serial: exar: Fix GPIO configuration for Sealevel cards based on XR17V35X
[linux/fpc-iii.git] / mm / madvise.c
blobdd1d43cf026deab477489aecc92c33dba12f89c7
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/sched/mm.h>
32 #include <asm/tlb.h>
34 #include "internal.h"
36 struct madvise_walk_private {
37 struct mmu_gather *tlb;
38 bool pageout;
42 * Any behaviour which results in changes to the vma->vm_flags needs to
43 * take mmap_lock for writing. Others, which simply traverse vmas, need
44 * to only take it for reading.
46 static int madvise_need_mmap_write(int behavior)
48 switch (behavior) {
49 case MADV_REMOVE:
50 case MADV_WILLNEED:
51 case MADV_DONTNEED:
52 case MADV_COLD:
53 case MADV_PAGEOUT:
54 case MADV_FREE:
55 return 0;
56 default:
57 /* be safe, default to 1. list exceptions explicitly */
58 return 1;
63 * We can potentially split a vm area into separate
64 * areas, each area with its own behavior.
66 static long madvise_behavior(struct vm_area_struct *vma,
67 struct vm_area_struct **prev,
68 unsigned long start, unsigned long end, int behavior)
70 struct mm_struct *mm = vma->vm_mm;
71 int error = 0;
72 pgoff_t pgoff;
73 unsigned long new_flags = vma->vm_flags;
75 switch (behavior) {
76 case MADV_NORMAL:
77 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
78 break;
79 case MADV_SEQUENTIAL:
80 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
81 break;
82 case MADV_RANDOM:
83 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
84 break;
85 case MADV_DONTFORK:
86 new_flags |= VM_DONTCOPY;
87 break;
88 case MADV_DOFORK:
89 if (vma->vm_flags & VM_IO) {
90 error = -EINVAL;
91 goto out;
93 new_flags &= ~VM_DONTCOPY;
94 break;
95 case MADV_WIPEONFORK:
96 /* MADV_WIPEONFORK is only supported on anonymous memory. */
97 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
98 error = -EINVAL;
99 goto out;
101 new_flags |= VM_WIPEONFORK;
102 break;
103 case MADV_KEEPONFORK:
104 new_flags &= ~VM_WIPEONFORK;
105 break;
106 case MADV_DONTDUMP:
107 new_flags |= VM_DONTDUMP;
108 break;
109 case MADV_DODUMP:
110 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
111 error = -EINVAL;
112 goto out;
114 new_flags &= ~VM_DONTDUMP;
115 break;
116 case MADV_MERGEABLE:
117 case MADV_UNMERGEABLE:
118 error = ksm_madvise(vma, start, end, behavior, &new_flags);
119 if (error)
120 goto out_convert_errno;
121 break;
122 case MADV_HUGEPAGE:
123 case MADV_NOHUGEPAGE:
124 error = hugepage_madvise(vma, &new_flags, behavior);
125 if (error)
126 goto out_convert_errno;
127 break;
130 if (new_flags == vma->vm_flags) {
131 *prev = vma;
132 goto out;
135 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
136 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
137 vma->vm_file, pgoff, vma_policy(vma),
138 vma->vm_userfaultfd_ctx);
139 if (*prev) {
140 vma = *prev;
141 goto success;
144 *prev = vma;
146 if (start != vma->vm_start) {
147 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
148 error = -ENOMEM;
149 goto out;
151 error = __split_vma(mm, vma, start, 1);
152 if (error)
153 goto out_convert_errno;
156 if (end != vma->vm_end) {
157 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
158 error = -ENOMEM;
159 goto out;
161 error = __split_vma(mm, vma, end, 0);
162 if (error)
163 goto out_convert_errno;
166 success:
168 * vm_flags is protected by the mmap_lock held in write mode.
170 vma->vm_flags = new_flags;
172 out_convert_errno:
174 * madvise() returns EAGAIN if kernel resources, such as
175 * slab, are temporarily unavailable.
177 if (error == -ENOMEM)
178 error = -EAGAIN;
179 out:
180 return error;
183 #ifdef CONFIG_SWAP
184 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
185 unsigned long end, struct mm_walk *walk)
187 pte_t *orig_pte;
188 struct vm_area_struct *vma = walk->private;
189 unsigned long index;
191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
192 return 0;
194 for (index = start; index != end; index += PAGE_SIZE) {
195 pte_t pte;
196 swp_entry_t entry;
197 struct page *page;
198 spinlock_t *ptl;
200 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
201 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
202 pte_unmap_unlock(orig_pte, ptl);
204 if (pte_present(pte) || pte_none(pte))
205 continue;
206 entry = pte_to_swp_entry(pte);
207 if (unlikely(non_swap_entry(entry)))
208 continue;
210 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
211 vma, index, false);
212 if (page)
213 put_page(page);
216 return 0;
219 static const struct mm_walk_ops swapin_walk_ops = {
220 .pmd_entry = swapin_walk_pmd_entry,
223 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
224 unsigned long start, unsigned long end,
225 struct address_space *mapping)
227 pgoff_t index;
228 struct page *page;
229 swp_entry_t swap;
231 for (; start < end; start += PAGE_SIZE) {
232 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
234 page = find_get_entry(mapping, index);
235 if (!xa_is_value(page)) {
236 if (page)
237 put_page(page);
238 continue;
240 swap = radix_to_swp_entry(page);
241 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
242 NULL, 0, false);
243 if (page)
244 put_page(page);
247 lru_add_drain(); /* Push any new pages onto the LRU now */
249 #endif /* CONFIG_SWAP */
252 * Schedule all required I/O operations. Do not wait for completion.
254 static long madvise_willneed(struct vm_area_struct *vma,
255 struct vm_area_struct **prev,
256 unsigned long start, unsigned long end)
258 struct file *file = vma->vm_file;
259 loff_t offset;
261 *prev = vma;
262 #ifdef CONFIG_SWAP
263 if (!file) {
264 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
265 lru_add_drain(); /* Push any new pages onto the LRU now */
266 return 0;
269 if (shmem_mapping(file->f_mapping)) {
270 force_shm_swapin_readahead(vma, start, end,
271 file->f_mapping);
272 return 0;
274 #else
275 if (!file)
276 return -EBADF;
277 #endif
279 if (IS_DAX(file_inode(file))) {
280 /* no bad return value, but ignore advice */
281 return 0;
285 * Filesystem's fadvise may need to take various locks. We need to
286 * explicitly grab a reference because the vma (and hence the
287 * vma's reference to the file) can go away as soon as we drop
288 * mmap_lock.
290 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
291 get_file(file);
292 mmap_read_unlock(current->mm);
293 offset = (loff_t)(start - vma->vm_start)
294 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
295 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
296 fput(file);
297 mmap_read_lock(current->mm);
298 return 0;
301 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
302 unsigned long addr, unsigned long end,
303 struct mm_walk *walk)
305 struct madvise_walk_private *private = walk->private;
306 struct mmu_gather *tlb = private->tlb;
307 bool pageout = private->pageout;
308 struct mm_struct *mm = tlb->mm;
309 struct vm_area_struct *vma = walk->vma;
310 pte_t *orig_pte, *pte, ptent;
311 spinlock_t *ptl;
312 struct page *page = NULL;
313 LIST_HEAD(page_list);
315 if (fatal_signal_pending(current))
316 return -EINTR;
318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
319 if (pmd_trans_huge(*pmd)) {
320 pmd_t orig_pmd;
321 unsigned long next = pmd_addr_end(addr, end);
323 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
324 ptl = pmd_trans_huge_lock(pmd, vma);
325 if (!ptl)
326 return 0;
328 orig_pmd = *pmd;
329 if (is_huge_zero_pmd(orig_pmd))
330 goto huge_unlock;
332 if (unlikely(!pmd_present(orig_pmd))) {
333 VM_BUG_ON(thp_migration_supported() &&
334 !is_pmd_migration_entry(orig_pmd));
335 goto huge_unlock;
338 page = pmd_page(orig_pmd);
340 /* Do not interfere with other mappings of this page */
341 if (page_mapcount(page) != 1)
342 goto huge_unlock;
344 if (next - addr != HPAGE_PMD_SIZE) {
345 int err;
347 get_page(page);
348 spin_unlock(ptl);
349 lock_page(page);
350 err = split_huge_page(page);
351 unlock_page(page);
352 put_page(page);
353 if (!err)
354 goto regular_page;
355 return 0;
358 if (pmd_young(orig_pmd)) {
359 pmdp_invalidate(vma, addr, pmd);
360 orig_pmd = pmd_mkold(orig_pmd);
362 set_pmd_at(mm, addr, pmd, orig_pmd);
363 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
366 ClearPageReferenced(page);
367 test_and_clear_page_young(page);
368 if (pageout) {
369 if (!isolate_lru_page(page)) {
370 if (PageUnevictable(page))
371 putback_lru_page(page);
372 else
373 list_add(&page->lru, &page_list);
375 } else
376 deactivate_page(page);
377 huge_unlock:
378 spin_unlock(ptl);
379 if (pageout)
380 reclaim_pages(&page_list);
381 return 0;
384 if (pmd_trans_unstable(pmd))
385 return 0;
386 regular_page:
387 #endif
388 tlb_change_page_size(tlb, PAGE_SIZE);
389 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
390 flush_tlb_batched_pending(mm);
391 arch_enter_lazy_mmu_mode();
392 for (; addr < end; pte++, addr += PAGE_SIZE) {
393 ptent = *pte;
395 if (pte_none(ptent))
396 continue;
398 if (!pte_present(ptent))
399 continue;
401 page = vm_normal_page(vma, addr, ptent);
402 if (!page)
403 continue;
406 * Creating a THP page is expensive so split it only if we
407 * are sure it's worth. Split it if we are only owner.
409 if (PageTransCompound(page)) {
410 if (page_mapcount(page) != 1)
411 break;
412 get_page(page);
413 if (!trylock_page(page)) {
414 put_page(page);
415 break;
417 pte_unmap_unlock(orig_pte, ptl);
418 if (split_huge_page(page)) {
419 unlock_page(page);
420 put_page(page);
421 pte_offset_map_lock(mm, pmd, addr, &ptl);
422 break;
424 unlock_page(page);
425 put_page(page);
426 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
427 pte--;
428 addr -= PAGE_SIZE;
429 continue;
432 /* Do not interfere with other mappings of this page */
433 if (page_mapcount(page) != 1)
434 continue;
436 VM_BUG_ON_PAGE(PageTransCompound(page), page);
438 if (pte_young(ptent)) {
439 ptent = ptep_get_and_clear_full(mm, addr, pte,
440 tlb->fullmm);
441 ptent = pte_mkold(ptent);
442 set_pte_at(mm, addr, pte, ptent);
443 tlb_remove_tlb_entry(tlb, pte, addr);
447 * We are deactivating a page for accelerating reclaiming.
448 * VM couldn't reclaim the page unless we clear PG_young.
449 * As a side effect, it makes confuse idle-page tracking
450 * because they will miss recent referenced history.
452 ClearPageReferenced(page);
453 test_and_clear_page_young(page);
454 if (pageout) {
455 if (!isolate_lru_page(page)) {
456 if (PageUnevictable(page))
457 putback_lru_page(page);
458 else
459 list_add(&page->lru, &page_list);
461 } else
462 deactivate_page(page);
465 arch_leave_lazy_mmu_mode();
466 pte_unmap_unlock(orig_pte, ptl);
467 if (pageout)
468 reclaim_pages(&page_list);
469 cond_resched();
471 return 0;
474 static const struct mm_walk_ops cold_walk_ops = {
475 .pmd_entry = madvise_cold_or_pageout_pte_range,
478 static void madvise_cold_page_range(struct mmu_gather *tlb,
479 struct vm_area_struct *vma,
480 unsigned long addr, unsigned long end)
482 struct madvise_walk_private walk_private = {
483 .pageout = false,
484 .tlb = tlb,
487 tlb_start_vma(tlb, vma);
488 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
489 tlb_end_vma(tlb, vma);
492 static long madvise_cold(struct vm_area_struct *vma,
493 struct vm_area_struct **prev,
494 unsigned long start_addr, unsigned long end_addr)
496 struct mm_struct *mm = vma->vm_mm;
497 struct mmu_gather tlb;
499 *prev = vma;
500 if (!can_madv_lru_vma(vma))
501 return -EINVAL;
503 lru_add_drain();
504 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
505 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
506 tlb_finish_mmu(&tlb, start_addr, end_addr);
508 return 0;
511 static void madvise_pageout_page_range(struct mmu_gather *tlb,
512 struct vm_area_struct *vma,
513 unsigned long addr, unsigned long end)
515 struct madvise_walk_private walk_private = {
516 .pageout = true,
517 .tlb = tlb,
520 tlb_start_vma(tlb, vma);
521 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
522 tlb_end_vma(tlb, vma);
525 static inline bool can_do_pageout(struct vm_area_struct *vma)
527 if (vma_is_anonymous(vma))
528 return true;
529 if (!vma->vm_file)
530 return false;
532 * paging out pagecache only for non-anonymous mappings that correspond
533 * to the files the calling process could (if tried) open for writing;
534 * otherwise we'd be including shared non-exclusive mappings, which
535 * opens a side channel.
537 return inode_owner_or_capable(file_inode(vma->vm_file)) ||
538 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
541 static long madvise_pageout(struct vm_area_struct *vma,
542 struct vm_area_struct **prev,
543 unsigned long start_addr, unsigned long end_addr)
545 struct mm_struct *mm = vma->vm_mm;
546 struct mmu_gather tlb;
548 *prev = vma;
549 if (!can_madv_lru_vma(vma))
550 return -EINVAL;
552 if (!can_do_pageout(vma))
553 return 0;
555 lru_add_drain();
556 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
557 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
558 tlb_finish_mmu(&tlb, start_addr, end_addr);
560 return 0;
563 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
564 unsigned long end, struct mm_walk *walk)
567 struct mmu_gather *tlb = walk->private;
568 struct mm_struct *mm = tlb->mm;
569 struct vm_area_struct *vma = walk->vma;
570 spinlock_t *ptl;
571 pte_t *orig_pte, *pte, ptent;
572 struct page *page;
573 int nr_swap = 0;
574 unsigned long next;
576 next = pmd_addr_end(addr, end);
577 if (pmd_trans_huge(*pmd))
578 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
579 goto next;
581 if (pmd_trans_unstable(pmd))
582 return 0;
584 tlb_change_page_size(tlb, PAGE_SIZE);
585 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
586 flush_tlb_batched_pending(mm);
587 arch_enter_lazy_mmu_mode();
588 for (; addr != end; pte++, addr += PAGE_SIZE) {
589 ptent = *pte;
591 if (pte_none(ptent))
592 continue;
594 * If the pte has swp_entry, just clear page table to
595 * prevent swap-in which is more expensive rather than
596 * (page allocation + zeroing).
598 if (!pte_present(ptent)) {
599 swp_entry_t entry;
601 entry = pte_to_swp_entry(ptent);
602 if (non_swap_entry(entry))
603 continue;
604 nr_swap--;
605 free_swap_and_cache(entry);
606 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
607 continue;
610 page = vm_normal_page(vma, addr, ptent);
611 if (!page)
612 continue;
615 * If pmd isn't transhuge but the page is THP and
616 * is owned by only this process, split it and
617 * deactivate all pages.
619 if (PageTransCompound(page)) {
620 if (page_mapcount(page) != 1)
621 goto out;
622 get_page(page);
623 if (!trylock_page(page)) {
624 put_page(page);
625 goto out;
627 pte_unmap_unlock(orig_pte, ptl);
628 if (split_huge_page(page)) {
629 unlock_page(page);
630 put_page(page);
631 pte_offset_map_lock(mm, pmd, addr, &ptl);
632 goto out;
634 unlock_page(page);
635 put_page(page);
636 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
637 pte--;
638 addr -= PAGE_SIZE;
639 continue;
642 VM_BUG_ON_PAGE(PageTransCompound(page), page);
644 if (PageSwapCache(page) || PageDirty(page)) {
645 if (!trylock_page(page))
646 continue;
648 * If page is shared with others, we couldn't clear
649 * PG_dirty of the page.
651 if (page_mapcount(page) != 1) {
652 unlock_page(page);
653 continue;
656 if (PageSwapCache(page) && !try_to_free_swap(page)) {
657 unlock_page(page);
658 continue;
661 ClearPageDirty(page);
662 unlock_page(page);
665 if (pte_young(ptent) || pte_dirty(ptent)) {
667 * Some of architecture(ex, PPC) don't update TLB
668 * with set_pte_at and tlb_remove_tlb_entry so for
669 * the portability, remap the pte with old|clean
670 * after pte clearing.
672 ptent = ptep_get_and_clear_full(mm, addr, pte,
673 tlb->fullmm);
675 ptent = pte_mkold(ptent);
676 ptent = pte_mkclean(ptent);
677 set_pte_at(mm, addr, pte, ptent);
678 tlb_remove_tlb_entry(tlb, pte, addr);
680 mark_page_lazyfree(page);
682 out:
683 if (nr_swap) {
684 if (current->mm == mm)
685 sync_mm_rss(mm);
687 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
689 arch_leave_lazy_mmu_mode();
690 pte_unmap_unlock(orig_pte, ptl);
691 cond_resched();
692 next:
693 return 0;
696 static const struct mm_walk_ops madvise_free_walk_ops = {
697 .pmd_entry = madvise_free_pte_range,
700 static int madvise_free_single_vma(struct vm_area_struct *vma,
701 unsigned long start_addr, unsigned long end_addr)
703 struct mm_struct *mm = vma->vm_mm;
704 struct mmu_notifier_range range;
705 struct mmu_gather tlb;
707 /* MADV_FREE works for only anon vma at the moment */
708 if (!vma_is_anonymous(vma))
709 return -EINVAL;
711 range.start = max(vma->vm_start, start_addr);
712 if (range.start >= vma->vm_end)
713 return -EINVAL;
714 range.end = min(vma->vm_end, end_addr);
715 if (range.end <= vma->vm_start)
716 return -EINVAL;
717 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
718 range.start, range.end);
720 lru_add_drain();
721 tlb_gather_mmu(&tlb, mm, range.start, range.end);
722 update_hiwater_rss(mm);
724 mmu_notifier_invalidate_range_start(&range);
725 tlb_start_vma(&tlb, vma);
726 walk_page_range(vma->vm_mm, range.start, range.end,
727 &madvise_free_walk_ops, &tlb);
728 tlb_end_vma(&tlb, vma);
729 mmu_notifier_invalidate_range_end(&range);
730 tlb_finish_mmu(&tlb, range.start, range.end);
732 return 0;
736 * Application no longer needs these pages. If the pages are dirty,
737 * it's OK to just throw them away. The app will be more careful about
738 * data it wants to keep. Be sure to free swap resources too. The
739 * zap_page_range call sets things up for shrink_active_list to actually free
740 * these pages later if no one else has touched them in the meantime,
741 * although we could add these pages to a global reuse list for
742 * shrink_active_list to pick up before reclaiming other pages.
744 * NB: This interface discards data rather than pushes it out to swap,
745 * as some implementations do. This has performance implications for
746 * applications like large transactional databases which want to discard
747 * pages in anonymous maps after committing to backing store the data
748 * that was kept in them. There is no reason to write this data out to
749 * the swap area if the application is discarding it.
751 * An interface that causes the system to free clean pages and flush
752 * dirty pages is already available as msync(MS_INVALIDATE).
754 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
755 unsigned long start, unsigned long end)
757 zap_page_range(vma, start, end - start);
758 return 0;
761 static long madvise_dontneed_free(struct vm_area_struct *vma,
762 struct vm_area_struct **prev,
763 unsigned long start, unsigned long end,
764 int behavior)
766 *prev = vma;
767 if (!can_madv_lru_vma(vma))
768 return -EINVAL;
770 if (!userfaultfd_remove(vma, start, end)) {
771 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
773 mmap_read_lock(current->mm);
774 vma = find_vma(current->mm, start);
775 if (!vma)
776 return -ENOMEM;
777 if (start < vma->vm_start) {
779 * This "vma" under revalidation is the one
780 * with the lowest vma->vm_start where start
781 * is also < vma->vm_end. If start <
782 * vma->vm_start it means an hole materialized
783 * in the user address space within the
784 * virtual range passed to MADV_DONTNEED
785 * or MADV_FREE.
787 return -ENOMEM;
789 if (!can_madv_lru_vma(vma))
790 return -EINVAL;
791 if (end > vma->vm_end) {
793 * Don't fail if end > vma->vm_end. If the old
794 * vma was splitted while the mmap_lock was
795 * released the effect of the concurrent
796 * operation may not cause madvise() to
797 * have an undefined result. There may be an
798 * adjacent next vma that we'll walk
799 * next. userfaultfd_remove() will generate an
800 * UFFD_EVENT_REMOVE repetition on the
801 * end-vma->vm_end range, but the manager can
802 * handle a repetition fine.
804 end = vma->vm_end;
806 VM_WARN_ON(start >= end);
809 if (behavior == MADV_DONTNEED)
810 return madvise_dontneed_single_vma(vma, start, end);
811 else if (behavior == MADV_FREE)
812 return madvise_free_single_vma(vma, start, end);
813 else
814 return -EINVAL;
818 * Application wants to free up the pages and associated backing store.
819 * This is effectively punching a hole into the middle of a file.
821 static long madvise_remove(struct vm_area_struct *vma,
822 struct vm_area_struct **prev,
823 unsigned long start, unsigned long end)
825 loff_t offset;
826 int error;
827 struct file *f;
829 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
831 if (vma->vm_flags & VM_LOCKED)
832 return -EINVAL;
834 f = vma->vm_file;
836 if (!f || !f->f_mapping || !f->f_mapping->host) {
837 return -EINVAL;
840 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
841 return -EACCES;
843 offset = (loff_t)(start - vma->vm_start)
844 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
847 * Filesystem's fallocate may need to take i_mutex. We need to
848 * explicitly grab a reference because the vma (and hence the
849 * vma's reference to the file) can go away as soon as we drop
850 * mmap_lock.
852 get_file(f);
853 if (userfaultfd_remove(vma, start, end)) {
854 /* mmap_lock was not released by userfaultfd_remove() */
855 mmap_read_unlock(current->mm);
857 error = vfs_fallocate(f,
858 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
859 offset, end - start);
860 fput(f);
861 mmap_read_lock(current->mm);
862 return error;
865 #ifdef CONFIG_MEMORY_FAILURE
867 * Error injection support for memory error handling.
869 static int madvise_inject_error(int behavior,
870 unsigned long start, unsigned long end)
872 struct page *page;
873 struct zone *zone;
874 unsigned long size;
876 if (!capable(CAP_SYS_ADMIN))
877 return -EPERM;
880 for (; start < end; start += size) {
881 unsigned long pfn;
882 int ret;
884 ret = get_user_pages_fast(start, 1, 0, &page);
885 if (ret != 1)
886 return ret;
887 pfn = page_to_pfn(page);
890 * When soft offlining hugepages, after migrating the page
891 * we dissolve it, therefore in the second loop "page" will
892 * no longer be a compound page.
894 size = page_size(compound_head(page));
896 if (PageHWPoison(page)) {
897 put_page(page);
898 continue;
901 if (behavior == MADV_SOFT_OFFLINE) {
902 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
903 pfn, start);
905 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
906 if (ret)
907 return ret;
908 continue;
911 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
912 pfn, start);
915 * Drop the page reference taken by get_user_pages_fast(). In
916 * the absence of MF_COUNT_INCREASED the memory_failure()
917 * routine is responsible for pinning the page to prevent it
918 * from being released back to the page allocator.
920 put_page(page);
921 ret = memory_failure(pfn, 0);
922 if (ret)
923 return ret;
926 /* Ensure that all poisoned pages are removed from per-cpu lists */
927 for_each_populated_zone(zone)
928 drain_all_pages(zone);
930 return 0;
932 #endif
934 static long
935 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
936 unsigned long start, unsigned long end, int behavior)
938 switch (behavior) {
939 case MADV_REMOVE:
940 return madvise_remove(vma, prev, start, end);
941 case MADV_WILLNEED:
942 return madvise_willneed(vma, prev, start, end);
943 case MADV_COLD:
944 return madvise_cold(vma, prev, start, end);
945 case MADV_PAGEOUT:
946 return madvise_pageout(vma, prev, start, end);
947 case MADV_FREE:
948 case MADV_DONTNEED:
949 return madvise_dontneed_free(vma, prev, start, end, behavior);
950 default:
951 return madvise_behavior(vma, prev, start, end, behavior);
955 static bool
956 madvise_behavior_valid(int behavior)
958 switch (behavior) {
959 case MADV_DOFORK:
960 case MADV_DONTFORK:
961 case MADV_NORMAL:
962 case MADV_SEQUENTIAL:
963 case MADV_RANDOM:
964 case MADV_REMOVE:
965 case MADV_WILLNEED:
966 case MADV_DONTNEED:
967 case MADV_FREE:
968 case MADV_COLD:
969 case MADV_PAGEOUT:
970 #ifdef CONFIG_KSM
971 case MADV_MERGEABLE:
972 case MADV_UNMERGEABLE:
973 #endif
974 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
975 case MADV_HUGEPAGE:
976 case MADV_NOHUGEPAGE:
977 #endif
978 case MADV_DONTDUMP:
979 case MADV_DODUMP:
980 case MADV_WIPEONFORK:
981 case MADV_KEEPONFORK:
982 #ifdef CONFIG_MEMORY_FAILURE
983 case MADV_SOFT_OFFLINE:
984 case MADV_HWPOISON:
985 #endif
986 return true;
988 default:
989 return false;
994 * The madvise(2) system call.
996 * Applications can use madvise() to advise the kernel how it should
997 * handle paging I/O in this VM area. The idea is to help the kernel
998 * use appropriate read-ahead and caching techniques. The information
999 * provided is advisory only, and can be safely disregarded by the
1000 * kernel without affecting the correct operation of the application.
1002 * behavior values:
1003 * MADV_NORMAL - the default behavior is to read clusters. This
1004 * results in some read-ahead and read-behind.
1005 * MADV_RANDOM - the system should read the minimum amount of data
1006 * on any access, since it is unlikely that the appli-
1007 * cation will need more than what it asks for.
1008 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1009 * once, so they can be aggressively read ahead, and
1010 * can be freed soon after they are accessed.
1011 * MADV_WILLNEED - the application is notifying the system to read
1012 * some pages ahead.
1013 * MADV_DONTNEED - the application is finished with the given range,
1014 * so the kernel can free resources associated with it.
1015 * MADV_FREE - the application marks pages in the given range as lazy free,
1016 * where actual purges are postponed until memory pressure happens.
1017 * MADV_REMOVE - the application wants to free up the given range of
1018 * pages and associated backing store.
1019 * MADV_DONTFORK - omit this area from child's address space when forking:
1020 * typically, to avoid COWing pages pinned by get_user_pages().
1021 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1022 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1023 * range after a fork.
1024 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1025 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1026 * were corrupted by unrecoverable hardware memory failure.
1027 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1028 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1029 * this area with pages of identical content from other such areas.
1030 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1031 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1032 * huge pages in the future. Existing pages might be coalesced and
1033 * new pages might be allocated as THP.
1034 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1035 * transparent huge pages so the existing pages will not be
1036 * coalesced into THP and new pages will not be allocated as THP.
1037 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1038 * from being included in its core dump.
1039 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1041 * return values:
1042 * zero - success
1043 * -EINVAL - start + len < 0, start is not page-aligned,
1044 * "behavior" is not a valid value, or application
1045 * is attempting to release locked or shared pages,
1046 * or the specified address range includes file, Huge TLB,
1047 * MAP_SHARED or VMPFNMAP range.
1048 * -ENOMEM - addresses in the specified range are not currently
1049 * mapped, or are outside the AS of the process.
1050 * -EIO - an I/O error occurred while paging in data.
1051 * -EBADF - map exists, but area maps something that isn't a file.
1052 * -EAGAIN - a kernel resource was temporarily unavailable.
1054 int do_madvise(unsigned long start, size_t len_in, int behavior)
1056 unsigned long end, tmp;
1057 struct vm_area_struct *vma, *prev;
1058 int unmapped_error = 0;
1059 int error = -EINVAL;
1060 int write;
1061 size_t len;
1062 struct blk_plug plug;
1064 start = untagged_addr(start);
1066 if (!madvise_behavior_valid(behavior))
1067 return error;
1069 if (!PAGE_ALIGNED(start))
1070 return error;
1071 len = PAGE_ALIGN(len_in);
1073 /* Check to see whether len was rounded up from small -ve to zero */
1074 if (len_in && !len)
1075 return error;
1077 end = start + len;
1078 if (end < start)
1079 return error;
1081 error = 0;
1082 if (end == start)
1083 return error;
1085 #ifdef CONFIG_MEMORY_FAILURE
1086 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1087 return madvise_inject_error(behavior, start, start + len_in);
1088 #endif
1090 write = madvise_need_mmap_write(behavior);
1091 if (write) {
1092 if (mmap_write_lock_killable(current->mm))
1093 return -EINTR;
1096 * We may have stolen the mm from another process
1097 * that is undergoing core dumping.
1099 * Right now that's io_ring, in the future it may
1100 * be remote process management and not "current"
1101 * at all.
1103 * We need to fix core dumping to not do this,
1104 * but for now we have the mmget_still_valid()
1105 * model.
1107 if (!mmget_still_valid(current->mm)) {
1108 mmap_write_unlock(current->mm);
1109 return -EINTR;
1111 } else {
1112 mmap_read_lock(current->mm);
1116 * If the interval [start,end) covers some unmapped address
1117 * ranges, just ignore them, but return -ENOMEM at the end.
1118 * - different from the way of handling in mlock etc.
1120 vma = find_vma_prev(current->mm, start, &prev);
1121 if (vma && start > vma->vm_start)
1122 prev = vma;
1124 blk_start_plug(&plug);
1125 for (;;) {
1126 /* Still start < end. */
1127 error = -ENOMEM;
1128 if (!vma)
1129 goto out;
1131 /* Here start < (end|vma->vm_end). */
1132 if (start < vma->vm_start) {
1133 unmapped_error = -ENOMEM;
1134 start = vma->vm_start;
1135 if (start >= end)
1136 goto out;
1139 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1140 tmp = vma->vm_end;
1141 if (end < tmp)
1142 tmp = end;
1144 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1145 error = madvise_vma(vma, &prev, start, tmp, behavior);
1146 if (error)
1147 goto out;
1148 start = tmp;
1149 if (prev && start < prev->vm_end)
1150 start = prev->vm_end;
1151 error = unmapped_error;
1152 if (start >= end)
1153 goto out;
1154 if (prev)
1155 vma = prev->vm_next;
1156 else /* madvise_remove dropped mmap_lock */
1157 vma = find_vma(current->mm, start);
1159 out:
1160 blk_finish_plug(&plug);
1161 if (write)
1162 mmap_write_unlock(current->mm);
1163 else
1164 mmap_read_unlock(current->mm);
1166 return error;
1169 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1171 return do_madvise(start, len_in, behavior);