1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple CPU accounting cgroup controller
7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
10 * There are no locks covering percpu hardirq/softirq time.
11 * They are only modified in vtime_account, on corresponding CPU
12 * with interrupts disabled. So, writes are safe.
13 * They are read and saved off onto struct rq in update_rq_clock().
14 * This may result in other CPU reading this CPU's irq time and can
15 * race with irq/vtime_account on this CPU. We would either get old
16 * or new value with a side effect of accounting a slice of irq time to wrong
17 * task when irq is in progress while we read rq->clock. That is a worthy
18 * compromise in place of having locks on each irq in account_system_time.
20 DEFINE_PER_CPU(struct irqtime
, cpu_irqtime
);
22 static int sched_clock_irqtime
;
24 void enable_sched_clock_irqtime(void)
26 sched_clock_irqtime
= 1;
29 void disable_sched_clock_irqtime(void)
31 sched_clock_irqtime
= 0;
34 static void irqtime_account_delta(struct irqtime
*irqtime
, u64 delta
,
35 enum cpu_usage_stat idx
)
37 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
39 u64_stats_update_begin(&irqtime
->sync
);
40 cpustat
[idx
] += delta
;
41 irqtime
->total
+= delta
;
42 irqtime
->tick_delta
+= delta
;
43 u64_stats_update_end(&irqtime
->sync
);
47 * Called before incrementing preempt_count on {soft,}irq_enter
48 * and before decrementing preempt_count on {soft,}irq_exit.
50 void irqtime_account_irq(struct task_struct
*curr
)
52 struct irqtime
*irqtime
= this_cpu_ptr(&cpu_irqtime
);
56 if (!sched_clock_irqtime
)
59 cpu
= smp_processor_id();
60 delta
= sched_clock_cpu(cpu
) - irqtime
->irq_start_time
;
61 irqtime
->irq_start_time
+= delta
;
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
70 irqtime_account_delta(irqtime
, delta
, CPUTIME_IRQ
);
71 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
72 irqtime_account_delta(irqtime
, delta
, CPUTIME_SOFTIRQ
);
74 EXPORT_SYMBOL_GPL(irqtime_account_irq
);
76 static u64
irqtime_tick_accounted(u64 maxtime
)
78 struct irqtime
*irqtime
= this_cpu_ptr(&cpu_irqtime
);
81 delta
= min(irqtime
->tick_delta
, maxtime
);
82 irqtime
->tick_delta
-= delta
;
87 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
89 #define sched_clock_irqtime (0)
91 static u64
irqtime_tick_accounted(u64 dummy
)
96 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
98 static inline void task_group_account_field(struct task_struct
*p
, int index
,
102 * Since all updates are sure to touch the root cgroup, we
103 * get ourselves ahead and touch it first. If the root cgroup
104 * is the only cgroup, then nothing else should be necessary.
107 __this_cpu_add(kernel_cpustat
.cpustat
[index
], tmp
);
109 cgroup_account_cputime_field(p
, index
, tmp
);
113 * Account user CPU time to a process.
114 * @p: the process that the CPU time gets accounted to
115 * @cputime: the CPU time spent in user space since the last update
117 void account_user_time(struct task_struct
*p
, u64 cputime
)
121 /* Add user time to process. */
123 account_group_user_time(p
, cputime
);
125 index
= (task_nice(p
) > 0) ? CPUTIME_NICE
: CPUTIME_USER
;
127 /* Add user time to cpustat. */
128 task_group_account_field(p
, index
, cputime
);
130 /* Account for user time used */
131 acct_account_cputime(p
);
135 * Account guest CPU time to a process.
136 * @p: the process that the CPU time gets accounted to
137 * @cputime: the CPU time spent in virtual machine since the last update
139 void account_guest_time(struct task_struct
*p
, u64 cputime
)
141 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
143 /* Add guest time to process. */
145 account_group_user_time(p
, cputime
);
148 /* Add guest time to cpustat. */
149 if (task_nice(p
) > 0) {
150 cpustat
[CPUTIME_NICE
] += cputime
;
151 cpustat
[CPUTIME_GUEST_NICE
] += cputime
;
153 cpustat
[CPUTIME_USER
] += cputime
;
154 cpustat
[CPUTIME_GUEST
] += cputime
;
159 * Account system CPU time to a process and desired cpustat field
160 * @p: the process that the CPU time gets accounted to
161 * @cputime: the CPU time spent in kernel space since the last update
162 * @index: pointer to cpustat field that has to be updated
164 void account_system_index_time(struct task_struct
*p
,
165 u64 cputime
, enum cpu_usage_stat index
)
167 /* Add system time to process. */
169 account_group_system_time(p
, cputime
);
171 /* Add system time to cpustat. */
172 task_group_account_field(p
, index
, cputime
);
174 /* Account for system time used */
175 acct_account_cputime(p
);
179 * Account system CPU time to a process.
180 * @p: the process that the CPU time gets accounted to
181 * @hardirq_offset: the offset to subtract from hardirq_count()
182 * @cputime: the CPU time spent in kernel space since the last update
184 void account_system_time(struct task_struct
*p
, int hardirq_offset
, u64 cputime
)
188 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
189 account_guest_time(p
, cputime
);
193 if (hardirq_count() - hardirq_offset
)
195 else if (in_serving_softirq())
196 index
= CPUTIME_SOFTIRQ
;
198 index
= CPUTIME_SYSTEM
;
200 account_system_index_time(p
, cputime
, index
);
204 * Account for involuntary wait time.
205 * @cputime: the CPU time spent in involuntary wait
207 void account_steal_time(u64 cputime
)
209 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
211 cpustat
[CPUTIME_STEAL
] += cputime
;
215 * Account for idle time.
216 * @cputime: the CPU time spent in idle wait
218 void account_idle_time(u64 cputime
)
220 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
221 struct rq
*rq
= this_rq();
223 if (atomic_read(&rq
->nr_iowait
) > 0)
224 cpustat
[CPUTIME_IOWAIT
] += cputime
;
226 cpustat
[CPUTIME_IDLE
] += cputime
;
230 * When a guest is interrupted for a longer amount of time, missed clock
231 * ticks are not redelivered later. Due to that, this function may on
232 * occasion account more time than the calling functions think elapsed.
234 static __always_inline u64
steal_account_process_time(u64 maxtime
)
236 #ifdef CONFIG_PARAVIRT
237 if (static_key_false(¶virt_steal_enabled
)) {
240 steal
= paravirt_steal_clock(smp_processor_id());
241 steal
-= this_rq()->prev_steal_time
;
242 steal
= min(steal
, maxtime
);
243 account_steal_time(steal
);
244 this_rq()->prev_steal_time
+= steal
;
253 * Account how much elapsed time was spent in steal, irq, or softirq time.
255 static inline u64
account_other_time(u64 max
)
259 lockdep_assert_irqs_disabled();
261 accounted
= steal_account_process_time(max
);
264 accounted
+= irqtime_tick_accounted(max
- accounted
);
270 static inline u64
read_sum_exec_runtime(struct task_struct
*t
)
272 return t
->se
.sum_exec_runtime
;
275 static u64
read_sum_exec_runtime(struct task_struct
*t
)
281 rq
= task_rq_lock(t
, &rf
);
282 ns
= t
->se
.sum_exec_runtime
;
283 task_rq_unlock(rq
, t
, &rf
);
290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
291 * tasks (sum on group iteration) belonging to @tsk's group.
293 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
295 struct signal_struct
*sig
= tsk
->signal
;
297 struct task_struct
*t
;
298 unsigned int seq
, nextseq
;
302 * Update current task runtime to account pending time since last
303 * scheduler action or thread_group_cputime() call. This thread group
304 * might have other running tasks on different CPUs, but updating
305 * their runtime can affect syscall performance, so we skip account
306 * those pending times and rely only on values updated on tick or
307 * other scheduler action.
309 if (same_thread_group(current
, tsk
))
310 (void) task_sched_runtime(current
);
313 /* Attempt a lockless read on the first round. */
317 flags
= read_seqbegin_or_lock_irqsave(&sig
->stats_lock
, &seq
);
318 times
->utime
= sig
->utime
;
319 times
->stime
= sig
->stime
;
320 times
->sum_exec_runtime
= sig
->sum_sched_runtime
;
322 for_each_thread(tsk
, t
) {
323 task_cputime(t
, &utime
, &stime
);
324 times
->utime
+= utime
;
325 times
->stime
+= stime
;
326 times
->sum_exec_runtime
+= read_sum_exec_runtime(t
);
328 /* If lockless access failed, take the lock. */
330 } while (need_seqretry(&sig
->stats_lock
, seq
));
331 done_seqretry_irqrestore(&sig
->stats_lock
, seq
, flags
);
335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
337 * Account a tick to a process and cpustat
338 * @p: the process that the CPU time gets accounted to
339 * @user_tick: is the tick from userspace
340 * @rq: the pointer to rq
342 * Tick demultiplexing follows the order
343 * - pending hardirq update
344 * - pending softirq update
348 * - check for guest_time
349 * - else account as system_time
351 * Check for hardirq is done both for system and user time as there is
352 * no timer going off while we are on hardirq and hence we may never get an
353 * opportunity to update it solely in system time.
354 * p->stime and friends are only updated on system time and not on irq
355 * softirq as those do not count in task exec_runtime any more.
357 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
360 u64 other
, cputime
= TICK_NSEC
* ticks
;
363 * When returning from idle, many ticks can get accounted at
364 * once, including some ticks of steal, irq, and softirq time.
365 * Subtract those ticks from the amount of time accounted to
366 * idle, or potentially user or system time. Due to rounding,
367 * other time can exceed ticks occasionally.
369 other
= account_other_time(ULONG_MAX
);
370 if (other
>= cputime
)
375 if (this_cpu_ksoftirqd() == p
) {
377 * ksoftirqd time do not get accounted in cpu_softirq_time.
378 * So, we have to handle it separately here.
379 * Also, p->stime needs to be updated for ksoftirqd.
381 account_system_index_time(p
, cputime
, CPUTIME_SOFTIRQ
);
382 } else if (user_tick
) {
383 account_user_time(p
, cputime
);
384 } else if (p
== this_rq()->idle
) {
385 account_idle_time(cputime
);
386 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
387 account_guest_time(p
, cputime
);
389 account_system_index_time(p
, cputime
, CPUTIME_SYSTEM
);
393 static void irqtime_account_idle_ticks(int ticks
)
395 irqtime_account_process_tick(current
, 0, ticks
);
397 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
398 static inline void irqtime_account_idle_ticks(int ticks
) { }
399 static inline void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
401 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
404 * Use precise platform statistics if available:
406 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
408 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
409 void vtime_task_switch(struct task_struct
*prev
)
411 if (is_idle_task(prev
))
412 vtime_account_idle(prev
);
414 vtime_account_kernel(prev
);
417 arch_vtime_task_switch(prev
);
422 * Archs that account the whole time spent in the idle task
423 * (outside irq) as idle time can rely on this and just implement
424 * vtime_account_kernel() and vtime_account_idle(). Archs that
425 * have other meaning of the idle time (s390 only includes the
426 * time spent by the CPU when it's in low power mode) must override
429 #ifndef __ARCH_HAS_VTIME_ACCOUNT
430 void vtime_account_irq_enter(struct task_struct
*tsk
)
432 if (!in_interrupt() && is_idle_task(tsk
))
433 vtime_account_idle(tsk
);
435 vtime_account_kernel(tsk
);
437 EXPORT_SYMBOL_GPL(vtime_account_irq_enter
);
438 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
440 void cputime_adjust(struct task_cputime
*curr
, struct prev_cputime
*prev
,
447 void task_cputime_adjusted(struct task_struct
*p
, u64
*ut
, u64
*st
)
452 EXPORT_SYMBOL_GPL(task_cputime_adjusted
);
454 void thread_group_cputime_adjusted(struct task_struct
*p
, u64
*ut
, u64
*st
)
456 struct task_cputime cputime
;
458 thread_group_cputime(p
, &cputime
);
464 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
467 * Account a single tick of CPU time.
468 * @p: the process that the CPU time gets accounted to
469 * @user_tick: indicates if the tick is a user or a system tick
471 void account_process_tick(struct task_struct
*p
, int user_tick
)
475 if (vtime_accounting_enabled_this_cpu())
478 if (sched_clock_irqtime
) {
479 irqtime_account_process_tick(p
, user_tick
, 1);
484 steal
= steal_account_process_time(ULONG_MAX
);
486 if (steal
>= cputime
)
492 account_user_time(p
, cputime
);
493 else if ((p
!= this_rq()->idle
) || (irq_count() != HARDIRQ_OFFSET
))
494 account_system_time(p
, HARDIRQ_OFFSET
, cputime
);
496 account_idle_time(cputime
);
500 * Account multiple ticks of idle time.
501 * @ticks: number of stolen ticks
503 void account_idle_ticks(unsigned long ticks
)
507 if (sched_clock_irqtime
) {
508 irqtime_account_idle_ticks(ticks
);
512 cputime
= ticks
* TICK_NSEC
;
513 steal
= steal_account_process_time(ULONG_MAX
);
515 if (steal
>= cputime
)
519 account_idle_time(cputime
);
523 * Perform (stime * rtime) / total, but avoid multiplication overflow by
524 * losing precision when the numbers are big.
526 static u64
scale_stime(u64 stime
, u64 rtime
, u64 total
)
531 /* Make sure "rtime" is the bigger of stime/rtime */
535 /* Make sure 'total' fits in 32 bits */
539 /* Does rtime (and thus stime) fit in 32 bits? */
543 /* Can we just balance rtime/stime rather than dropping bits? */
547 /* We can grow stime and shrink rtime and try to make them both fit */
553 /* We drop from rtime, it has more bits than stime */
559 * Make sure gcc understands that this is a 32x32->64 multiply,
560 * followed by a 64/32->64 divide.
562 scaled
= div_u64((u64
) (u32
) stime
* (u64
) (u32
) rtime
, (u32
)total
);
567 * Adjust tick based cputime random precision against scheduler runtime
570 * Tick based cputime accounting depend on random scheduling timeslices of a
571 * task to be interrupted or not by the timer. Depending on these
572 * circumstances, the number of these interrupts may be over or
573 * under-optimistic, matching the real user and system cputime with a variable
576 * Fix this by scaling these tick based values against the total runtime
577 * accounted by the CFS scheduler.
579 * This code provides the following guarantees:
581 * stime + utime == rtime
582 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
584 * Assuming that rtime_i+1 >= rtime_i.
586 void cputime_adjust(struct task_cputime
*curr
, struct prev_cputime
*prev
,
589 u64 rtime
, stime
, utime
;
592 /* Serialize concurrent callers such that we can honour our guarantees */
593 raw_spin_lock_irqsave(&prev
->lock
, flags
);
594 rtime
= curr
->sum_exec_runtime
;
597 * This is possible under two circumstances:
598 * - rtime isn't monotonic after all (a bug);
599 * - we got reordered by the lock.
601 * In both cases this acts as a filter such that the rest of the code
602 * can assume it is monotonic regardless of anything else.
604 if (prev
->stime
+ prev
->utime
>= rtime
)
611 * If either stime or utime are 0, assume all runtime is userspace.
612 * Once a task gets some ticks, the monotonicy code at 'update:'
613 * will ensure things converge to the observed ratio.
625 stime
= scale_stime(stime
, rtime
, stime
+ utime
);
629 * Make sure stime doesn't go backwards; this preserves monotonicity
630 * for utime because rtime is monotonic.
632 * utime_i+1 = rtime_i+1 - stime_i
633 * = rtime_i+1 - (rtime_i - utime_i)
634 * = (rtime_i+1 - rtime_i) + utime_i
637 if (stime
< prev
->stime
)
639 utime
= rtime
- stime
;
642 * Make sure utime doesn't go backwards; this still preserves
643 * monotonicity for stime, analogous argument to above.
645 if (utime
< prev
->utime
) {
647 stime
= rtime
- utime
;
655 raw_spin_unlock_irqrestore(&prev
->lock
, flags
);
658 void task_cputime_adjusted(struct task_struct
*p
, u64
*ut
, u64
*st
)
660 struct task_cputime cputime
= {
661 .sum_exec_runtime
= p
->se
.sum_exec_runtime
,
664 task_cputime(p
, &cputime
.utime
, &cputime
.stime
);
665 cputime_adjust(&cputime
, &p
->prev_cputime
, ut
, st
);
667 EXPORT_SYMBOL_GPL(task_cputime_adjusted
);
669 void thread_group_cputime_adjusted(struct task_struct
*p
, u64
*ut
, u64
*st
)
671 struct task_cputime cputime
;
673 thread_group_cputime(p
, &cputime
);
674 cputime_adjust(&cputime
, &p
->signal
->prev_cputime
, ut
, st
);
676 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
678 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
679 static u64
vtime_delta(struct vtime
*vtime
)
681 unsigned long long clock
;
683 clock
= sched_clock();
684 if (clock
< vtime
->starttime
)
687 return clock
- vtime
->starttime
;
690 static u64
get_vtime_delta(struct vtime
*vtime
)
692 u64 delta
= vtime_delta(vtime
);
696 * Unlike tick based timing, vtime based timing never has lost
697 * ticks, and no need for steal time accounting to make up for
698 * lost ticks. Vtime accounts a rounded version of actual
699 * elapsed time. Limit account_other_time to prevent rounding
700 * errors from causing elapsed vtime to go negative.
702 other
= account_other_time(delta
);
703 WARN_ON_ONCE(vtime
->state
== VTIME_INACTIVE
);
704 vtime
->starttime
+= delta
;
706 return delta
- other
;
709 static void vtime_account_system(struct task_struct
*tsk
,
712 vtime
->stime
+= get_vtime_delta(vtime
);
713 if (vtime
->stime
>= TICK_NSEC
) {
714 account_system_time(tsk
, irq_count(), vtime
->stime
);
719 static void vtime_account_guest(struct task_struct
*tsk
,
722 vtime
->gtime
+= get_vtime_delta(vtime
);
723 if (vtime
->gtime
>= TICK_NSEC
) {
724 account_guest_time(tsk
, vtime
->gtime
);
729 static void __vtime_account_kernel(struct task_struct
*tsk
,
732 /* We might have scheduled out from guest path */
733 if (vtime
->state
== VTIME_GUEST
)
734 vtime_account_guest(tsk
, vtime
);
736 vtime_account_system(tsk
, vtime
);
739 void vtime_account_kernel(struct task_struct
*tsk
)
741 struct vtime
*vtime
= &tsk
->vtime
;
743 if (!vtime_delta(vtime
))
746 write_seqcount_begin(&vtime
->seqcount
);
747 __vtime_account_kernel(tsk
, vtime
);
748 write_seqcount_end(&vtime
->seqcount
);
751 void vtime_user_enter(struct task_struct
*tsk
)
753 struct vtime
*vtime
= &tsk
->vtime
;
755 write_seqcount_begin(&vtime
->seqcount
);
756 vtime_account_system(tsk
, vtime
);
757 vtime
->state
= VTIME_USER
;
758 write_seqcount_end(&vtime
->seqcount
);
761 void vtime_user_exit(struct task_struct
*tsk
)
763 struct vtime
*vtime
= &tsk
->vtime
;
765 write_seqcount_begin(&vtime
->seqcount
);
766 vtime
->utime
+= get_vtime_delta(vtime
);
767 if (vtime
->utime
>= TICK_NSEC
) {
768 account_user_time(tsk
, vtime
->utime
);
771 vtime
->state
= VTIME_SYS
;
772 write_seqcount_end(&vtime
->seqcount
);
775 void vtime_guest_enter(struct task_struct
*tsk
)
777 struct vtime
*vtime
= &tsk
->vtime
;
779 * The flags must be updated under the lock with
780 * the vtime_starttime flush and update.
781 * That enforces a right ordering and update sequence
782 * synchronization against the reader (task_gtime())
783 * that can thus safely catch up with a tickless delta.
785 write_seqcount_begin(&vtime
->seqcount
);
786 vtime_account_system(tsk
, vtime
);
787 tsk
->flags
|= PF_VCPU
;
788 vtime
->state
= VTIME_GUEST
;
789 write_seqcount_end(&vtime
->seqcount
);
791 EXPORT_SYMBOL_GPL(vtime_guest_enter
);
793 void vtime_guest_exit(struct task_struct
*tsk
)
795 struct vtime
*vtime
= &tsk
->vtime
;
797 write_seqcount_begin(&vtime
->seqcount
);
798 vtime_account_guest(tsk
, vtime
);
799 tsk
->flags
&= ~PF_VCPU
;
800 vtime
->state
= VTIME_SYS
;
801 write_seqcount_end(&vtime
->seqcount
);
803 EXPORT_SYMBOL_GPL(vtime_guest_exit
);
805 void vtime_account_idle(struct task_struct
*tsk
)
807 account_idle_time(get_vtime_delta(&tsk
->vtime
));
810 void vtime_task_switch_generic(struct task_struct
*prev
)
812 struct vtime
*vtime
= &prev
->vtime
;
814 write_seqcount_begin(&vtime
->seqcount
);
815 if (vtime
->state
== VTIME_IDLE
)
816 vtime_account_idle(prev
);
818 __vtime_account_kernel(prev
, vtime
);
819 vtime
->state
= VTIME_INACTIVE
;
821 write_seqcount_end(&vtime
->seqcount
);
823 vtime
= ¤t
->vtime
;
825 write_seqcount_begin(&vtime
->seqcount
);
826 if (is_idle_task(current
))
827 vtime
->state
= VTIME_IDLE
;
828 else if (current
->flags
& PF_VCPU
)
829 vtime
->state
= VTIME_GUEST
;
831 vtime
->state
= VTIME_SYS
;
832 vtime
->starttime
= sched_clock();
833 vtime
->cpu
= smp_processor_id();
834 write_seqcount_end(&vtime
->seqcount
);
837 void vtime_init_idle(struct task_struct
*t
, int cpu
)
839 struct vtime
*vtime
= &t
->vtime
;
842 local_irq_save(flags
);
843 write_seqcount_begin(&vtime
->seqcount
);
844 vtime
->state
= VTIME_IDLE
;
845 vtime
->starttime
= sched_clock();
847 write_seqcount_end(&vtime
->seqcount
);
848 local_irq_restore(flags
);
851 u64
task_gtime(struct task_struct
*t
)
853 struct vtime
*vtime
= &t
->vtime
;
857 if (!vtime_accounting_enabled())
861 seq
= read_seqcount_begin(&vtime
->seqcount
);
864 if (vtime
->state
== VTIME_GUEST
)
865 gtime
+= vtime
->gtime
+ vtime_delta(vtime
);
867 } while (read_seqcount_retry(&vtime
->seqcount
, seq
));
873 * Fetch cputime raw values from fields of task_struct and
874 * add up the pending nohz execution time since the last
877 void task_cputime(struct task_struct
*t
, u64
*utime
, u64
*stime
)
879 struct vtime
*vtime
= &t
->vtime
;
883 if (!vtime_accounting_enabled()) {
890 seq
= read_seqcount_begin(&vtime
->seqcount
);
895 /* Task is sleeping or idle, nothing to add */
896 if (vtime
->state
< VTIME_SYS
)
899 delta
= vtime_delta(vtime
);
902 * Task runs either in user (including guest) or kernel space,
903 * add pending nohz time to the right place.
905 if (vtime
->state
== VTIME_SYS
)
906 *stime
+= vtime
->stime
+ delta
;
908 *utime
+= vtime
->utime
+ delta
;
909 } while (read_seqcount_retry(&vtime
->seqcount
, seq
));
912 static int vtime_state_fetch(struct vtime
*vtime
, int cpu
)
914 int state
= READ_ONCE(vtime
->state
);
917 * We raced against a context switch, fetch the
918 * kcpustat task again.
920 if (vtime
->cpu
!= cpu
&& vtime
->cpu
!= -1)
924 * Two possible things here:
925 * 1) We are seeing the scheduling out task (prev) or any past one.
926 * 2) We are seeing the scheduling in task (next) but it hasn't
927 * passed though vtime_task_switch() yet so the pending
928 * cputime of the prev task may not be flushed yet.
930 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
932 if (state
== VTIME_INACTIVE
)
938 static u64
kcpustat_user_vtime(struct vtime
*vtime
)
940 if (vtime
->state
== VTIME_USER
)
941 return vtime
->utime
+ vtime_delta(vtime
);
942 else if (vtime
->state
== VTIME_GUEST
)
943 return vtime
->gtime
+ vtime_delta(vtime
);
947 static int kcpustat_field_vtime(u64
*cpustat
,
948 struct task_struct
*tsk
,
949 enum cpu_usage_stat usage
,
952 struct vtime
*vtime
= &tsk
->vtime
;
958 seq
= read_seqcount_begin(&vtime
->seqcount
);
960 state
= vtime_state_fetch(vtime
, cpu
);
964 *val
= cpustat
[usage
];
967 * Nice VS unnice cputime accounting may be inaccurate if
968 * the nice value has changed since the last vtime update.
969 * But proper fix would involve interrupting target on nice
970 * updates which is a no go on nohz_full (although the scheduler
971 * may still interrupt the target if rescheduling is needed...)
975 if (state
== VTIME_SYS
)
976 *val
+= vtime
->stime
+ vtime_delta(vtime
);
979 if (task_nice(tsk
) <= 0)
980 *val
+= kcpustat_user_vtime(vtime
);
983 if (task_nice(tsk
) > 0)
984 *val
+= kcpustat_user_vtime(vtime
);
987 if (state
== VTIME_GUEST
&& task_nice(tsk
) <= 0)
988 *val
+= vtime
->gtime
+ vtime_delta(vtime
);
990 case CPUTIME_GUEST_NICE
:
991 if (state
== VTIME_GUEST
&& task_nice(tsk
) > 0)
992 *val
+= vtime
->gtime
+ vtime_delta(vtime
);
997 } while (read_seqcount_retry(&vtime
->seqcount
, seq
));
1002 u64
kcpustat_field(struct kernel_cpustat
*kcpustat
,
1003 enum cpu_usage_stat usage
, int cpu
)
1005 u64
*cpustat
= kcpustat
->cpustat
;
1006 u64 val
= cpustat
[usage
];
1010 if (!vtime_accounting_enabled_cpu(cpu
))
1016 struct task_struct
*curr
;
1019 curr
= rcu_dereference(rq
->curr
);
1020 if (WARN_ON_ONCE(!curr
)) {
1022 return cpustat
[usage
];
1025 err
= kcpustat_field_vtime(cpustat
, curr
, usage
, cpu
, &val
);
1034 EXPORT_SYMBOL_GPL(kcpustat_field
);
1036 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat
*dst
,
1037 const struct kernel_cpustat
*src
,
1038 struct task_struct
*tsk
, int cpu
)
1040 struct vtime
*vtime
= &tsk
->vtime
;
1048 seq
= read_seqcount_begin(&vtime
->seqcount
);
1050 state
= vtime_state_fetch(vtime
, cpu
);
1055 cpustat
= dst
->cpustat
;
1057 /* Task is sleeping, dead or idle, nothing to add */
1058 if (state
< VTIME_SYS
)
1061 delta
= vtime_delta(vtime
);
1064 * Task runs either in user (including guest) or kernel space,
1065 * add pending nohz time to the right place.
1067 if (state
== VTIME_SYS
) {
1068 cpustat
[CPUTIME_SYSTEM
] += vtime
->stime
+ delta
;
1069 } else if (state
== VTIME_USER
) {
1070 if (task_nice(tsk
) > 0)
1071 cpustat
[CPUTIME_NICE
] += vtime
->utime
+ delta
;
1073 cpustat
[CPUTIME_USER
] += vtime
->utime
+ delta
;
1075 WARN_ON_ONCE(state
!= VTIME_GUEST
);
1076 if (task_nice(tsk
) > 0) {
1077 cpustat
[CPUTIME_GUEST_NICE
] += vtime
->gtime
+ delta
;
1078 cpustat
[CPUTIME_NICE
] += vtime
->gtime
+ delta
;
1080 cpustat
[CPUTIME_GUEST
] += vtime
->gtime
+ delta
;
1081 cpustat
[CPUTIME_USER
] += vtime
->gtime
+ delta
;
1084 } while (read_seqcount_retry(&vtime
->seqcount
, seq
));
1089 void kcpustat_cpu_fetch(struct kernel_cpustat
*dst
, int cpu
)
1091 const struct kernel_cpustat
*src
= &kcpustat_cpu(cpu
);
1095 if (!vtime_accounting_enabled_cpu(cpu
)) {
1103 struct task_struct
*curr
;
1106 curr
= rcu_dereference(rq
->curr
);
1107 if (WARN_ON_ONCE(!curr
)) {
1113 err
= kcpustat_cpu_fetch_vtime(dst
, src
, curr
, cpu
);
1122 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch
);
1124 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */