was found will be held for write. So, we won't recheck
1599 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1602 static int rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
)
1604 struct anon_vma
*anon_vma
;
1605 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1606 struct anon_vma_chain
*avc
;
1607 int ret
= SWAP_AGAIN
;
1609 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1613 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1614 struct vm_area_struct
*vma
= avc
->vma
;
1615 unsigned long address
= vma_address(page
, vma
);
1617 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1620 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1621 if (ret
!= SWAP_AGAIN
)
1623 if (rwc
->done
&& rwc
->done(page
))
1626 anon_vma_unlock_read(anon_vma
);
1631 * rmap_walk_file - do something to file page using the object-based rmap method
1632 * @page: the page to be handled
1633 * @rwc: control variable according to each walk type
1635 * Find all the mappings of a page using the mapping pointer and the vma chains
1636 * contained in the address_space struct it points to.
1638 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1639 * where the page was found will be held for write. So, we won't recheck
1640 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1643 static int rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
)
1645 struct address_space
*mapping
= page
->mapping
;
1646 pgoff_t pgoff
= page
->index
<< compound_order(page
);
1647 struct vm_area_struct
*vma
;
1648 int ret
= SWAP_AGAIN
;
1651 * The page lock not only makes sure that page->mapping cannot
1652 * suddenly be NULLified by truncation, it makes sure that the
1653 * structure at mapping cannot be freed and reused yet,
1654 * so we can safely take mapping->i_mmap_mutex.
1656 VM_BUG_ON(!PageLocked(page
));
1660 mutex_lock(&mapping
->i_mmap_mutex
);
1661 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1662 unsigned long address
= vma_address(page
, vma
);
1664 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1667 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1668 if (ret
!= SWAP_AGAIN
)
1670 if (rwc
->done
&& rwc
->done(page
))
1674 if (!rwc
->file_nonlinear
)
1677 if (list_empty(&mapping
->i_mmap_nonlinear
))
1680 ret
= rwc
->file_nonlinear(page
, mapping
, rwc
->arg
);
1683 mutex_unlock(&mapping
->i_mmap_mutex
);
1687 int rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1689 if (unlikely(PageKsm(page
)))
1690 return rmap_walk_ksm(page
, rwc
);
1691 else if (PageAnon(page
))
1692 return rmap_walk_anon(page
, rwc
);
1694 return rmap_walk_file(page
, rwc
);
1697 #ifdef CONFIG_HUGETLB_PAGE
1699 * The following three functions are for anonymous (private mapped) hugepages.
1700 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1701 * and no lru code, because we handle hugepages differently from common pages.
1703 static void __hugepage_set_anon_rmap(struct page
*page
,
1704 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1706 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1713 anon_vma
= anon_vma
->root
;
1715 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1716 page
->mapping
= (struct address_space
*) anon_vma
;
1717 page
->index
= linear_page_index(vma
, address
);
1720 void hugepage_add_anon_rmap(struct page
*page
,
1721 struct vm_area_struct
*vma
, unsigned long address
)
1723 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1726 BUG_ON(!PageLocked(page
));
1728 /* address might be in next vma when migration races vma_adjust */
1729 first
= atomic_inc_and_test(&page
->_mapcount
);
1731 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1734 void hugepage_add_new_anon_rmap(struct page
*page
,
1735 struct vm_area_struct
*vma
, unsigned long address
)
1737 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1738 atomic_set(&page
->_mapcount
, 0);
1739 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1741 #endif /* CONFIG_HUGETLB_PAGE */