1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly
=
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
60 static struct shrinker deferred_split_shrinker
;
62 static atomic_t huge_zero_refcount
;
63 struct page
*huge_zero_page __read_mostly
;
65 bool transparent_hugepage_enabled(struct vm_area_struct
*vma
)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr
= (vma
->vm_end
& HPAGE_PMD_MASK
) - HPAGE_PMD_SIZE
;
70 if (!transhuge_vma_suitable(vma
, addr
))
72 if (vma_is_anonymous(vma
))
73 return __transparent_hugepage_enabled(vma
);
74 if (vma_is_shmem(vma
))
75 return shmem_huge_enabled(vma
);
80 static struct page
*get_huge_zero_page(void)
82 struct page
*zero_page
;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
85 return READ_ONCE(huge_zero_page
);
87 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
93 count_vm_event(THP_ZERO_PAGE_ALLOC
);
95 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
97 __free_pages(zero_page
, compound_order(zero_page
));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount
, 2);
104 return READ_ONCE(huge_zero_page
);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
116 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
118 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
119 return READ_ONCE(huge_zero_page
);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page
);
130 void mm_put_huge_zero_page(struct mm_struct
*mm
)
132 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
137 struct shrink_control
*sc
)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
144 struct shrink_control
*sc
)
146 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
147 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
148 BUG_ON(zero_page
== NULL
);
149 __free_pages(zero_page
, compound_order(zero_page
));
156 static struct shrinker huge_zero_page_shrinker
= {
157 .count_objects
= shrink_huge_zero_page_count
,
158 .scan_objects
= shrink_huge_zero_page_scan
,
159 .seeks
= DEFAULT_SEEKS
,
163 static ssize_t
enabled_show(struct kobject
*kobj
,
164 struct kobj_attribute
*attr
, char *buf
)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
167 return sprintf(buf
, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
169 return sprintf(buf
, "always [madvise] never\n");
171 return sprintf(buf
, "always madvise [never]\n");
174 static ssize_t
enabled_store(struct kobject
*kobj
,
175 struct kobj_attribute
*attr
,
176 const char *buf
, size_t count
)
180 if (sysfs_streq(buf
, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
183 } else if (sysfs_streq(buf
, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
186 } else if (sysfs_streq(buf
, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
193 int err
= start_stop_khugepaged();
199 static struct kobj_attribute enabled_attr
=
200 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
202 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
203 struct kobj_attribute
*attr
, char *buf
,
204 enum transparent_hugepage_flag flag
)
206 return sprintf(buf
, "%d\n",
207 !!test_bit(flag
, &transparent_hugepage_flags
));
210 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
211 struct kobj_attribute
*attr
,
212 const char *buf
, size_t count
,
213 enum transparent_hugepage_flag flag
)
218 ret
= kstrtoul(buf
, 10, &value
);
225 set_bit(flag
, &transparent_hugepage_flags
);
227 clear_bit(flag
, &transparent_hugepage_flags
);
232 static ssize_t
defrag_show(struct kobject
*kobj
,
233 struct kobj_attribute
*attr
, char *buf
)
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
236 return sprintf(buf
, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
238 return sprintf(buf
, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
240 return sprintf(buf
, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
242 return sprintf(buf
, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf
, "always defer defer+madvise madvise [never]\n");
246 static ssize_t
defrag_store(struct kobject
*kobj
,
247 struct kobj_attribute
*attr
,
248 const char *buf
, size_t count
)
250 if (sysfs_streq(buf
, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
255 } else if (sysfs_streq(buf
, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
260 } else if (sysfs_streq(buf
, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
265 } else if (sysfs_streq(buf
, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
270 } else if (sysfs_streq(buf
, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
280 static struct kobj_attribute defrag_attr
=
281 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
283 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
284 struct kobj_attribute
*attr
, char *buf
)
286 return single_hugepage_flag_show(kobj
, attr
, buf
,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
289 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
290 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
292 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
295 static struct kobj_attribute use_zero_page_attr
=
296 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
298 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
299 struct kobj_attribute
*attr
, char *buf
)
301 return sprintf(buf
, "%lu\n", HPAGE_PMD_SIZE
);
303 static struct kobj_attribute hpage_pmd_size_attr
=
304 __ATTR_RO(hpage_pmd_size
);
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t
debug_cow_show(struct kobject
*kobj
,
308 struct kobj_attribute
*attr
, char *buf
)
310 return single_hugepage_flag_show(kobj
, attr
, buf
,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
313 static ssize_t
debug_cow_store(struct kobject
*kobj
,
314 struct kobj_attribute
*attr
,
315 const char *buf
, size_t count
)
317 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
320 static struct kobj_attribute debug_cow_attr
=
321 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
322 #endif /* CONFIG_DEBUG_VM */
324 static struct attribute
*hugepage_attr
[] = {
327 &use_zero_page_attr
.attr
,
328 &hpage_pmd_size_attr
.attr
,
330 &shmem_enabled_attr
.attr
,
332 #ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr
.attr
,
338 static const struct attribute_group hugepage_attr_group
= {
339 .attrs
= hugepage_attr
,
342 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
346 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
347 if (unlikely(!*hugepage_kobj
)) {
348 pr_err("failed to create transparent hugepage kobject\n");
352 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
354 pr_err("failed to register transparent hugepage group\n");
358 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
360 pr_err("failed to register transparent hugepage group\n");
361 goto remove_hp_group
;
367 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
369 kobject_put(*hugepage_kobj
);
373 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
375 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
376 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
377 kobject_put(hugepage_kobj
);
380 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
385 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
388 #endif /* CONFIG_SYSFS */
390 static int __init
hugepage_init(void)
393 struct kobject
*hugepage_kobj
;
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags
= 0;
401 * hugepages can't be allocated by the buddy allocator
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
410 err
= hugepage_init_sysfs(&hugepage_kobj
);
414 err
= khugepaged_init();
418 err
= register_shrinker(&huge_zero_page_shrinker
);
420 goto err_hzp_shrinker
;
421 err
= register_shrinker(&deferred_split_shrinker
);
423 goto err_split_shrinker
;
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT
))) {
431 transparent_hugepage_flags
= 0;
435 err
= start_stop_khugepaged();
441 unregister_shrinker(&deferred_split_shrinker
);
443 unregister_shrinker(&huge_zero_page_shrinker
);
445 khugepaged_destroy();
447 hugepage_exit_sysfs(hugepage_kobj
);
451 subsys_initcall(hugepage_init
);
453 static int __init
setup_transparent_hugepage(char *str
)
458 if (!strcmp(str
, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
460 &transparent_hugepage_flags
);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
462 &transparent_hugepage_flags
);
464 } else if (!strcmp(str
, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
466 &transparent_hugepage_flags
);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
468 &transparent_hugepage_flags
);
470 } else if (!strcmp(str
, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
472 &transparent_hugepage_flags
);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
474 &transparent_hugepage_flags
);
479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
482 __setup("transparent_hugepage=", setup_transparent_hugepage
);
484 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
486 if (likely(vma
->vm_flags
& VM_WRITE
))
487 pmd
= pmd_mkwrite(pmd
);
492 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
494 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
495 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
498 return &memcg
->deferred_split_queue
;
500 return &pgdat
->deferred_split_queue
;
503 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
505 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
507 return &pgdat
->deferred_split_queue
;
511 void prep_transhuge_page(struct page
*page
)
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
518 INIT_LIST_HEAD(page_deferred_list(page
));
519 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
522 bool is_transparent_hugepage(struct page
*page
)
524 if (!PageCompound(page
))
527 page
= compound_head(page
);
528 return is_huge_zero_page(page
) ||
529 page
[1].compound_dtor
== TRANSHUGE_PAGE_DTOR
;
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage
);
533 static unsigned long __thp_get_unmapped_area(struct file
*filp
,
534 unsigned long addr
, unsigned long len
,
535 loff_t off
, unsigned long flags
, unsigned long size
)
537 loff_t off_end
= off
+ len
;
538 loff_t off_align
= round_up(off
, size
);
539 unsigned long len_pad
, ret
;
541 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
544 len_pad
= len
+ size
;
545 if (len_pad
< len
|| (off
+ len_pad
) < off
)
548 ret
= current
->mm
->get_unmapped_area(filp
, addr
, len_pad
,
549 off
>> PAGE_SHIFT
, flags
);
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
555 if (IS_ERR_VALUE(ret
))
559 * Do not try to align to THP boundary if allocation at the address
565 ret
+= (off
- ret
) & (size
- 1);
569 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
570 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
573 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
575 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
578 ret
= __thp_get_unmapped_area(filp
, addr
, len
, off
, flags
, PMD_SIZE
);
582 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
586 static vm_fault_t
__do_huge_pmd_anonymous_page(struct vm_fault
*vmf
,
587 struct page
*page
, gfp_t gfp
)
589 struct vm_area_struct
*vma
= vmf
->vma
;
591 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
594 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
596 if (mem_cgroup_charge(page
, vma
->vm_mm
, gfp
)) {
598 count_vm_event(THP_FAULT_FALLBACK
);
599 count_vm_event(THP_FAULT_FALLBACK_CHARGE
);
600 return VM_FAULT_FALLBACK
;
602 cgroup_throttle_swaprate(page
, gfp
);
604 pgtable
= pte_alloc_one(vma
->vm_mm
);
605 if (unlikely(!pgtable
)) {
610 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
612 * The memory barrier inside __SetPageUptodate makes sure that
613 * clear_huge_page writes become visible before the set_pmd_at()
616 __SetPageUptodate(page
);
618 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
619 if (unlikely(!pmd_none(*vmf
->pmd
))) {
624 ret
= check_stable_address_space(vma
->vm_mm
);
628 /* Deliver the page fault to userland */
629 if (userfaultfd_missing(vma
)) {
632 spin_unlock(vmf
->ptl
);
634 pte_free(vma
->vm_mm
, pgtable
);
635 ret2
= handle_userfault(vmf
, VM_UFFD_MISSING
);
636 VM_BUG_ON(ret2
& VM_FAULT_FALLBACK
);
640 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
641 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
642 page_add_new_anon_rmap(page
, vma
, haddr
, true);
643 lru_cache_add_active_or_unevictable(page
, vma
);
644 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
645 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
646 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
647 mm_inc_nr_ptes(vma
->vm_mm
);
648 spin_unlock(vmf
->ptl
);
649 count_vm_event(THP_FAULT_ALLOC
);
650 count_memcg_event_mm(vma
->vm_mm
, THP_FAULT_ALLOC
);
655 spin_unlock(vmf
->ptl
);
658 pte_free(vma
->vm_mm
, pgtable
);
665 * always: directly stall for all thp allocations
666 * defer: wake kswapd and fail if not immediately available
667 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
668 * fail if not immediately available
669 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
671 * never: never stall for any thp allocation
673 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
675 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
677 /* Always do synchronous compaction */
678 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
679 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
681 /* Kick kcompactd and fail quickly */
682 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
683 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
685 /* Synchronous compaction if madvised, otherwise kick kcompactd */
686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
687 return GFP_TRANSHUGE_LIGHT
|
688 (vma_madvised
? __GFP_DIRECT_RECLAIM
:
689 __GFP_KSWAPD_RECLAIM
);
691 /* Only do synchronous compaction if madvised */
692 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
693 return GFP_TRANSHUGE_LIGHT
|
694 (vma_madvised
? __GFP_DIRECT_RECLAIM
: 0);
696 return GFP_TRANSHUGE_LIGHT
;
699 /* Caller must hold page table lock. */
700 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
701 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
702 struct page
*zero_page
)
707 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
708 entry
= pmd_mkhuge(entry
);
710 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
711 set_pmd_at(mm
, haddr
, pmd
, entry
);
716 vm_fault_t
do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
718 struct vm_area_struct
*vma
= vmf
->vma
;
721 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
723 if (!transhuge_vma_suitable(vma
, haddr
))
724 return VM_FAULT_FALLBACK
;
725 if (unlikely(anon_vma_prepare(vma
)))
727 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
729 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
730 !mm_forbids_zeropage(vma
->vm_mm
) &&
731 transparent_hugepage_use_zero_page()) {
733 struct page
*zero_page
;
736 pgtable
= pte_alloc_one(vma
->vm_mm
);
737 if (unlikely(!pgtable
))
739 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
740 if (unlikely(!zero_page
)) {
741 pte_free(vma
->vm_mm
, pgtable
);
742 count_vm_event(THP_FAULT_FALLBACK
);
743 return VM_FAULT_FALLBACK
;
745 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
748 if (pmd_none(*vmf
->pmd
)) {
749 ret
= check_stable_address_space(vma
->vm_mm
);
751 spin_unlock(vmf
->ptl
);
752 } else if (userfaultfd_missing(vma
)) {
753 spin_unlock(vmf
->ptl
);
754 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
755 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
757 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
758 haddr
, vmf
->pmd
, zero_page
);
759 spin_unlock(vmf
->ptl
);
763 spin_unlock(vmf
->ptl
);
765 pte_free(vma
->vm_mm
, pgtable
);
768 gfp
= alloc_hugepage_direct_gfpmask(vma
);
769 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
770 if (unlikely(!page
)) {
771 count_vm_event(THP_FAULT_FALLBACK
);
772 return VM_FAULT_FALLBACK
;
774 prep_transhuge_page(page
);
775 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
778 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
779 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
782 struct mm_struct
*mm
= vma
->vm_mm
;
786 ptl
= pmd_lock(mm
, pmd
);
787 if (!pmd_none(*pmd
)) {
789 if (pmd_pfn(*pmd
) != pfn_t_to_pfn(pfn
)) {
790 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd
));
793 entry
= pmd_mkyoung(*pmd
);
794 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
795 if (pmdp_set_access_flags(vma
, addr
, pmd
, entry
, 1))
796 update_mmu_cache_pmd(vma
, addr
, pmd
);
802 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
803 if (pfn_t_devmap(pfn
))
804 entry
= pmd_mkdevmap(entry
);
806 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
807 entry
= maybe_pmd_mkwrite(entry
, vma
);
811 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
816 set_pmd_at(mm
, addr
, pmd
, entry
);
817 update_mmu_cache_pmd(vma
, addr
, pmd
);
822 pte_free(mm
, pgtable
);
826 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
827 * @vmf: Structure describing the fault
828 * @pfn: pfn to insert
829 * @pgprot: page protection to use
830 * @write: whether it's a write fault
832 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
833 * also consult the vmf_insert_mixed_prot() documentation when
834 * @pgprot != @vmf->vma->vm_page_prot.
836 * Return: vm_fault_t value.
838 vm_fault_t
vmf_insert_pfn_pmd_prot(struct vm_fault
*vmf
, pfn_t pfn
,
839 pgprot_t pgprot
, bool write
)
841 unsigned long addr
= vmf
->address
& PMD_MASK
;
842 struct vm_area_struct
*vma
= vmf
->vma
;
843 pgtable_t pgtable
= NULL
;
846 * If we had pmd_special, we could avoid all these restrictions,
847 * but we need to be consistent with PTEs and architectures that
848 * can't support a 'special' bit.
850 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
852 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
853 (VM_PFNMAP
|VM_MIXEDMAP
));
854 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
856 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
857 return VM_FAULT_SIGBUS
;
859 if (arch_needs_pgtable_deposit()) {
860 pgtable
= pte_alloc_one(vma
->vm_mm
);
865 track_pfn_insert(vma
, &pgprot
, pfn
);
867 insert_pfn_pmd(vma
, addr
, vmf
->pmd
, pfn
, pgprot
, write
, pgtable
);
868 return VM_FAULT_NOPAGE
;
870 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot
);
872 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
873 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
875 if (likely(vma
->vm_flags
& VM_WRITE
))
876 pud
= pud_mkwrite(pud
);
880 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
881 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
883 struct mm_struct
*mm
= vma
->vm_mm
;
887 ptl
= pud_lock(mm
, pud
);
888 if (!pud_none(*pud
)) {
890 if (pud_pfn(*pud
) != pfn_t_to_pfn(pfn
)) {
891 WARN_ON_ONCE(!is_huge_zero_pud(*pud
));
894 entry
= pud_mkyoung(*pud
);
895 entry
= maybe_pud_mkwrite(pud_mkdirty(entry
), vma
);
896 if (pudp_set_access_flags(vma
, addr
, pud
, entry
, 1))
897 update_mmu_cache_pud(vma
, addr
, pud
);
902 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
903 if (pfn_t_devmap(pfn
))
904 entry
= pud_mkdevmap(entry
);
906 entry
= pud_mkyoung(pud_mkdirty(entry
));
907 entry
= maybe_pud_mkwrite(entry
, vma
);
909 set_pud_at(mm
, addr
, pud
, entry
);
910 update_mmu_cache_pud(vma
, addr
, pud
);
917 * vmf_insert_pfn_pud_prot - insert a pud size pfn
918 * @vmf: Structure describing the fault
919 * @pfn: pfn to insert
920 * @pgprot: page protection to use
921 * @write: whether it's a write fault
923 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
924 * also consult the vmf_insert_mixed_prot() documentation when
925 * @pgprot != @vmf->vma->vm_page_prot.
927 * Return: vm_fault_t value.
929 vm_fault_t
vmf_insert_pfn_pud_prot(struct vm_fault
*vmf
, pfn_t pfn
,
930 pgprot_t pgprot
, bool write
)
932 unsigned long addr
= vmf
->address
& PUD_MASK
;
933 struct vm_area_struct
*vma
= vmf
->vma
;
936 * If we had pud_special, we could avoid all these restrictions,
937 * but we need to be consistent with PTEs and architectures that
938 * can't support a 'special' bit.
940 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
942 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
943 (VM_PFNMAP
|VM_MIXEDMAP
));
944 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
946 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
947 return VM_FAULT_SIGBUS
;
949 track_pfn_insert(vma
, &pgprot
, pfn
);
951 insert_pfn_pud(vma
, addr
, vmf
->pud
, pfn
, pgprot
, write
);
952 return VM_FAULT_NOPAGE
;
954 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot
);
955 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
957 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
958 pmd_t
*pmd
, int flags
)
962 _pmd
= pmd_mkyoung(*pmd
);
963 if (flags
& FOLL_WRITE
)
964 _pmd
= pmd_mkdirty(_pmd
);
965 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
966 pmd
, _pmd
, flags
& FOLL_WRITE
))
967 update_mmu_cache_pmd(vma
, addr
, pmd
);
970 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
971 pmd_t
*pmd
, int flags
, struct dev_pagemap
**pgmap
)
973 unsigned long pfn
= pmd_pfn(*pmd
);
974 struct mm_struct
*mm
= vma
->vm_mm
;
977 assert_spin_locked(pmd_lockptr(mm
, pmd
));
980 * When we COW a devmap PMD entry, we split it into PTEs, so we should
981 * not be in this function with `flags & FOLL_COW` set.
983 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
985 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
986 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
987 (FOLL_PIN
| FOLL_GET
)))
990 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
993 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
998 if (flags
& FOLL_TOUCH
)
999 touch_pmd(vma
, addr
, pmd
, flags
);
1002 * device mapped pages can only be returned if the
1003 * caller will manage the page reference count.
1005 if (!(flags
& (FOLL_GET
| FOLL_PIN
)))
1006 return ERR_PTR(-EEXIST
);
1008 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
1009 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1011 return ERR_PTR(-EFAULT
);
1012 page
= pfn_to_page(pfn
);
1013 if (!try_grab_page(page
, flags
))
1014 page
= ERR_PTR(-ENOMEM
);
1019 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1020 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
1021 struct vm_area_struct
*vma
)
1023 spinlock_t
*dst_ptl
, *src_ptl
;
1024 struct page
*src_page
;
1026 pgtable_t pgtable
= NULL
;
1029 /* Skip if can be re-fill on fault */
1030 if (!vma_is_anonymous(vma
))
1033 pgtable
= pte_alloc_one(dst_mm
);
1034 if (unlikely(!pgtable
))
1037 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
1038 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
1039 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1045 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1046 * does not have the VM_UFFD_WP, which means that the uffd
1047 * fork event is not enabled.
1049 if (!(vma
->vm_flags
& VM_UFFD_WP
))
1050 pmd
= pmd_clear_uffd_wp(pmd
);
1052 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 if (unlikely(is_swap_pmd(pmd
))) {
1054 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
1056 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
1057 if (is_write_migration_entry(entry
)) {
1058 make_migration_entry_read(&entry
);
1059 pmd
= swp_entry_to_pmd(entry
);
1060 if (pmd_swp_soft_dirty(*src_pmd
))
1061 pmd
= pmd_swp_mksoft_dirty(pmd
);
1062 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
1064 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1065 mm_inc_nr_ptes(dst_mm
);
1066 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1067 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1073 if (unlikely(!pmd_trans_huge(pmd
))) {
1074 pte_free(dst_mm
, pgtable
);
1078 * When page table lock is held, the huge zero pmd should not be
1079 * under splitting since we don't split the page itself, only pmd to
1082 if (is_huge_zero_pmd(pmd
)) {
1083 struct page
*zero_page
;
1085 * get_huge_zero_page() will never allocate a new page here,
1086 * since we already have a zero page to copy. It just takes a
1089 zero_page
= mm_get_huge_zero_page(dst_mm
);
1090 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
1096 src_page
= pmd_page(pmd
);
1097 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
1099 page_dup_rmap(src_page
, true);
1100 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1101 mm_inc_nr_ptes(dst_mm
);
1102 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1104 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
1105 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
1106 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1110 spin_unlock(src_ptl
);
1111 spin_unlock(dst_ptl
);
1116 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1117 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1118 pud_t
*pud
, int flags
)
1122 _pud
= pud_mkyoung(*pud
);
1123 if (flags
& FOLL_WRITE
)
1124 _pud
= pud_mkdirty(_pud
);
1125 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
1126 pud
, _pud
, flags
& FOLL_WRITE
))
1127 update_mmu_cache_pud(vma
, addr
, pud
);
1130 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1131 pud_t
*pud
, int flags
, struct dev_pagemap
**pgmap
)
1133 unsigned long pfn
= pud_pfn(*pud
);
1134 struct mm_struct
*mm
= vma
->vm_mm
;
1137 assert_spin_locked(pud_lockptr(mm
, pud
));
1139 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1142 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1143 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
1144 (FOLL_PIN
| FOLL_GET
)))
1147 if (pud_present(*pud
) && pud_devmap(*pud
))
1152 if (flags
& FOLL_TOUCH
)
1153 touch_pud(vma
, addr
, pud
, flags
);
1156 * device mapped pages can only be returned if the
1157 * caller will manage the page reference count.
1159 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1161 if (!(flags
& (FOLL_GET
| FOLL_PIN
)))
1162 return ERR_PTR(-EEXIST
);
1164 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1165 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1167 return ERR_PTR(-EFAULT
);
1168 page
= pfn_to_page(pfn
);
1169 if (!try_grab_page(page
, flags
))
1170 page
= ERR_PTR(-ENOMEM
);
1175 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1176 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1177 struct vm_area_struct
*vma
)
1179 spinlock_t
*dst_ptl
, *src_ptl
;
1183 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1184 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1185 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1189 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1193 * When page table lock is held, the huge zero pud should not be
1194 * under splitting since we don't split the page itself, only pud to
1197 if (is_huge_zero_pud(pud
)) {
1198 /* No huge zero pud yet */
1201 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1202 pud
= pud_mkold(pud_wrprotect(pud
));
1203 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1207 spin_unlock(src_ptl
);
1208 spin_unlock(dst_ptl
);
1212 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1215 unsigned long haddr
;
1216 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1218 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1219 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1222 entry
= pud_mkyoung(orig_pud
);
1224 entry
= pud_mkdirty(entry
);
1225 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1226 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1227 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1230 spin_unlock(vmf
->ptl
);
1232 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1234 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1237 unsigned long haddr
;
1238 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1240 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1241 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1244 entry
= pmd_mkyoung(orig_pmd
);
1246 entry
= pmd_mkdirty(entry
);
1247 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1248 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1249 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1252 spin_unlock(vmf
->ptl
);
1255 vm_fault_t
do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1257 struct vm_area_struct
*vma
= vmf
->vma
;
1259 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1261 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1262 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1264 if (is_huge_zero_pmd(orig_pmd
))
1267 spin_lock(vmf
->ptl
);
1269 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1270 spin_unlock(vmf
->ptl
);
1274 page
= pmd_page(orig_pmd
);
1275 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1277 /* Lock page for reuse_swap_page() */
1278 if (!trylock_page(page
)) {
1280 spin_unlock(vmf
->ptl
);
1282 spin_lock(vmf
->ptl
);
1283 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1284 spin_unlock(vmf
->ptl
);
1293 * We can only reuse the page if nobody else maps the huge page or it's
1296 if (reuse_swap_page(page
, NULL
)) {
1298 entry
= pmd_mkyoung(orig_pmd
);
1299 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1300 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1301 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1303 spin_unlock(vmf
->ptl
);
1304 return VM_FAULT_WRITE
;
1308 spin_unlock(vmf
->ptl
);
1310 __split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
1311 return VM_FAULT_FALLBACK
;
1315 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1316 * but only after we've gone through a COW cycle and they are dirty.
1318 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1320 return pmd_write(pmd
) || ((flags
& FOLL_COW
) && pmd_dirty(pmd
));
1323 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1328 struct mm_struct
*mm
= vma
->vm_mm
;
1329 struct page
*page
= NULL
;
1331 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1333 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1336 /* Avoid dumping huge zero page */
1337 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1338 return ERR_PTR(-EFAULT
);
1340 /* Full NUMA hinting faults to serialise migration in fault paths */
1341 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1344 page
= pmd_page(*pmd
);
1345 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1347 if (!try_grab_page(page
, flags
))
1348 return ERR_PTR(-ENOMEM
);
1350 if (flags
& FOLL_TOUCH
)
1351 touch_pmd(vma
, addr
, pmd
, flags
);
1353 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1355 * We don't mlock() pte-mapped THPs. This way we can avoid
1356 * leaking mlocked pages into non-VM_LOCKED VMAs.
1360 * In most cases the pmd is the only mapping of the page as we
1361 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1362 * writable private mappings in populate_vma_page_range().
1364 * The only scenario when we have the page shared here is if we
1365 * mlocking read-only mapping shared over fork(). We skip
1366 * mlocking such pages.
1370 * We can expect PageDoubleMap() to be stable under page lock:
1371 * for file pages we set it in page_add_file_rmap(), which
1372 * requires page to be locked.
1375 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1377 if (PageDoubleMap(page
) || !page
->mapping
)
1379 if (!trylock_page(page
))
1381 if (page
->mapping
&& !PageDoubleMap(page
))
1382 mlock_vma_page(page
);
1386 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1387 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1393 /* NUMA hinting page fault entry point for trans huge pmds */
1394 vm_fault_t
do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1396 struct vm_area_struct
*vma
= vmf
->vma
;
1397 struct anon_vma
*anon_vma
= NULL
;
1399 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1400 int page_nid
= NUMA_NO_NODE
, this_nid
= numa_node_id();
1401 int target_nid
, last_cpupid
= -1;
1403 bool migrated
= false;
1407 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1408 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1412 * If there are potential migrations, wait for completion and retry
1413 * without disrupting NUMA hinting information. Do not relock and
1414 * check_same as the page may no longer be mapped.
1416 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1417 page
= pmd_page(*vmf
->pmd
);
1418 if (!get_page_unless_zero(page
))
1420 spin_unlock(vmf
->ptl
);
1421 put_and_wait_on_page_locked(page
);
1425 page
= pmd_page(pmd
);
1426 BUG_ON(is_huge_zero_page(page
));
1427 page_nid
= page_to_nid(page
);
1428 last_cpupid
= page_cpupid_last(page
);
1429 count_vm_numa_event(NUMA_HINT_FAULTS
);
1430 if (page_nid
== this_nid
) {
1431 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1432 flags
|= TNF_FAULT_LOCAL
;
1435 /* See similar comment in do_numa_page for explanation */
1436 if (!pmd_savedwrite(pmd
))
1437 flags
|= TNF_NO_GROUP
;
1440 * Acquire the page lock to serialise THP migrations but avoid dropping
1441 * page_table_lock if at all possible
1443 page_locked
= trylock_page(page
);
1444 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1445 if (target_nid
== NUMA_NO_NODE
) {
1446 /* If the page was locked, there are no parallel migrations */
1451 /* Migration could have started since the pmd_trans_migrating check */
1453 page_nid
= NUMA_NO_NODE
;
1454 if (!get_page_unless_zero(page
))
1456 spin_unlock(vmf
->ptl
);
1457 put_and_wait_on_page_locked(page
);
1462 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1463 * to serialises splits
1466 spin_unlock(vmf
->ptl
);
1467 anon_vma
= page_lock_anon_vma_read(page
);
1469 /* Confirm the PMD did not change while page_table_lock was released */
1470 spin_lock(vmf
->ptl
);
1471 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1474 page_nid
= NUMA_NO_NODE
;
1478 /* Bail if we fail to protect against THP splits for any reason */
1479 if (unlikely(!anon_vma
)) {
1481 page_nid
= NUMA_NO_NODE
;
1486 * Since we took the NUMA fault, we must have observed the !accessible
1487 * bit. Make sure all other CPUs agree with that, to avoid them
1488 * modifying the page we're about to migrate.
1490 * Must be done under PTL such that we'll observe the relevant
1491 * inc_tlb_flush_pending().
1493 * We are not sure a pending tlb flush here is for a huge page
1494 * mapping or not. Hence use the tlb range variant
1496 if (mm_tlb_flush_pending(vma
->vm_mm
)) {
1497 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1499 * change_huge_pmd() released the pmd lock before
1500 * invalidating the secondary MMUs sharing the primary
1501 * MMU pagetables (with ->invalidate_range()). The
1502 * mmu_notifier_invalidate_range_end() (which
1503 * internally calls ->invalidate_range()) in
1504 * change_pmd_range() will run after us, so we can't
1505 * rely on it here and we need an explicit invalidate.
1507 mmu_notifier_invalidate_range(vma
->vm_mm
, haddr
,
1508 haddr
+ HPAGE_PMD_SIZE
);
1512 * Migrate the THP to the requested node, returns with page unlocked
1513 * and access rights restored.
1515 spin_unlock(vmf
->ptl
);
1517 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1518 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1520 flags
|= TNF_MIGRATED
;
1521 page_nid
= target_nid
;
1523 flags
|= TNF_MIGRATE_FAIL
;
1527 BUG_ON(!PageLocked(page
));
1528 was_writable
= pmd_savedwrite(pmd
);
1529 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1530 pmd
= pmd_mkyoung(pmd
);
1532 pmd
= pmd_mkwrite(pmd
);
1533 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1534 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1537 spin_unlock(vmf
->ptl
);
1541 page_unlock_anon_vma_read(anon_vma
);
1543 if (page_nid
!= NUMA_NO_NODE
)
1544 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1551 * Return true if we do MADV_FREE successfully on entire pmd page.
1552 * Otherwise, return false.
1554 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1555 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1560 struct mm_struct
*mm
= tlb
->mm
;
1563 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1565 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1570 if (is_huge_zero_pmd(orig_pmd
))
1573 if (unlikely(!pmd_present(orig_pmd
))) {
1574 VM_BUG_ON(thp_migration_supported() &&
1575 !is_pmd_migration_entry(orig_pmd
));
1579 page
= pmd_page(orig_pmd
);
1581 * If other processes are mapping this page, we couldn't discard
1582 * the page unless they all do MADV_FREE so let's skip the page.
1584 if (page_mapcount(page
) != 1)
1587 if (!trylock_page(page
))
1591 * If user want to discard part-pages of THP, split it so MADV_FREE
1592 * will deactivate only them.
1594 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1597 split_huge_page(page
);
1603 if (PageDirty(page
))
1604 ClearPageDirty(page
);
1607 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1608 pmdp_invalidate(vma
, addr
, pmd
);
1609 orig_pmd
= pmd_mkold(orig_pmd
);
1610 orig_pmd
= pmd_mkclean(orig_pmd
);
1612 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1613 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1616 mark_page_lazyfree(page
);
1624 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1628 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1629 pte_free(mm
, pgtable
);
1633 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1634 pmd_t
*pmd
, unsigned long addr
)
1639 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1641 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1645 * For architectures like ppc64 we look at deposited pgtable
1646 * when calling pmdp_huge_get_and_clear. So do the
1647 * pgtable_trans_huge_withdraw after finishing pmdp related
1650 orig_pmd
= pmdp_huge_get_and_clear_full(vma
, addr
, pmd
,
1652 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1653 if (vma_is_special_huge(vma
)) {
1654 if (arch_needs_pgtable_deposit())
1655 zap_deposited_table(tlb
->mm
, pmd
);
1657 if (is_huge_zero_pmd(orig_pmd
))
1658 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1659 } else if (is_huge_zero_pmd(orig_pmd
)) {
1660 zap_deposited_table(tlb
->mm
, pmd
);
1662 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1664 struct page
*page
= NULL
;
1665 int flush_needed
= 1;
1667 if (pmd_present(orig_pmd
)) {
1668 page
= pmd_page(orig_pmd
);
1669 page_remove_rmap(page
, true);
1670 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1671 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1672 } else if (thp_migration_supported()) {
1675 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1676 entry
= pmd_to_swp_entry(orig_pmd
);
1677 page
= pfn_to_page(swp_offset(entry
));
1680 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1682 if (PageAnon(page
)) {
1683 zap_deposited_table(tlb
->mm
, pmd
);
1684 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1686 if (arch_needs_pgtable_deposit())
1687 zap_deposited_table(tlb
->mm
, pmd
);
1688 add_mm_counter(tlb
->mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
1693 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1698 #ifndef pmd_move_must_withdraw
1699 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1700 spinlock_t
*old_pmd_ptl
,
1701 struct vm_area_struct
*vma
)
1704 * With split pmd lock we also need to move preallocated
1705 * PTE page table if new_pmd is on different PMD page table.
1707 * We also don't deposit and withdraw tables for file pages.
1709 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1713 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1715 #ifdef CONFIG_MEM_SOFT_DIRTY
1716 if (unlikely(is_pmd_migration_entry(pmd
)))
1717 pmd
= pmd_swp_mksoft_dirty(pmd
);
1718 else if (pmd_present(pmd
))
1719 pmd
= pmd_mksoft_dirty(pmd
);
1724 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1725 unsigned long new_addr
, unsigned long old_end
,
1726 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1728 spinlock_t
*old_ptl
, *new_ptl
;
1730 struct mm_struct
*mm
= vma
->vm_mm
;
1731 bool force_flush
= false;
1733 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1734 (new_addr
& ~HPAGE_PMD_MASK
) ||
1735 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1739 * The destination pmd shouldn't be established, free_pgtables()
1740 * should have release it.
1742 if (WARN_ON(!pmd_none(*new_pmd
))) {
1743 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1748 * We don't have to worry about the ordering of src and dst
1749 * ptlocks because exclusive mmap_lock prevents deadlock.
1751 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1753 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1754 if (new_ptl
!= old_ptl
)
1755 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1756 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1757 if (pmd_present(pmd
))
1759 VM_BUG_ON(!pmd_none(*new_pmd
));
1761 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1763 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1764 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1766 pmd
= move_soft_dirty_pmd(pmd
);
1767 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1769 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1770 if (new_ptl
!= old_ptl
)
1771 spin_unlock(new_ptl
);
1772 spin_unlock(old_ptl
);
1780 * - 0 if PMD could not be locked
1781 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1782 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1784 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1785 unsigned long addr
, pgprot_t newprot
, unsigned long cp_flags
)
1787 struct mm_struct
*mm
= vma
->vm_mm
;
1790 bool preserve_write
;
1792 bool prot_numa
= cp_flags
& MM_CP_PROT_NUMA
;
1793 bool uffd_wp
= cp_flags
& MM_CP_UFFD_WP
;
1794 bool uffd_wp_resolve
= cp_flags
& MM_CP_UFFD_WP_RESOLVE
;
1796 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1800 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1803 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1804 if (is_swap_pmd(*pmd
)) {
1805 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
1807 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
1808 if (is_write_migration_entry(entry
)) {
1811 * A protection check is difficult so
1812 * just be safe and disable write
1814 make_migration_entry_read(&entry
);
1815 newpmd
= swp_entry_to_pmd(entry
);
1816 if (pmd_swp_soft_dirty(*pmd
))
1817 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
1818 set_pmd_at(mm
, addr
, pmd
, newpmd
);
1825 * Avoid trapping faults against the zero page. The read-only
1826 * data is likely to be read-cached on the local CPU and
1827 * local/remote hits to the zero page are not interesting.
1829 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1832 if (prot_numa
&& pmd_protnone(*pmd
))
1836 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1837 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1838 * which is also under mmap_read_lock(mm):
1841 * change_huge_pmd(prot_numa=1)
1842 * pmdp_huge_get_and_clear_notify()
1843 * madvise_dontneed()
1845 * pmd_trans_huge(*pmd) == 0 (without ptl)
1848 * // pmd is re-established
1850 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1851 * which may break userspace.
1853 * pmdp_invalidate() is required to make sure we don't miss
1854 * dirty/young flags set by hardware.
1856 entry
= pmdp_invalidate(vma
, addr
, pmd
);
1858 entry
= pmd_modify(entry
, newprot
);
1860 entry
= pmd_mk_savedwrite(entry
);
1862 entry
= pmd_wrprotect(entry
);
1863 entry
= pmd_mkuffd_wp(entry
);
1864 } else if (uffd_wp_resolve
) {
1866 * Leave the write bit to be handled by PF interrupt
1867 * handler, then things like COW could be properly
1870 entry
= pmd_clear_uffd_wp(entry
);
1873 set_pmd_at(mm
, addr
, pmd
, entry
);
1874 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
1881 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1883 * Note that if it returns page table lock pointer, this routine returns without
1884 * unlocking page table lock. So callers must unlock it.
1886 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1889 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1890 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
1898 * Returns true if a given pud maps a thp, false otherwise.
1900 * Note that if it returns true, this routine returns without unlocking page
1901 * table lock. So callers must unlock it.
1903 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
1907 ptl
= pud_lock(vma
->vm_mm
, pud
);
1908 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
1914 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1915 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1916 pud_t
*pud
, unsigned long addr
)
1920 ptl
= __pud_trans_huge_lock(pud
, vma
);
1924 * For architectures like ppc64 we look at deposited pgtable
1925 * when calling pudp_huge_get_and_clear. So do the
1926 * pgtable_trans_huge_withdraw after finishing pudp related
1929 pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
, tlb
->fullmm
);
1930 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
1931 if (vma_is_special_huge(vma
)) {
1933 /* No zero page support yet */
1935 /* No support for anonymous PUD pages yet */
1941 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
1942 unsigned long haddr
)
1944 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
1945 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
1946 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
1947 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
1949 count_vm_event(THP_SPLIT_PUD
);
1951 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
1954 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
1955 unsigned long address
)
1958 struct mmu_notifier_range range
;
1960 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1961 address
& HPAGE_PUD_MASK
,
1962 (address
& HPAGE_PUD_MASK
) + HPAGE_PUD_SIZE
);
1963 mmu_notifier_invalidate_range_start(&range
);
1964 ptl
= pud_lock(vma
->vm_mm
, pud
);
1965 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
1967 __split_huge_pud_locked(vma
, pud
, range
.start
);
1972 * No need to double call mmu_notifier->invalidate_range() callback as
1973 * the above pudp_huge_clear_flush_notify() did already call it.
1975 mmu_notifier_invalidate_range_only_end(&range
);
1977 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1979 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
1980 unsigned long haddr
, pmd_t
*pmd
)
1982 struct mm_struct
*mm
= vma
->vm_mm
;
1988 * Leave pmd empty until pte is filled note that it is fine to delay
1989 * notification until mmu_notifier_invalidate_range_end() as we are
1990 * replacing a zero pmd write protected page with a zero pte write
1993 * See Documentation/vm/mmu_notifier.rst
1995 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
1997 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1998 pmd_populate(mm
, &_pmd
, pgtable
);
2000 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2002 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2003 entry
= pte_mkspecial(entry
);
2004 pte
= pte_offset_map(&_pmd
, haddr
);
2005 VM_BUG_ON(!pte_none(*pte
));
2006 set_pte_at(mm
, haddr
, pte
, entry
);
2009 smp_wmb(); /* make pte visible before pmd */
2010 pmd_populate(mm
, pmd
, pgtable
);
2013 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2014 unsigned long haddr
, bool freeze
)
2016 struct mm_struct
*mm
= vma
->vm_mm
;
2019 pmd_t old_pmd
, _pmd
;
2020 bool young
, write
, soft_dirty
, pmd_migration
= false, uffd_wp
= false;
2024 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2025 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2026 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2027 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2028 && !pmd_devmap(*pmd
));
2030 count_vm_event(THP_SPLIT_PMD
);
2032 if (!vma_is_anonymous(vma
)) {
2033 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2035 * We are going to unmap this huge page. So
2036 * just go ahead and zap it
2038 if (arch_needs_pgtable_deposit())
2039 zap_deposited_table(mm
, pmd
);
2040 if (vma_is_special_huge(vma
))
2042 page
= pmd_page(_pmd
);
2043 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2044 set_page_dirty(page
);
2045 if (!PageReferenced(page
) && pmd_young(_pmd
))
2046 SetPageReferenced(page
);
2047 page_remove_rmap(page
, true);
2049 add_mm_counter(mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
2051 } else if (is_huge_zero_pmd(*pmd
)) {
2053 * FIXME: Do we want to invalidate secondary mmu by calling
2054 * mmu_notifier_invalidate_range() see comments below inside
2055 * __split_huge_pmd() ?
2057 * We are going from a zero huge page write protected to zero
2058 * small page also write protected so it does not seems useful
2059 * to invalidate secondary mmu at this time.
2061 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2065 * Up to this point the pmd is present and huge and userland has the
2066 * whole access to the hugepage during the split (which happens in
2067 * place). If we overwrite the pmd with the not-huge version pointing
2068 * to the pte here (which of course we could if all CPUs were bug
2069 * free), userland could trigger a small page size TLB miss on the
2070 * small sized TLB while the hugepage TLB entry is still established in
2071 * the huge TLB. Some CPU doesn't like that.
2072 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2073 * 383 on page 93. Intel should be safe but is also warns that it's
2074 * only safe if the permission and cache attributes of the two entries
2075 * loaded in the two TLB is identical (which should be the case here).
2076 * But it is generally safer to never allow small and huge TLB entries
2077 * for the same virtual address to be loaded simultaneously. So instead
2078 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2079 * current pmd notpresent (atomically because here the pmd_trans_huge
2080 * must remain set at all times on the pmd until the split is complete
2081 * for this pmd), then we flush the SMP TLB and finally we write the
2082 * non-huge version of the pmd entry with pmd_populate.
2084 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2086 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2087 if (unlikely(pmd_migration
)) {
2090 entry
= pmd_to_swp_entry(old_pmd
);
2091 page
= pfn_to_page(swp_offset(entry
));
2092 write
= is_write_migration_entry(entry
);
2094 soft_dirty
= pmd_swp_soft_dirty(old_pmd
);
2095 uffd_wp
= pmd_swp_uffd_wp(old_pmd
);
2097 page
= pmd_page(old_pmd
);
2098 if (pmd_dirty(old_pmd
))
2100 write
= pmd_write(old_pmd
);
2101 young
= pmd_young(old_pmd
);
2102 soft_dirty
= pmd_soft_dirty(old_pmd
);
2103 uffd_wp
= pmd_uffd_wp(old_pmd
);
2105 VM_BUG_ON_PAGE(!page_count(page
), page
);
2106 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2109 * Withdraw the table only after we mark the pmd entry invalid.
2110 * This's critical for some architectures (Power).
2112 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2113 pmd_populate(mm
, &_pmd
, pgtable
);
2115 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2118 * Note that NUMA hinting access restrictions are not
2119 * transferred to avoid any possibility of altering
2120 * permissions across VMAs.
2122 if (freeze
|| pmd_migration
) {
2123 swp_entry_t swp_entry
;
2124 swp_entry
= make_migration_entry(page
+ i
, write
);
2125 entry
= swp_entry_to_pte(swp_entry
);
2127 entry
= pte_swp_mksoft_dirty(entry
);
2129 entry
= pte_swp_mkuffd_wp(entry
);
2131 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2132 entry
= maybe_mkwrite(entry
, vma
);
2134 entry
= pte_wrprotect(entry
);
2136 entry
= pte_mkold(entry
);
2138 entry
= pte_mksoft_dirty(entry
);
2140 entry
= pte_mkuffd_wp(entry
);
2142 pte
= pte_offset_map(&_pmd
, addr
);
2143 BUG_ON(!pte_none(*pte
));
2144 set_pte_at(mm
, addr
, pte
, entry
);
2145 atomic_inc(&page
[i
]._mapcount
);
2150 * Set PG_double_map before dropping compound_mapcount to avoid
2151 * false-negative page_mapped().
2153 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
2154 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2155 atomic_inc(&page
[i
]._mapcount
);
2158 lock_page_memcg(page
);
2159 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2160 /* Last compound_mapcount is gone. */
2161 __dec_lruvec_page_state(page
, NR_ANON_THPS
);
2162 if (TestClearPageDoubleMap(page
)) {
2163 /* No need in mapcount reference anymore */
2164 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2165 atomic_dec(&page
[i
]._mapcount
);
2168 unlock_page_memcg(page
);
2170 smp_wmb(); /* make pte visible before pmd */
2171 pmd_populate(mm
, pmd
, pgtable
);
2174 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2175 page_remove_rmap(page
+ i
, false);
2181 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2182 unsigned long address
, bool freeze
, struct page
*page
)
2185 struct mmu_notifier_range range
;
2186 bool was_locked
= false;
2189 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2190 address
& HPAGE_PMD_MASK
,
2191 (address
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
);
2192 mmu_notifier_invalidate_range_start(&range
);
2193 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2196 * If caller asks to setup a migration entries, we need a page to check
2197 * pmd against. Otherwise we can end up replacing wrong page.
2199 VM_BUG_ON(freeze
&& !page
);
2201 VM_WARN_ON_ONCE(!PageLocked(page
));
2203 if (page
!= pmd_page(*pmd
))
2208 if (pmd_trans_huge(*pmd
)) {
2210 page
= pmd_page(*pmd
);
2211 if (unlikely(!trylock_page(page
))) {
2217 if (unlikely(!pmd_same(*pmd
, _pmd
))) {
2226 if (PageMlocked(page
))
2227 clear_page_mlock(page
);
2228 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2230 __split_huge_pmd_locked(vma
, pmd
, range
.start
, freeze
);
2233 if (!was_locked
&& page
)
2236 * No need to double call mmu_notifier->invalidate_range() callback.
2237 * They are 3 cases to consider inside __split_huge_pmd_locked():
2238 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2239 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2240 * fault will trigger a flush_notify before pointing to a new page
2241 * (it is fine if the secondary mmu keeps pointing to the old zero
2242 * page in the meantime)
2243 * 3) Split a huge pmd into pte pointing to the same page. No need
2244 * to invalidate secondary tlb entry they are all still valid.
2245 * any further changes to individual pte will notify. So no need
2246 * to call mmu_notifier->invalidate_range()
2248 mmu_notifier_invalidate_range_only_end(&range
);
2251 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2252 bool freeze
, struct page
*page
)
2259 pgd
= pgd_offset(vma
->vm_mm
, address
);
2260 if (!pgd_present(*pgd
))
2263 p4d
= p4d_offset(pgd
, address
);
2264 if (!p4d_present(*p4d
))
2267 pud
= pud_offset(p4d
, address
);
2268 if (!pud_present(*pud
))
2271 pmd
= pmd_offset(pud
, address
);
2273 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2276 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2277 unsigned long start
,
2282 * If the new start address isn't hpage aligned and it could
2283 * previously contain an hugepage: check if we need to split
2286 if (start
& ~HPAGE_PMD_MASK
&&
2287 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2288 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2289 split_huge_pmd_address(vma
, start
, false, NULL
);
2292 * If the new end address isn't hpage aligned and it could
2293 * previously contain an hugepage: check if we need to split
2296 if (end
& ~HPAGE_PMD_MASK
&&
2297 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2298 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2299 split_huge_pmd_address(vma
, end
, false, NULL
);
2302 * If we're also updating the vma->vm_next->vm_start, if the new
2303 * vm_next->vm_start isn't page aligned and it could previously
2304 * contain an hugepage: check if we need to split an huge pmd.
2306 if (adjust_next
> 0) {
2307 struct vm_area_struct
*next
= vma
->vm_next
;
2308 unsigned long nstart
= next
->vm_start
;
2309 nstart
+= adjust_next
<< PAGE_SHIFT
;
2310 if (nstart
& ~HPAGE_PMD_MASK
&&
2311 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2312 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2313 split_huge_pmd_address(next
, nstart
, false, NULL
);
2317 static void unmap_page(struct page
*page
)
2319 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
2320 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2323 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2326 ttu_flags
|= TTU_SPLIT_FREEZE
;
2328 unmap_success
= try_to_unmap(page
, ttu_flags
);
2329 VM_BUG_ON_PAGE(!unmap_success
, page
);
2332 static void remap_page(struct page
*page
)
2335 if (PageTransHuge(page
)) {
2336 remove_migration_ptes(page
, page
, true);
2338 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2339 remove_migration_ptes(page
+ i
, page
+ i
, true);
2343 static void __split_huge_page_tail(struct page
*head
, int tail
,
2344 struct lruvec
*lruvec
, struct list_head
*list
)
2346 struct page
*page_tail
= head
+ tail
;
2348 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2351 * Clone page flags before unfreezing refcount.
2353 * After successful get_page_unless_zero() might follow flags change,
2354 * for exmaple lock_page() which set PG_waiters.
2356 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2357 page_tail
->flags
|= (head
->flags
&
2358 ((1L << PG_referenced
) |
2359 (1L << PG_swapbacked
) |
2360 (1L << PG_swapcache
) |
2361 (1L << PG_mlocked
) |
2362 (1L << PG_uptodate
) |
2364 (1L << PG_workingset
) |
2366 (1L << PG_unevictable
) |
2369 /* ->mapping in first tail page is compound_mapcount */
2370 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2372 page_tail
->mapping
= head
->mapping
;
2373 page_tail
->index
= head
->index
+ tail
;
2375 /* Page flags must be visible before we make the page non-compound. */
2379 * Clear PageTail before unfreezing page refcount.
2381 * After successful get_page_unless_zero() might follow put_page()
2382 * which needs correct compound_head().
2384 clear_compound_head(page_tail
);
2386 /* Finally unfreeze refcount. Additional reference from page cache. */
2387 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2388 PageSwapCache(head
)));
2390 if (page_is_young(head
))
2391 set_page_young(page_tail
);
2392 if (page_is_idle(head
))
2393 set_page_idle(page_tail
);
2395 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2398 * always add to the tail because some iterators expect new
2399 * pages to show after the currently processed elements - e.g.
2402 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2405 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2406 pgoff_t end
, unsigned long flags
)
2408 struct page
*head
= compound_head(page
);
2409 pg_data_t
*pgdat
= page_pgdat(head
);
2410 struct lruvec
*lruvec
;
2411 struct address_space
*swap_cache
= NULL
;
2412 unsigned long offset
= 0;
2415 lruvec
= mem_cgroup_page_lruvec(head
, pgdat
);
2417 /* complete memcg works before add pages to LRU */
2418 mem_cgroup_split_huge_fixup(head
);
2420 if (PageAnon(head
) && PageSwapCache(head
)) {
2421 swp_entry_t entry
= { .val
= page_private(head
) };
2423 offset
= swp_offset(entry
);
2424 swap_cache
= swap_address_space(entry
);
2425 xa_lock(&swap_cache
->i_pages
);
2428 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
2429 __split_huge_page_tail(head
, i
, lruvec
, list
);
2430 /* Some pages can be beyond i_size: drop them from page cache */
2431 if (head
[i
].index
>= end
) {
2432 ClearPageDirty(head
+ i
);
2433 __delete_from_page_cache(head
+ i
, NULL
);
2434 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2435 shmem_uncharge(head
->mapping
->host
, 1);
2437 } else if (!PageAnon(page
)) {
2438 __xa_store(&head
->mapping
->i_pages
, head
[i
].index
,
2440 } else if (swap_cache
) {
2441 __xa_store(&swap_cache
->i_pages
, offset
+ i
,
2446 ClearPageCompound(head
);
2448 split_page_owner(head
, HPAGE_PMD_ORDER
);
2450 /* See comment in __split_huge_page_tail() */
2451 if (PageAnon(head
)) {
2452 /* Additional pin to swap cache */
2453 if (PageSwapCache(head
)) {
2454 page_ref_add(head
, 2);
2455 xa_unlock(&swap_cache
->i_pages
);
2460 /* Additional pin to page cache */
2461 page_ref_add(head
, 2);
2462 xa_unlock(&head
->mapping
->i_pages
);
2465 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
2469 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2470 struct page
*subpage
= head
+ i
;
2471 if (subpage
== page
)
2473 unlock_page(subpage
);
2476 * Subpages may be freed if there wasn't any mapping
2477 * like if add_to_swap() is running on a lru page that
2478 * had its mapping zapped. And freeing these pages
2479 * requires taking the lru_lock so we do the put_page
2480 * of the tail pages after the split is complete.
2486 int total_mapcount(struct page
*page
)
2488 int i
, compound
, ret
;
2490 VM_BUG_ON_PAGE(PageTail(page
), page
);
2492 if (likely(!PageCompound(page
)))
2493 return atomic_read(&page
->_mapcount
) + 1;
2495 compound
= compound_mapcount(page
);
2499 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2500 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2501 /* File pages has compound_mapcount included in _mapcount */
2502 if (!PageAnon(page
))
2503 return ret
- compound
* HPAGE_PMD_NR
;
2504 if (PageDoubleMap(page
))
2505 ret
-= HPAGE_PMD_NR
;
2510 * This calculates accurately how many mappings a transparent hugepage
2511 * has (unlike page_mapcount() which isn't fully accurate). This full
2512 * accuracy is primarily needed to know if copy-on-write faults can
2513 * reuse the page and change the mapping to read-write instead of
2514 * copying them. At the same time this returns the total_mapcount too.
2516 * The function returns the highest mapcount any one of the subpages
2517 * has. If the return value is one, even if different processes are
2518 * mapping different subpages of the transparent hugepage, they can
2519 * all reuse it, because each process is reusing a different subpage.
2521 * The total_mapcount is instead counting all virtual mappings of the
2522 * subpages. If the total_mapcount is equal to "one", it tells the
2523 * caller all mappings belong to the same "mm" and in turn the
2524 * anon_vma of the transparent hugepage can become the vma->anon_vma
2525 * local one as no other process may be mapping any of the subpages.
2527 * It would be more accurate to replace page_mapcount() with
2528 * page_trans_huge_mapcount(), however we only use
2529 * page_trans_huge_mapcount() in the copy-on-write faults where we
2530 * need full accuracy to avoid breaking page pinning, because
2531 * page_trans_huge_mapcount() is slower than page_mapcount().
2533 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2535 int i
, ret
, _total_mapcount
, mapcount
;
2537 /* hugetlbfs shouldn't call it */
2538 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2540 if (likely(!PageTransCompound(page
))) {
2541 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2543 *total_mapcount
= mapcount
;
2547 page
= compound_head(page
);
2549 _total_mapcount
= ret
= 0;
2550 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2551 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2552 ret
= max(ret
, mapcount
);
2553 _total_mapcount
+= mapcount
;
2555 if (PageDoubleMap(page
)) {
2557 _total_mapcount
-= HPAGE_PMD_NR
;
2559 mapcount
= compound_mapcount(page
);
2561 _total_mapcount
+= mapcount
;
2563 *total_mapcount
= _total_mapcount
;
2567 /* Racy check whether the huge page can be split */
2568 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2572 /* Additional pins from page cache */
2574 extra_pins
= PageSwapCache(page
) ? HPAGE_PMD_NR
: 0;
2576 extra_pins
= HPAGE_PMD_NR
;
2578 *pextra_pins
= extra_pins
;
2579 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2583 * This function splits huge page into normal pages. @page can point to any
2584 * subpage of huge page to split. Split doesn't change the position of @page.
2586 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2587 * The huge page must be locked.
2589 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2591 * Both head page and tail pages will inherit mapping, flags, and so on from
2594 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2595 * they are not mapped.
2597 * Returns 0 if the hugepage is split successfully.
2598 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2601 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2603 struct page
*head
= compound_head(page
);
2604 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2605 struct deferred_split
*ds_queue
= get_deferred_split_queue(head
);
2606 struct anon_vma
*anon_vma
= NULL
;
2607 struct address_space
*mapping
= NULL
;
2608 int count
, mapcount
, extra_pins
, ret
;
2609 unsigned long flags
;
2612 VM_BUG_ON_PAGE(is_huge_zero_page(head
), head
);
2613 VM_BUG_ON_PAGE(!PageLocked(head
), head
);
2614 VM_BUG_ON_PAGE(!PageCompound(head
), head
);
2616 if (PageWriteback(head
))
2619 if (PageAnon(head
)) {
2621 * The caller does not necessarily hold an mmap_lock that would
2622 * prevent the anon_vma disappearing so we first we take a
2623 * reference to it and then lock the anon_vma for write. This
2624 * is similar to page_lock_anon_vma_read except the write lock
2625 * is taken to serialise against parallel split or collapse
2628 anon_vma
= page_get_anon_vma(head
);
2635 anon_vma_lock_write(anon_vma
);
2637 mapping
= head
->mapping
;
2646 i_mmap_lock_read(mapping
);
2649 *__split_huge_page() may need to trim off pages beyond EOF:
2650 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2651 * which cannot be nested inside the page tree lock. So note
2652 * end now: i_size itself may be changed at any moment, but
2653 * head page lock is good enough to serialize the trimming.
2655 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2659 * Racy check if we can split the page, before unmap_page() will
2662 if (!can_split_huge_page(head
, &extra_pins
)) {
2668 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2670 /* prevent PageLRU to go away from under us, and freeze lru stats */
2671 spin_lock_irqsave(&pgdata
->lru_lock
, flags
);
2674 XA_STATE(xas
, &mapping
->i_pages
, page_index(head
));
2677 * Check if the head page is present in page cache.
2678 * We assume all tail are present too, if head is there.
2680 xa_lock(&mapping
->i_pages
);
2681 if (xas_load(&xas
) != head
)
2685 /* Prevent deferred_split_scan() touching ->_refcount */
2686 spin_lock(&ds_queue
->split_queue_lock
);
2687 count
= page_count(head
);
2688 mapcount
= total_mapcount(head
);
2689 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2690 if (!list_empty(page_deferred_list(head
))) {
2691 ds_queue
->split_queue_len
--;
2692 list_del(page_deferred_list(head
));
2694 spin_unlock(&ds_queue
->split_queue_lock
);
2696 if (PageSwapBacked(head
))
2697 __dec_node_page_state(head
, NR_SHMEM_THPS
);
2699 __dec_node_page_state(head
, NR_FILE_THPS
);
2702 __split_huge_page(page
, list
, end
, flags
);
2703 if (PageSwapCache(head
)) {
2704 swp_entry_t entry
= { .val
= page_private(head
) };
2706 ret
= split_swap_cluster(entry
);
2710 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2711 pr_alert("total_mapcount: %u, page_count(): %u\n",
2714 dump_page(head
, NULL
);
2715 dump_page(page
, "total_mapcount(head) > 0");
2718 spin_unlock(&ds_queue
->split_queue_lock
);
2720 xa_unlock(&mapping
->i_pages
);
2721 spin_unlock_irqrestore(&pgdata
->lru_lock
, flags
);
2728 anon_vma_unlock_write(anon_vma
);
2729 put_anon_vma(anon_vma
);
2732 i_mmap_unlock_read(mapping
);
2734 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2738 void free_transhuge_page(struct page
*page
)
2740 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2741 unsigned long flags
;
2743 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2744 if (!list_empty(page_deferred_list(page
))) {
2745 ds_queue
->split_queue_len
--;
2746 list_del(page_deferred_list(page
));
2748 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2749 free_compound_page(page
);
2752 void deferred_split_huge_page(struct page
*page
)
2754 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2756 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
2758 unsigned long flags
;
2760 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2763 * The try_to_unmap() in page reclaim path might reach here too,
2764 * this may cause a race condition to corrupt deferred split queue.
2765 * And, if page reclaim is already handling the same page, it is
2766 * unnecessary to handle it again in shrinker.
2768 * Check PageSwapCache to determine if the page is being
2769 * handled by page reclaim since THP swap would add the page into
2770 * swap cache before calling try_to_unmap().
2772 if (PageSwapCache(page
))
2775 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2776 if (list_empty(page_deferred_list(page
))) {
2777 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2778 list_add_tail(page_deferred_list(page
), &ds_queue
->split_queue
);
2779 ds_queue
->split_queue_len
++;
2782 memcg_set_shrinker_bit(memcg
, page_to_nid(page
),
2783 deferred_split_shrinker
.id
);
2786 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2789 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2790 struct shrink_control
*sc
)
2792 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2793 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2797 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2799 return READ_ONCE(ds_queue
->split_queue_len
);
2802 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2803 struct shrink_control
*sc
)
2805 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2806 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2807 unsigned long flags
;
2808 LIST_HEAD(list
), *pos
, *next
;
2814 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2817 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2818 /* Take pin on all head pages to avoid freeing them under us */
2819 list_for_each_safe(pos
, next
, &ds_queue
->split_queue
) {
2820 page
= list_entry((void *)pos
, struct page
, mapping
);
2821 page
= compound_head(page
);
2822 if (get_page_unless_zero(page
)) {
2823 list_move(page_deferred_list(page
), &list
);
2825 /* We lost race with put_compound_page() */
2826 list_del_init(page_deferred_list(page
));
2827 ds_queue
->split_queue_len
--;
2829 if (!--sc
->nr_to_scan
)
2832 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2834 list_for_each_safe(pos
, next
, &list
) {
2835 page
= list_entry((void *)pos
, struct page
, mapping
);
2836 if (!trylock_page(page
))
2838 /* split_huge_page() removes page from list on success */
2839 if (!split_huge_page(page
))
2846 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2847 list_splice_tail(&list
, &ds_queue
->split_queue
);
2848 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2851 * Stop shrinker if we didn't split any page, but the queue is empty.
2852 * This can happen if pages were freed under us.
2854 if (!split
&& list_empty(&ds_queue
->split_queue
))
2859 static struct shrinker deferred_split_shrinker
= {
2860 .count_objects
= deferred_split_count
,
2861 .scan_objects
= deferred_split_scan
,
2862 .seeks
= DEFAULT_SEEKS
,
2863 .flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
|
2867 #ifdef CONFIG_DEBUG_FS
2868 static int split_huge_pages_set(void *data
, u64 val
)
2872 unsigned long pfn
, max_zone_pfn
;
2873 unsigned long total
= 0, split
= 0;
2878 for_each_populated_zone(zone
) {
2879 max_zone_pfn
= zone_end_pfn(zone
);
2880 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2881 if (!pfn_valid(pfn
))
2884 page
= pfn_to_page(pfn
);
2885 if (!get_page_unless_zero(page
))
2888 if (zone
!= page_zone(page
))
2891 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2896 if (!split_huge_page(page
))
2904 pr_info("%lu of %lu THP split\n", split
, total
);
2908 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
2911 static int __init
split_huge_pages_debugfs(void)
2913 debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
2914 &split_huge_pages_fops
);
2917 late_initcall(split_huge_pages_debugfs
);
2920 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2921 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
2924 struct vm_area_struct
*vma
= pvmw
->vma
;
2925 struct mm_struct
*mm
= vma
->vm_mm
;
2926 unsigned long address
= pvmw
->address
;
2931 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2934 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
2935 pmdval
= pmdp_invalidate(vma
, address
, pvmw
->pmd
);
2936 if (pmd_dirty(pmdval
))
2937 set_page_dirty(page
);
2938 entry
= make_migration_entry(page
, pmd_write(pmdval
));
2939 pmdswp
= swp_entry_to_pmd(entry
);
2940 if (pmd_soft_dirty(pmdval
))
2941 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
2942 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
2943 page_remove_rmap(page
, true);
2947 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
2949 struct vm_area_struct
*vma
= pvmw
->vma
;
2950 struct mm_struct
*mm
= vma
->vm_mm
;
2951 unsigned long address
= pvmw
->address
;
2952 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2956 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2959 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
2961 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
2962 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
2963 pmde
= pmd_mksoft_dirty(pmde
);
2964 if (is_write_migration_entry(entry
))
2965 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
2967 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
2969 page_add_anon_rmap(new, vma
, mmun_start
, true);
2971 page_add_file_rmap(new, true);
2972 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
2973 if ((vma
->vm_flags
& VM_LOCKED
) && !PageDoubleMap(new))
2974 mlock_vma_page(new);
2975 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);