serial: exar: Fix GPIO configuration for Sealevel cards based on XR17V35X
[linux/fpc-iii.git] / mm / gup.c
blob6f47697f8fb0b2320cd5df12f2e073ba1b0ee598
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
24 #include "internal.h"
26 struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
31 static void hpage_pincount_add(struct page *page, int refs)
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
36 atomic_add(refs, compound_pincount_ptr(page));
39 static void hpage_pincount_sub(struct page *page, int refs)
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
44 atomic_sub(refs, compound_pincount_ptr(page));
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
53 struct page *head = compound_head(page);
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs,
83 unsigned int flags)
85 if (flags & FOLL_GET)
86 return try_get_compound_head(page, refs);
87 else if (flags & FOLL_PIN) {
88 int orig_refs = refs;
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
94 if (unlikely(flags & FOLL_LONGTERM) &&
95 is_migrate_cma_page(page))
96 return NULL;
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
106 if (!hpage_pincount_available(page))
107 refs *= GUP_PIN_COUNTING_BIAS;
109 page = try_get_compound_head(page, refs);
110 if (!page)
111 return NULL;
113 if (hpage_pincount_available(page))
114 hpage_pincount_add(page, refs);
116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 orig_refs);
119 return page;
122 WARN_ON_ONCE(1);
123 return NULL;
127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129 * This might not do anything at all, depending on the flags argument.
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134 * @page: pointer to page to be grabbed
135 * @flags: gup flags: these are the FOLL_* flag values.
137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138 * time. Cases:
140 * FOLL_GET: page's refcount will be incremented by 1.
141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143 * Return: true for success, or if no action was required (if neither FOLL_PIN
144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145 * FOLL_PIN was set, but the page could not be grabbed.
147 bool __must_check try_grab_page(struct page *page, unsigned int flags)
149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
151 if (flags & FOLL_GET)
152 return try_get_page(page);
153 else if (flags & FOLL_PIN) {
154 int refs = 1;
156 page = compound_head(page);
158 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 return false;
161 if (hpage_pincount_available(page))
162 hpage_pincount_add(page, 1);
163 else
164 refs = GUP_PIN_COUNTING_BIAS;
167 * Similar to try_grab_compound_head(): even if using the
168 * hpage_pincount_add/_sub() routines, be sure to
169 * *also* increment the normal page refcount field at least
170 * once, so that the page really is pinned.
172 page_ref_add(page, refs);
174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
177 return true;
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page *page)
183 int count, refs = 1;
185 if (!page_is_devmap_managed(page))
186 return false;
188 if (hpage_pincount_available(page))
189 hpage_pincount_sub(page, 1);
190 else
191 refs = GUP_PIN_COUNTING_BIAS;
193 count = page_ref_sub_return(page, refs);
195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
197 * devmap page refcounts are 1-based, rather than 0-based: if
198 * refcount is 1, then the page is free and the refcount is
199 * stable because nobody holds a reference on the page.
201 if (count == 1)
202 free_devmap_managed_page(page);
203 else if (!count)
204 __put_page(page);
206 return true;
208 #else
209 static bool __unpin_devmap_managed_user_page(struct page *page)
211 return false;
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
216 * unpin_user_page() - release a dma-pinned page
217 * @page: pointer to page to be released
219 * Pages that were pinned via pin_user_pages*() must be released via either
220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221 * that such pages can be separately tracked and uniquely handled. In
222 * particular, interactions with RDMA and filesystems need special handling.
224 void unpin_user_page(struct page *page)
226 int refs = 1;
228 page = compound_head(page);
231 * For devmap managed pages we need to catch refcount transition from
232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 * page is free and we need to inform the device driver through
234 * callback. See include/linux/memremap.h and HMM for details.
236 if (__unpin_devmap_managed_user_page(page))
237 return;
239 if (hpage_pincount_available(page))
240 hpage_pincount_sub(page, 1);
241 else
242 refs = GUP_PIN_COUNTING_BIAS;
244 if (page_ref_sub_and_test(page, refs))
245 __put_page(page);
247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
249 EXPORT_SYMBOL(unpin_user_page);
252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253 * @pages: array of pages to be maybe marked dirty, and definitely released.
254 * @npages: number of pages in the @pages array.
255 * @make_dirty: whether to mark the pages dirty
257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258 * variants called on that page.
260 * For each page in the @pages array, make that page (or its head page, if a
261 * compound page) dirty, if @make_dirty is true, and if the page was previously
262 * listed as clean. In any case, releases all pages using unpin_user_page(),
263 * possibly via unpin_user_pages(), for the non-dirty case.
265 * Please see the unpin_user_page() documentation for details.
267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268 * required, then the caller should a) verify that this is really correct,
269 * because _lock() is usually required, and b) hand code it:
270 * set_page_dirty_lock(), unpin_user_page().
273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 bool make_dirty)
276 unsigned long index;
279 * TODO: this can be optimized for huge pages: if a series of pages is
280 * physically contiguous and part of the same compound page, then a
281 * single operation to the head page should suffice.
284 if (!make_dirty) {
285 unpin_user_pages(pages, npages);
286 return;
289 for (index = 0; index < npages; index++) {
290 struct page *page = compound_head(pages[index]);
292 * Checking PageDirty at this point may race with
293 * clear_page_dirty_for_io(), but that's OK. Two key
294 * cases:
296 * 1) This code sees the page as already dirty, so it
297 * skips the call to set_page_dirty(). That could happen
298 * because clear_page_dirty_for_io() called
299 * page_mkclean(), followed by set_page_dirty().
300 * However, now the page is going to get written back,
301 * which meets the original intention of setting it
302 * dirty, so all is well: clear_page_dirty_for_io() goes
303 * on to call TestClearPageDirty(), and write the page
304 * back.
306 * 2) This code sees the page as clean, so it calls
307 * set_page_dirty(). The page stays dirty, despite being
308 * written back, so it gets written back again in the
309 * next writeback cycle. This is harmless.
311 if (!PageDirty(page))
312 set_page_dirty_lock(page);
313 unpin_user_page(page);
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
319 * unpin_user_pages() - release an array of gup-pinned pages.
320 * @pages: array of pages to be marked dirty and released.
321 * @npages: number of pages in the @pages array.
323 * For each page in the @pages array, release the page using unpin_user_page().
325 * Please see the unpin_user_page() documentation for details.
327 void unpin_user_pages(struct page **pages, unsigned long npages)
329 unsigned long index;
332 * TODO: this can be optimized for huge pages: if a series of pages is
333 * physically contiguous and part of the same compound page, then a
334 * single operation to the head page should suffice.
336 for (index = 0; index < npages; index++)
337 unpin_user_page(pages[index]);
339 EXPORT_SYMBOL(unpin_user_pages);
341 #ifdef CONFIG_MMU
342 static struct page *no_page_table(struct vm_area_struct *vma,
343 unsigned int flags)
346 * When core dumping an enormous anonymous area that nobody
347 * has touched so far, we don't want to allocate unnecessary pages or
348 * page tables. Return error instead of NULL to skip handle_mm_fault,
349 * then get_dump_page() will return NULL to leave a hole in the dump.
350 * But we can only make this optimization where a hole would surely
351 * be zero-filled if handle_mm_fault() actually did handle it.
353 if ((flags & FOLL_DUMP) &&
354 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
355 return ERR_PTR(-EFAULT);
356 return NULL;
359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 pte_t *pte, unsigned int flags)
362 /* No page to get reference */
363 if (flags & FOLL_GET)
364 return -EFAULT;
366 if (flags & FOLL_TOUCH) {
367 pte_t entry = *pte;
369 if (flags & FOLL_WRITE)
370 entry = pte_mkdirty(entry);
371 entry = pte_mkyoung(entry);
373 if (!pte_same(*pte, entry)) {
374 set_pte_at(vma->vm_mm, address, pte, entry);
375 update_mmu_cache(vma, address, pte);
379 /* Proper page table entry exists, but no corresponding struct page */
380 return -EEXIST;
384 * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
385 * but only after we've gone through a COW cycle and they are dirty.
387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
389 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
393 * A (separate) COW fault might break the page the other way and
394 * get_user_pages() would return the page from what is now the wrong
395 * VM. So we need to force a COW break at GUP time even for reads.
397 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
399 return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
402 static struct page *follow_page_pte(struct vm_area_struct *vma,
403 unsigned long address, pmd_t *pmd, unsigned int flags,
404 struct dev_pagemap **pgmap)
406 struct mm_struct *mm = vma->vm_mm;
407 struct page *page;
408 spinlock_t *ptl;
409 pte_t *ptep, pte;
410 int ret;
412 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
413 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
414 (FOLL_PIN | FOLL_GET)))
415 return ERR_PTR(-EINVAL);
416 retry:
417 if (unlikely(pmd_bad(*pmd)))
418 return no_page_table(vma, flags);
420 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
421 pte = *ptep;
422 if (!pte_present(pte)) {
423 swp_entry_t entry;
425 * KSM's break_ksm() relies upon recognizing a ksm page
426 * even while it is being migrated, so for that case we
427 * need migration_entry_wait().
429 if (likely(!(flags & FOLL_MIGRATION)))
430 goto no_page;
431 if (pte_none(pte))
432 goto no_page;
433 entry = pte_to_swp_entry(pte);
434 if (!is_migration_entry(entry))
435 goto no_page;
436 pte_unmap_unlock(ptep, ptl);
437 migration_entry_wait(mm, pmd, address);
438 goto retry;
440 if ((flags & FOLL_NUMA) && pte_protnone(pte))
441 goto no_page;
442 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
443 pte_unmap_unlock(ptep, ptl);
444 return NULL;
447 page = vm_normal_page(vma, address, pte);
448 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
450 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
451 * case since they are only valid while holding the pgmap
452 * reference.
454 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
455 if (*pgmap)
456 page = pte_page(pte);
457 else
458 goto no_page;
459 } else if (unlikely(!page)) {
460 if (flags & FOLL_DUMP) {
461 /* Avoid special (like zero) pages in core dumps */
462 page = ERR_PTR(-EFAULT);
463 goto out;
466 if (is_zero_pfn(pte_pfn(pte))) {
467 page = pte_page(pte);
468 } else {
469 ret = follow_pfn_pte(vma, address, ptep, flags);
470 page = ERR_PTR(ret);
471 goto out;
475 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
476 get_page(page);
477 pte_unmap_unlock(ptep, ptl);
478 lock_page(page);
479 ret = split_huge_page(page);
480 unlock_page(page);
481 put_page(page);
482 if (ret)
483 return ERR_PTR(ret);
484 goto retry;
487 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
488 if (unlikely(!try_grab_page(page, flags))) {
489 page = ERR_PTR(-ENOMEM);
490 goto out;
493 * We need to make the page accessible if and only if we are going
494 * to access its content (the FOLL_PIN case). Please see
495 * Documentation/core-api/pin_user_pages.rst for details.
497 if (flags & FOLL_PIN) {
498 ret = arch_make_page_accessible(page);
499 if (ret) {
500 unpin_user_page(page);
501 page = ERR_PTR(ret);
502 goto out;
505 if (flags & FOLL_TOUCH) {
506 if ((flags & FOLL_WRITE) &&
507 !pte_dirty(pte) && !PageDirty(page))
508 set_page_dirty(page);
510 * pte_mkyoung() would be more correct here, but atomic care
511 * is needed to avoid losing the dirty bit: it is easier to use
512 * mark_page_accessed().
514 mark_page_accessed(page);
516 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
517 /* Do not mlock pte-mapped THP */
518 if (PageTransCompound(page))
519 goto out;
522 * The preliminary mapping check is mainly to avoid the
523 * pointless overhead of lock_page on the ZERO_PAGE
524 * which might bounce very badly if there is contention.
526 * If the page is already locked, we don't need to
527 * handle it now - vmscan will handle it later if and
528 * when it attempts to reclaim the page.
530 if (page->mapping && trylock_page(page)) {
531 lru_add_drain(); /* push cached pages to LRU */
533 * Because we lock page here, and migration is
534 * blocked by the pte's page reference, and we
535 * know the page is still mapped, we don't even
536 * need to check for file-cache page truncation.
538 mlock_vma_page(page);
539 unlock_page(page);
542 out:
543 pte_unmap_unlock(ptep, ptl);
544 return page;
545 no_page:
546 pte_unmap_unlock(ptep, ptl);
547 if (!pte_none(pte))
548 return NULL;
549 return no_page_table(vma, flags);
552 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
553 unsigned long address, pud_t *pudp,
554 unsigned int flags,
555 struct follow_page_context *ctx)
557 pmd_t *pmd, pmdval;
558 spinlock_t *ptl;
559 struct page *page;
560 struct mm_struct *mm = vma->vm_mm;
562 pmd = pmd_offset(pudp, address);
564 * The READ_ONCE() will stabilize the pmdval in a register or
565 * on the stack so that it will stop changing under the code.
567 pmdval = READ_ONCE(*pmd);
568 if (pmd_none(pmdval))
569 return no_page_table(vma, flags);
570 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
571 page = follow_huge_pmd(mm, address, pmd, flags);
572 if (page)
573 return page;
574 return no_page_table(vma, flags);
576 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
577 page = follow_huge_pd(vma, address,
578 __hugepd(pmd_val(pmdval)), flags,
579 PMD_SHIFT);
580 if (page)
581 return page;
582 return no_page_table(vma, flags);
584 retry:
585 if (!pmd_present(pmdval)) {
586 if (likely(!(flags & FOLL_MIGRATION)))
587 return no_page_table(vma, flags);
588 VM_BUG_ON(thp_migration_supported() &&
589 !is_pmd_migration_entry(pmdval));
590 if (is_pmd_migration_entry(pmdval))
591 pmd_migration_entry_wait(mm, pmd);
592 pmdval = READ_ONCE(*pmd);
594 * MADV_DONTNEED may convert the pmd to null because
595 * mmap_lock is held in read mode
597 if (pmd_none(pmdval))
598 return no_page_table(vma, flags);
599 goto retry;
601 if (pmd_devmap(pmdval)) {
602 ptl = pmd_lock(mm, pmd);
603 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
604 spin_unlock(ptl);
605 if (page)
606 return page;
608 if (likely(!pmd_trans_huge(pmdval)))
609 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
611 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
612 return no_page_table(vma, flags);
614 retry_locked:
615 ptl = pmd_lock(mm, pmd);
616 if (unlikely(pmd_none(*pmd))) {
617 spin_unlock(ptl);
618 return no_page_table(vma, flags);
620 if (unlikely(!pmd_present(*pmd))) {
621 spin_unlock(ptl);
622 if (likely(!(flags & FOLL_MIGRATION)))
623 return no_page_table(vma, flags);
624 pmd_migration_entry_wait(mm, pmd);
625 goto retry_locked;
627 if (unlikely(!pmd_trans_huge(*pmd))) {
628 spin_unlock(ptl);
629 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
631 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
632 int ret;
633 page = pmd_page(*pmd);
634 if (is_huge_zero_page(page)) {
635 spin_unlock(ptl);
636 ret = 0;
637 split_huge_pmd(vma, pmd, address);
638 if (pmd_trans_unstable(pmd))
639 ret = -EBUSY;
640 } else if (flags & FOLL_SPLIT) {
641 if (unlikely(!try_get_page(page))) {
642 spin_unlock(ptl);
643 return ERR_PTR(-ENOMEM);
645 spin_unlock(ptl);
646 lock_page(page);
647 ret = split_huge_page(page);
648 unlock_page(page);
649 put_page(page);
650 if (pmd_none(*pmd))
651 return no_page_table(vma, flags);
652 } else { /* flags & FOLL_SPLIT_PMD */
653 spin_unlock(ptl);
654 split_huge_pmd(vma, pmd, address);
655 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
658 return ret ? ERR_PTR(ret) :
659 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
661 page = follow_trans_huge_pmd(vma, address, pmd, flags);
662 spin_unlock(ptl);
663 ctx->page_mask = HPAGE_PMD_NR - 1;
664 return page;
667 static struct page *follow_pud_mask(struct vm_area_struct *vma,
668 unsigned long address, p4d_t *p4dp,
669 unsigned int flags,
670 struct follow_page_context *ctx)
672 pud_t *pud;
673 spinlock_t *ptl;
674 struct page *page;
675 struct mm_struct *mm = vma->vm_mm;
677 pud = pud_offset(p4dp, address);
678 if (pud_none(*pud))
679 return no_page_table(vma, flags);
680 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
681 page = follow_huge_pud(mm, address, pud, flags);
682 if (page)
683 return page;
684 return no_page_table(vma, flags);
686 if (is_hugepd(__hugepd(pud_val(*pud)))) {
687 page = follow_huge_pd(vma, address,
688 __hugepd(pud_val(*pud)), flags,
689 PUD_SHIFT);
690 if (page)
691 return page;
692 return no_page_table(vma, flags);
694 if (pud_devmap(*pud)) {
695 ptl = pud_lock(mm, pud);
696 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
697 spin_unlock(ptl);
698 if (page)
699 return page;
701 if (unlikely(pud_bad(*pud)))
702 return no_page_table(vma, flags);
704 return follow_pmd_mask(vma, address, pud, flags, ctx);
707 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
708 unsigned long address, pgd_t *pgdp,
709 unsigned int flags,
710 struct follow_page_context *ctx)
712 p4d_t *p4d;
713 struct page *page;
715 p4d = p4d_offset(pgdp, address);
716 if (p4d_none(*p4d))
717 return no_page_table(vma, flags);
718 BUILD_BUG_ON(p4d_huge(*p4d));
719 if (unlikely(p4d_bad(*p4d)))
720 return no_page_table(vma, flags);
722 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
723 page = follow_huge_pd(vma, address,
724 __hugepd(p4d_val(*p4d)), flags,
725 P4D_SHIFT);
726 if (page)
727 return page;
728 return no_page_table(vma, flags);
730 return follow_pud_mask(vma, address, p4d, flags, ctx);
734 * follow_page_mask - look up a page descriptor from a user-virtual address
735 * @vma: vm_area_struct mapping @address
736 * @address: virtual address to look up
737 * @flags: flags modifying lookup behaviour
738 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
739 * pointer to output page_mask
741 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
743 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
744 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
746 * On output, the @ctx->page_mask is set according to the size of the page.
748 * Return: the mapped (struct page *), %NULL if no mapping exists, or
749 * an error pointer if there is a mapping to something not represented
750 * by a page descriptor (see also vm_normal_page()).
752 static struct page *follow_page_mask(struct vm_area_struct *vma,
753 unsigned long address, unsigned int flags,
754 struct follow_page_context *ctx)
756 pgd_t *pgd;
757 struct page *page;
758 struct mm_struct *mm = vma->vm_mm;
760 ctx->page_mask = 0;
762 /* make this handle hugepd */
763 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
764 if (!IS_ERR(page)) {
765 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
766 return page;
769 pgd = pgd_offset(mm, address);
771 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
772 return no_page_table(vma, flags);
774 if (pgd_huge(*pgd)) {
775 page = follow_huge_pgd(mm, address, pgd, flags);
776 if (page)
777 return page;
778 return no_page_table(vma, flags);
780 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
781 page = follow_huge_pd(vma, address,
782 __hugepd(pgd_val(*pgd)), flags,
783 PGDIR_SHIFT);
784 if (page)
785 return page;
786 return no_page_table(vma, flags);
789 return follow_p4d_mask(vma, address, pgd, flags, ctx);
792 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
793 unsigned int foll_flags)
795 struct follow_page_context ctx = { NULL };
796 struct page *page;
798 page = follow_page_mask(vma, address, foll_flags, &ctx);
799 if (ctx.pgmap)
800 put_dev_pagemap(ctx.pgmap);
801 return page;
804 static int get_gate_page(struct mm_struct *mm, unsigned long address,
805 unsigned int gup_flags, struct vm_area_struct **vma,
806 struct page **page)
808 pgd_t *pgd;
809 p4d_t *p4d;
810 pud_t *pud;
811 pmd_t *pmd;
812 pte_t *pte;
813 int ret = -EFAULT;
815 /* user gate pages are read-only */
816 if (gup_flags & FOLL_WRITE)
817 return -EFAULT;
818 if (address > TASK_SIZE)
819 pgd = pgd_offset_k(address);
820 else
821 pgd = pgd_offset_gate(mm, address);
822 if (pgd_none(*pgd))
823 return -EFAULT;
824 p4d = p4d_offset(pgd, address);
825 if (p4d_none(*p4d))
826 return -EFAULT;
827 pud = pud_offset(p4d, address);
828 if (pud_none(*pud))
829 return -EFAULT;
830 pmd = pmd_offset(pud, address);
831 if (!pmd_present(*pmd))
832 return -EFAULT;
833 VM_BUG_ON(pmd_trans_huge(*pmd));
834 pte = pte_offset_map(pmd, address);
835 if (pte_none(*pte))
836 goto unmap;
837 *vma = get_gate_vma(mm);
838 if (!page)
839 goto out;
840 *page = vm_normal_page(*vma, address, *pte);
841 if (!*page) {
842 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
843 goto unmap;
844 *page = pte_page(*pte);
846 if (unlikely(!try_get_page(*page))) {
847 ret = -ENOMEM;
848 goto unmap;
850 out:
851 ret = 0;
852 unmap:
853 pte_unmap(pte);
854 return ret;
858 * mmap_lock must be held on entry. If @locked != NULL and *@flags
859 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
860 * is, *@locked will be set to 0 and -EBUSY returned.
862 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
863 unsigned long address, unsigned int *flags, int *locked)
865 unsigned int fault_flags = 0;
866 vm_fault_t ret;
868 /* mlock all present pages, but do not fault in new pages */
869 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
870 return -ENOENT;
871 if (*flags & FOLL_WRITE)
872 fault_flags |= FAULT_FLAG_WRITE;
873 if (*flags & FOLL_REMOTE)
874 fault_flags |= FAULT_FLAG_REMOTE;
875 if (locked)
876 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
877 if (*flags & FOLL_NOWAIT)
878 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
879 if (*flags & FOLL_TRIED) {
881 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
882 * can co-exist
884 fault_flags |= FAULT_FLAG_TRIED;
887 ret = handle_mm_fault(vma, address, fault_flags);
888 if (ret & VM_FAULT_ERROR) {
889 int err = vm_fault_to_errno(ret, *flags);
891 if (err)
892 return err;
893 BUG();
896 if (tsk) {
897 if (ret & VM_FAULT_MAJOR)
898 tsk->maj_flt++;
899 else
900 tsk->min_flt++;
903 if (ret & VM_FAULT_RETRY) {
904 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
905 *locked = 0;
906 return -EBUSY;
910 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
911 * necessary, even if maybe_mkwrite decided not to set pte_write. We
912 * can thus safely do subsequent page lookups as if they were reads.
913 * But only do so when looping for pte_write is futile: in some cases
914 * userspace may also be wanting to write to the gotten user page,
915 * which a read fault here might prevent (a readonly page might get
916 * reCOWed by userspace write).
918 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
919 *flags |= FOLL_COW;
920 return 0;
923 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
925 vm_flags_t vm_flags = vma->vm_flags;
926 int write = (gup_flags & FOLL_WRITE);
927 int foreign = (gup_flags & FOLL_REMOTE);
929 if (vm_flags & (VM_IO | VM_PFNMAP))
930 return -EFAULT;
932 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
933 return -EFAULT;
935 if (write) {
936 if (!(vm_flags & VM_WRITE)) {
937 if (!(gup_flags & FOLL_FORCE))
938 return -EFAULT;
940 * We used to let the write,force case do COW in a
941 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
942 * set a breakpoint in a read-only mapping of an
943 * executable, without corrupting the file (yet only
944 * when that file had been opened for writing!).
945 * Anon pages in shared mappings are surprising: now
946 * just reject it.
948 if (!is_cow_mapping(vm_flags))
949 return -EFAULT;
951 } else if (!(vm_flags & VM_READ)) {
952 if (!(gup_flags & FOLL_FORCE))
953 return -EFAULT;
955 * Is there actually any vma we can reach here which does not
956 * have VM_MAYREAD set?
958 if (!(vm_flags & VM_MAYREAD))
959 return -EFAULT;
962 * gups are always data accesses, not instruction
963 * fetches, so execute=false here
965 if (!arch_vma_access_permitted(vma, write, false, foreign))
966 return -EFAULT;
967 return 0;
971 * __get_user_pages() - pin user pages in memory
972 * @tsk: task_struct of target task
973 * @mm: mm_struct of target mm
974 * @start: starting user address
975 * @nr_pages: number of pages from start to pin
976 * @gup_flags: flags modifying pin behaviour
977 * @pages: array that receives pointers to the pages pinned.
978 * Should be at least nr_pages long. Or NULL, if caller
979 * only intends to ensure the pages are faulted in.
980 * @vmas: array of pointers to vmas corresponding to each page.
981 * Or NULL if the caller does not require them.
982 * @locked: whether we're still with the mmap_lock held
984 * Returns either number of pages pinned (which may be less than the
985 * number requested), or an error. Details about the return value:
987 * -- If nr_pages is 0, returns 0.
988 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
989 * -- If nr_pages is >0, and some pages were pinned, returns the number of
990 * pages pinned. Again, this may be less than nr_pages.
991 * -- 0 return value is possible when the fault would need to be retried.
993 * The caller is responsible for releasing returned @pages, via put_page().
995 * @vmas are valid only as long as mmap_lock is held.
997 * Must be called with mmap_lock held. It may be released. See below.
999 * __get_user_pages walks a process's page tables and takes a reference to
1000 * each struct page that each user address corresponds to at a given
1001 * instant. That is, it takes the page that would be accessed if a user
1002 * thread accesses the given user virtual address at that instant.
1004 * This does not guarantee that the page exists in the user mappings when
1005 * __get_user_pages returns, and there may even be a completely different
1006 * page there in some cases (eg. if mmapped pagecache has been invalidated
1007 * and subsequently re faulted). However it does guarantee that the page
1008 * won't be freed completely. And mostly callers simply care that the page
1009 * contains data that was valid *at some point in time*. Typically, an IO
1010 * or similar operation cannot guarantee anything stronger anyway because
1011 * locks can't be held over the syscall boundary.
1013 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1014 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1015 * appropriate) must be called after the page is finished with, and
1016 * before put_page is called.
1018 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1019 * released by an up_read(). That can happen if @gup_flags does not
1020 * have FOLL_NOWAIT.
1022 * A caller using such a combination of @locked and @gup_flags
1023 * must therefore hold the mmap_lock for reading only, and recognize
1024 * when it's been released. Otherwise, it must be held for either
1025 * reading or writing and will not be released.
1027 * In most cases, get_user_pages or get_user_pages_fast should be used
1028 * instead of __get_user_pages. __get_user_pages should be used only if
1029 * you need some special @gup_flags.
1031 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1032 unsigned long start, unsigned long nr_pages,
1033 unsigned int gup_flags, struct page **pages,
1034 struct vm_area_struct **vmas, int *locked)
1036 long ret = 0, i = 0;
1037 struct vm_area_struct *vma = NULL;
1038 struct follow_page_context ctx = { NULL };
1040 if (!nr_pages)
1041 return 0;
1043 start = untagged_addr(start);
1045 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1048 * If FOLL_FORCE is set then do not force a full fault as the hinting
1049 * fault information is unrelated to the reference behaviour of a task
1050 * using the address space
1052 if (!(gup_flags & FOLL_FORCE))
1053 gup_flags |= FOLL_NUMA;
1055 do {
1056 struct page *page;
1057 unsigned int foll_flags = gup_flags;
1058 unsigned int page_increm;
1060 /* first iteration or cross vma bound */
1061 if (!vma || start >= vma->vm_end) {
1062 vma = find_extend_vma(mm, start);
1063 if (!vma && in_gate_area(mm, start)) {
1064 ret = get_gate_page(mm, start & PAGE_MASK,
1065 gup_flags, &vma,
1066 pages ? &pages[i] : NULL);
1067 if (ret)
1068 goto out;
1069 ctx.page_mask = 0;
1070 goto next_page;
1073 if (!vma || check_vma_flags(vma, gup_flags)) {
1074 ret = -EFAULT;
1075 goto out;
1077 if (is_vm_hugetlb_page(vma)) {
1078 if (should_force_cow_break(vma, foll_flags))
1079 foll_flags |= FOLL_WRITE;
1080 i = follow_hugetlb_page(mm, vma, pages, vmas,
1081 &start, &nr_pages, i,
1082 foll_flags, locked);
1083 if (locked && *locked == 0) {
1085 * We've got a VM_FAULT_RETRY
1086 * and we've lost mmap_lock.
1087 * We must stop here.
1089 BUG_ON(gup_flags & FOLL_NOWAIT);
1090 BUG_ON(ret != 0);
1091 goto out;
1093 continue;
1097 if (should_force_cow_break(vma, foll_flags))
1098 foll_flags |= FOLL_WRITE;
1100 retry:
1102 * If we have a pending SIGKILL, don't keep faulting pages and
1103 * potentially allocating memory.
1105 if (fatal_signal_pending(current)) {
1106 ret = -EINTR;
1107 goto out;
1109 cond_resched();
1111 page = follow_page_mask(vma, start, foll_flags, &ctx);
1112 if (!page) {
1113 ret = faultin_page(tsk, vma, start, &foll_flags,
1114 locked);
1115 switch (ret) {
1116 case 0:
1117 goto retry;
1118 case -EBUSY:
1119 ret = 0;
1120 fallthrough;
1121 case -EFAULT:
1122 case -ENOMEM:
1123 case -EHWPOISON:
1124 goto out;
1125 case -ENOENT:
1126 goto next_page;
1128 BUG();
1129 } else if (PTR_ERR(page) == -EEXIST) {
1131 * Proper page table entry exists, but no corresponding
1132 * struct page.
1134 goto next_page;
1135 } else if (IS_ERR(page)) {
1136 ret = PTR_ERR(page);
1137 goto out;
1139 if (pages) {
1140 pages[i] = page;
1141 flush_anon_page(vma, page, start);
1142 flush_dcache_page(page);
1143 ctx.page_mask = 0;
1145 next_page:
1146 if (vmas) {
1147 vmas[i] = vma;
1148 ctx.page_mask = 0;
1150 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1151 if (page_increm > nr_pages)
1152 page_increm = nr_pages;
1153 i += page_increm;
1154 start += page_increm * PAGE_SIZE;
1155 nr_pages -= page_increm;
1156 } while (nr_pages);
1157 out:
1158 if (ctx.pgmap)
1159 put_dev_pagemap(ctx.pgmap);
1160 return i ? i : ret;
1163 static bool vma_permits_fault(struct vm_area_struct *vma,
1164 unsigned int fault_flags)
1166 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1167 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1168 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1170 if (!(vm_flags & vma->vm_flags))
1171 return false;
1174 * The architecture might have a hardware protection
1175 * mechanism other than read/write that can deny access.
1177 * gup always represents data access, not instruction
1178 * fetches, so execute=false here:
1180 if (!arch_vma_access_permitted(vma, write, false, foreign))
1181 return false;
1183 return true;
1187 * fixup_user_fault() - manually resolve a user page fault
1188 * @tsk: the task_struct to use for page fault accounting, or
1189 * NULL if faults are not to be recorded.
1190 * @mm: mm_struct of target mm
1191 * @address: user address
1192 * @fault_flags:flags to pass down to handle_mm_fault()
1193 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1194 * does not allow retry. If NULL, the caller must guarantee
1195 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1197 * This is meant to be called in the specific scenario where for locking reasons
1198 * we try to access user memory in atomic context (within a pagefault_disable()
1199 * section), this returns -EFAULT, and we want to resolve the user fault before
1200 * trying again.
1202 * Typically this is meant to be used by the futex code.
1204 * The main difference with get_user_pages() is that this function will
1205 * unconditionally call handle_mm_fault() which will in turn perform all the
1206 * necessary SW fixup of the dirty and young bits in the PTE, while
1207 * get_user_pages() only guarantees to update these in the struct page.
1209 * This is important for some architectures where those bits also gate the
1210 * access permission to the page because they are maintained in software. On
1211 * such architectures, gup() will not be enough to make a subsequent access
1212 * succeed.
1214 * This function will not return with an unlocked mmap_lock. So it has not the
1215 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1217 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1218 unsigned long address, unsigned int fault_flags,
1219 bool *unlocked)
1221 struct vm_area_struct *vma;
1222 vm_fault_t ret, major = 0;
1224 address = untagged_addr(address);
1226 if (unlocked)
1227 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1229 retry:
1230 vma = find_extend_vma(mm, address);
1231 if (!vma || address < vma->vm_start)
1232 return -EFAULT;
1234 if (!vma_permits_fault(vma, fault_flags))
1235 return -EFAULT;
1237 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1238 fatal_signal_pending(current))
1239 return -EINTR;
1241 ret = handle_mm_fault(vma, address, fault_flags);
1242 major |= ret & VM_FAULT_MAJOR;
1243 if (ret & VM_FAULT_ERROR) {
1244 int err = vm_fault_to_errno(ret, 0);
1246 if (err)
1247 return err;
1248 BUG();
1251 if (ret & VM_FAULT_RETRY) {
1252 mmap_read_lock(mm);
1253 *unlocked = true;
1254 fault_flags |= FAULT_FLAG_TRIED;
1255 goto retry;
1258 if (tsk) {
1259 if (major)
1260 tsk->maj_flt++;
1261 else
1262 tsk->min_flt++;
1264 return 0;
1266 EXPORT_SYMBOL_GPL(fixup_user_fault);
1269 * Please note that this function, unlike __get_user_pages will not
1270 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1272 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1273 struct mm_struct *mm,
1274 unsigned long start,
1275 unsigned long nr_pages,
1276 struct page **pages,
1277 struct vm_area_struct **vmas,
1278 int *locked,
1279 unsigned int flags)
1281 long ret, pages_done;
1282 bool lock_dropped;
1284 if (locked) {
1285 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1286 BUG_ON(vmas);
1287 /* check caller initialized locked */
1288 BUG_ON(*locked != 1);
1292 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1293 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1294 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1295 * for FOLL_GET, not for the newer FOLL_PIN.
1297 * FOLL_PIN always expects pages to be non-null, but no need to assert
1298 * that here, as any failures will be obvious enough.
1300 if (pages && !(flags & FOLL_PIN))
1301 flags |= FOLL_GET;
1303 pages_done = 0;
1304 lock_dropped = false;
1305 for (;;) {
1306 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1307 vmas, locked);
1308 if (!locked)
1309 /* VM_FAULT_RETRY couldn't trigger, bypass */
1310 return ret;
1312 /* VM_FAULT_RETRY cannot return errors */
1313 if (!*locked) {
1314 BUG_ON(ret < 0);
1315 BUG_ON(ret >= nr_pages);
1318 if (ret > 0) {
1319 nr_pages -= ret;
1320 pages_done += ret;
1321 if (!nr_pages)
1322 break;
1324 if (*locked) {
1326 * VM_FAULT_RETRY didn't trigger or it was a
1327 * FOLL_NOWAIT.
1329 if (!pages_done)
1330 pages_done = ret;
1331 break;
1334 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1335 * For the prefault case (!pages) we only update counts.
1337 if (likely(pages))
1338 pages += ret;
1339 start += ret << PAGE_SHIFT;
1340 lock_dropped = true;
1342 retry:
1344 * Repeat on the address that fired VM_FAULT_RETRY
1345 * with both FAULT_FLAG_ALLOW_RETRY and
1346 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1347 * by fatal signals, so we need to check it before we
1348 * start trying again otherwise it can loop forever.
1351 if (fatal_signal_pending(current)) {
1352 if (!pages_done)
1353 pages_done = -EINTR;
1354 break;
1357 ret = mmap_read_lock_killable(mm);
1358 if (ret) {
1359 BUG_ON(ret > 0);
1360 if (!pages_done)
1361 pages_done = ret;
1362 break;
1365 *locked = 1;
1366 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1367 pages, NULL, locked);
1368 if (!*locked) {
1369 /* Continue to retry until we succeeded */
1370 BUG_ON(ret != 0);
1371 goto retry;
1373 if (ret != 1) {
1374 BUG_ON(ret > 1);
1375 if (!pages_done)
1376 pages_done = ret;
1377 break;
1379 nr_pages--;
1380 pages_done++;
1381 if (!nr_pages)
1382 break;
1383 if (likely(pages))
1384 pages++;
1385 start += PAGE_SIZE;
1387 if (lock_dropped && *locked) {
1389 * We must let the caller know we temporarily dropped the lock
1390 * and so the critical section protected by it was lost.
1392 mmap_read_unlock(mm);
1393 *locked = 0;
1395 return pages_done;
1399 * populate_vma_page_range() - populate a range of pages in the vma.
1400 * @vma: target vma
1401 * @start: start address
1402 * @end: end address
1403 * @locked: whether the mmap_lock is still held
1405 * This takes care of mlocking the pages too if VM_LOCKED is set.
1407 * return 0 on success, negative error code on error.
1409 * vma->vm_mm->mmap_lock must be held.
1411 * If @locked is NULL, it may be held for read or write and will
1412 * be unperturbed.
1414 * If @locked is non-NULL, it must held for read only and may be
1415 * released. If it's released, *@locked will be set to 0.
1417 long populate_vma_page_range(struct vm_area_struct *vma,
1418 unsigned long start, unsigned long end, int *locked)
1420 struct mm_struct *mm = vma->vm_mm;
1421 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1422 int gup_flags;
1424 VM_BUG_ON(start & ~PAGE_MASK);
1425 VM_BUG_ON(end & ~PAGE_MASK);
1426 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1427 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1428 mmap_assert_locked(mm);
1430 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1431 if (vma->vm_flags & VM_LOCKONFAULT)
1432 gup_flags &= ~FOLL_POPULATE;
1434 * We want to touch writable mappings with a write fault in order
1435 * to break COW, except for shared mappings because these don't COW
1436 * and we would not want to dirty them for nothing.
1438 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1439 gup_flags |= FOLL_WRITE;
1442 * We want mlock to succeed for regions that have any permissions
1443 * other than PROT_NONE.
1445 if (vma_is_accessible(vma))
1446 gup_flags |= FOLL_FORCE;
1449 * We made sure addr is within a VMA, so the following will
1450 * not result in a stack expansion that recurses back here.
1452 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1453 NULL, NULL, locked);
1457 * __mm_populate - populate and/or mlock pages within a range of address space.
1459 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1460 * flags. VMAs must be already marked with the desired vm_flags, and
1461 * mmap_lock must not be held.
1463 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1465 struct mm_struct *mm = current->mm;
1466 unsigned long end, nstart, nend;
1467 struct vm_area_struct *vma = NULL;
1468 int locked = 0;
1469 long ret = 0;
1471 end = start + len;
1473 for (nstart = start; nstart < end; nstart = nend) {
1475 * We want to fault in pages for [nstart; end) address range.
1476 * Find first corresponding VMA.
1478 if (!locked) {
1479 locked = 1;
1480 mmap_read_lock(mm);
1481 vma = find_vma(mm, nstart);
1482 } else if (nstart >= vma->vm_end)
1483 vma = vma->vm_next;
1484 if (!vma || vma->vm_start >= end)
1485 break;
1487 * Set [nstart; nend) to intersection of desired address
1488 * range with the first VMA. Also, skip undesirable VMA types.
1490 nend = min(end, vma->vm_end);
1491 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1492 continue;
1493 if (nstart < vma->vm_start)
1494 nstart = vma->vm_start;
1496 * Now fault in a range of pages. populate_vma_page_range()
1497 * double checks the vma flags, so that it won't mlock pages
1498 * if the vma was already munlocked.
1500 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1501 if (ret < 0) {
1502 if (ignore_errors) {
1503 ret = 0;
1504 continue; /* continue at next VMA */
1506 break;
1508 nend = nstart + ret * PAGE_SIZE;
1509 ret = 0;
1511 if (locked)
1512 mmap_read_unlock(mm);
1513 return ret; /* 0 or negative error code */
1517 * get_dump_page() - pin user page in memory while writing it to core dump
1518 * @addr: user address
1520 * Returns struct page pointer of user page pinned for dump,
1521 * to be freed afterwards by put_page().
1523 * Returns NULL on any kind of failure - a hole must then be inserted into
1524 * the corefile, to preserve alignment with its headers; and also returns
1525 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1526 * allowing a hole to be left in the corefile to save diskspace.
1528 * Called without mmap_lock, but after all other threads have been killed.
1530 #ifdef CONFIG_ELF_CORE
1531 struct page *get_dump_page(unsigned long addr)
1533 struct vm_area_struct *vma;
1534 struct page *page;
1536 if (__get_user_pages(current, current->mm, addr, 1,
1537 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1538 NULL) < 1)
1539 return NULL;
1540 flush_cache_page(vma, addr, page_to_pfn(page));
1541 return page;
1543 #endif /* CONFIG_ELF_CORE */
1544 #else /* CONFIG_MMU */
1545 static long __get_user_pages_locked(struct task_struct *tsk,
1546 struct mm_struct *mm, unsigned long start,
1547 unsigned long nr_pages, struct page **pages,
1548 struct vm_area_struct **vmas, int *locked,
1549 unsigned int foll_flags)
1551 struct vm_area_struct *vma;
1552 unsigned long vm_flags;
1553 int i;
1555 /* calculate required read or write permissions.
1556 * If FOLL_FORCE is set, we only require the "MAY" flags.
1558 vm_flags = (foll_flags & FOLL_WRITE) ?
1559 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1560 vm_flags &= (foll_flags & FOLL_FORCE) ?
1561 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1563 for (i = 0; i < nr_pages; i++) {
1564 vma = find_vma(mm, start);
1565 if (!vma)
1566 goto finish_or_fault;
1568 /* protect what we can, including chardevs */
1569 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1570 !(vm_flags & vma->vm_flags))
1571 goto finish_or_fault;
1573 if (pages) {
1574 pages[i] = virt_to_page(start);
1575 if (pages[i])
1576 get_page(pages[i]);
1578 if (vmas)
1579 vmas[i] = vma;
1580 start = (start + PAGE_SIZE) & PAGE_MASK;
1583 return i;
1585 finish_or_fault:
1586 return i ? : -EFAULT;
1588 #endif /* !CONFIG_MMU */
1590 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1591 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1593 long i;
1594 struct vm_area_struct *vma_prev = NULL;
1596 for (i = 0; i < nr_pages; i++) {
1597 struct vm_area_struct *vma = vmas[i];
1599 if (vma == vma_prev)
1600 continue;
1602 vma_prev = vma;
1604 if (vma_is_fsdax(vma))
1605 return true;
1607 return false;
1610 #ifdef CONFIG_CMA
1611 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1614 * We want to make sure we allocate the new page from the same node
1615 * as the source page.
1617 int nid = page_to_nid(page);
1619 * Trying to allocate a page for migration. Ignore allocation
1620 * failure warnings. We don't force __GFP_THISNODE here because
1621 * this node here is the node where we have CMA reservation and
1622 * in some case these nodes will have really less non movable
1623 * allocation memory.
1625 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1627 if (PageHighMem(page))
1628 gfp_mask |= __GFP_HIGHMEM;
1630 #ifdef CONFIG_HUGETLB_PAGE
1631 if (PageHuge(page)) {
1632 struct hstate *h = page_hstate(page);
1634 * We don't want to dequeue from the pool because pool pages will
1635 * mostly be from the CMA region.
1637 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1639 #endif
1640 if (PageTransHuge(page)) {
1641 struct page *thp;
1643 * ignore allocation failure warnings
1645 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1648 * Remove the movable mask so that we don't allocate from
1649 * CMA area again.
1651 thp_gfpmask &= ~__GFP_MOVABLE;
1652 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1653 if (!thp)
1654 return NULL;
1655 prep_transhuge_page(thp);
1656 return thp;
1659 return __alloc_pages_node(nid, gfp_mask, 0);
1662 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1663 struct mm_struct *mm,
1664 unsigned long start,
1665 unsigned long nr_pages,
1666 struct page **pages,
1667 struct vm_area_struct **vmas,
1668 unsigned int gup_flags)
1670 unsigned long i;
1671 unsigned long step;
1672 bool drain_allow = true;
1673 bool migrate_allow = true;
1674 LIST_HEAD(cma_page_list);
1675 long ret = nr_pages;
1677 check_again:
1678 for (i = 0; i < nr_pages;) {
1680 struct page *head = compound_head(pages[i]);
1683 * gup may start from a tail page. Advance step by the left
1684 * part.
1686 step = compound_nr(head) - (pages[i] - head);
1688 * If we get a page from the CMA zone, since we are going to
1689 * be pinning these entries, we might as well move them out
1690 * of the CMA zone if possible.
1692 if (is_migrate_cma_page(head)) {
1693 if (PageHuge(head))
1694 isolate_huge_page(head, &cma_page_list);
1695 else {
1696 if (!PageLRU(head) && drain_allow) {
1697 lru_add_drain_all();
1698 drain_allow = false;
1701 if (!isolate_lru_page(head)) {
1702 list_add_tail(&head->lru, &cma_page_list);
1703 mod_node_page_state(page_pgdat(head),
1704 NR_ISOLATED_ANON +
1705 page_is_file_lru(head),
1706 hpage_nr_pages(head));
1711 i += step;
1714 if (!list_empty(&cma_page_list)) {
1716 * drop the above get_user_pages reference.
1718 for (i = 0; i < nr_pages; i++)
1719 put_page(pages[i]);
1721 if (migrate_pages(&cma_page_list, new_non_cma_page,
1722 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1724 * some of the pages failed migration. Do get_user_pages
1725 * without migration.
1727 migrate_allow = false;
1729 if (!list_empty(&cma_page_list))
1730 putback_movable_pages(&cma_page_list);
1733 * We did migrate all the pages, Try to get the page references
1734 * again migrating any new CMA pages which we failed to isolate
1735 * earlier.
1737 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1738 pages, vmas, NULL,
1739 gup_flags);
1741 if ((ret > 0) && migrate_allow) {
1742 nr_pages = ret;
1743 drain_allow = true;
1744 goto check_again;
1748 return ret;
1750 #else
1751 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1752 struct mm_struct *mm,
1753 unsigned long start,
1754 unsigned long nr_pages,
1755 struct page **pages,
1756 struct vm_area_struct **vmas,
1757 unsigned int gup_flags)
1759 return nr_pages;
1761 #endif /* CONFIG_CMA */
1764 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1765 * allows us to process the FOLL_LONGTERM flag.
1767 static long __gup_longterm_locked(struct task_struct *tsk,
1768 struct mm_struct *mm,
1769 unsigned long start,
1770 unsigned long nr_pages,
1771 struct page **pages,
1772 struct vm_area_struct **vmas,
1773 unsigned int gup_flags)
1775 struct vm_area_struct **vmas_tmp = vmas;
1776 unsigned long flags = 0;
1777 long rc, i;
1779 if (gup_flags & FOLL_LONGTERM) {
1780 if (!pages)
1781 return -EINVAL;
1783 if (!vmas_tmp) {
1784 vmas_tmp = kcalloc(nr_pages,
1785 sizeof(struct vm_area_struct *),
1786 GFP_KERNEL);
1787 if (!vmas_tmp)
1788 return -ENOMEM;
1790 flags = memalloc_nocma_save();
1793 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1794 vmas_tmp, NULL, gup_flags);
1796 if (gup_flags & FOLL_LONGTERM) {
1797 memalloc_nocma_restore(flags);
1798 if (rc < 0)
1799 goto out;
1801 if (check_dax_vmas(vmas_tmp, rc)) {
1802 for (i = 0; i < rc; i++)
1803 put_page(pages[i]);
1804 rc = -EOPNOTSUPP;
1805 goto out;
1808 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1809 vmas_tmp, gup_flags);
1812 out:
1813 if (vmas_tmp != vmas)
1814 kfree(vmas_tmp);
1815 return rc;
1817 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1818 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1819 struct mm_struct *mm,
1820 unsigned long start,
1821 unsigned long nr_pages,
1822 struct page **pages,
1823 struct vm_area_struct **vmas,
1824 unsigned int flags)
1826 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1827 NULL, flags);
1829 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1831 #ifdef CONFIG_MMU
1832 static long __get_user_pages_remote(struct task_struct *tsk,
1833 struct mm_struct *mm,
1834 unsigned long start, unsigned long nr_pages,
1835 unsigned int gup_flags, struct page **pages,
1836 struct vm_area_struct **vmas, int *locked)
1839 * Parts of FOLL_LONGTERM behavior are incompatible with
1840 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1841 * vmas. However, this only comes up if locked is set, and there are
1842 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1843 * allow what we can.
1845 if (gup_flags & FOLL_LONGTERM) {
1846 if (WARN_ON_ONCE(locked))
1847 return -EINVAL;
1849 * This will check the vmas (even if our vmas arg is NULL)
1850 * and return -ENOTSUPP if DAX isn't allowed in this case:
1852 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1853 vmas, gup_flags | FOLL_TOUCH |
1854 FOLL_REMOTE);
1857 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1858 locked,
1859 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1863 * get_user_pages_remote() - pin user pages in memory
1864 * @tsk: the task_struct to use for page fault accounting, or
1865 * NULL if faults are not to be recorded.
1866 * @mm: mm_struct of target mm
1867 * @start: starting user address
1868 * @nr_pages: number of pages from start to pin
1869 * @gup_flags: flags modifying lookup behaviour
1870 * @pages: array that receives pointers to the pages pinned.
1871 * Should be at least nr_pages long. Or NULL, if caller
1872 * only intends to ensure the pages are faulted in.
1873 * @vmas: array of pointers to vmas corresponding to each page.
1874 * Or NULL if the caller does not require them.
1875 * @locked: pointer to lock flag indicating whether lock is held and
1876 * subsequently whether VM_FAULT_RETRY functionality can be
1877 * utilised. Lock must initially be held.
1879 * Returns either number of pages pinned (which may be less than the
1880 * number requested), or an error. Details about the return value:
1882 * -- If nr_pages is 0, returns 0.
1883 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1884 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1885 * pages pinned. Again, this may be less than nr_pages.
1887 * The caller is responsible for releasing returned @pages, via put_page().
1889 * @vmas are valid only as long as mmap_lock is held.
1891 * Must be called with mmap_lock held for read or write.
1893 * get_user_pages_remote walks a process's page tables and takes a reference
1894 * to each struct page that each user address corresponds to at a given
1895 * instant. That is, it takes the page that would be accessed if a user
1896 * thread accesses the given user virtual address at that instant.
1898 * This does not guarantee that the page exists in the user mappings when
1899 * get_user_pages_remote returns, and there may even be a completely different
1900 * page there in some cases (eg. if mmapped pagecache has been invalidated
1901 * and subsequently re faulted). However it does guarantee that the page
1902 * won't be freed completely. And mostly callers simply care that the page
1903 * contains data that was valid *at some point in time*. Typically, an IO
1904 * or similar operation cannot guarantee anything stronger anyway because
1905 * locks can't be held over the syscall boundary.
1907 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1908 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1909 * be called after the page is finished with, and before put_page is called.
1911 * get_user_pages_remote is typically used for fewer-copy IO operations,
1912 * to get a handle on the memory by some means other than accesses
1913 * via the user virtual addresses. The pages may be submitted for
1914 * DMA to devices or accessed via their kernel linear mapping (via the
1915 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1917 * See also get_user_pages_fast, for performance critical applications.
1919 * get_user_pages_remote should be phased out in favor of
1920 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1921 * should use get_user_pages_remote because it cannot pass
1922 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1924 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1925 unsigned long start, unsigned long nr_pages,
1926 unsigned int gup_flags, struct page **pages,
1927 struct vm_area_struct **vmas, int *locked)
1930 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1931 * never directly by the caller, so enforce that with an assertion:
1933 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1934 return -EINVAL;
1936 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1937 pages, vmas, locked);
1939 EXPORT_SYMBOL(get_user_pages_remote);
1941 #else /* CONFIG_MMU */
1942 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1943 unsigned long start, unsigned long nr_pages,
1944 unsigned int gup_flags, struct page **pages,
1945 struct vm_area_struct **vmas, int *locked)
1947 return 0;
1950 static long __get_user_pages_remote(struct task_struct *tsk,
1951 struct mm_struct *mm,
1952 unsigned long start, unsigned long nr_pages,
1953 unsigned int gup_flags, struct page **pages,
1954 struct vm_area_struct **vmas, int *locked)
1956 return 0;
1958 #endif /* !CONFIG_MMU */
1961 * get_user_pages() - pin user pages in memory
1962 * @start: starting user address
1963 * @nr_pages: number of pages from start to pin
1964 * @gup_flags: flags modifying lookup behaviour
1965 * @pages: array that receives pointers to the pages pinned.
1966 * Should be at least nr_pages long. Or NULL, if caller
1967 * only intends to ensure the pages are faulted in.
1968 * @vmas: array of pointers to vmas corresponding to each page.
1969 * Or NULL if the caller does not require them.
1971 * This is the same as get_user_pages_remote(), just with a
1972 * less-flexible calling convention where we assume that the task
1973 * and mm being operated on are the current task's and don't allow
1974 * passing of a locked parameter. We also obviously don't pass
1975 * FOLL_REMOTE in here.
1977 long get_user_pages(unsigned long start, unsigned long nr_pages,
1978 unsigned int gup_flags, struct page **pages,
1979 struct vm_area_struct **vmas)
1982 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1983 * never directly by the caller, so enforce that with an assertion:
1985 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1986 return -EINVAL;
1988 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1989 pages, vmas, gup_flags | FOLL_TOUCH);
1991 EXPORT_SYMBOL(get_user_pages);
1994 * get_user_pages_locked() is suitable to replace the form:
1996 * mmap_read_lock(mm);
1997 * do_something()
1998 * get_user_pages(tsk, mm, ..., pages, NULL);
1999 * mmap_read_unlock(mm);
2001 * to:
2003 * int locked = 1;
2004 * mmap_read_lock(mm);
2005 * do_something()
2006 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
2007 * if (locked)
2008 * mmap_read_unlock(mm);
2010 * @start: starting user address
2011 * @nr_pages: number of pages from start to pin
2012 * @gup_flags: flags modifying lookup behaviour
2013 * @pages: array that receives pointers to the pages pinned.
2014 * Should be at least nr_pages long. Or NULL, if caller
2015 * only intends to ensure the pages are faulted in.
2016 * @locked: pointer to lock flag indicating whether lock is held and
2017 * subsequently whether VM_FAULT_RETRY functionality can be
2018 * utilised. Lock must initially be held.
2020 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2021 * paths better by using either get_user_pages_locked() or
2022 * get_user_pages_unlocked().
2025 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2026 unsigned int gup_flags, struct page **pages,
2027 int *locked)
2030 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2031 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2032 * vmas. As there are no users of this flag in this call we simply
2033 * disallow this option for now.
2035 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2036 return -EINVAL;
2038 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2039 * never directly by the caller, so enforce that:
2041 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2042 return -EINVAL;
2044 return __get_user_pages_locked(current, current->mm, start, nr_pages,
2045 pages, NULL, locked,
2046 gup_flags | FOLL_TOUCH);
2048 EXPORT_SYMBOL(get_user_pages_locked);
2051 * get_user_pages_unlocked() is suitable to replace the form:
2053 * mmap_read_lock(mm);
2054 * get_user_pages(tsk, mm, ..., pages, NULL);
2055 * mmap_read_unlock(mm);
2057 * with:
2059 * get_user_pages_unlocked(tsk, mm, ..., pages);
2061 * It is functionally equivalent to get_user_pages_fast so
2062 * get_user_pages_fast should be used instead if specific gup_flags
2063 * (e.g. FOLL_FORCE) are not required.
2065 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2066 struct page **pages, unsigned int gup_flags)
2068 struct mm_struct *mm = current->mm;
2069 int locked = 1;
2070 long ret;
2073 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2074 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2075 * vmas. As there are no users of this flag in this call we simply
2076 * disallow this option for now.
2078 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2079 return -EINVAL;
2081 mmap_read_lock(mm);
2082 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2083 &locked, gup_flags | FOLL_TOUCH);
2084 if (locked)
2085 mmap_read_unlock(mm);
2086 return ret;
2088 EXPORT_SYMBOL(get_user_pages_unlocked);
2091 * Fast GUP
2093 * get_user_pages_fast attempts to pin user pages by walking the page
2094 * tables directly and avoids taking locks. Thus the walker needs to be
2095 * protected from page table pages being freed from under it, and should
2096 * block any THP splits.
2098 * One way to achieve this is to have the walker disable interrupts, and
2099 * rely on IPIs from the TLB flushing code blocking before the page table
2100 * pages are freed. This is unsuitable for architectures that do not need
2101 * to broadcast an IPI when invalidating TLBs.
2103 * Another way to achieve this is to batch up page table containing pages
2104 * belonging to more than one mm_user, then rcu_sched a callback to free those
2105 * pages. Disabling interrupts will allow the fast_gup walker to both block
2106 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2107 * (which is a relatively rare event). The code below adopts this strategy.
2109 * Before activating this code, please be aware that the following assumptions
2110 * are currently made:
2112 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2113 * free pages containing page tables or TLB flushing requires IPI broadcast.
2115 * *) ptes can be read atomically by the architecture.
2117 * *) access_ok is sufficient to validate userspace address ranges.
2119 * The last two assumptions can be relaxed by the addition of helper functions.
2121 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2123 #ifdef CONFIG_HAVE_FAST_GUP
2125 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2127 if (flags & FOLL_PIN) {
2128 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2129 refs);
2131 if (hpage_pincount_available(page))
2132 hpage_pincount_sub(page, refs);
2133 else
2134 refs *= GUP_PIN_COUNTING_BIAS;
2137 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2139 * Calling put_page() for each ref is unnecessarily slow. Only the last
2140 * ref needs a put_page().
2142 if (refs > 1)
2143 page_ref_sub(page, refs - 1);
2144 put_page(page);
2147 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2150 * WARNING: only to be used in the get_user_pages_fast() implementation.
2152 * With get_user_pages_fast(), we walk down the pagetables without taking any
2153 * locks. For this we would like to load the pointers atomically, but sometimes
2154 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2155 * we do have is the guarantee that a PTE will only either go from not present
2156 * to present, or present to not present or both -- it will not switch to a
2157 * completely different present page without a TLB flush in between; something
2158 * that we are blocking by holding interrupts off.
2160 * Setting ptes from not present to present goes:
2162 * ptep->pte_high = h;
2163 * smp_wmb();
2164 * ptep->pte_low = l;
2166 * And present to not present goes:
2168 * ptep->pte_low = 0;
2169 * smp_wmb();
2170 * ptep->pte_high = 0;
2172 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2173 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2174 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2175 * picked up a changed pte high. We might have gotten rubbish values from
2176 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2177 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2178 * operates on present ptes we're safe.
2180 static inline pte_t gup_get_pte(pte_t *ptep)
2182 pte_t pte;
2184 do {
2185 pte.pte_low = ptep->pte_low;
2186 smp_rmb();
2187 pte.pte_high = ptep->pte_high;
2188 smp_rmb();
2189 } while (unlikely(pte.pte_low != ptep->pte_low));
2191 return pte;
2193 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2195 * We require that the PTE can be read atomically.
2197 static inline pte_t gup_get_pte(pte_t *ptep)
2199 return ptep_get(ptep);
2201 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2203 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2204 unsigned int flags,
2205 struct page **pages)
2207 while ((*nr) - nr_start) {
2208 struct page *page = pages[--(*nr)];
2210 ClearPageReferenced(page);
2211 if (flags & FOLL_PIN)
2212 unpin_user_page(page);
2213 else
2214 put_page(page);
2218 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2219 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2220 unsigned int flags, struct page **pages, int *nr)
2222 struct dev_pagemap *pgmap = NULL;
2223 int nr_start = *nr, ret = 0;
2224 pte_t *ptep, *ptem;
2226 ptem = ptep = pte_offset_map(&pmd, addr);
2227 do {
2228 pte_t pte = gup_get_pte(ptep);
2229 struct page *head, *page;
2232 * Similar to the PMD case below, NUMA hinting must take slow
2233 * path using the pte_protnone check.
2235 if (pte_protnone(pte))
2236 goto pte_unmap;
2238 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2239 goto pte_unmap;
2241 if (pte_devmap(pte)) {
2242 if (unlikely(flags & FOLL_LONGTERM))
2243 goto pte_unmap;
2245 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2246 if (unlikely(!pgmap)) {
2247 undo_dev_pagemap(nr, nr_start, flags, pages);
2248 goto pte_unmap;
2250 } else if (pte_special(pte))
2251 goto pte_unmap;
2253 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2254 page = pte_page(pte);
2256 head = try_grab_compound_head(page, 1, flags);
2257 if (!head)
2258 goto pte_unmap;
2260 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2261 put_compound_head(head, 1, flags);
2262 goto pte_unmap;
2265 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2268 * We need to make the page accessible if and only if we are
2269 * going to access its content (the FOLL_PIN case). Please
2270 * see Documentation/core-api/pin_user_pages.rst for
2271 * details.
2273 if (flags & FOLL_PIN) {
2274 ret = arch_make_page_accessible(page);
2275 if (ret) {
2276 unpin_user_page(page);
2277 goto pte_unmap;
2280 SetPageReferenced(page);
2281 pages[*nr] = page;
2282 (*nr)++;
2284 } while (ptep++, addr += PAGE_SIZE, addr != end);
2286 ret = 1;
2288 pte_unmap:
2289 if (pgmap)
2290 put_dev_pagemap(pgmap);
2291 pte_unmap(ptem);
2292 return ret;
2294 #else
2297 * If we can't determine whether or not a pte is special, then fail immediately
2298 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2299 * to be special.
2301 * For a futex to be placed on a THP tail page, get_futex_key requires a
2302 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2303 * useful to have gup_huge_pmd even if we can't operate on ptes.
2305 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2306 unsigned int flags, struct page **pages, int *nr)
2308 return 0;
2310 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2312 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2313 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2314 unsigned long end, unsigned int flags,
2315 struct page **pages, int *nr)
2317 int nr_start = *nr;
2318 struct dev_pagemap *pgmap = NULL;
2320 do {
2321 struct page *page = pfn_to_page(pfn);
2323 pgmap = get_dev_pagemap(pfn, pgmap);
2324 if (unlikely(!pgmap)) {
2325 undo_dev_pagemap(nr, nr_start, flags, pages);
2326 return 0;
2328 SetPageReferenced(page);
2329 pages[*nr] = page;
2330 if (unlikely(!try_grab_page(page, flags))) {
2331 undo_dev_pagemap(nr, nr_start, flags, pages);
2332 return 0;
2334 (*nr)++;
2335 pfn++;
2336 } while (addr += PAGE_SIZE, addr != end);
2338 if (pgmap)
2339 put_dev_pagemap(pgmap);
2340 return 1;
2343 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2344 unsigned long end, unsigned int flags,
2345 struct page **pages, int *nr)
2347 unsigned long fault_pfn;
2348 int nr_start = *nr;
2350 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2351 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2352 return 0;
2354 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2355 undo_dev_pagemap(nr, nr_start, flags, pages);
2356 return 0;
2358 return 1;
2361 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2362 unsigned long end, unsigned int flags,
2363 struct page **pages, int *nr)
2365 unsigned long fault_pfn;
2366 int nr_start = *nr;
2368 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2369 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2370 return 0;
2372 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2373 undo_dev_pagemap(nr, nr_start, flags, pages);
2374 return 0;
2376 return 1;
2378 #else
2379 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2380 unsigned long end, unsigned int flags,
2381 struct page **pages, int *nr)
2383 BUILD_BUG();
2384 return 0;
2387 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2388 unsigned long end, unsigned int flags,
2389 struct page **pages, int *nr)
2391 BUILD_BUG();
2392 return 0;
2394 #endif
2396 static int record_subpages(struct page *page, unsigned long addr,
2397 unsigned long end, struct page **pages)
2399 int nr;
2401 for (nr = 0; addr != end; addr += PAGE_SIZE)
2402 pages[nr++] = page++;
2404 return nr;
2407 #ifdef CONFIG_ARCH_HAS_HUGEPD
2408 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2409 unsigned long sz)
2411 unsigned long __boundary = (addr + sz) & ~(sz-1);
2412 return (__boundary - 1 < end - 1) ? __boundary : end;
2415 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2416 unsigned long end, unsigned int flags,
2417 struct page **pages, int *nr)
2419 unsigned long pte_end;
2420 struct page *head, *page;
2421 pte_t pte;
2422 int refs;
2424 pte_end = (addr + sz) & ~(sz-1);
2425 if (pte_end < end)
2426 end = pte_end;
2428 pte = huge_ptep_get(ptep);
2430 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2431 return 0;
2433 /* hugepages are never "special" */
2434 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2436 head = pte_page(pte);
2437 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2438 refs = record_subpages(page, addr, end, pages + *nr);
2440 head = try_grab_compound_head(head, refs, flags);
2441 if (!head)
2442 return 0;
2444 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2445 put_compound_head(head, refs, flags);
2446 return 0;
2449 *nr += refs;
2450 SetPageReferenced(head);
2451 return 1;
2454 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2455 unsigned int pdshift, unsigned long end, unsigned int flags,
2456 struct page **pages, int *nr)
2458 pte_t *ptep;
2459 unsigned long sz = 1UL << hugepd_shift(hugepd);
2460 unsigned long next;
2462 ptep = hugepte_offset(hugepd, addr, pdshift);
2463 do {
2464 next = hugepte_addr_end(addr, end, sz);
2465 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2466 return 0;
2467 } while (ptep++, addr = next, addr != end);
2469 return 1;
2471 #else
2472 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2473 unsigned int pdshift, unsigned long end, unsigned int flags,
2474 struct page **pages, int *nr)
2476 return 0;
2478 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2480 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2481 unsigned long end, unsigned int flags,
2482 struct page **pages, int *nr)
2484 struct page *head, *page;
2485 int refs;
2487 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2488 return 0;
2490 if (pmd_devmap(orig)) {
2491 if (unlikely(flags & FOLL_LONGTERM))
2492 return 0;
2493 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2494 pages, nr);
2497 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2498 refs = record_subpages(page, addr, end, pages + *nr);
2500 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2501 if (!head)
2502 return 0;
2504 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2505 put_compound_head(head, refs, flags);
2506 return 0;
2509 *nr += refs;
2510 SetPageReferenced(head);
2511 return 1;
2514 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2515 unsigned long end, unsigned int flags,
2516 struct page **pages, int *nr)
2518 struct page *head, *page;
2519 int refs;
2521 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2522 return 0;
2524 if (pud_devmap(orig)) {
2525 if (unlikely(flags & FOLL_LONGTERM))
2526 return 0;
2527 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2528 pages, nr);
2531 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2532 refs = record_subpages(page, addr, end, pages + *nr);
2534 head = try_grab_compound_head(pud_page(orig), refs, flags);
2535 if (!head)
2536 return 0;
2538 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2539 put_compound_head(head, refs, flags);
2540 return 0;
2543 *nr += refs;
2544 SetPageReferenced(head);
2545 return 1;
2548 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2549 unsigned long end, unsigned int flags,
2550 struct page **pages, int *nr)
2552 int refs;
2553 struct page *head, *page;
2555 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2556 return 0;
2558 BUILD_BUG_ON(pgd_devmap(orig));
2560 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2561 refs = record_subpages(page, addr, end, pages + *nr);
2563 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2564 if (!head)
2565 return 0;
2567 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2568 put_compound_head(head, refs, flags);
2569 return 0;
2572 *nr += refs;
2573 SetPageReferenced(head);
2574 return 1;
2577 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2578 unsigned int flags, struct page **pages, int *nr)
2580 unsigned long next;
2581 pmd_t *pmdp;
2583 pmdp = pmd_offset(&pud, addr);
2584 do {
2585 pmd_t pmd = READ_ONCE(*pmdp);
2587 next = pmd_addr_end(addr, end);
2588 if (!pmd_present(pmd))
2589 return 0;
2591 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2592 pmd_devmap(pmd))) {
2594 * NUMA hinting faults need to be handled in the GUP
2595 * slowpath for accounting purposes and so that they
2596 * can be serialised against THP migration.
2598 if (pmd_protnone(pmd))
2599 return 0;
2601 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2602 pages, nr))
2603 return 0;
2605 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2607 * architecture have different format for hugetlbfs
2608 * pmd format and THP pmd format
2610 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2611 PMD_SHIFT, next, flags, pages, nr))
2612 return 0;
2613 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2614 return 0;
2615 } while (pmdp++, addr = next, addr != end);
2617 return 1;
2620 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2621 unsigned int flags, struct page **pages, int *nr)
2623 unsigned long next;
2624 pud_t *pudp;
2626 pudp = pud_offset(&p4d, addr);
2627 do {
2628 pud_t pud = READ_ONCE(*pudp);
2630 next = pud_addr_end(addr, end);
2631 if (unlikely(!pud_present(pud)))
2632 return 0;
2633 if (unlikely(pud_huge(pud))) {
2634 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2635 pages, nr))
2636 return 0;
2637 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2638 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2639 PUD_SHIFT, next, flags, pages, nr))
2640 return 0;
2641 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2642 return 0;
2643 } while (pudp++, addr = next, addr != end);
2645 return 1;
2648 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2649 unsigned int flags, struct page **pages, int *nr)
2651 unsigned long next;
2652 p4d_t *p4dp;
2654 p4dp = p4d_offset(&pgd, addr);
2655 do {
2656 p4d_t p4d = READ_ONCE(*p4dp);
2658 next = p4d_addr_end(addr, end);
2659 if (p4d_none(p4d))
2660 return 0;
2661 BUILD_BUG_ON(p4d_huge(p4d));
2662 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2663 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2664 P4D_SHIFT, next, flags, pages, nr))
2665 return 0;
2666 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2667 return 0;
2668 } while (p4dp++, addr = next, addr != end);
2670 return 1;
2673 static void gup_pgd_range(unsigned long addr, unsigned long end,
2674 unsigned int flags, struct page **pages, int *nr)
2676 unsigned long next;
2677 pgd_t *pgdp;
2679 pgdp = pgd_offset(current->mm, addr);
2680 do {
2681 pgd_t pgd = READ_ONCE(*pgdp);
2683 next = pgd_addr_end(addr, end);
2684 if (pgd_none(pgd))
2685 return;
2686 if (unlikely(pgd_huge(pgd))) {
2687 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2688 pages, nr))
2689 return;
2690 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2691 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2692 PGDIR_SHIFT, next, flags, pages, nr))
2693 return;
2694 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2695 return;
2696 } while (pgdp++, addr = next, addr != end);
2698 #else
2699 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2700 unsigned int flags, struct page **pages, int *nr)
2703 #endif /* CONFIG_HAVE_FAST_GUP */
2705 #ifndef gup_fast_permitted
2707 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2708 * we need to fall back to the slow version:
2710 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2712 return true;
2714 #endif
2716 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2717 unsigned int gup_flags, struct page **pages)
2719 int ret;
2722 * FIXME: FOLL_LONGTERM does not work with
2723 * get_user_pages_unlocked() (see comments in that function)
2725 if (gup_flags & FOLL_LONGTERM) {
2726 mmap_read_lock(current->mm);
2727 ret = __gup_longterm_locked(current, current->mm,
2728 start, nr_pages,
2729 pages, NULL, gup_flags);
2730 mmap_read_unlock(current->mm);
2731 } else {
2732 ret = get_user_pages_unlocked(start, nr_pages,
2733 pages, gup_flags);
2736 return ret;
2739 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2740 unsigned int gup_flags,
2741 struct page **pages)
2743 unsigned long addr, len, end;
2744 unsigned long flags;
2745 int nr_pinned = 0, ret = 0;
2747 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2748 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2749 FOLL_FAST_ONLY)))
2750 return -EINVAL;
2752 if (!(gup_flags & FOLL_FAST_ONLY))
2753 might_lock_read(&current->mm->mmap_lock);
2755 start = untagged_addr(start) & PAGE_MASK;
2756 addr = start;
2757 len = (unsigned long) nr_pages << PAGE_SHIFT;
2758 end = start + len;
2760 if (end <= start)
2761 return 0;
2762 if (unlikely(!access_ok((void __user *)start, len)))
2763 return -EFAULT;
2766 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2767 * because get_user_pages() may need to cause an early COW in
2768 * order to avoid confusing the normal COW routines. So only
2769 * targets that are already writable are safe to do by just
2770 * looking at the page tables.
2772 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here,
2773 * because there is no slow path to fall back on. But you'd
2774 * better be careful about possible COW pages - you'll get _a_
2775 * COW page, but not necessarily the one you intended to get
2776 * depending on what COW event happens after this. COW may break
2777 * the page copy in a random direction.
2779 * Disable interrupts. The nested form is used, in order to allow
2780 * full, general purpose use of this routine.
2782 * With interrupts disabled, we block page table pages from being
2783 * freed from under us. See struct mmu_table_batch comments in
2784 * include/asm-generic/tlb.h for more details.
2786 * We do not adopt an rcu_read_lock(.) here as we also want to
2787 * block IPIs that come from THPs splitting.
2789 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2790 unsigned long fast_flags = gup_flags;
2791 if (!(gup_flags & FOLL_FAST_ONLY))
2792 fast_flags |= FOLL_WRITE;
2794 local_irq_save(flags);
2795 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2796 local_irq_restore(flags);
2797 ret = nr_pinned;
2800 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2801 /* Try to get the remaining pages with get_user_pages */
2802 start += nr_pinned << PAGE_SHIFT;
2803 pages += nr_pinned;
2805 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2806 gup_flags, pages);
2808 /* Have to be a bit careful with return values */
2809 if (nr_pinned > 0) {
2810 if (ret < 0)
2811 ret = nr_pinned;
2812 else
2813 ret += nr_pinned;
2817 return ret;
2820 * get_user_pages_fast_only() - pin user pages in memory
2821 * @start: starting user address
2822 * @nr_pages: number of pages from start to pin
2823 * @gup_flags: flags modifying pin behaviour
2824 * @pages: array that receives pointers to the pages pinned.
2825 * Should be at least nr_pages long.
2827 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2828 * the regular GUP.
2829 * Note a difference with get_user_pages_fast: this always returns the
2830 * number of pages pinned, 0 if no pages were pinned.
2832 * If the architecture does not support this function, simply return with no
2833 * pages pinned.
2835 * Careful, careful! COW breaking can go either way, so a non-write
2836 * access can get ambiguous page results. If you call this function without
2837 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2839 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2840 unsigned int gup_flags, struct page **pages)
2842 int nr_pinned;
2844 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2845 * because gup fast is always a "pin with a +1 page refcount" request.
2847 * FOLL_FAST_ONLY is required in order to match the API description of
2848 * this routine: no fall back to regular ("slow") GUP.
2850 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2852 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2853 pages);
2856 * As specified in the API description above, this routine is not
2857 * allowed to return negative values. However, the common core
2858 * routine internal_get_user_pages_fast() *can* return -errno.
2859 * Therefore, correct for that here:
2861 if (nr_pinned < 0)
2862 nr_pinned = 0;
2864 return nr_pinned;
2866 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2869 * get_user_pages_fast() - pin user pages in memory
2870 * @start: starting user address
2871 * @nr_pages: number of pages from start to pin
2872 * @gup_flags: flags modifying pin behaviour
2873 * @pages: array that receives pointers to the pages pinned.
2874 * Should be at least nr_pages long.
2876 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2877 * If not successful, it will fall back to taking the lock and
2878 * calling get_user_pages().
2880 * Returns number of pages pinned. This may be fewer than the number requested.
2881 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2882 * -errno.
2884 int get_user_pages_fast(unsigned long start, int nr_pages,
2885 unsigned int gup_flags, struct page **pages)
2888 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2889 * never directly by the caller, so enforce that:
2891 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2892 return -EINVAL;
2895 * The caller may or may not have explicitly set FOLL_GET; either way is
2896 * OK. However, internally (within mm/gup.c), gup fast variants must set
2897 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2898 * request.
2900 gup_flags |= FOLL_GET;
2901 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2903 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2906 * pin_user_pages_fast() - pin user pages in memory without taking locks
2908 * @start: starting user address
2909 * @nr_pages: number of pages from start to pin
2910 * @gup_flags: flags modifying pin behaviour
2911 * @pages: array that receives pointers to the pages pinned.
2912 * Should be at least nr_pages long.
2914 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2915 * get_user_pages_fast() for documentation on the function arguments, because
2916 * the arguments here are identical.
2918 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2919 * see Documentation/core-api/pin_user_pages.rst for further details.
2921 int pin_user_pages_fast(unsigned long start, int nr_pages,
2922 unsigned int gup_flags, struct page **pages)
2924 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2925 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2926 return -EINVAL;
2928 gup_flags |= FOLL_PIN;
2929 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2931 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2934 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2935 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2937 * The API rules are the same, too: no negative values may be returned.
2939 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2940 unsigned int gup_flags, struct page **pages)
2942 int nr_pinned;
2945 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2946 * rules require returning 0, rather than -errno:
2948 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2949 return 0;
2951 * FOLL_FAST_ONLY is required in order to match the API description of
2952 * this routine: no fall back to regular ("slow") GUP.
2954 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2955 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2956 pages);
2958 * This routine is not allowed to return negative values. However,
2959 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2960 * correct for that here:
2962 if (nr_pinned < 0)
2963 nr_pinned = 0;
2965 return nr_pinned;
2967 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2970 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2972 * @tsk: the task_struct to use for page fault accounting, or
2973 * NULL if faults are not to be recorded.
2974 * @mm: mm_struct of target mm
2975 * @start: starting user address
2976 * @nr_pages: number of pages from start to pin
2977 * @gup_flags: flags modifying lookup behaviour
2978 * @pages: array that receives pointers to the pages pinned.
2979 * Should be at least nr_pages long. Or NULL, if caller
2980 * only intends to ensure the pages are faulted in.
2981 * @vmas: array of pointers to vmas corresponding to each page.
2982 * Or NULL if the caller does not require them.
2983 * @locked: pointer to lock flag indicating whether lock is held and
2984 * subsequently whether VM_FAULT_RETRY functionality can be
2985 * utilised. Lock must initially be held.
2987 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2988 * get_user_pages_remote() for documentation on the function arguments, because
2989 * the arguments here are identical.
2991 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2992 * see Documentation/core-api/pin_user_pages.rst for details.
2994 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2995 unsigned long start, unsigned long nr_pages,
2996 unsigned int gup_flags, struct page **pages,
2997 struct vm_area_struct **vmas, int *locked)
2999 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3000 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3001 return -EINVAL;
3003 gup_flags |= FOLL_PIN;
3004 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
3005 pages, vmas, locked);
3007 EXPORT_SYMBOL(pin_user_pages_remote);
3010 * pin_user_pages() - pin user pages in memory for use by other devices
3012 * @start: starting user address
3013 * @nr_pages: number of pages from start to pin
3014 * @gup_flags: flags modifying lookup behaviour
3015 * @pages: array that receives pointers to the pages pinned.
3016 * Should be at least nr_pages long. Or NULL, if caller
3017 * only intends to ensure the pages are faulted in.
3018 * @vmas: array of pointers to vmas corresponding to each page.
3019 * Or NULL if the caller does not require them.
3021 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3022 * FOLL_PIN is set.
3024 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3025 * see Documentation/core-api/pin_user_pages.rst for details.
3027 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3028 unsigned int gup_flags, struct page **pages,
3029 struct vm_area_struct **vmas)
3031 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3032 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3033 return -EINVAL;
3035 gup_flags |= FOLL_PIN;
3036 return __gup_longterm_locked(current, current->mm, start, nr_pages,
3037 pages, vmas, gup_flags);
3039 EXPORT_SYMBOL(pin_user_pages);
3042 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3043 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3044 * FOLL_PIN and rejects FOLL_GET.
3046 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3047 struct page **pages, unsigned int gup_flags)
3049 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3050 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3051 return -EINVAL;
3053 gup_flags |= FOLL_PIN;
3054 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3056 EXPORT_SYMBOL(pin_user_pages_unlocked);
3059 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3060 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3061 * FOLL_GET.
3063 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3064 unsigned int gup_flags, struct page **pages,
3065 int *locked)
3068 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3069 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3070 * vmas. As there are no users of this flag in this call we simply
3071 * disallow this option for now.
3073 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3074 return -EINVAL;
3076 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3077 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3078 return -EINVAL;
3080 gup_flags |= FOLL_PIN;
3081 return __get_user_pages_locked(current, current->mm, start, nr_pages,
3082 pages, NULL, locked,
3083 gup_flags | FOLL_TOUCH);
3085 EXPORT_SYMBOL(pin_user_pages_locked);