serial: exar: Fix GPIO configuration for Sealevel cards based on XR17V35X
[linux/fpc-iii.git] / kernel / sched / sched.h
blob877fb08eb1b046a4cc293b6293667ab25158e8d7
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
36 #include <uapi/linux/sched/types.h>
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
69 #include <asm/tlb.h>
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
73 #endif
75 #include "cpupri.h"
76 #include "cpudeadline.h"
78 #ifdef CONFIG_SCHED_DEBUG
79 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
80 #else
81 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
82 #endif
84 struct rq;
85 struct cpuidle_state;
87 /* task_struct::on_rq states: */
88 #define TASK_ON_RQ_QUEUED 1
89 #define TASK_ON_RQ_MIGRATING 2
91 extern __read_mostly int scheduler_running;
93 extern unsigned long calc_load_update;
94 extern atomic_long_t calc_load_tasks;
96 extern void calc_global_load_tick(struct rq *this_rq);
97 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
100 * Helpers for converting nanosecond timing to jiffy resolution
102 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 * Increase resolution of nice-level calculations for 64-bit architectures.
106 * The extra resolution improves shares distribution and load balancing of
107 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
108 * hierarchies, especially on larger systems. This is not a user-visible change
109 * and does not change the user-interface for setting shares/weights.
111 * We increase resolution only if we have enough bits to allow this increased
112 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
113 * are pretty high and the returns do not justify the increased costs.
115 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
116 * increase coverage and consistency always enable it on 64-bit platforms.
118 #ifdef CONFIG_64BIT
119 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
120 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
121 # define scale_load_down(w) \
122 ({ \
123 unsigned long __w = (w); \
124 if (__w) \
125 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
126 __w; \
128 #else
129 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
130 # define scale_load(w) (w)
131 # define scale_load_down(w) (w)
132 #endif
135 * Task weight (visible to users) and its load (invisible to users) have
136 * independent resolution, but they should be well calibrated. We use
137 * scale_load() and scale_load_down(w) to convert between them. The
138 * following must be true:
140 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
143 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
146 * Single value that decides SCHED_DEADLINE internal math precision.
147 * 10 -> just above 1us
148 * 9 -> just above 0.5us
150 #define DL_SCALE 10
153 * Single value that denotes runtime == period, ie unlimited time.
155 #define RUNTIME_INF ((u64)~0ULL)
157 static inline int idle_policy(int policy)
159 return policy == SCHED_IDLE;
161 static inline int fair_policy(int policy)
163 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
166 static inline int rt_policy(int policy)
168 return policy == SCHED_FIFO || policy == SCHED_RR;
171 static inline int dl_policy(int policy)
173 return policy == SCHED_DEADLINE;
175 static inline bool valid_policy(int policy)
177 return idle_policy(policy) || fair_policy(policy) ||
178 rt_policy(policy) || dl_policy(policy);
181 static inline int task_has_idle_policy(struct task_struct *p)
183 return idle_policy(p->policy);
186 static inline int task_has_rt_policy(struct task_struct *p)
188 return rt_policy(p->policy);
191 static inline int task_has_dl_policy(struct task_struct *p)
193 return dl_policy(p->policy);
196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
198 static inline void update_avg(u64 *avg, u64 sample)
200 s64 diff = sample - *avg;
201 *avg += diff / 8;
205 * !! For sched_setattr_nocheck() (kernel) only !!
207 * This is actually gross. :(
209 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
210 * tasks, but still be able to sleep. We need this on platforms that cannot
211 * atomically change clock frequency. Remove once fast switching will be
212 * available on such platforms.
214 * SUGOV stands for SchedUtil GOVernor.
216 #define SCHED_FLAG_SUGOV 0x10000000
218 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
220 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
221 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
222 #else
223 return false;
224 #endif
228 * Tells if entity @a should preempt entity @b.
230 static inline bool
231 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
233 return dl_entity_is_special(a) ||
234 dl_time_before(a->deadline, b->deadline);
238 * This is the priority-queue data structure of the RT scheduling class:
240 struct rt_prio_array {
241 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
242 struct list_head queue[MAX_RT_PRIO];
245 struct rt_bandwidth {
246 /* nests inside the rq lock: */
247 raw_spinlock_t rt_runtime_lock;
248 ktime_t rt_period;
249 u64 rt_runtime;
250 struct hrtimer rt_period_timer;
251 unsigned int rt_period_active;
254 void __dl_clear_params(struct task_struct *p);
257 * To keep the bandwidth of -deadline tasks and groups under control
258 * we need some place where:
259 * - store the maximum -deadline bandwidth of the system (the group);
260 * - cache the fraction of that bandwidth that is currently allocated.
262 * This is all done in the data structure below. It is similar to the
263 * one used for RT-throttling (rt_bandwidth), with the main difference
264 * that, since here we are only interested in admission control, we
265 * do not decrease any runtime while the group "executes", neither we
266 * need a timer to replenish it.
268 * With respect to SMP, the bandwidth is given on a per-CPU basis,
269 * meaning that:
270 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
271 * - dl_total_bw array contains, in the i-eth element, the currently
272 * allocated bandwidth on the i-eth CPU.
273 * Moreover, groups consume bandwidth on each CPU, while tasks only
274 * consume bandwidth on the CPU they're running on.
275 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
276 * that will be shown the next time the proc or cgroup controls will
277 * be red. It on its turn can be changed by writing on its own
278 * control.
280 struct dl_bandwidth {
281 raw_spinlock_t dl_runtime_lock;
282 u64 dl_runtime;
283 u64 dl_period;
286 static inline int dl_bandwidth_enabled(void)
288 return sysctl_sched_rt_runtime >= 0;
291 struct dl_bw {
292 raw_spinlock_t lock;
293 u64 bw;
294 u64 total_bw;
297 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
299 static inline
300 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
302 dl_b->total_bw -= tsk_bw;
303 __dl_update(dl_b, (s32)tsk_bw / cpus);
306 static inline
307 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
309 dl_b->total_bw += tsk_bw;
310 __dl_update(dl_b, -((s32)tsk_bw / cpus));
313 static inline
314 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
316 return dl_b->bw != -1 &&
317 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
320 extern void init_dl_bw(struct dl_bw *dl_b);
321 extern int sched_dl_global_validate(void);
322 extern void sched_dl_do_global(void);
323 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
324 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
325 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
326 extern bool __checkparam_dl(const struct sched_attr *attr);
327 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
328 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
329 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
330 extern bool dl_cpu_busy(unsigned int cpu);
332 #ifdef CONFIG_CGROUP_SCHED
334 #include <linux/cgroup.h>
335 #include <linux/psi.h>
337 struct cfs_rq;
338 struct rt_rq;
340 extern struct list_head task_groups;
342 struct cfs_bandwidth {
343 #ifdef CONFIG_CFS_BANDWIDTH
344 raw_spinlock_t lock;
345 ktime_t period;
346 u64 quota;
347 u64 runtime;
348 s64 hierarchical_quota;
350 u8 idle;
351 u8 period_active;
352 u8 slack_started;
353 struct hrtimer period_timer;
354 struct hrtimer slack_timer;
355 struct list_head throttled_cfs_rq;
357 /* Statistics: */
358 int nr_periods;
359 int nr_throttled;
360 u64 throttled_time;
361 #endif
364 /* Task group related information */
365 struct task_group {
366 struct cgroup_subsys_state css;
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 /* schedulable entities of this group on each CPU */
370 struct sched_entity **se;
371 /* runqueue "owned" by this group on each CPU */
372 struct cfs_rq **cfs_rq;
373 unsigned long shares;
375 #ifdef CONFIG_SMP
377 * load_avg can be heavily contended at clock tick time, so put
378 * it in its own cacheline separated from the fields above which
379 * will also be accessed at each tick.
381 atomic_long_t load_avg ____cacheline_aligned;
382 #endif
383 #endif
385 #ifdef CONFIG_RT_GROUP_SCHED
386 struct sched_rt_entity **rt_se;
387 struct rt_rq **rt_rq;
389 struct rt_bandwidth rt_bandwidth;
390 #endif
392 struct rcu_head rcu;
393 struct list_head list;
395 struct task_group *parent;
396 struct list_head siblings;
397 struct list_head children;
399 #ifdef CONFIG_SCHED_AUTOGROUP
400 struct autogroup *autogroup;
401 #endif
403 struct cfs_bandwidth cfs_bandwidth;
405 #ifdef CONFIG_UCLAMP_TASK_GROUP
406 /* The two decimal precision [%] value requested from user-space */
407 unsigned int uclamp_pct[UCLAMP_CNT];
408 /* Clamp values requested for a task group */
409 struct uclamp_se uclamp_req[UCLAMP_CNT];
410 /* Effective clamp values used for a task group */
411 struct uclamp_se uclamp[UCLAMP_CNT];
412 #endif
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
420 * A weight of 0 or 1 can cause arithmetics problems.
421 * A weight of a cfs_rq is the sum of weights of which entities
422 * are queued on this cfs_rq, so a weight of a entity should not be
423 * too large, so as the shares value of a task group.
424 * (The default weight is 1024 - so there's no practical
425 * limitation from this.)
427 #define MIN_SHARES (1UL << 1)
428 #define MAX_SHARES (1UL << 18)
429 #endif
431 typedef int (*tg_visitor)(struct task_group *, void *);
433 extern int walk_tg_tree_from(struct task_group *from,
434 tg_visitor down, tg_visitor up, void *data);
437 * Iterate the full tree, calling @down when first entering a node and @up when
438 * leaving it for the final time.
440 * Caller must hold rcu_lock or sufficient equivalent.
442 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
444 return walk_tg_tree_from(&root_task_group, down, up, data);
447 extern int tg_nop(struct task_group *tg, void *data);
449 extern void free_fair_sched_group(struct task_group *tg);
450 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
451 extern void online_fair_sched_group(struct task_group *tg);
452 extern void unregister_fair_sched_group(struct task_group *tg);
453 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
454 struct sched_entity *se, int cpu,
455 struct sched_entity *parent);
456 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
458 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
459 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
460 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
462 extern void free_rt_sched_group(struct task_group *tg);
463 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
464 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
465 struct sched_rt_entity *rt_se, int cpu,
466 struct sched_rt_entity *parent);
467 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
468 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
469 extern long sched_group_rt_runtime(struct task_group *tg);
470 extern long sched_group_rt_period(struct task_group *tg);
471 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
473 extern struct task_group *sched_create_group(struct task_group *parent);
474 extern void sched_online_group(struct task_group *tg,
475 struct task_group *parent);
476 extern void sched_destroy_group(struct task_group *tg);
477 extern void sched_offline_group(struct task_group *tg);
479 extern void sched_move_task(struct task_struct *tsk);
481 #ifdef CONFIG_FAIR_GROUP_SCHED
482 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
484 #ifdef CONFIG_SMP
485 extern void set_task_rq_fair(struct sched_entity *se,
486 struct cfs_rq *prev, struct cfs_rq *next);
487 #else /* !CONFIG_SMP */
488 static inline void set_task_rq_fair(struct sched_entity *se,
489 struct cfs_rq *prev, struct cfs_rq *next) { }
490 #endif /* CONFIG_SMP */
491 #endif /* CONFIG_FAIR_GROUP_SCHED */
493 #else /* CONFIG_CGROUP_SCHED */
495 struct cfs_bandwidth { };
497 #endif /* CONFIG_CGROUP_SCHED */
499 /* CFS-related fields in a runqueue */
500 struct cfs_rq {
501 struct load_weight load;
502 unsigned int nr_running;
503 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
504 unsigned int idle_h_nr_running; /* SCHED_IDLE */
506 u64 exec_clock;
507 u64 min_vruntime;
508 #ifndef CONFIG_64BIT
509 u64 min_vruntime_copy;
510 #endif
512 struct rb_root_cached tasks_timeline;
515 * 'curr' points to currently running entity on this cfs_rq.
516 * It is set to NULL otherwise (i.e when none are currently running).
518 struct sched_entity *curr;
519 struct sched_entity *next;
520 struct sched_entity *last;
521 struct sched_entity *skip;
523 #ifdef CONFIG_SCHED_DEBUG
524 unsigned int nr_spread_over;
525 #endif
527 #ifdef CONFIG_SMP
529 * CFS load tracking
531 struct sched_avg avg;
532 #ifndef CONFIG_64BIT
533 u64 load_last_update_time_copy;
534 #endif
535 struct {
536 raw_spinlock_t lock ____cacheline_aligned;
537 int nr;
538 unsigned long load_avg;
539 unsigned long util_avg;
540 unsigned long runnable_avg;
541 } removed;
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 unsigned long tg_load_avg_contrib;
545 long propagate;
546 long prop_runnable_sum;
549 * h_load = weight * f(tg)
551 * Where f(tg) is the recursive weight fraction assigned to
552 * this group.
554 unsigned long h_load;
555 u64 last_h_load_update;
556 struct sched_entity *h_load_next;
557 #endif /* CONFIG_FAIR_GROUP_SCHED */
558 #endif /* CONFIG_SMP */
560 #ifdef CONFIG_FAIR_GROUP_SCHED
561 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
564 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
565 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
566 * (like users, containers etc.)
568 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
569 * This list is used during load balance.
571 int on_list;
572 struct list_head leaf_cfs_rq_list;
573 struct task_group *tg; /* group that "owns" this runqueue */
575 #ifdef CONFIG_CFS_BANDWIDTH
576 int runtime_enabled;
577 s64 runtime_remaining;
579 u64 throttled_clock;
580 u64 throttled_clock_task;
581 u64 throttled_clock_task_time;
582 int throttled;
583 int throttle_count;
584 struct list_head throttled_list;
585 #endif /* CONFIG_CFS_BANDWIDTH */
586 #endif /* CONFIG_FAIR_GROUP_SCHED */
589 static inline int rt_bandwidth_enabled(void)
591 return sysctl_sched_rt_runtime >= 0;
594 /* RT IPI pull logic requires IRQ_WORK */
595 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
596 # define HAVE_RT_PUSH_IPI
597 #endif
599 /* Real-Time classes' related field in a runqueue: */
600 struct rt_rq {
601 struct rt_prio_array active;
602 unsigned int rt_nr_running;
603 unsigned int rr_nr_running;
604 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
605 struct {
606 int curr; /* highest queued rt task prio */
607 #ifdef CONFIG_SMP
608 int next; /* next highest */
609 #endif
610 } highest_prio;
611 #endif
612 #ifdef CONFIG_SMP
613 unsigned long rt_nr_migratory;
614 unsigned long rt_nr_total;
615 int overloaded;
616 struct plist_head pushable_tasks;
618 #endif /* CONFIG_SMP */
619 int rt_queued;
621 int rt_throttled;
622 u64 rt_time;
623 u64 rt_runtime;
624 /* Nests inside the rq lock: */
625 raw_spinlock_t rt_runtime_lock;
627 #ifdef CONFIG_RT_GROUP_SCHED
628 unsigned long rt_nr_boosted;
630 struct rq *rq;
631 struct task_group *tg;
632 #endif
635 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
637 return rt_rq->rt_queued && rt_rq->rt_nr_running;
640 /* Deadline class' related fields in a runqueue */
641 struct dl_rq {
642 /* runqueue is an rbtree, ordered by deadline */
643 struct rb_root_cached root;
645 unsigned long dl_nr_running;
647 #ifdef CONFIG_SMP
649 * Deadline values of the currently executing and the
650 * earliest ready task on this rq. Caching these facilitates
651 * the decision whether or not a ready but not running task
652 * should migrate somewhere else.
654 struct {
655 u64 curr;
656 u64 next;
657 } earliest_dl;
659 unsigned long dl_nr_migratory;
660 int overloaded;
663 * Tasks on this rq that can be pushed away. They are kept in
664 * an rb-tree, ordered by tasks' deadlines, with caching
665 * of the leftmost (earliest deadline) element.
667 struct rb_root_cached pushable_dl_tasks_root;
668 #else
669 struct dl_bw dl_bw;
670 #endif
672 * "Active utilization" for this runqueue: increased when a
673 * task wakes up (becomes TASK_RUNNING) and decreased when a
674 * task blocks
676 u64 running_bw;
679 * Utilization of the tasks "assigned" to this runqueue (including
680 * the tasks that are in runqueue and the tasks that executed on this
681 * CPU and blocked). Increased when a task moves to this runqueue, and
682 * decreased when the task moves away (migrates, changes scheduling
683 * policy, or terminates).
684 * This is needed to compute the "inactive utilization" for the
685 * runqueue (inactive utilization = this_bw - running_bw).
687 u64 this_bw;
688 u64 extra_bw;
691 * Inverse of the fraction of CPU utilization that can be reclaimed
692 * by the GRUB algorithm.
694 u64 bw_ratio;
697 #ifdef CONFIG_FAIR_GROUP_SCHED
698 /* An entity is a task if it doesn't "own" a runqueue */
699 #define entity_is_task(se) (!se->my_q)
701 static inline void se_update_runnable(struct sched_entity *se)
703 if (!entity_is_task(se))
704 se->runnable_weight = se->my_q->h_nr_running;
707 static inline long se_runnable(struct sched_entity *se)
709 if (entity_is_task(se))
710 return !!se->on_rq;
711 else
712 return se->runnable_weight;
715 #else
716 #define entity_is_task(se) 1
718 static inline void se_update_runnable(struct sched_entity *se) {}
720 static inline long se_runnable(struct sched_entity *se)
722 return !!se->on_rq;
724 #endif
726 #ifdef CONFIG_SMP
728 * XXX we want to get rid of these helpers and use the full load resolution.
730 static inline long se_weight(struct sched_entity *se)
732 return scale_load_down(se->load.weight);
736 static inline bool sched_asym_prefer(int a, int b)
738 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
741 struct perf_domain {
742 struct em_perf_domain *em_pd;
743 struct perf_domain *next;
744 struct rcu_head rcu;
747 /* Scheduling group status flags */
748 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
749 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
752 * We add the notion of a root-domain which will be used to define per-domain
753 * variables. Each exclusive cpuset essentially defines an island domain by
754 * fully partitioning the member CPUs from any other cpuset. Whenever a new
755 * exclusive cpuset is created, we also create and attach a new root-domain
756 * object.
759 struct root_domain {
760 atomic_t refcount;
761 atomic_t rto_count;
762 struct rcu_head rcu;
763 cpumask_var_t span;
764 cpumask_var_t online;
767 * Indicate pullable load on at least one CPU, e.g:
768 * - More than one runnable task
769 * - Running task is misfit
771 int overload;
773 /* Indicate one or more cpus over-utilized (tipping point) */
774 int overutilized;
777 * The bit corresponding to a CPU gets set here if such CPU has more
778 * than one runnable -deadline task (as it is below for RT tasks).
780 cpumask_var_t dlo_mask;
781 atomic_t dlo_count;
782 struct dl_bw dl_bw;
783 struct cpudl cpudl;
785 #ifdef HAVE_RT_PUSH_IPI
787 * For IPI pull requests, loop across the rto_mask.
789 struct irq_work rto_push_work;
790 raw_spinlock_t rto_lock;
791 /* These are only updated and read within rto_lock */
792 int rto_loop;
793 int rto_cpu;
794 /* These atomics are updated outside of a lock */
795 atomic_t rto_loop_next;
796 atomic_t rto_loop_start;
797 #endif
799 * The "RT overload" flag: it gets set if a CPU has more than
800 * one runnable RT task.
802 cpumask_var_t rto_mask;
803 struct cpupri cpupri;
805 unsigned long max_cpu_capacity;
808 * NULL-terminated list of performance domains intersecting with the
809 * CPUs of the rd. Protected by RCU.
811 struct perf_domain __rcu *pd;
814 extern void init_defrootdomain(void);
815 extern int sched_init_domains(const struct cpumask *cpu_map);
816 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
817 extern void sched_get_rd(struct root_domain *rd);
818 extern void sched_put_rd(struct root_domain *rd);
820 #ifdef HAVE_RT_PUSH_IPI
821 extern void rto_push_irq_work_func(struct irq_work *work);
822 #endif
823 #endif /* CONFIG_SMP */
825 #ifdef CONFIG_UCLAMP_TASK
827 * struct uclamp_bucket - Utilization clamp bucket
828 * @value: utilization clamp value for tasks on this clamp bucket
829 * @tasks: number of RUNNABLE tasks on this clamp bucket
831 * Keep track of how many tasks are RUNNABLE for a given utilization
832 * clamp value.
834 struct uclamp_bucket {
835 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
836 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
840 * struct uclamp_rq - rq's utilization clamp
841 * @value: currently active clamp values for a rq
842 * @bucket: utilization clamp buckets affecting a rq
844 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
845 * A clamp value is affecting a rq when there is at least one task RUNNABLE
846 * (or actually running) with that value.
848 * There are up to UCLAMP_CNT possible different clamp values, currently there
849 * are only two: minimum utilization and maximum utilization.
851 * All utilization clamping values are MAX aggregated, since:
852 * - for util_min: we want to run the CPU at least at the max of the minimum
853 * utilization required by its currently RUNNABLE tasks.
854 * - for util_max: we want to allow the CPU to run up to the max of the
855 * maximum utilization allowed by its currently RUNNABLE tasks.
857 * Since on each system we expect only a limited number of different
858 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
859 * the metrics required to compute all the per-rq utilization clamp values.
861 struct uclamp_rq {
862 unsigned int value;
863 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
865 #endif /* CONFIG_UCLAMP_TASK */
868 * This is the main, per-CPU runqueue data structure.
870 * Locking rule: those places that want to lock multiple runqueues
871 * (such as the load balancing or the thread migration code), lock
872 * acquire operations must be ordered by ascending &runqueue.
874 struct rq {
875 /* runqueue lock: */
876 raw_spinlock_t lock;
879 * nr_running and cpu_load should be in the same cacheline because
880 * remote CPUs use both these fields when doing load calculation.
882 unsigned int nr_running;
883 #ifdef CONFIG_NUMA_BALANCING
884 unsigned int nr_numa_running;
885 unsigned int nr_preferred_running;
886 unsigned int numa_migrate_on;
887 #endif
888 #ifdef CONFIG_NO_HZ_COMMON
889 #ifdef CONFIG_SMP
890 unsigned long last_blocked_load_update_tick;
891 unsigned int has_blocked_load;
892 call_single_data_t nohz_csd;
893 #endif /* CONFIG_SMP */
894 unsigned int nohz_tick_stopped;
895 atomic_t nohz_flags;
896 #endif /* CONFIG_NO_HZ_COMMON */
898 #ifdef CONFIG_SMP
899 unsigned int ttwu_pending;
900 #endif
901 u64 nr_switches;
903 #ifdef CONFIG_UCLAMP_TASK
904 /* Utilization clamp values based on CPU's RUNNABLE tasks */
905 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
906 unsigned int uclamp_flags;
907 #define UCLAMP_FLAG_IDLE 0x01
908 #endif
910 struct cfs_rq cfs;
911 struct rt_rq rt;
912 struct dl_rq dl;
914 #ifdef CONFIG_FAIR_GROUP_SCHED
915 /* list of leaf cfs_rq on this CPU: */
916 struct list_head leaf_cfs_rq_list;
917 struct list_head *tmp_alone_branch;
918 #endif /* CONFIG_FAIR_GROUP_SCHED */
921 * This is part of a global counter where only the total sum
922 * over all CPUs matters. A task can increase this counter on
923 * one CPU and if it got migrated afterwards it may decrease
924 * it on another CPU. Always updated under the runqueue lock:
926 unsigned long nr_uninterruptible;
928 struct task_struct __rcu *curr;
929 struct task_struct *idle;
930 struct task_struct *stop;
931 unsigned long next_balance;
932 struct mm_struct *prev_mm;
934 unsigned int clock_update_flags;
935 u64 clock;
936 /* Ensure that all clocks are in the same cache line */
937 u64 clock_task ____cacheline_aligned;
938 u64 clock_pelt;
939 unsigned long lost_idle_time;
941 atomic_t nr_iowait;
943 #ifdef CONFIG_MEMBARRIER
944 int membarrier_state;
945 #endif
947 #ifdef CONFIG_SMP
948 struct root_domain *rd;
949 struct sched_domain __rcu *sd;
951 unsigned long cpu_capacity;
952 unsigned long cpu_capacity_orig;
954 struct callback_head *balance_callback;
956 unsigned char nohz_idle_balance;
957 unsigned char idle_balance;
959 unsigned long misfit_task_load;
961 /* For active balancing */
962 int active_balance;
963 int push_cpu;
964 struct cpu_stop_work active_balance_work;
966 /* CPU of this runqueue: */
967 int cpu;
968 int online;
970 struct list_head cfs_tasks;
972 struct sched_avg avg_rt;
973 struct sched_avg avg_dl;
974 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
975 struct sched_avg avg_irq;
976 #endif
977 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
978 struct sched_avg avg_thermal;
979 #endif
980 u64 idle_stamp;
981 u64 avg_idle;
983 /* This is used to determine avg_idle's max value */
984 u64 max_idle_balance_cost;
985 #endif /* CONFIG_SMP */
987 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
988 u64 prev_irq_time;
989 #endif
990 #ifdef CONFIG_PARAVIRT
991 u64 prev_steal_time;
992 #endif
993 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
994 u64 prev_steal_time_rq;
995 #endif
997 /* calc_load related fields */
998 unsigned long calc_load_update;
999 long calc_load_active;
1001 #ifdef CONFIG_SCHED_HRTICK
1002 #ifdef CONFIG_SMP
1003 call_single_data_t hrtick_csd;
1004 #endif
1005 struct hrtimer hrtick_timer;
1006 #endif
1008 #ifdef CONFIG_SCHEDSTATS
1009 /* latency stats */
1010 struct sched_info rq_sched_info;
1011 unsigned long long rq_cpu_time;
1012 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1014 /* sys_sched_yield() stats */
1015 unsigned int yld_count;
1017 /* schedule() stats */
1018 unsigned int sched_count;
1019 unsigned int sched_goidle;
1021 /* try_to_wake_up() stats */
1022 unsigned int ttwu_count;
1023 unsigned int ttwu_local;
1024 #endif
1026 #ifdef CONFIG_CPU_IDLE
1027 /* Must be inspected within a rcu lock section */
1028 struct cpuidle_state *idle_state;
1029 #endif
1032 #ifdef CONFIG_FAIR_GROUP_SCHED
1034 /* CPU runqueue to which this cfs_rq is attached */
1035 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1037 return cfs_rq->rq;
1040 #else
1042 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1044 return container_of(cfs_rq, struct rq, cfs);
1046 #endif
1048 static inline int cpu_of(struct rq *rq)
1050 #ifdef CONFIG_SMP
1051 return rq->cpu;
1052 #else
1053 return 0;
1054 #endif
1058 #ifdef CONFIG_SCHED_SMT
1059 extern void __update_idle_core(struct rq *rq);
1061 static inline void update_idle_core(struct rq *rq)
1063 if (static_branch_unlikely(&sched_smt_present))
1064 __update_idle_core(rq);
1067 #else
1068 static inline void update_idle_core(struct rq *rq) { }
1069 #endif
1071 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1073 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1074 #define this_rq() this_cpu_ptr(&runqueues)
1075 #define task_rq(p) cpu_rq(task_cpu(p))
1076 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1077 #define raw_rq() raw_cpu_ptr(&runqueues)
1079 extern void update_rq_clock(struct rq *rq);
1081 static inline u64 __rq_clock_broken(struct rq *rq)
1083 return READ_ONCE(rq->clock);
1087 * rq::clock_update_flags bits
1089 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1090 * call to __schedule(). This is an optimisation to avoid
1091 * neighbouring rq clock updates.
1093 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1094 * in effect and calls to update_rq_clock() are being ignored.
1096 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1097 * made to update_rq_clock() since the last time rq::lock was pinned.
1099 * If inside of __schedule(), clock_update_flags will have been
1100 * shifted left (a left shift is a cheap operation for the fast path
1101 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1103 * if (rq-clock_update_flags >= RQCF_UPDATED)
1105 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1106 * one position though, because the next rq_unpin_lock() will shift it
1107 * back.
1109 #define RQCF_REQ_SKIP 0x01
1110 #define RQCF_ACT_SKIP 0x02
1111 #define RQCF_UPDATED 0x04
1113 static inline void assert_clock_updated(struct rq *rq)
1116 * The only reason for not seeing a clock update since the
1117 * last rq_pin_lock() is if we're currently skipping updates.
1119 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1122 static inline u64 rq_clock(struct rq *rq)
1124 lockdep_assert_held(&rq->lock);
1125 assert_clock_updated(rq);
1127 return rq->clock;
1130 static inline u64 rq_clock_task(struct rq *rq)
1132 lockdep_assert_held(&rq->lock);
1133 assert_clock_updated(rq);
1135 return rq->clock_task;
1139 * By default the decay is the default pelt decay period.
1140 * The decay shift can change the decay period in
1141 * multiples of 32.
1142 * Decay shift Decay period(ms)
1143 * 0 32
1144 * 1 64
1145 * 2 128
1146 * 3 256
1147 * 4 512
1149 extern int sched_thermal_decay_shift;
1151 static inline u64 rq_clock_thermal(struct rq *rq)
1153 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1156 static inline void rq_clock_skip_update(struct rq *rq)
1158 lockdep_assert_held(&rq->lock);
1159 rq->clock_update_flags |= RQCF_REQ_SKIP;
1163 * See rt task throttling, which is the only time a skip
1164 * request is cancelled.
1166 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1168 lockdep_assert_held(&rq->lock);
1169 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1172 struct rq_flags {
1173 unsigned long flags;
1174 struct pin_cookie cookie;
1175 #ifdef CONFIG_SCHED_DEBUG
1177 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1178 * current pin context is stashed here in case it needs to be
1179 * restored in rq_repin_lock().
1181 unsigned int clock_update_flags;
1182 #endif
1185 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1187 rf->cookie = lockdep_pin_lock(&rq->lock);
1189 #ifdef CONFIG_SCHED_DEBUG
1190 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1191 rf->clock_update_flags = 0;
1192 #endif
1195 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1197 #ifdef CONFIG_SCHED_DEBUG
1198 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1199 rf->clock_update_flags = RQCF_UPDATED;
1200 #endif
1202 lockdep_unpin_lock(&rq->lock, rf->cookie);
1205 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1207 lockdep_repin_lock(&rq->lock, rf->cookie);
1209 #ifdef CONFIG_SCHED_DEBUG
1211 * Restore the value we stashed in @rf for this pin context.
1213 rq->clock_update_flags |= rf->clock_update_flags;
1214 #endif
1217 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1218 __acquires(rq->lock);
1220 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1221 __acquires(p->pi_lock)
1222 __acquires(rq->lock);
1224 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1225 __releases(rq->lock)
1227 rq_unpin_lock(rq, rf);
1228 raw_spin_unlock(&rq->lock);
1231 static inline void
1232 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1233 __releases(rq->lock)
1234 __releases(p->pi_lock)
1236 rq_unpin_lock(rq, rf);
1237 raw_spin_unlock(&rq->lock);
1238 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1241 static inline void
1242 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1243 __acquires(rq->lock)
1245 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1246 rq_pin_lock(rq, rf);
1249 static inline void
1250 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1251 __acquires(rq->lock)
1253 raw_spin_lock_irq(&rq->lock);
1254 rq_pin_lock(rq, rf);
1257 static inline void
1258 rq_lock(struct rq *rq, struct rq_flags *rf)
1259 __acquires(rq->lock)
1261 raw_spin_lock(&rq->lock);
1262 rq_pin_lock(rq, rf);
1265 static inline void
1266 rq_relock(struct rq *rq, struct rq_flags *rf)
1267 __acquires(rq->lock)
1269 raw_spin_lock(&rq->lock);
1270 rq_repin_lock(rq, rf);
1273 static inline void
1274 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1275 __releases(rq->lock)
1277 rq_unpin_lock(rq, rf);
1278 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1281 static inline void
1282 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1283 __releases(rq->lock)
1285 rq_unpin_lock(rq, rf);
1286 raw_spin_unlock_irq(&rq->lock);
1289 static inline void
1290 rq_unlock(struct rq *rq, struct rq_flags *rf)
1291 __releases(rq->lock)
1293 rq_unpin_lock(rq, rf);
1294 raw_spin_unlock(&rq->lock);
1297 static inline struct rq *
1298 this_rq_lock_irq(struct rq_flags *rf)
1299 __acquires(rq->lock)
1301 struct rq *rq;
1303 local_irq_disable();
1304 rq = this_rq();
1305 rq_lock(rq, rf);
1306 return rq;
1309 #ifdef CONFIG_NUMA
1310 enum numa_topology_type {
1311 NUMA_DIRECT,
1312 NUMA_GLUELESS_MESH,
1313 NUMA_BACKPLANE,
1315 extern enum numa_topology_type sched_numa_topology_type;
1316 extern int sched_max_numa_distance;
1317 extern bool find_numa_distance(int distance);
1318 extern void sched_init_numa(void);
1319 extern void sched_domains_numa_masks_set(unsigned int cpu);
1320 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1321 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1322 #else
1323 static inline void sched_init_numa(void) { }
1324 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1325 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1326 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1328 return nr_cpu_ids;
1330 #endif
1332 #ifdef CONFIG_NUMA_BALANCING
1333 /* The regions in numa_faults array from task_struct */
1334 enum numa_faults_stats {
1335 NUMA_MEM = 0,
1336 NUMA_CPU,
1337 NUMA_MEMBUF,
1338 NUMA_CPUBUF
1340 extern void sched_setnuma(struct task_struct *p, int node);
1341 extern int migrate_task_to(struct task_struct *p, int cpu);
1342 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1343 int cpu, int scpu);
1344 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1345 #else
1346 static inline void
1347 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1350 #endif /* CONFIG_NUMA_BALANCING */
1352 #ifdef CONFIG_SMP
1354 static inline void
1355 queue_balance_callback(struct rq *rq,
1356 struct callback_head *head,
1357 void (*func)(struct rq *rq))
1359 lockdep_assert_held(&rq->lock);
1361 if (unlikely(head->next))
1362 return;
1364 head->func = (void (*)(struct callback_head *))func;
1365 head->next = rq->balance_callback;
1366 rq->balance_callback = head;
1369 #define rcu_dereference_check_sched_domain(p) \
1370 rcu_dereference_check((p), \
1371 lockdep_is_held(&sched_domains_mutex))
1374 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1375 * See destroy_sched_domains: call_rcu for details.
1377 * The domain tree of any CPU may only be accessed from within
1378 * preempt-disabled sections.
1380 #define for_each_domain(cpu, __sd) \
1381 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1382 __sd; __sd = __sd->parent)
1385 * highest_flag_domain - Return highest sched_domain containing flag.
1386 * @cpu: The CPU whose highest level of sched domain is to
1387 * be returned.
1388 * @flag: The flag to check for the highest sched_domain
1389 * for the given CPU.
1391 * Returns the highest sched_domain of a CPU which contains the given flag.
1393 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1395 struct sched_domain *sd, *hsd = NULL;
1397 for_each_domain(cpu, sd) {
1398 if (!(sd->flags & flag))
1399 break;
1400 hsd = sd;
1403 return hsd;
1406 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1408 struct sched_domain *sd;
1410 for_each_domain(cpu, sd) {
1411 if (sd->flags & flag)
1412 break;
1415 return sd;
1418 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1419 DECLARE_PER_CPU(int, sd_llc_size);
1420 DECLARE_PER_CPU(int, sd_llc_id);
1421 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1422 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1423 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1424 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1425 extern struct static_key_false sched_asym_cpucapacity;
1427 struct sched_group_capacity {
1428 atomic_t ref;
1430 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1431 * for a single CPU.
1433 unsigned long capacity;
1434 unsigned long min_capacity; /* Min per-CPU capacity in group */
1435 unsigned long max_capacity; /* Max per-CPU capacity in group */
1436 unsigned long next_update;
1437 int imbalance; /* XXX unrelated to capacity but shared group state */
1439 #ifdef CONFIG_SCHED_DEBUG
1440 int id;
1441 #endif
1443 unsigned long cpumask[0]; /* Balance mask */
1446 struct sched_group {
1447 struct sched_group *next; /* Must be a circular list */
1448 atomic_t ref;
1450 unsigned int group_weight;
1451 struct sched_group_capacity *sgc;
1452 int asym_prefer_cpu; /* CPU of highest priority in group */
1455 * The CPUs this group covers.
1457 * NOTE: this field is variable length. (Allocated dynamically
1458 * by attaching extra space to the end of the structure,
1459 * depending on how many CPUs the kernel has booted up with)
1461 unsigned long cpumask[];
1464 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1466 return to_cpumask(sg->cpumask);
1470 * See build_balance_mask().
1472 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1474 return to_cpumask(sg->sgc->cpumask);
1478 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1479 * @group: The group whose first CPU is to be returned.
1481 static inline unsigned int group_first_cpu(struct sched_group *group)
1483 return cpumask_first(sched_group_span(group));
1486 extern int group_balance_cpu(struct sched_group *sg);
1488 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1489 void register_sched_domain_sysctl(void);
1490 void dirty_sched_domain_sysctl(int cpu);
1491 void unregister_sched_domain_sysctl(void);
1492 #else
1493 static inline void register_sched_domain_sysctl(void)
1496 static inline void dirty_sched_domain_sysctl(int cpu)
1499 static inline void unregister_sched_domain_sysctl(void)
1502 #endif
1504 extern void flush_smp_call_function_from_idle(void);
1506 #else /* !CONFIG_SMP: */
1507 static inline void flush_smp_call_function_from_idle(void) { }
1508 #endif
1510 #include "stats.h"
1511 #include "autogroup.h"
1513 #ifdef CONFIG_CGROUP_SCHED
1516 * Return the group to which this tasks belongs.
1518 * We cannot use task_css() and friends because the cgroup subsystem
1519 * changes that value before the cgroup_subsys::attach() method is called,
1520 * therefore we cannot pin it and might observe the wrong value.
1522 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1523 * core changes this before calling sched_move_task().
1525 * Instead we use a 'copy' which is updated from sched_move_task() while
1526 * holding both task_struct::pi_lock and rq::lock.
1528 static inline struct task_group *task_group(struct task_struct *p)
1530 return p->sched_task_group;
1533 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1534 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1536 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1537 struct task_group *tg = task_group(p);
1538 #endif
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1541 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1542 p->se.cfs_rq = tg->cfs_rq[cpu];
1543 p->se.parent = tg->se[cpu];
1544 #endif
1546 #ifdef CONFIG_RT_GROUP_SCHED
1547 p->rt.rt_rq = tg->rt_rq[cpu];
1548 p->rt.parent = tg->rt_se[cpu];
1549 #endif
1552 #else /* CONFIG_CGROUP_SCHED */
1554 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1555 static inline struct task_group *task_group(struct task_struct *p)
1557 return NULL;
1560 #endif /* CONFIG_CGROUP_SCHED */
1562 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1564 set_task_rq(p, cpu);
1565 #ifdef CONFIG_SMP
1567 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1568 * successfully executed on another CPU. We must ensure that updates of
1569 * per-task data have been completed by this moment.
1571 smp_wmb();
1572 #ifdef CONFIG_THREAD_INFO_IN_TASK
1573 WRITE_ONCE(p->cpu, cpu);
1574 #else
1575 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1576 #endif
1577 p->wake_cpu = cpu;
1578 #endif
1582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1584 #ifdef CONFIG_SCHED_DEBUG
1585 # include <linux/static_key.h>
1586 # define const_debug __read_mostly
1587 #else
1588 # define const_debug const
1589 #endif
1591 #define SCHED_FEAT(name, enabled) \
1592 __SCHED_FEAT_##name ,
1594 enum {
1595 #include "features.h"
1596 __SCHED_FEAT_NR,
1599 #undef SCHED_FEAT
1601 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1604 * To support run-time toggling of sched features, all the translation units
1605 * (but core.c) reference the sysctl_sched_features defined in core.c.
1607 extern const_debug unsigned int sysctl_sched_features;
1609 #define SCHED_FEAT(name, enabled) \
1610 static __always_inline bool static_branch_##name(struct static_key *key) \
1612 return static_key_##enabled(key); \
1615 #include "features.h"
1616 #undef SCHED_FEAT
1618 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1619 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1621 #else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1624 * Each translation unit has its own copy of sysctl_sched_features to allow
1625 * constants propagation at compile time and compiler optimization based on
1626 * features default.
1628 #define SCHED_FEAT(name, enabled) \
1629 (1UL << __SCHED_FEAT_##name) * enabled |
1630 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1631 #include "features.h"
1633 #undef SCHED_FEAT
1635 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1637 #endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1639 extern struct static_key_false sched_numa_balancing;
1640 extern struct static_key_false sched_schedstats;
1642 static inline u64 global_rt_period(void)
1644 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1647 static inline u64 global_rt_runtime(void)
1649 if (sysctl_sched_rt_runtime < 0)
1650 return RUNTIME_INF;
1652 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1655 static inline int task_current(struct rq *rq, struct task_struct *p)
1657 return rq->curr == p;
1660 static inline int task_running(struct rq *rq, struct task_struct *p)
1662 #ifdef CONFIG_SMP
1663 return p->on_cpu;
1664 #else
1665 return task_current(rq, p);
1666 #endif
1669 static inline int task_on_rq_queued(struct task_struct *p)
1671 return p->on_rq == TASK_ON_RQ_QUEUED;
1674 static inline int task_on_rq_migrating(struct task_struct *p)
1676 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1680 * wake flags
1682 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1683 #define WF_FORK 0x02 /* Child wakeup after fork */
1684 #define WF_MIGRATED 0x04 /* Internal use, task got migrated */
1685 #define WF_ON_CPU 0x08 /* Wakee is on_cpu */
1688 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1689 * of tasks with abnormal "nice" values across CPUs the contribution that
1690 * each task makes to its run queue's load is weighted according to its
1691 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1692 * scaled version of the new time slice allocation that they receive on time
1693 * slice expiry etc.
1696 #define WEIGHT_IDLEPRIO 3
1697 #define WMULT_IDLEPRIO 1431655765
1699 extern const int sched_prio_to_weight[40];
1700 extern const u32 sched_prio_to_wmult[40];
1703 * {de,en}queue flags:
1705 * DEQUEUE_SLEEP - task is no longer runnable
1706 * ENQUEUE_WAKEUP - task just became runnable
1708 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1709 * are in a known state which allows modification. Such pairs
1710 * should preserve as much state as possible.
1712 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1713 * in the runqueue.
1715 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1716 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1717 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1721 #define DEQUEUE_SLEEP 0x01
1722 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1723 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1724 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1726 #define ENQUEUE_WAKEUP 0x01
1727 #define ENQUEUE_RESTORE 0x02
1728 #define ENQUEUE_MOVE 0x04
1729 #define ENQUEUE_NOCLOCK 0x08
1731 #define ENQUEUE_HEAD 0x10
1732 #define ENQUEUE_REPLENISH 0x20
1733 #ifdef CONFIG_SMP
1734 #define ENQUEUE_MIGRATED 0x40
1735 #else
1736 #define ENQUEUE_MIGRATED 0x00
1737 #endif
1739 #define RETRY_TASK ((void *)-1UL)
1741 struct sched_class {
1742 const struct sched_class *next;
1744 #ifdef CONFIG_UCLAMP_TASK
1745 int uclamp_enabled;
1746 #endif
1748 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1749 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1750 void (*yield_task) (struct rq *rq);
1751 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1753 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1755 struct task_struct *(*pick_next_task)(struct rq *rq);
1757 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1758 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1760 #ifdef CONFIG_SMP
1761 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1762 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1763 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1765 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1767 void (*set_cpus_allowed)(struct task_struct *p,
1768 const struct cpumask *newmask);
1770 void (*rq_online)(struct rq *rq);
1771 void (*rq_offline)(struct rq *rq);
1772 #endif
1774 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1775 void (*task_fork)(struct task_struct *p);
1776 void (*task_dead)(struct task_struct *p);
1779 * The switched_from() call is allowed to drop rq->lock, therefore we
1780 * cannot assume the switched_from/switched_to pair is serliazed by
1781 * rq->lock. They are however serialized by p->pi_lock.
1783 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1784 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1785 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1786 int oldprio);
1788 unsigned int (*get_rr_interval)(struct rq *rq,
1789 struct task_struct *task);
1791 void (*update_curr)(struct rq *rq);
1793 #define TASK_SET_GROUP 0
1794 #define TASK_MOVE_GROUP 1
1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 void (*task_change_group)(struct task_struct *p, int type);
1798 #endif
1801 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1803 WARN_ON_ONCE(rq->curr != prev);
1804 prev->sched_class->put_prev_task(rq, prev);
1807 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1809 WARN_ON_ONCE(rq->curr != next);
1810 next->sched_class->set_next_task(rq, next, false);
1813 #ifdef CONFIG_SMP
1814 #define sched_class_highest (&stop_sched_class)
1815 #else
1816 #define sched_class_highest (&dl_sched_class)
1817 #endif
1819 #define for_class_range(class, _from, _to) \
1820 for (class = (_from); class != (_to); class = class->next)
1822 #define for_each_class(class) \
1823 for_class_range(class, sched_class_highest, NULL)
1825 extern const struct sched_class stop_sched_class;
1826 extern const struct sched_class dl_sched_class;
1827 extern const struct sched_class rt_sched_class;
1828 extern const struct sched_class fair_sched_class;
1829 extern const struct sched_class idle_sched_class;
1831 static inline bool sched_stop_runnable(struct rq *rq)
1833 return rq->stop && task_on_rq_queued(rq->stop);
1836 static inline bool sched_dl_runnable(struct rq *rq)
1838 return rq->dl.dl_nr_running > 0;
1841 static inline bool sched_rt_runnable(struct rq *rq)
1843 return rq->rt.rt_queued > 0;
1846 static inline bool sched_fair_runnable(struct rq *rq)
1848 return rq->cfs.nr_running > 0;
1851 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1852 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1854 #ifdef CONFIG_SMP
1856 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1858 extern void trigger_load_balance(struct rq *rq);
1860 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1862 #endif
1864 #ifdef CONFIG_CPU_IDLE
1865 static inline void idle_set_state(struct rq *rq,
1866 struct cpuidle_state *idle_state)
1868 rq->idle_state = idle_state;
1871 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1873 SCHED_WARN_ON(!rcu_read_lock_held());
1875 return rq->idle_state;
1877 #else
1878 static inline void idle_set_state(struct rq *rq,
1879 struct cpuidle_state *idle_state)
1883 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1885 return NULL;
1887 #endif
1889 extern void schedule_idle(void);
1891 extern void sysrq_sched_debug_show(void);
1892 extern void sched_init_granularity(void);
1893 extern void update_max_interval(void);
1895 extern void init_sched_dl_class(void);
1896 extern void init_sched_rt_class(void);
1897 extern void init_sched_fair_class(void);
1899 extern void reweight_task(struct task_struct *p, int prio);
1901 extern void resched_curr(struct rq *rq);
1902 extern void resched_cpu(int cpu);
1904 extern struct rt_bandwidth def_rt_bandwidth;
1905 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1907 extern struct dl_bandwidth def_dl_bandwidth;
1908 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1909 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1910 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1912 #define BW_SHIFT 20
1913 #define BW_UNIT (1 << BW_SHIFT)
1914 #define RATIO_SHIFT 8
1915 #define MAX_BW_BITS (64 - BW_SHIFT)
1916 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
1917 unsigned long to_ratio(u64 period, u64 runtime);
1919 extern void init_entity_runnable_average(struct sched_entity *se);
1920 extern void post_init_entity_util_avg(struct task_struct *p);
1922 #ifdef CONFIG_NO_HZ_FULL
1923 extern bool sched_can_stop_tick(struct rq *rq);
1924 extern int __init sched_tick_offload_init(void);
1927 * Tick may be needed by tasks in the runqueue depending on their policy and
1928 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1929 * nohz mode if necessary.
1931 static inline void sched_update_tick_dependency(struct rq *rq)
1933 int cpu;
1935 if (!tick_nohz_full_enabled())
1936 return;
1938 cpu = cpu_of(rq);
1940 if (!tick_nohz_full_cpu(cpu))
1941 return;
1943 if (sched_can_stop_tick(rq))
1944 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1945 else
1946 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1948 #else
1949 static inline int sched_tick_offload_init(void) { return 0; }
1950 static inline void sched_update_tick_dependency(struct rq *rq) { }
1951 #endif
1953 static inline void add_nr_running(struct rq *rq, unsigned count)
1955 unsigned prev_nr = rq->nr_running;
1957 rq->nr_running = prev_nr + count;
1959 #ifdef CONFIG_SMP
1960 if (prev_nr < 2 && rq->nr_running >= 2) {
1961 if (!READ_ONCE(rq->rd->overload))
1962 WRITE_ONCE(rq->rd->overload, 1);
1964 #endif
1966 sched_update_tick_dependency(rq);
1969 static inline void sub_nr_running(struct rq *rq, unsigned count)
1971 rq->nr_running -= count;
1972 /* Check if we still need preemption */
1973 sched_update_tick_dependency(rq);
1976 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1977 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1979 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1981 extern const_debug unsigned int sysctl_sched_nr_migrate;
1982 extern const_debug unsigned int sysctl_sched_migration_cost;
1984 #ifdef CONFIG_SCHED_HRTICK
1987 * Use hrtick when:
1988 * - enabled by features
1989 * - hrtimer is actually high res
1991 static inline int hrtick_enabled(struct rq *rq)
1993 if (!sched_feat(HRTICK))
1994 return 0;
1995 if (!cpu_active(cpu_of(rq)))
1996 return 0;
1997 return hrtimer_is_hres_active(&rq->hrtick_timer);
2000 void hrtick_start(struct rq *rq, u64 delay);
2002 #else
2004 static inline int hrtick_enabled(struct rq *rq)
2006 return 0;
2009 #endif /* CONFIG_SCHED_HRTICK */
2011 #ifndef arch_scale_freq_tick
2012 static __always_inline
2013 void arch_scale_freq_tick(void)
2016 #endif
2018 #ifndef arch_scale_freq_capacity
2019 static __always_inline
2020 unsigned long arch_scale_freq_capacity(int cpu)
2022 return SCHED_CAPACITY_SCALE;
2024 #endif
2026 #ifdef CONFIG_SMP
2027 #ifdef CONFIG_PREEMPTION
2029 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2032 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2033 * way at the expense of forcing extra atomic operations in all
2034 * invocations. This assures that the double_lock is acquired using the
2035 * same underlying policy as the spinlock_t on this architecture, which
2036 * reduces latency compared to the unfair variant below. However, it
2037 * also adds more overhead and therefore may reduce throughput.
2039 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2040 __releases(this_rq->lock)
2041 __acquires(busiest->lock)
2042 __acquires(this_rq->lock)
2044 raw_spin_unlock(&this_rq->lock);
2045 double_rq_lock(this_rq, busiest);
2047 return 1;
2050 #else
2052 * Unfair double_lock_balance: Optimizes throughput at the expense of
2053 * latency by eliminating extra atomic operations when the locks are
2054 * already in proper order on entry. This favors lower CPU-ids and will
2055 * grant the double lock to lower CPUs over higher ids under contention,
2056 * regardless of entry order into the function.
2058 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2059 __releases(this_rq->lock)
2060 __acquires(busiest->lock)
2061 __acquires(this_rq->lock)
2063 int ret = 0;
2065 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2066 if (busiest < this_rq) {
2067 raw_spin_unlock(&this_rq->lock);
2068 raw_spin_lock(&busiest->lock);
2069 raw_spin_lock_nested(&this_rq->lock,
2070 SINGLE_DEPTH_NESTING);
2071 ret = 1;
2072 } else
2073 raw_spin_lock_nested(&busiest->lock,
2074 SINGLE_DEPTH_NESTING);
2076 return ret;
2079 #endif /* CONFIG_PREEMPTION */
2082 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2084 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2086 if (unlikely(!irqs_disabled())) {
2087 /* printk() doesn't work well under rq->lock */
2088 raw_spin_unlock(&this_rq->lock);
2089 BUG_ON(1);
2092 return _double_lock_balance(this_rq, busiest);
2095 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2096 __releases(busiest->lock)
2098 raw_spin_unlock(&busiest->lock);
2099 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2102 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2104 if (l1 > l2)
2105 swap(l1, l2);
2107 spin_lock(l1);
2108 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2111 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2113 if (l1 > l2)
2114 swap(l1, l2);
2116 spin_lock_irq(l1);
2117 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2120 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2122 if (l1 > l2)
2123 swap(l1, l2);
2125 raw_spin_lock(l1);
2126 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2130 * double_rq_lock - safely lock two runqueues
2132 * Note this does not disable interrupts like task_rq_lock,
2133 * you need to do so manually before calling.
2135 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2136 __acquires(rq1->lock)
2137 __acquires(rq2->lock)
2139 BUG_ON(!irqs_disabled());
2140 if (rq1 == rq2) {
2141 raw_spin_lock(&rq1->lock);
2142 __acquire(rq2->lock); /* Fake it out ;) */
2143 } else {
2144 if (rq1 < rq2) {
2145 raw_spin_lock(&rq1->lock);
2146 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2147 } else {
2148 raw_spin_lock(&rq2->lock);
2149 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2155 * double_rq_unlock - safely unlock two runqueues
2157 * Note this does not restore interrupts like task_rq_unlock,
2158 * you need to do so manually after calling.
2160 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2161 __releases(rq1->lock)
2162 __releases(rq2->lock)
2164 raw_spin_unlock(&rq1->lock);
2165 if (rq1 != rq2)
2166 raw_spin_unlock(&rq2->lock);
2167 else
2168 __release(rq2->lock);
2171 extern void set_rq_online (struct rq *rq);
2172 extern void set_rq_offline(struct rq *rq);
2173 extern bool sched_smp_initialized;
2175 #else /* CONFIG_SMP */
2178 * double_rq_lock - safely lock two runqueues
2180 * Note this does not disable interrupts like task_rq_lock,
2181 * you need to do so manually before calling.
2183 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2184 __acquires(rq1->lock)
2185 __acquires(rq2->lock)
2187 BUG_ON(!irqs_disabled());
2188 BUG_ON(rq1 != rq2);
2189 raw_spin_lock(&rq1->lock);
2190 __acquire(rq2->lock); /* Fake it out ;) */
2194 * double_rq_unlock - safely unlock two runqueues
2196 * Note this does not restore interrupts like task_rq_unlock,
2197 * you need to do so manually after calling.
2199 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2200 __releases(rq1->lock)
2201 __releases(rq2->lock)
2203 BUG_ON(rq1 != rq2);
2204 raw_spin_unlock(&rq1->lock);
2205 __release(rq2->lock);
2208 #endif
2210 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2211 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2213 #ifdef CONFIG_SCHED_DEBUG
2214 extern bool sched_debug_enabled;
2216 extern void print_cfs_stats(struct seq_file *m, int cpu);
2217 extern void print_rt_stats(struct seq_file *m, int cpu);
2218 extern void print_dl_stats(struct seq_file *m, int cpu);
2219 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2220 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2221 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2222 #ifdef CONFIG_NUMA_BALANCING
2223 extern void
2224 show_numa_stats(struct task_struct *p, struct seq_file *m);
2225 extern void
2226 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2227 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2228 #endif /* CONFIG_NUMA_BALANCING */
2229 #endif /* CONFIG_SCHED_DEBUG */
2231 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2232 extern void init_rt_rq(struct rt_rq *rt_rq);
2233 extern void init_dl_rq(struct dl_rq *dl_rq);
2235 extern void cfs_bandwidth_usage_inc(void);
2236 extern void cfs_bandwidth_usage_dec(void);
2238 #ifdef CONFIG_NO_HZ_COMMON
2239 #define NOHZ_BALANCE_KICK_BIT 0
2240 #define NOHZ_STATS_KICK_BIT 1
2242 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2243 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2245 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2247 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2249 extern void nohz_balance_exit_idle(struct rq *rq);
2250 #else
2251 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2252 #endif
2255 #ifdef CONFIG_SMP
2256 static inline
2257 void __dl_update(struct dl_bw *dl_b, s64 bw)
2259 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2260 int i;
2262 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2263 "sched RCU must be held");
2264 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2265 struct rq *rq = cpu_rq(i);
2267 rq->dl.extra_bw += bw;
2270 #else
2271 static inline
2272 void __dl_update(struct dl_bw *dl_b, s64 bw)
2274 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2276 dl->extra_bw += bw;
2278 #endif
2281 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2282 struct irqtime {
2283 u64 total;
2284 u64 tick_delta;
2285 u64 irq_start_time;
2286 struct u64_stats_sync sync;
2289 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2292 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2293 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2294 * and never move forward.
2296 static inline u64 irq_time_read(int cpu)
2298 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2299 unsigned int seq;
2300 u64 total;
2302 do {
2303 seq = __u64_stats_fetch_begin(&irqtime->sync);
2304 total = irqtime->total;
2305 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2307 return total;
2309 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2311 #ifdef CONFIG_CPU_FREQ
2312 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2315 * cpufreq_update_util - Take a note about CPU utilization changes.
2316 * @rq: Runqueue to carry out the update for.
2317 * @flags: Update reason flags.
2319 * This function is called by the scheduler on the CPU whose utilization is
2320 * being updated.
2322 * It can only be called from RCU-sched read-side critical sections.
2324 * The way cpufreq is currently arranged requires it to evaluate the CPU
2325 * performance state (frequency/voltage) on a regular basis to prevent it from
2326 * being stuck in a completely inadequate performance level for too long.
2327 * That is not guaranteed to happen if the updates are only triggered from CFS
2328 * and DL, though, because they may not be coming in if only RT tasks are
2329 * active all the time (or there are RT tasks only).
2331 * As a workaround for that issue, this function is called periodically by the
2332 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2333 * but that really is a band-aid. Going forward it should be replaced with
2334 * solutions targeted more specifically at RT tasks.
2336 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2338 struct update_util_data *data;
2340 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2341 cpu_of(rq)));
2342 if (data)
2343 data->func(data, rq_clock(rq), flags);
2345 #else
2346 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2347 #endif /* CONFIG_CPU_FREQ */
2349 #ifdef CONFIG_UCLAMP_TASK
2350 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2352 static __always_inline
2353 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2354 struct task_struct *p)
2356 unsigned long min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2357 unsigned long max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2359 if (p) {
2360 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2361 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2365 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2366 * RUNNABLE tasks with _different_ clamps, we can end up with an
2367 * inversion. Fix it now when the clamps are applied.
2369 if (unlikely(min_util >= max_util))
2370 return min_util;
2372 return clamp(util, min_util, max_util);
2374 #else /* CONFIG_UCLAMP_TASK */
2375 static inline
2376 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2377 struct task_struct *p)
2379 return util;
2381 #endif /* CONFIG_UCLAMP_TASK */
2383 #ifdef arch_scale_freq_capacity
2384 # ifndef arch_scale_freq_invariant
2385 # define arch_scale_freq_invariant() true
2386 # endif
2387 #else
2388 # define arch_scale_freq_invariant() false
2389 #endif
2391 #ifdef CONFIG_SMP
2392 static inline unsigned long capacity_orig_of(int cpu)
2394 return cpu_rq(cpu)->cpu_capacity_orig;
2396 #endif
2399 * enum schedutil_type - CPU utilization type
2400 * @FREQUENCY_UTIL: Utilization used to select frequency
2401 * @ENERGY_UTIL: Utilization used during energy calculation
2403 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2404 * need to be aggregated differently depending on the usage made of them. This
2405 * enum is used within schedutil_freq_util() to differentiate the types of
2406 * utilization expected by the callers, and adjust the aggregation accordingly.
2408 enum schedutil_type {
2409 FREQUENCY_UTIL,
2410 ENERGY_UTIL,
2413 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2415 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2416 unsigned long max, enum schedutil_type type,
2417 struct task_struct *p);
2419 static inline unsigned long cpu_bw_dl(struct rq *rq)
2421 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2424 static inline unsigned long cpu_util_dl(struct rq *rq)
2426 return READ_ONCE(rq->avg_dl.util_avg);
2429 static inline unsigned long cpu_util_cfs(struct rq *rq)
2431 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2433 if (sched_feat(UTIL_EST)) {
2434 util = max_t(unsigned long, util,
2435 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2438 return util;
2441 static inline unsigned long cpu_util_rt(struct rq *rq)
2443 return READ_ONCE(rq->avg_rt.util_avg);
2445 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2446 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2447 unsigned long max, enum schedutil_type type,
2448 struct task_struct *p)
2450 return 0;
2452 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2454 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2455 static inline unsigned long cpu_util_irq(struct rq *rq)
2457 return rq->avg_irq.util_avg;
2460 static inline
2461 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2463 util *= (max - irq);
2464 util /= max;
2466 return util;
2469 #else
2470 static inline unsigned long cpu_util_irq(struct rq *rq)
2472 return 0;
2475 static inline
2476 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2478 return util;
2480 #endif
2482 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2484 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2486 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2488 static inline bool sched_energy_enabled(void)
2490 return static_branch_unlikely(&sched_energy_present);
2493 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2495 #define perf_domain_span(pd) NULL
2496 static inline bool sched_energy_enabled(void) { return false; }
2498 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2500 #ifdef CONFIG_MEMBARRIER
2502 * The scheduler provides memory barriers required by membarrier between:
2503 * - prior user-space memory accesses and store to rq->membarrier_state,
2504 * - store to rq->membarrier_state and following user-space memory accesses.
2505 * In the same way it provides those guarantees around store to rq->curr.
2507 static inline void membarrier_switch_mm(struct rq *rq,
2508 struct mm_struct *prev_mm,
2509 struct mm_struct *next_mm)
2511 int membarrier_state;
2513 if (prev_mm == next_mm)
2514 return;
2516 membarrier_state = atomic_read(&next_mm->membarrier_state);
2517 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2518 return;
2520 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2522 #else
2523 static inline void membarrier_switch_mm(struct rq *rq,
2524 struct mm_struct *prev_mm,
2525 struct mm_struct *next_mm)
2528 #endif
2530 #ifdef CONFIG_SMP
2531 static inline bool is_per_cpu_kthread(struct task_struct *p)
2533 if (!(p->flags & PF_KTHREAD))
2534 return false;
2536 if (p->nr_cpus_allowed != 1)
2537 return false;
2539 return true;
2541 #endif
2543 void swake_up_all_locked(struct swait_queue_head *q);
2544 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);