serial: exar: Fix GPIO configuration for Sealevel cards based on XR17V35X
[linux/fpc-iii.git] / kernel / sched / cputime.c
blobff9435dee1df218a96d05ac4fc1130f0bca204e1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple CPU accounting cgroup controller
4 */
5 #include "sched.h"
7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
9 /*
10 * There are no locks covering percpu hardirq/softirq time.
11 * They are only modified in vtime_account, on corresponding CPU
12 * with interrupts disabled. So, writes are safe.
13 * They are read and saved off onto struct rq in update_rq_clock().
14 * This may result in other CPU reading this CPU's irq time and can
15 * race with irq/vtime_account on this CPU. We would either get old
16 * or new value with a side effect of accounting a slice of irq time to wrong
17 * task when irq is in progress while we read rq->clock. That is a worthy
18 * compromise in place of having locks on each irq in account_system_time.
20 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
22 static int sched_clock_irqtime;
24 void enable_sched_clock_irqtime(void)
26 sched_clock_irqtime = 1;
29 void disable_sched_clock_irqtime(void)
31 sched_clock_irqtime = 0;
34 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
35 enum cpu_usage_stat idx)
37 u64 *cpustat = kcpustat_this_cpu->cpustat;
39 u64_stats_update_begin(&irqtime->sync);
40 cpustat[idx] += delta;
41 irqtime->total += delta;
42 irqtime->tick_delta += delta;
43 u64_stats_update_end(&irqtime->sync);
47 * Called before incrementing preempt_count on {soft,}irq_enter
48 * and before decrementing preempt_count on {soft,}irq_exit.
50 void irqtime_account_irq(struct task_struct *curr)
52 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
53 s64 delta;
54 int cpu;
56 if (!sched_clock_irqtime)
57 return;
59 cpu = smp_processor_id();
60 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
61 irqtime->irq_start_time += delta;
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
69 if (hardirq_count())
70 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
74 EXPORT_SYMBOL_GPL(irqtime_account_irq);
76 static u64 irqtime_tick_accounted(u64 maxtime)
78 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
79 u64 delta;
81 delta = min(irqtime->tick_delta, maxtime);
82 irqtime->tick_delta -= delta;
84 return delta;
87 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
89 #define sched_clock_irqtime (0)
91 static u64 irqtime_tick_accounted(u64 dummy)
93 return 0;
96 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
98 static inline void task_group_account_field(struct task_struct *p, int index,
99 u64 tmp)
102 * Since all updates are sure to touch the root cgroup, we
103 * get ourselves ahead and touch it first. If the root cgroup
104 * is the only cgroup, then nothing else should be necessary.
107 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
109 cgroup_account_cputime_field(p, index, tmp);
113 * Account user CPU time to a process.
114 * @p: the process that the CPU time gets accounted to
115 * @cputime: the CPU time spent in user space since the last update
117 void account_user_time(struct task_struct *p, u64 cputime)
119 int index;
121 /* Add user time to process. */
122 p->utime += cputime;
123 account_group_user_time(p, cputime);
125 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
127 /* Add user time to cpustat. */
128 task_group_account_field(p, index, cputime);
130 /* Account for user time used */
131 acct_account_cputime(p);
135 * Account guest CPU time to a process.
136 * @p: the process that the CPU time gets accounted to
137 * @cputime: the CPU time spent in virtual machine since the last update
139 void account_guest_time(struct task_struct *p, u64 cputime)
141 u64 *cpustat = kcpustat_this_cpu->cpustat;
143 /* Add guest time to process. */
144 p->utime += cputime;
145 account_group_user_time(p, cputime);
146 p->gtime += cputime;
148 /* Add guest time to cpustat. */
149 if (task_nice(p) > 0) {
150 cpustat[CPUTIME_NICE] += cputime;
151 cpustat[CPUTIME_GUEST_NICE] += cputime;
152 } else {
153 cpustat[CPUTIME_USER] += cputime;
154 cpustat[CPUTIME_GUEST] += cputime;
159 * Account system CPU time to a process and desired cpustat field
160 * @p: the process that the CPU time gets accounted to
161 * @cputime: the CPU time spent in kernel space since the last update
162 * @index: pointer to cpustat field that has to be updated
164 void account_system_index_time(struct task_struct *p,
165 u64 cputime, enum cpu_usage_stat index)
167 /* Add system time to process. */
168 p->stime += cputime;
169 account_group_system_time(p, cputime);
171 /* Add system time to cpustat. */
172 task_group_account_field(p, index, cputime);
174 /* Account for system time used */
175 acct_account_cputime(p);
179 * Account system CPU time to a process.
180 * @p: the process that the CPU time gets accounted to
181 * @hardirq_offset: the offset to subtract from hardirq_count()
182 * @cputime: the CPU time spent in kernel space since the last update
184 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
186 int index;
188 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
189 account_guest_time(p, cputime);
190 return;
193 if (hardirq_count() - hardirq_offset)
194 index = CPUTIME_IRQ;
195 else if (in_serving_softirq())
196 index = CPUTIME_SOFTIRQ;
197 else
198 index = CPUTIME_SYSTEM;
200 account_system_index_time(p, cputime, index);
204 * Account for involuntary wait time.
205 * @cputime: the CPU time spent in involuntary wait
207 void account_steal_time(u64 cputime)
209 u64 *cpustat = kcpustat_this_cpu->cpustat;
211 cpustat[CPUTIME_STEAL] += cputime;
215 * Account for idle time.
216 * @cputime: the CPU time spent in idle wait
218 void account_idle_time(u64 cputime)
220 u64 *cpustat = kcpustat_this_cpu->cpustat;
221 struct rq *rq = this_rq();
223 if (atomic_read(&rq->nr_iowait) > 0)
224 cpustat[CPUTIME_IOWAIT] += cputime;
225 else
226 cpustat[CPUTIME_IDLE] += cputime;
230 * When a guest is interrupted for a longer amount of time, missed clock
231 * ticks are not redelivered later. Due to that, this function may on
232 * occasion account more time than the calling functions think elapsed.
234 static __always_inline u64 steal_account_process_time(u64 maxtime)
236 #ifdef CONFIG_PARAVIRT
237 if (static_key_false(&paravirt_steal_enabled)) {
238 u64 steal;
240 steal = paravirt_steal_clock(smp_processor_id());
241 steal -= this_rq()->prev_steal_time;
242 steal = min(steal, maxtime);
243 account_steal_time(steal);
244 this_rq()->prev_steal_time += steal;
246 return steal;
248 #endif
249 return 0;
253 * Account how much elapsed time was spent in steal, irq, or softirq time.
255 static inline u64 account_other_time(u64 max)
257 u64 accounted;
259 lockdep_assert_irqs_disabled();
261 accounted = steal_account_process_time(max);
263 if (accounted < max)
264 accounted += irqtime_tick_accounted(max - accounted);
266 return accounted;
269 #ifdef CONFIG_64BIT
270 static inline u64 read_sum_exec_runtime(struct task_struct *t)
272 return t->se.sum_exec_runtime;
274 #else
275 static u64 read_sum_exec_runtime(struct task_struct *t)
277 u64 ns;
278 struct rq_flags rf;
279 struct rq *rq;
281 rq = task_rq_lock(t, &rf);
282 ns = t->se.sum_exec_runtime;
283 task_rq_unlock(rq, t, &rf);
285 return ns;
287 #endif
290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
291 * tasks (sum on group iteration) belonging to @tsk's group.
293 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
295 struct signal_struct *sig = tsk->signal;
296 u64 utime, stime;
297 struct task_struct *t;
298 unsigned int seq, nextseq;
299 unsigned long flags;
302 * Update current task runtime to account pending time since last
303 * scheduler action or thread_group_cputime() call. This thread group
304 * might have other running tasks on different CPUs, but updating
305 * their runtime can affect syscall performance, so we skip account
306 * those pending times and rely only on values updated on tick or
307 * other scheduler action.
309 if (same_thread_group(current, tsk))
310 (void) task_sched_runtime(current);
312 rcu_read_lock();
313 /* Attempt a lockless read on the first round. */
314 nextseq = 0;
315 do {
316 seq = nextseq;
317 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
318 times->utime = sig->utime;
319 times->stime = sig->stime;
320 times->sum_exec_runtime = sig->sum_sched_runtime;
322 for_each_thread(tsk, t) {
323 task_cputime(t, &utime, &stime);
324 times->utime += utime;
325 times->stime += stime;
326 times->sum_exec_runtime += read_sum_exec_runtime(t);
328 /* If lockless access failed, take the lock. */
329 nextseq = 1;
330 } while (need_seqretry(&sig->stats_lock, seq));
331 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
332 rcu_read_unlock();
335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
337 * Account a tick to a process and cpustat
338 * @p: the process that the CPU time gets accounted to
339 * @user_tick: is the tick from userspace
340 * @rq: the pointer to rq
342 * Tick demultiplexing follows the order
343 * - pending hardirq update
344 * - pending softirq update
345 * - user_time
346 * - idle_time
347 * - system time
348 * - check for guest_time
349 * - else account as system_time
351 * Check for hardirq is done both for system and user time as there is
352 * no timer going off while we are on hardirq and hence we may never get an
353 * opportunity to update it solely in system time.
354 * p->stime and friends are only updated on system time and not on irq
355 * softirq as those do not count in task exec_runtime any more.
357 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
358 int ticks)
360 u64 other, cputime = TICK_NSEC * ticks;
363 * When returning from idle, many ticks can get accounted at
364 * once, including some ticks of steal, irq, and softirq time.
365 * Subtract those ticks from the amount of time accounted to
366 * idle, or potentially user or system time. Due to rounding,
367 * other time can exceed ticks occasionally.
369 other = account_other_time(ULONG_MAX);
370 if (other >= cputime)
371 return;
373 cputime -= other;
375 if (this_cpu_ksoftirqd() == p) {
377 * ksoftirqd time do not get accounted in cpu_softirq_time.
378 * So, we have to handle it separately here.
379 * Also, p->stime needs to be updated for ksoftirqd.
381 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
382 } else if (user_tick) {
383 account_user_time(p, cputime);
384 } else if (p == this_rq()->idle) {
385 account_idle_time(cputime);
386 } else if (p->flags & PF_VCPU) { /* System time or guest time */
387 account_guest_time(p, cputime);
388 } else {
389 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
393 static void irqtime_account_idle_ticks(int ticks)
395 irqtime_account_process_tick(current, 0, ticks);
397 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
398 static inline void irqtime_account_idle_ticks(int ticks) { }
399 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
400 int nr_ticks) { }
401 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
404 * Use precise platform statistics if available:
406 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
408 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
409 void vtime_task_switch(struct task_struct *prev)
411 if (is_idle_task(prev))
412 vtime_account_idle(prev);
413 else
414 vtime_account_kernel(prev);
416 vtime_flush(prev);
417 arch_vtime_task_switch(prev);
419 # endif
422 * Archs that account the whole time spent in the idle task
423 * (outside irq) as idle time can rely on this and just implement
424 * vtime_account_kernel() and vtime_account_idle(). Archs that
425 * have other meaning of the idle time (s390 only includes the
426 * time spent by the CPU when it's in low power mode) must override
427 * vtime_account().
429 #ifndef __ARCH_HAS_VTIME_ACCOUNT
430 void vtime_account_irq_enter(struct task_struct *tsk)
432 if (!in_interrupt() && is_idle_task(tsk))
433 vtime_account_idle(tsk);
434 else
435 vtime_account_kernel(tsk);
437 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
438 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
440 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
441 u64 *ut, u64 *st)
443 *ut = curr->utime;
444 *st = curr->stime;
447 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
449 *ut = p->utime;
450 *st = p->stime;
452 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
454 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
456 struct task_cputime cputime;
458 thread_group_cputime(p, &cputime);
460 *ut = cputime.utime;
461 *st = cputime.stime;
464 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
467 * Account a single tick of CPU time.
468 * @p: the process that the CPU time gets accounted to
469 * @user_tick: indicates if the tick is a user or a system tick
471 void account_process_tick(struct task_struct *p, int user_tick)
473 u64 cputime, steal;
475 if (vtime_accounting_enabled_this_cpu())
476 return;
478 if (sched_clock_irqtime) {
479 irqtime_account_process_tick(p, user_tick, 1);
480 return;
483 cputime = TICK_NSEC;
484 steal = steal_account_process_time(ULONG_MAX);
486 if (steal >= cputime)
487 return;
489 cputime -= steal;
491 if (user_tick)
492 account_user_time(p, cputime);
493 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
494 account_system_time(p, HARDIRQ_OFFSET, cputime);
495 else
496 account_idle_time(cputime);
500 * Account multiple ticks of idle time.
501 * @ticks: number of stolen ticks
503 void account_idle_ticks(unsigned long ticks)
505 u64 cputime, steal;
507 if (sched_clock_irqtime) {
508 irqtime_account_idle_ticks(ticks);
509 return;
512 cputime = ticks * TICK_NSEC;
513 steal = steal_account_process_time(ULONG_MAX);
515 if (steal >= cputime)
516 return;
518 cputime -= steal;
519 account_idle_time(cputime);
523 * Perform (stime * rtime) / total, but avoid multiplication overflow by
524 * losing precision when the numbers are big.
526 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
528 u64 scaled;
530 for (;;) {
531 /* Make sure "rtime" is the bigger of stime/rtime */
532 if (stime > rtime)
533 swap(rtime, stime);
535 /* Make sure 'total' fits in 32 bits */
536 if (total >> 32)
537 goto drop_precision;
539 /* Does rtime (and thus stime) fit in 32 bits? */
540 if (!(rtime >> 32))
541 break;
543 /* Can we just balance rtime/stime rather than dropping bits? */
544 if (stime >> 31)
545 goto drop_precision;
547 /* We can grow stime and shrink rtime and try to make them both fit */
548 stime <<= 1;
549 rtime >>= 1;
550 continue;
552 drop_precision:
553 /* We drop from rtime, it has more bits than stime */
554 rtime >>= 1;
555 total >>= 1;
559 * Make sure gcc understands that this is a 32x32->64 multiply,
560 * followed by a 64/32->64 divide.
562 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
563 return scaled;
567 * Adjust tick based cputime random precision against scheduler runtime
568 * accounting.
570 * Tick based cputime accounting depend on random scheduling timeslices of a
571 * task to be interrupted or not by the timer. Depending on these
572 * circumstances, the number of these interrupts may be over or
573 * under-optimistic, matching the real user and system cputime with a variable
574 * precision.
576 * Fix this by scaling these tick based values against the total runtime
577 * accounted by the CFS scheduler.
579 * This code provides the following guarantees:
581 * stime + utime == rtime
582 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
584 * Assuming that rtime_i+1 >= rtime_i.
586 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
587 u64 *ut, u64 *st)
589 u64 rtime, stime, utime;
590 unsigned long flags;
592 /* Serialize concurrent callers such that we can honour our guarantees */
593 raw_spin_lock_irqsave(&prev->lock, flags);
594 rtime = curr->sum_exec_runtime;
597 * This is possible under two circumstances:
598 * - rtime isn't monotonic after all (a bug);
599 * - we got reordered by the lock.
601 * In both cases this acts as a filter such that the rest of the code
602 * can assume it is monotonic regardless of anything else.
604 if (prev->stime + prev->utime >= rtime)
605 goto out;
607 stime = curr->stime;
608 utime = curr->utime;
611 * If either stime or utime are 0, assume all runtime is userspace.
612 * Once a task gets some ticks, the monotonicy code at 'update:'
613 * will ensure things converge to the observed ratio.
615 if (stime == 0) {
616 utime = rtime;
617 goto update;
620 if (utime == 0) {
621 stime = rtime;
622 goto update;
625 stime = scale_stime(stime, rtime, stime + utime);
627 update:
629 * Make sure stime doesn't go backwards; this preserves monotonicity
630 * for utime because rtime is monotonic.
632 * utime_i+1 = rtime_i+1 - stime_i
633 * = rtime_i+1 - (rtime_i - utime_i)
634 * = (rtime_i+1 - rtime_i) + utime_i
635 * >= utime_i
637 if (stime < prev->stime)
638 stime = prev->stime;
639 utime = rtime - stime;
642 * Make sure utime doesn't go backwards; this still preserves
643 * monotonicity for stime, analogous argument to above.
645 if (utime < prev->utime) {
646 utime = prev->utime;
647 stime = rtime - utime;
650 prev->stime = stime;
651 prev->utime = utime;
652 out:
653 *ut = prev->utime;
654 *st = prev->stime;
655 raw_spin_unlock_irqrestore(&prev->lock, flags);
658 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
660 struct task_cputime cputime = {
661 .sum_exec_runtime = p->se.sum_exec_runtime,
664 task_cputime(p, &cputime.utime, &cputime.stime);
665 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
667 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
669 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
671 struct task_cputime cputime;
673 thread_group_cputime(p, &cputime);
674 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
676 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
678 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
679 static u64 vtime_delta(struct vtime *vtime)
681 unsigned long long clock;
683 clock = sched_clock();
684 if (clock < vtime->starttime)
685 return 0;
687 return clock - vtime->starttime;
690 static u64 get_vtime_delta(struct vtime *vtime)
692 u64 delta = vtime_delta(vtime);
693 u64 other;
696 * Unlike tick based timing, vtime based timing never has lost
697 * ticks, and no need for steal time accounting to make up for
698 * lost ticks. Vtime accounts a rounded version of actual
699 * elapsed time. Limit account_other_time to prevent rounding
700 * errors from causing elapsed vtime to go negative.
702 other = account_other_time(delta);
703 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
704 vtime->starttime += delta;
706 return delta - other;
709 static void vtime_account_system(struct task_struct *tsk,
710 struct vtime *vtime)
712 vtime->stime += get_vtime_delta(vtime);
713 if (vtime->stime >= TICK_NSEC) {
714 account_system_time(tsk, irq_count(), vtime->stime);
715 vtime->stime = 0;
719 static void vtime_account_guest(struct task_struct *tsk,
720 struct vtime *vtime)
722 vtime->gtime += get_vtime_delta(vtime);
723 if (vtime->gtime >= TICK_NSEC) {
724 account_guest_time(tsk, vtime->gtime);
725 vtime->gtime = 0;
729 static void __vtime_account_kernel(struct task_struct *tsk,
730 struct vtime *vtime)
732 /* We might have scheduled out from guest path */
733 if (vtime->state == VTIME_GUEST)
734 vtime_account_guest(tsk, vtime);
735 else
736 vtime_account_system(tsk, vtime);
739 void vtime_account_kernel(struct task_struct *tsk)
741 struct vtime *vtime = &tsk->vtime;
743 if (!vtime_delta(vtime))
744 return;
746 write_seqcount_begin(&vtime->seqcount);
747 __vtime_account_kernel(tsk, vtime);
748 write_seqcount_end(&vtime->seqcount);
751 void vtime_user_enter(struct task_struct *tsk)
753 struct vtime *vtime = &tsk->vtime;
755 write_seqcount_begin(&vtime->seqcount);
756 vtime_account_system(tsk, vtime);
757 vtime->state = VTIME_USER;
758 write_seqcount_end(&vtime->seqcount);
761 void vtime_user_exit(struct task_struct *tsk)
763 struct vtime *vtime = &tsk->vtime;
765 write_seqcount_begin(&vtime->seqcount);
766 vtime->utime += get_vtime_delta(vtime);
767 if (vtime->utime >= TICK_NSEC) {
768 account_user_time(tsk, vtime->utime);
769 vtime->utime = 0;
771 vtime->state = VTIME_SYS;
772 write_seqcount_end(&vtime->seqcount);
775 void vtime_guest_enter(struct task_struct *tsk)
777 struct vtime *vtime = &tsk->vtime;
779 * The flags must be updated under the lock with
780 * the vtime_starttime flush and update.
781 * That enforces a right ordering and update sequence
782 * synchronization against the reader (task_gtime())
783 * that can thus safely catch up with a tickless delta.
785 write_seqcount_begin(&vtime->seqcount);
786 vtime_account_system(tsk, vtime);
787 tsk->flags |= PF_VCPU;
788 vtime->state = VTIME_GUEST;
789 write_seqcount_end(&vtime->seqcount);
791 EXPORT_SYMBOL_GPL(vtime_guest_enter);
793 void vtime_guest_exit(struct task_struct *tsk)
795 struct vtime *vtime = &tsk->vtime;
797 write_seqcount_begin(&vtime->seqcount);
798 vtime_account_guest(tsk, vtime);
799 tsk->flags &= ~PF_VCPU;
800 vtime->state = VTIME_SYS;
801 write_seqcount_end(&vtime->seqcount);
803 EXPORT_SYMBOL_GPL(vtime_guest_exit);
805 void vtime_account_idle(struct task_struct *tsk)
807 account_idle_time(get_vtime_delta(&tsk->vtime));
810 void vtime_task_switch_generic(struct task_struct *prev)
812 struct vtime *vtime = &prev->vtime;
814 write_seqcount_begin(&vtime->seqcount);
815 if (vtime->state == VTIME_IDLE)
816 vtime_account_idle(prev);
817 else
818 __vtime_account_kernel(prev, vtime);
819 vtime->state = VTIME_INACTIVE;
820 vtime->cpu = -1;
821 write_seqcount_end(&vtime->seqcount);
823 vtime = &current->vtime;
825 write_seqcount_begin(&vtime->seqcount);
826 if (is_idle_task(current))
827 vtime->state = VTIME_IDLE;
828 else if (current->flags & PF_VCPU)
829 vtime->state = VTIME_GUEST;
830 else
831 vtime->state = VTIME_SYS;
832 vtime->starttime = sched_clock();
833 vtime->cpu = smp_processor_id();
834 write_seqcount_end(&vtime->seqcount);
837 void vtime_init_idle(struct task_struct *t, int cpu)
839 struct vtime *vtime = &t->vtime;
840 unsigned long flags;
842 local_irq_save(flags);
843 write_seqcount_begin(&vtime->seqcount);
844 vtime->state = VTIME_IDLE;
845 vtime->starttime = sched_clock();
846 vtime->cpu = cpu;
847 write_seqcount_end(&vtime->seqcount);
848 local_irq_restore(flags);
851 u64 task_gtime(struct task_struct *t)
853 struct vtime *vtime = &t->vtime;
854 unsigned int seq;
855 u64 gtime;
857 if (!vtime_accounting_enabled())
858 return t->gtime;
860 do {
861 seq = read_seqcount_begin(&vtime->seqcount);
863 gtime = t->gtime;
864 if (vtime->state == VTIME_GUEST)
865 gtime += vtime->gtime + vtime_delta(vtime);
867 } while (read_seqcount_retry(&vtime->seqcount, seq));
869 return gtime;
873 * Fetch cputime raw values from fields of task_struct and
874 * add up the pending nohz execution time since the last
875 * cputime snapshot.
877 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
879 struct vtime *vtime = &t->vtime;
880 unsigned int seq;
881 u64 delta;
883 if (!vtime_accounting_enabled()) {
884 *utime = t->utime;
885 *stime = t->stime;
886 return;
889 do {
890 seq = read_seqcount_begin(&vtime->seqcount);
892 *utime = t->utime;
893 *stime = t->stime;
895 /* Task is sleeping or idle, nothing to add */
896 if (vtime->state < VTIME_SYS)
897 continue;
899 delta = vtime_delta(vtime);
902 * Task runs either in user (including guest) or kernel space,
903 * add pending nohz time to the right place.
905 if (vtime->state == VTIME_SYS)
906 *stime += vtime->stime + delta;
907 else
908 *utime += vtime->utime + delta;
909 } while (read_seqcount_retry(&vtime->seqcount, seq));
912 static int vtime_state_fetch(struct vtime *vtime, int cpu)
914 int state = READ_ONCE(vtime->state);
917 * We raced against a context switch, fetch the
918 * kcpustat task again.
920 if (vtime->cpu != cpu && vtime->cpu != -1)
921 return -EAGAIN;
924 * Two possible things here:
925 * 1) We are seeing the scheduling out task (prev) or any past one.
926 * 2) We are seeing the scheduling in task (next) but it hasn't
927 * passed though vtime_task_switch() yet so the pending
928 * cputime of the prev task may not be flushed yet.
930 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
932 if (state == VTIME_INACTIVE)
933 return -EAGAIN;
935 return state;
938 static u64 kcpustat_user_vtime(struct vtime *vtime)
940 if (vtime->state == VTIME_USER)
941 return vtime->utime + vtime_delta(vtime);
942 else if (vtime->state == VTIME_GUEST)
943 return vtime->gtime + vtime_delta(vtime);
944 return 0;
947 static int kcpustat_field_vtime(u64 *cpustat,
948 struct task_struct *tsk,
949 enum cpu_usage_stat usage,
950 int cpu, u64 *val)
952 struct vtime *vtime = &tsk->vtime;
953 unsigned int seq;
955 do {
956 int state;
958 seq = read_seqcount_begin(&vtime->seqcount);
960 state = vtime_state_fetch(vtime, cpu);
961 if (state < 0)
962 return state;
964 *val = cpustat[usage];
967 * Nice VS unnice cputime accounting may be inaccurate if
968 * the nice value has changed since the last vtime update.
969 * But proper fix would involve interrupting target on nice
970 * updates which is a no go on nohz_full (although the scheduler
971 * may still interrupt the target if rescheduling is needed...)
973 switch (usage) {
974 case CPUTIME_SYSTEM:
975 if (state == VTIME_SYS)
976 *val += vtime->stime + vtime_delta(vtime);
977 break;
978 case CPUTIME_USER:
979 if (task_nice(tsk) <= 0)
980 *val += kcpustat_user_vtime(vtime);
981 break;
982 case CPUTIME_NICE:
983 if (task_nice(tsk) > 0)
984 *val += kcpustat_user_vtime(vtime);
985 break;
986 case CPUTIME_GUEST:
987 if (state == VTIME_GUEST && task_nice(tsk) <= 0)
988 *val += vtime->gtime + vtime_delta(vtime);
989 break;
990 case CPUTIME_GUEST_NICE:
991 if (state == VTIME_GUEST && task_nice(tsk) > 0)
992 *val += vtime->gtime + vtime_delta(vtime);
993 break;
994 default:
995 break;
997 } while (read_seqcount_retry(&vtime->seqcount, seq));
999 return 0;
1002 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
1003 enum cpu_usage_stat usage, int cpu)
1005 u64 *cpustat = kcpustat->cpustat;
1006 u64 val = cpustat[usage];
1007 struct rq *rq;
1008 int err;
1010 if (!vtime_accounting_enabled_cpu(cpu))
1011 return val;
1013 rq = cpu_rq(cpu);
1015 for (;;) {
1016 struct task_struct *curr;
1018 rcu_read_lock();
1019 curr = rcu_dereference(rq->curr);
1020 if (WARN_ON_ONCE(!curr)) {
1021 rcu_read_unlock();
1022 return cpustat[usage];
1025 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1026 rcu_read_unlock();
1028 if (!err)
1029 return val;
1031 cpu_relax();
1034 EXPORT_SYMBOL_GPL(kcpustat_field);
1036 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1037 const struct kernel_cpustat *src,
1038 struct task_struct *tsk, int cpu)
1040 struct vtime *vtime = &tsk->vtime;
1041 unsigned int seq;
1043 do {
1044 u64 *cpustat;
1045 u64 delta;
1046 int state;
1048 seq = read_seqcount_begin(&vtime->seqcount);
1050 state = vtime_state_fetch(vtime, cpu);
1051 if (state < 0)
1052 return state;
1054 *dst = *src;
1055 cpustat = dst->cpustat;
1057 /* Task is sleeping, dead or idle, nothing to add */
1058 if (state < VTIME_SYS)
1059 continue;
1061 delta = vtime_delta(vtime);
1064 * Task runs either in user (including guest) or kernel space,
1065 * add pending nohz time to the right place.
1067 if (state == VTIME_SYS) {
1068 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1069 } else if (state == VTIME_USER) {
1070 if (task_nice(tsk) > 0)
1071 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1072 else
1073 cpustat[CPUTIME_USER] += vtime->utime + delta;
1074 } else {
1075 WARN_ON_ONCE(state != VTIME_GUEST);
1076 if (task_nice(tsk) > 0) {
1077 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1078 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1079 } else {
1080 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1081 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1084 } while (read_seqcount_retry(&vtime->seqcount, seq));
1086 return 0;
1089 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1091 const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1092 struct rq *rq;
1093 int err;
1095 if (!vtime_accounting_enabled_cpu(cpu)) {
1096 *dst = *src;
1097 return;
1100 rq = cpu_rq(cpu);
1102 for (;;) {
1103 struct task_struct *curr;
1105 rcu_read_lock();
1106 curr = rcu_dereference(rq->curr);
1107 if (WARN_ON_ONCE(!curr)) {
1108 rcu_read_unlock();
1109 *dst = *src;
1110 return;
1113 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1114 rcu_read_unlock();
1116 if (!err)
1117 return;
1119 cpu_relax();
1122 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1124 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */