1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
36 #include <linux/kernel.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
60 #include "ras/ras_event.h"
62 int sysctl_memory_failure_early_kill __read_mostly
= 0;
64 int sysctl_memory_failure_recovery __read_mostly
= 1;
66 atomic_long_t num_poisoned_pages __read_mostly
= ATOMIC_LONG_INIT(0);
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 u32 hwpoison_filter_enable
= 0;
71 u32 hwpoison_filter_dev_major
= ~0U;
72 u32 hwpoison_filter_dev_minor
= ~0U;
73 u64 hwpoison_filter_flags_mask
;
74 u64 hwpoison_filter_flags_value
;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable
);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major
);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor
);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask
);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value
);
81 static int hwpoison_filter_dev(struct page
*p
)
83 struct address_space
*mapping
;
86 if (hwpoison_filter_dev_major
== ~0U &&
87 hwpoison_filter_dev_minor
== ~0U)
91 * page_mapping() does not accept slab pages.
96 mapping
= page_mapping(p
);
97 if (mapping
== NULL
|| mapping
->host
== NULL
)
100 dev
= mapping
->host
->i_sb
->s_dev
;
101 if (hwpoison_filter_dev_major
!= ~0U &&
102 hwpoison_filter_dev_major
!= MAJOR(dev
))
104 if (hwpoison_filter_dev_minor
!= ~0U &&
105 hwpoison_filter_dev_minor
!= MINOR(dev
))
111 static int hwpoison_filter_flags(struct page
*p
)
113 if (!hwpoison_filter_flags_mask
)
116 if ((stable_page_flags(p
) & hwpoison_filter_flags_mask
) ==
117 hwpoison_filter_flags_value
)
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
134 u64 hwpoison_filter_memcg
;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg
);
136 static int hwpoison_filter_task(struct page
*p
)
138 if (!hwpoison_filter_memcg
)
141 if (page_cgroup_ino(p
) != hwpoison_filter_memcg
)
147 static int hwpoison_filter_task(struct page
*p
) { return 0; }
150 int hwpoison_filter(struct page
*p
)
152 if (!hwpoison_filter_enable
)
155 if (hwpoison_filter_dev(p
))
158 if (hwpoison_filter_flags(p
))
161 if (hwpoison_filter_task(p
))
167 int hwpoison_filter(struct page
*p
)
173 EXPORT_SYMBOL_GPL(hwpoison_filter
);
176 * Kill all processes that have a poisoned page mapped and then isolate
180 * Find all processes having the page mapped and kill them.
181 * But we keep a page reference around so that the page is not
182 * actually freed yet.
183 * Then stash the page away
185 * There's no convenient way to get back to mapped processes
186 * from the VMAs. So do a brute-force search over all
189 * Remember that machine checks are not common (or rather
190 * if they are common you have other problems), so this shouldn't
191 * be a performance issue.
193 * Also there are some races possible while we get from the
194 * error detection to actually handle it.
199 struct task_struct
*tsk
;
205 * Send all the processes who have the page mapped a signal.
206 * ``action optional'' if they are not immediately affected by the error
207 * ``action required'' if error happened in current execution context
209 static int kill_proc(struct to_kill
*tk
, unsigned long pfn
, int flags
)
211 struct task_struct
*t
= tk
->tsk
;
212 short addr_lsb
= tk
->size_shift
;
215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 pfn
, t
->comm
, t
->pid
);
218 if (flags
& MF_ACTION_REQUIRED
) {
219 WARN_ON_ONCE(t
!= current
);
220 ret
= force_sig_mceerr(BUS_MCEERR_AR
,
221 (void __user
*)tk
->addr
, addr_lsb
);
224 * Don't use force here, it's convenient if the signal
225 * can be temporarily blocked.
226 * This could cause a loop when the user sets SIGBUS
227 * to SIG_IGN, but hopefully no one will do that?
229 ret
= send_sig_mceerr(BUS_MCEERR_AO
, (void __user
*)tk
->addr
,
230 addr_lsb
, t
); /* synchronous? */
233 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234 t
->comm
, t
->pid
, ret
);
239 * When a unknown page type is encountered drain as many buffers as possible
240 * in the hope to turn the page into a LRU or free page, which we can handle.
242 void shake_page(struct page
*p
, int access
)
251 drain_all_pages(page_zone(p
));
252 if (PageLRU(p
) || is_free_buddy_page(p
))
257 * Only call shrink_node_slabs here (which would also shrink
258 * other caches) if access is not potentially fatal.
261 drop_slab_node(page_to_nid(p
));
263 EXPORT_SYMBOL_GPL(shake_page
);
265 static unsigned long dev_pagemap_mapping_shift(struct page
*page
,
266 struct vm_area_struct
*vma
)
268 unsigned long address
= vma_address(page
, vma
);
275 pgd
= pgd_offset(vma
->vm_mm
, address
);
276 if (!pgd_present(*pgd
))
278 p4d
= p4d_offset(pgd
, address
);
279 if (!p4d_present(*p4d
))
281 pud
= pud_offset(p4d
, address
);
282 if (!pud_present(*pud
))
284 if (pud_devmap(*pud
))
286 pmd
= pmd_offset(pud
, address
);
287 if (!pmd_present(*pmd
))
289 if (pmd_devmap(*pmd
))
291 pte
= pte_offset_map(pmd
, address
);
292 if (!pte_present(*pte
))
294 if (pte_devmap(*pte
))
300 * Failure handling: if we can't find or can't kill a process there's
301 * not much we can do. We just print a message and ignore otherwise.
305 * Schedule a process for later kill.
306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
308 static void add_to_kill(struct task_struct
*tsk
, struct page
*p
,
309 struct vm_area_struct
*vma
,
310 struct list_head
*to_kill
)
314 tk
= kmalloc(sizeof(struct to_kill
), GFP_ATOMIC
);
316 pr_err("Memory failure: Out of memory while machine check handling\n");
320 tk
->addr
= page_address_in_vma(p
, vma
);
321 if (is_zone_device_page(p
))
322 tk
->size_shift
= dev_pagemap_mapping_shift(p
, vma
);
324 tk
->size_shift
= page_shift(compound_head(p
));
327 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
328 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
329 * so "tk->size_shift == 0" effectively checks no mapping on
330 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
331 * to a process' address space, it's possible not all N VMAs
332 * contain mappings for the page, but at least one VMA does.
333 * Only deliver SIGBUS with payload derived from the VMA that
334 * has a mapping for the page.
336 if (tk
->addr
== -EFAULT
) {
337 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
338 page_to_pfn(p
), tsk
->comm
);
339 } else if (tk
->size_shift
== 0) {
344 get_task_struct(tsk
);
346 list_add_tail(&tk
->nd
, to_kill
);
350 * Kill the processes that have been collected earlier.
352 * Only do anything when DOIT is set, otherwise just free the list
353 * (this is used for clean pages which do not need killing)
354 * Also when FAIL is set do a force kill because something went
357 static void kill_procs(struct list_head
*to_kill
, int forcekill
, bool fail
,
358 unsigned long pfn
, int flags
)
360 struct to_kill
*tk
, *next
;
362 list_for_each_entry_safe (tk
, next
, to_kill
, nd
) {
365 * In case something went wrong with munmapping
366 * make sure the process doesn't catch the
367 * signal and then access the memory. Just kill it.
369 if (fail
|| tk
->addr
== -EFAULT
) {
370 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
372 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
,
373 tk
->tsk
, PIDTYPE_PID
);
377 * In theory the process could have mapped
378 * something else on the address in-between. We could
379 * check for that, but we need to tell the
382 else if (kill_proc(tk
, pfn
, flags
) < 0)
383 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
386 put_task_struct(tk
->tsk
);
392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
393 * on behalf of the thread group. Return task_struct of the (first found)
394 * dedicated thread if found, and return NULL otherwise.
396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
397 * have to call rcu_read_lock/unlock() in this function.
399 static struct task_struct
*find_early_kill_thread(struct task_struct
*tsk
)
401 struct task_struct
*t
;
403 for_each_thread(tsk
, t
) {
404 if (t
->flags
& PF_MCE_PROCESS
) {
405 if (t
->flags
& PF_MCE_EARLY
)
408 if (sysctl_memory_failure_early_kill
)
416 * Determine whether a given process is "early kill" process which expects
417 * to be signaled when some page under the process is hwpoisoned.
418 * Return task_struct of the dedicated thread (main thread unless explicitly
419 * specified) if the process is "early kill," and otherwise returns NULL.
421 * Note that the above is true for Action Optional case, but not for Action
422 * Required case where SIGBUS should sent only to the current thread.
424 static struct task_struct
*task_early_kill(struct task_struct
*tsk
,
431 * Comparing ->mm here because current task might represent
432 * a subthread, while tsk always points to the main thread.
434 if (tsk
->mm
== current
->mm
)
439 return find_early_kill_thread(tsk
);
443 * Collect processes when the error hit an anonymous page.
445 static void collect_procs_anon(struct page
*page
, struct list_head
*to_kill
,
448 struct vm_area_struct
*vma
;
449 struct task_struct
*tsk
;
453 av
= page_lock_anon_vma_read(page
);
454 if (av
== NULL
) /* Not actually mapped anymore */
457 pgoff
= page_to_pgoff(page
);
458 read_lock(&tasklist_lock
);
459 for_each_process (tsk
) {
460 struct anon_vma_chain
*vmac
;
461 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
465 anon_vma_interval_tree_foreach(vmac
, &av
->rb_root
,
468 if (!page_mapped_in_vma(page
, vma
))
470 if (vma
->vm_mm
== t
->mm
)
471 add_to_kill(t
, page
, vma
, to_kill
);
474 read_unlock(&tasklist_lock
);
475 page_unlock_anon_vma_read(av
);
479 * Collect processes when the error hit a file mapped page.
481 static void collect_procs_file(struct page
*page
, struct list_head
*to_kill
,
484 struct vm_area_struct
*vma
;
485 struct task_struct
*tsk
;
486 struct address_space
*mapping
= page
->mapping
;
488 i_mmap_lock_read(mapping
);
489 read_lock(&tasklist_lock
);
490 for_each_process(tsk
) {
491 pgoff_t pgoff
= page_to_pgoff(page
);
492 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
496 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
,
499 * Send early kill signal to tasks where a vma covers
500 * the page but the corrupted page is not necessarily
501 * mapped it in its pte.
502 * Assume applications who requested early kill want
503 * to be informed of all such data corruptions.
505 if (vma
->vm_mm
== t
->mm
)
506 add_to_kill(t
, page
, vma
, to_kill
);
509 read_unlock(&tasklist_lock
);
510 i_mmap_unlock_read(mapping
);
514 * Collect the processes who have the corrupted page mapped to kill.
516 static void collect_procs(struct page
*page
, struct list_head
*tokill
,
523 collect_procs_anon(page
, tokill
, force_early
);
525 collect_procs_file(page
, tokill
, force_early
);
528 static const char *action_name
[] = {
529 [MF_IGNORED
] = "Ignored",
530 [MF_FAILED
] = "Failed",
531 [MF_DELAYED
] = "Delayed",
532 [MF_RECOVERED
] = "Recovered",
535 static const char * const action_page_types
[] = {
536 [MF_MSG_KERNEL
] = "reserved kernel page",
537 [MF_MSG_KERNEL_HIGH_ORDER
] = "high-order kernel page",
538 [MF_MSG_SLAB
] = "kernel slab page",
539 [MF_MSG_DIFFERENT_COMPOUND
] = "different compound page after locking",
540 [MF_MSG_POISONED_HUGE
] = "huge page already hardware poisoned",
541 [MF_MSG_HUGE
] = "huge page",
542 [MF_MSG_FREE_HUGE
] = "free huge page",
543 [MF_MSG_NON_PMD_HUGE
] = "non-pmd-sized huge page",
544 [MF_MSG_UNMAP_FAILED
] = "unmapping failed page",
545 [MF_MSG_DIRTY_SWAPCACHE
] = "dirty swapcache page",
546 [MF_MSG_CLEAN_SWAPCACHE
] = "clean swapcache page",
547 [MF_MSG_DIRTY_MLOCKED_LRU
] = "dirty mlocked LRU page",
548 [MF_MSG_CLEAN_MLOCKED_LRU
] = "clean mlocked LRU page",
549 [MF_MSG_DIRTY_UNEVICTABLE_LRU
] = "dirty unevictable LRU page",
550 [MF_MSG_CLEAN_UNEVICTABLE_LRU
] = "clean unevictable LRU page",
551 [MF_MSG_DIRTY_LRU
] = "dirty LRU page",
552 [MF_MSG_CLEAN_LRU
] = "clean LRU page",
553 [MF_MSG_TRUNCATED_LRU
] = "already truncated LRU page",
554 [MF_MSG_BUDDY
] = "free buddy page",
555 [MF_MSG_BUDDY_2ND
] = "free buddy page (2nd try)",
556 [MF_MSG_DAX
] = "dax page",
557 [MF_MSG_UNKNOWN
] = "unknown page",
561 * XXX: It is possible that a page is isolated from LRU cache,
562 * and then kept in swap cache or failed to remove from page cache.
563 * The page count will stop it from being freed by unpoison.
564 * Stress tests should be aware of this memory leak problem.
566 static int delete_from_lru_cache(struct page
*p
)
568 if (!isolate_lru_page(p
)) {
570 * Clear sensible page flags, so that the buddy system won't
571 * complain when the page is unpoison-and-freed.
574 ClearPageUnevictable(p
);
577 * Poisoned page might never drop its ref count to 0 so we have
578 * to uncharge it manually from its memcg.
580 mem_cgroup_uncharge(p
);
583 * drop the page count elevated by isolate_lru_page()
591 static int truncate_error_page(struct page
*p
, unsigned long pfn
,
592 struct address_space
*mapping
)
596 if (mapping
->a_ops
->error_remove_page
) {
597 int err
= mapping
->a_ops
->error_remove_page(mapping
, p
);
600 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
602 } else if (page_has_private(p
) &&
603 !try_to_release_page(p
, GFP_NOIO
)) {
604 pr_info("Memory failure: %#lx: failed to release buffers\n",
611 * If the file system doesn't support it just invalidate
612 * This fails on dirty or anything with private pages
614 if (invalidate_inode_page(p
))
617 pr_info("Memory failure: %#lx: Failed to invalidate\n",
625 * Error hit kernel page.
626 * Do nothing, try to be lucky and not touch this instead. For a few cases we
627 * could be more sophisticated.
629 static int me_kernel(struct page
*p
, unsigned long pfn
)
635 * Page in unknown state. Do nothing.
637 static int me_unknown(struct page
*p
, unsigned long pfn
)
639 pr_err("Memory failure: %#lx: Unknown page state\n", pfn
);
644 * Clean (or cleaned) page cache page.
646 static int me_pagecache_clean(struct page
*p
, unsigned long pfn
)
648 struct address_space
*mapping
;
650 delete_from_lru_cache(p
);
653 * For anonymous pages we're done the only reference left
654 * should be the one m_f() holds.
660 * Now truncate the page in the page cache. This is really
661 * more like a "temporary hole punch"
662 * Don't do this for block devices when someone else
663 * has a reference, because it could be file system metadata
664 * and that's not safe to truncate.
666 mapping
= page_mapping(p
);
669 * Page has been teared down in the meanwhile
675 * Truncation is a bit tricky. Enable it per file system for now.
677 * Open: to take i_mutex or not for this? Right now we don't.
679 return truncate_error_page(p
, pfn
, mapping
);
683 * Dirty pagecache page
684 * Issues: when the error hit a hole page the error is not properly
687 static int me_pagecache_dirty(struct page
*p
, unsigned long pfn
)
689 struct address_space
*mapping
= page_mapping(p
);
692 /* TBD: print more information about the file. */
695 * IO error will be reported by write(), fsync(), etc.
696 * who check the mapping.
697 * This way the application knows that something went
698 * wrong with its dirty file data.
700 * There's one open issue:
702 * The EIO will be only reported on the next IO
703 * operation and then cleared through the IO map.
704 * Normally Linux has two mechanisms to pass IO error
705 * first through the AS_EIO flag in the address space
706 * and then through the PageError flag in the page.
707 * Since we drop pages on memory failure handling the
708 * only mechanism open to use is through AS_AIO.
710 * This has the disadvantage that it gets cleared on
711 * the first operation that returns an error, while
712 * the PageError bit is more sticky and only cleared
713 * when the page is reread or dropped. If an
714 * application assumes it will always get error on
715 * fsync, but does other operations on the fd before
716 * and the page is dropped between then the error
717 * will not be properly reported.
719 * This can already happen even without hwpoisoned
720 * pages: first on metadata IO errors (which only
721 * report through AS_EIO) or when the page is dropped
724 * So right now we assume that the application DTRT on
725 * the first EIO, but we're not worse than other parts
728 mapping_set_error(mapping
, -EIO
);
731 return me_pagecache_clean(p
, pfn
);
735 * Clean and dirty swap cache.
737 * Dirty swap cache page is tricky to handle. The page could live both in page
738 * cache and swap cache(ie. page is freshly swapped in). So it could be
739 * referenced concurrently by 2 types of PTEs:
740 * normal PTEs and swap PTEs. We try to handle them consistently by calling
741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
743 * - clear dirty bit to prevent IO
745 * - but keep in the swap cache, so that when we return to it on
746 * a later page fault, we know the application is accessing
747 * corrupted data and shall be killed (we installed simple
748 * interception code in do_swap_page to catch it).
750 * Clean swap cache pages can be directly isolated. A later page fault will
751 * bring in the known good data from disk.
753 static int me_swapcache_dirty(struct page
*p
, unsigned long pfn
)
756 /* Trigger EIO in shmem: */
757 ClearPageUptodate(p
);
759 if (!delete_from_lru_cache(p
))
765 static int me_swapcache_clean(struct page
*p
, unsigned long pfn
)
767 delete_from_swap_cache(p
);
769 if (!delete_from_lru_cache(p
))
776 * Huge pages. Needs work.
778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
779 * To narrow down kill region to one page, we need to break up pmd.
781 static int me_huge_page(struct page
*p
, unsigned long pfn
)
784 struct page
*hpage
= compound_head(p
);
785 struct address_space
*mapping
;
787 if (!PageHuge(hpage
))
790 mapping
= page_mapping(hpage
);
792 res
= truncate_error_page(hpage
, pfn
, mapping
);
796 * migration entry prevents later access on error anonymous
797 * hugepage, so we can free and dissolve it into buddy to
798 * save healthy subpages.
802 dissolve_free_huge_page(p
);
811 * Various page states we can handle.
813 * A page state is defined by its current page->flags bits.
814 * The table matches them in order and calls the right handler.
816 * This is quite tricky because we can access page at any time
817 * in its live cycle, so all accesses have to be extremely careful.
819 * This is not complete. More states could be added.
820 * For any missing state don't attempt recovery.
823 #define dirty (1UL << PG_dirty)
824 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825 #define unevict (1UL << PG_unevictable)
826 #define mlock (1UL << PG_mlocked)
827 #define writeback (1UL << PG_writeback)
828 #define lru (1UL << PG_lru)
829 #define head (1UL << PG_head)
830 #define slab (1UL << PG_slab)
831 #define reserved (1UL << PG_reserved)
833 static struct page_state
{
836 enum mf_action_page_type type
;
837 int (*action
)(struct page
*p
, unsigned long pfn
);
839 { reserved
, reserved
, MF_MSG_KERNEL
, me_kernel
},
841 * free pages are specially detected outside this table:
842 * PG_buddy pages only make a small fraction of all free pages.
846 * Could in theory check if slab page is free or if we can drop
847 * currently unused objects without touching them. But just
848 * treat it as standard kernel for now.
850 { slab
, slab
, MF_MSG_SLAB
, me_kernel
},
852 { head
, head
, MF_MSG_HUGE
, me_huge_page
},
854 { sc
|dirty
, sc
|dirty
, MF_MSG_DIRTY_SWAPCACHE
, me_swapcache_dirty
},
855 { sc
|dirty
, sc
, MF_MSG_CLEAN_SWAPCACHE
, me_swapcache_clean
},
857 { mlock
|dirty
, mlock
|dirty
, MF_MSG_DIRTY_MLOCKED_LRU
, me_pagecache_dirty
},
858 { mlock
|dirty
, mlock
, MF_MSG_CLEAN_MLOCKED_LRU
, me_pagecache_clean
},
860 { unevict
|dirty
, unevict
|dirty
, MF_MSG_DIRTY_UNEVICTABLE_LRU
, me_pagecache_dirty
},
861 { unevict
|dirty
, unevict
, MF_MSG_CLEAN_UNEVICTABLE_LRU
, me_pagecache_clean
},
863 { lru
|dirty
, lru
|dirty
, MF_MSG_DIRTY_LRU
, me_pagecache_dirty
},
864 { lru
|dirty
, lru
, MF_MSG_CLEAN_LRU
, me_pagecache_clean
},
867 * Catchall entry: must be at end.
869 { 0, 0, MF_MSG_UNKNOWN
, me_unknown
},
883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
884 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
886 static void action_result(unsigned long pfn
, enum mf_action_page_type type
,
887 enum mf_result result
)
889 trace_memory_failure_event(pfn
, type
, result
);
891 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892 pfn
, action_page_types
[type
], action_name
[result
]);
895 static int page_action(struct page_state
*ps
, struct page
*p
,
901 result
= ps
->action(p
, pfn
);
903 count
= page_count(p
) - 1;
904 if (ps
->action
== me_swapcache_dirty
&& result
== MF_DELAYED
)
907 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908 pfn
, action_page_types
[ps
->type
], count
);
911 action_result(pfn
, ps
->type
, result
);
913 /* Could do more checks here if page looks ok */
915 * Could adjust zone counters here to correct for the missing page.
918 return (result
== MF_RECOVERED
|| result
== MF_DELAYED
) ? 0 : -EBUSY
;
922 * get_hwpoison_page() - Get refcount for memory error handling:
923 * @page: raw error page (hit by memory error)
925 * Return: return 0 if failed to grab the refcount, otherwise true (some
928 int get_hwpoison_page(struct page
*page
)
930 struct page
*head
= compound_head(page
);
932 if (!PageHuge(head
) && PageTransHuge(head
)) {
934 * Non anonymous thp exists only in allocation/free time. We
935 * can't handle such a case correctly, so let's give it up.
936 * This should be better than triggering BUG_ON when kernel
937 * tries to touch the "partially handled" page.
939 if (!PageAnon(head
)) {
940 pr_err("Memory failure: %#lx: non anonymous thp\n",
946 if (get_page_unless_zero(head
)) {
947 if (head
== compound_head(page
))
950 pr_info("Memory failure: %#lx cannot catch tail\n",
957 EXPORT_SYMBOL_GPL(get_hwpoison_page
);
960 * Do all that is necessary to remove user space mappings. Unmap
961 * the pages and send SIGBUS to the processes if the data was dirty.
963 static bool hwpoison_user_mappings(struct page
*p
, unsigned long pfn
,
964 int flags
, struct page
**hpagep
)
966 enum ttu_flags ttu
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
967 struct address_space
*mapping
;
969 bool unmap_success
= true;
970 int kill
= 1, forcekill
;
971 struct page
*hpage
= *hpagep
;
972 bool mlocked
= PageMlocked(hpage
);
975 * Here we are interested only in user-mapped pages, so skip any
976 * other types of pages.
978 if (PageReserved(p
) || PageSlab(p
))
980 if (!(PageLRU(hpage
) || PageHuge(p
)))
984 * This check implies we don't kill processes if their pages
985 * are in the swap cache early. Those are always late kills.
987 if (!page_mapped(hpage
))
991 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn
);
995 if (PageSwapCache(p
)) {
996 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
998 ttu
|= TTU_IGNORE_HWPOISON
;
1002 * Propagate the dirty bit from PTEs to struct page first, because we
1003 * need this to decide if we should kill or just drop the page.
1004 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005 * be called inside page lock (it's recommended but not enforced).
1007 mapping
= page_mapping(hpage
);
1008 if (!(flags
& MF_MUST_KILL
) && !PageDirty(hpage
) && mapping
&&
1009 mapping_cap_writeback_dirty(mapping
)) {
1010 if (page_mkclean(hpage
)) {
1011 SetPageDirty(hpage
);
1014 ttu
|= TTU_IGNORE_HWPOISON
;
1015 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1021 * First collect all the processes that have the page
1022 * mapped in dirty form. This has to be done before try_to_unmap,
1023 * because ttu takes the rmap data structures down.
1025 * Error handling: We ignore errors here because
1026 * there's nothing that can be done.
1029 collect_procs(hpage
, &tokill
, flags
& MF_ACTION_REQUIRED
);
1031 if (!PageHuge(hpage
)) {
1032 unmap_success
= try_to_unmap(hpage
, ttu
);
1035 * For hugetlb pages, try_to_unmap could potentially call
1036 * huge_pmd_unshare. Because of this, take semaphore in
1037 * write mode here and set TTU_RMAP_LOCKED to indicate we
1038 * have taken the lock at this higer level.
1040 * Note that the call to hugetlb_page_mapping_lock_write
1041 * is necessary even if mapping is already set. It handles
1042 * ugliness of potentially having to drop page lock to obtain
1045 mapping
= hugetlb_page_mapping_lock_write(hpage
);
1048 unmap_success
= try_to_unmap(hpage
,
1049 ttu
|TTU_RMAP_LOCKED
);
1050 i_mmap_unlock_write(mapping
);
1052 pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1054 unmap_success
= false;
1058 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1059 pfn
, page_mapcount(hpage
));
1062 * try_to_unmap() might put mlocked page in lru cache, so call
1063 * shake_page() again to ensure that it's flushed.
1066 shake_page(hpage
, 0);
1069 * Now that the dirty bit has been propagated to the
1070 * struct page and all unmaps done we can decide if
1071 * killing is needed or not. Only kill when the page
1072 * was dirty or the process is not restartable,
1073 * otherwise the tokill list is merely
1074 * freed. When there was a problem unmapping earlier
1075 * use a more force-full uncatchable kill to prevent
1076 * any accesses to the poisoned memory.
1078 forcekill
= PageDirty(hpage
) || (flags
& MF_MUST_KILL
);
1079 kill_procs(&tokill
, forcekill
, !unmap_success
, pfn
, flags
);
1081 return unmap_success
;
1084 static int identify_page_state(unsigned long pfn
, struct page
*p
,
1085 unsigned long page_flags
)
1087 struct page_state
*ps
;
1090 * The first check uses the current page flags which may not have any
1091 * relevant information. The second check with the saved page flags is
1092 * carried out only if the first check can't determine the page status.
1094 for (ps
= error_states
;; ps
++)
1095 if ((p
->flags
& ps
->mask
) == ps
->res
)
1098 page_flags
|= (p
->flags
& (1UL << PG_dirty
));
1101 for (ps
= error_states
;; ps
++)
1102 if ((page_flags
& ps
->mask
) == ps
->res
)
1104 return page_action(ps
, p
, pfn
);
1107 static int memory_failure_hugetlb(unsigned long pfn
, int flags
)
1109 struct page
*p
= pfn_to_page(pfn
);
1110 struct page
*head
= compound_head(p
);
1112 unsigned long page_flags
;
1114 if (TestSetPageHWPoison(head
)) {
1115 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1120 num_poisoned_pages_inc();
1122 if (!(flags
& MF_COUNT_INCREASED
) && !get_hwpoison_page(p
)) {
1124 * Check "filter hit" and "race with other subpage."
1127 if (PageHWPoison(head
)) {
1128 if ((hwpoison_filter(p
) && TestClearPageHWPoison(p
))
1129 || (p
!= head
&& TestSetPageHWPoison(head
))) {
1130 num_poisoned_pages_dec();
1136 dissolve_free_huge_page(p
);
1137 action_result(pfn
, MF_MSG_FREE_HUGE
, MF_DELAYED
);
1142 page_flags
= head
->flags
;
1144 if (!PageHWPoison(head
)) {
1145 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn
);
1146 num_poisoned_pages_dec();
1148 put_hwpoison_page(head
);
1153 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1154 * simply disable it. In order to make it work properly, we need
1156 * - conversion of a pud that maps an error hugetlb into hwpoison
1157 * entry properly works, and
1158 * - other mm code walking over page table is aware of pud-aligned
1161 if (huge_page_size(page_hstate(head
)) > PMD_SIZE
) {
1162 action_result(pfn
, MF_MSG_NON_PMD_HUGE
, MF_IGNORED
);
1167 if (!hwpoison_user_mappings(p
, pfn
, flags
, &head
)) {
1168 action_result(pfn
, MF_MSG_UNMAP_FAILED
, MF_IGNORED
);
1173 res
= identify_page_state(pfn
, p
, page_flags
);
1179 static int memory_failure_dev_pagemap(unsigned long pfn
, int flags
,
1180 struct dev_pagemap
*pgmap
)
1182 struct page
*page
= pfn_to_page(pfn
);
1183 const bool unmap_success
= true;
1184 unsigned long size
= 0;
1192 * Prevent the inode from being freed while we are interrogating
1193 * the address_space, typically this would be handled by
1194 * lock_page(), but dax pages do not use the page lock. This
1195 * also prevents changes to the mapping of this pfn until
1196 * poison signaling is complete.
1198 cookie
= dax_lock_page(page
);
1202 if (hwpoison_filter(page
)) {
1207 if (pgmap
->type
== MEMORY_DEVICE_PRIVATE
) {
1209 * TODO: Handle HMM pages which may need coordination
1210 * with device-side memory.
1216 * Use this flag as an indication that the dax page has been
1217 * remapped UC to prevent speculative consumption of poison.
1219 SetPageHWPoison(page
);
1222 * Unlike System-RAM there is no possibility to swap in a
1223 * different physical page at a given virtual address, so all
1224 * userspace consumption of ZONE_DEVICE memory necessitates
1225 * SIGBUS (i.e. MF_MUST_KILL)
1227 flags
|= MF_ACTION_REQUIRED
| MF_MUST_KILL
;
1228 collect_procs(page
, &tokill
, flags
& MF_ACTION_REQUIRED
);
1230 list_for_each_entry(tk
, &tokill
, nd
)
1232 size
= max(size
, 1UL << tk
->size_shift
);
1235 * Unmap the largest mapping to avoid breaking up
1236 * device-dax mappings which are constant size. The
1237 * actual size of the mapping being torn down is
1238 * communicated in siginfo, see kill_proc()
1240 start
= (page
->index
<< PAGE_SHIFT
) & ~(size
- 1);
1241 unmap_mapping_range(page
->mapping
, start
, start
+ size
, 0);
1243 kill_procs(&tokill
, flags
& MF_MUST_KILL
, !unmap_success
, pfn
, flags
);
1246 dax_unlock_page(page
, cookie
);
1248 /* drop pgmap ref acquired in caller */
1249 put_dev_pagemap(pgmap
);
1250 action_result(pfn
, MF_MSG_DAX
, rc
? MF_FAILED
: MF_RECOVERED
);
1255 * memory_failure - Handle memory failure of a page.
1256 * @pfn: Page Number of the corrupted page
1257 * @flags: fine tune action taken
1259 * This function is called by the low level machine check code
1260 * of an architecture when it detects hardware memory corruption
1261 * of a page. It tries its best to recover, which includes
1262 * dropping pages, killing processes etc.
1264 * The function is primarily of use for corruptions that
1265 * happen outside the current execution context (e.g. when
1266 * detected by a background scrubber)
1268 * Must run in process context (e.g. a work queue) with interrupts
1269 * enabled and no spinlocks hold.
1271 int memory_failure(unsigned long pfn
, int flags
)
1275 struct page
*orig_head
;
1276 struct dev_pagemap
*pgmap
;
1278 unsigned long page_flags
;
1280 if (!sysctl_memory_failure_recovery
)
1281 panic("Memory failure on page %lx", pfn
);
1283 p
= pfn_to_online_page(pfn
);
1285 if (pfn_valid(pfn
)) {
1286 pgmap
= get_dev_pagemap(pfn
, NULL
);
1288 return memory_failure_dev_pagemap(pfn
, flags
,
1291 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1297 return memory_failure_hugetlb(pfn
, flags
);
1298 if (TestSetPageHWPoison(p
)) {
1299 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1304 orig_head
= hpage
= compound_head(p
);
1305 num_poisoned_pages_inc();
1308 * We need/can do nothing about count=0 pages.
1309 * 1) it's a free page, and therefore in safe hand:
1310 * prep_new_page() will be the gate keeper.
1311 * 2) it's part of a non-compound high order page.
1312 * Implies some kernel user: cannot stop them from
1313 * R/W the page; let's pray that the page has been
1314 * used and will be freed some time later.
1315 * In fact it's dangerous to directly bump up page count from 0,
1316 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1318 if (!(flags
& MF_COUNT_INCREASED
) && !get_hwpoison_page(p
)) {
1319 if (is_free_buddy_page(p
)) {
1320 action_result(pfn
, MF_MSG_BUDDY
, MF_DELAYED
);
1323 action_result(pfn
, MF_MSG_KERNEL_HIGH_ORDER
, MF_IGNORED
);
1328 if (PageTransHuge(hpage
)) {
1330 if (!PageAnon(p
) || unlikely(split_huge_page(p
))) {
1333 pr_err("Memory failure: %#lx: non anonymous thp\n",
1336 pr_err("Memory failure: %#lx: thp split failed\n",
1338 if (TestClearPageHWPoison(p
))
1339 num_poisoned_pages_dec();
1340 put_hwpoison_page(p
);
1344 VM_BUG_ON_PAGE(!page_count(p
), p
);
1345 hpage
= compound_head(p
);
1349 * We ignore non-LRU pages for good reasons.
1350 * - PG_locked is only well defined for LRU pages and a few others
1351 * - to avoid races with __SetPageLocked()
1352 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1353 * The check (unnecessarily) ignores LRU pages being isolated and
1354 * walked by the page reclaim code, however that's not a big loss.
1357 /* shake_page could have turned it free. */
1358 if (!PageLRU(p
) && is_free_buddy_page(p
)) {
1359 if (flags
& MF_COUNT_INCREASED
)
1360 action_result(pfn
, MF_MSG_BUDDY
, MF_DELAYED
);
1362 action_result(pfn
, MF_MSG_BUDDY_2ND
, MF_DELAYED
);
1369 * The page could have changed compound pages during the locking.
1370 * If this happens just bail out.
1372 if (PageCompound(p
) && compound_head(p
) != orig_head
) {
1373 action_result(pfn
, MF_MSG_DIFFERENT_COMPOUND
, MF_IGNORED
);
1379 * We use page flags to determine what action should be taken, but
1380 * the flags can be modified by the error containment action. One
1381 * example is an mlocked page, where PG_mlocked is cleared by
1382 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1383 * correctly, we save a copy of the page flags at this time.
1386 page_flags
= hpage
->flags
;
1388 page_flags
= p
->flags
;
1391 * unpoison always clear PG_hwpoison inside page lock
1393 if (!PageHWPoison(p
)) {
1394 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn
);
1395 num_poisoned_pages_dec();
1397 put_hwpoison_page(p
);
1400 if (hwpoison_filter(p
)) {
1401 if (TestClearPageHWPoison(p
))
1402 num_poisoned_pages_dec();
1404 put_hwpoison_page(p
);
1408 if (!PageTransTail(p
) && !PageLRU(p
))
1409 goto identify_page_state
;
1412 * It's very difficult to mess with pages currently under IO
1413 * and in many cases impossible, so we just avoid it here.
1415 wait_on_page_writeback(p
);
1418 * Now take care of user space mappings.
1419 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1421 * When the raw error page is thp tail page, hpage points to the raw
1422 * page after thp split.
1424 if (!hwpoison_user_mappings(p
, pfn
, flags
, &hpage
)) {
1425 action_result(pfn
, MF_MSG_UNMAP_FAILED
, MF_IGNORED
);
1431 * Torn down by someone else?
1433 if (PageLRU(p
) && !PageSwapCache(p
) && p
->mapping
== NULL
) {
1434 action_result(pfn
, MF_MSG_TRUNCATED_LRU
, MF_IGNORED
);
1439 identify_page_state
:
1440 res
= identify_page_state(pfn
, p
, page_flags
);
1445 EXPORT_SYMBOL_GPL(memory_failure
);
1447 #define MEMORY_FAILURE_FIFO_ORDER 4
1448 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1450 struct memory_failure_entry
{
1455 struct memory_failure_cpu
{
1456 DECLARE_KFIFO(fifo
, struct memory_failure_entry
,
1457 MEMORY_FAILURE_FIFO_SIZE
);
1459 struct work_struct work
;
1462 static DEFINE_PER_CPU(struct memory_failure_cpu
, memory_failure_cpu
);
1465 * memory_failure_queue - Schedule handling memory failure of a page.
1466 * @pfn: Page Number of the corrupted page
1467 * @flags: Flags for memory failure handling
1469 * This function is called by the low level hardware error handler
1470 * when it detects hardware memory corruption of a page. It schedules
1471 * the recovering of error page, including dropping pages, killing
1474 * The function is primarily of use for corruptions that
1475 * happen outside the current execution context (e.g. when
1476 * detected by a background scrubber)
1478 * Can run in IRQ context.
1480 void memory_failure_queue(unsigned long pfn
, int flags
)
1482 struct memory_failure_cpu
*mf_cpu
;
1483 unsigned long proc_flags
;
1484 struct memory_failure_entry entry
= {
1489 mf_cpu
= &get_cpu_var(memory_failure_cpu
);
1490 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1491 if (kfifo_put(&mf_cpu
->fifo
, entry
))
1492 schedule_work_on(smp_processor_id(), &mf_cpu
->work
);
1494 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1496 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1497 put_cpu_var(memory_failure_cpu
);
1499 EXPORT_SYMBOL_GPL(memory_failure_queue
);
1501 static void memory_failure_work_func(struct work_struct
*work
)
1503 struct memory_failure_cpu
*mf_cpu
;
1504 struct memory_failure_entry entry
= { 0, };
1505 unsigned long proc_flags
;
1508 mf_cpu
= container_of(work
, struct memory_failure_cpu
, work
);
1510 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1511 gotten
= kfifo_get(&mf_cpu
->fifo
, &entry
);
1512 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1515 if (entry
.flags
& MF_SOFT_OFFLINE
)
1516 soft_offline_page(entry
.pfn
, entry
.flags
);
1518 memory_failure(entry
.pfn
, entry
.flags
);
1523 * Process memory_failure work queued on the specified CPU.
1524 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1526 void memory_failure_queue_kick(int cpu
)
1528 struct memory_failure_cpu
*mf_cpu
;
1530 mf_cpu
= &per_cpu(memory_failure_cpu
, cpu
);
1531 cancel_work_sync(&mf_cpu
->work
);
1532 memory_failure_work_func(&mf_cpu
->work
);
1535 static int __init
memory_failure_init(void)
1537 struct memory_failure_cpu
*mf_cpu
;
1540 for_each_possible_cpu(cpu
) {
1541 mf_cpu
= &per_cpu(memory_failure_cpu
, cpu
);
1542 spin_lock_init(&mf_cpu
->lock
);
1543 INIT_KFIFO(mf_cpu
->fifo
);
1544 INIT_WORK(&mf_cpu
->work
, memory_failure_work_func
);
1549 core_initcall(memory_failure_init
);
1551 #define unpoison_pr_info(fmt, pfn, rs) \
1553 if (__ratelimit(rs)) \
1554 pr_info(fmt, pfn); \
1558 * unpoison_memory - Unpoison a previously poisoned page
1559 * @pfn: Page number of the to be unpoisoned page
1561 * Software-unpoison a page that has been poisoned by
1562 * memory_failure() earlier.
1564 * This is only done on the software-level, so it only works
1565 * for linux injected failures, not real hardware failures
1567 * Returns 0 for success, otherwise -errno.
1569 int unpoison_memory(unsigned long pfn
)
1574 static DEFINE_RATELIMIT_STATE(unpoison_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1575 DEFAULT_RATELIMIT_BURST
);
1577 if (!pfn_valid(pfn
))
1580 p
= pfn_to_page(pfn
);
1581 page
= compound_head(p
);
1583 if (!PageHWPoison(p
)) {
1584 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1589 if (page_count(page
) > 1) {
1590 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1595 if (page_mapped(page
)) {
1596 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1601 if (page_mapping(page
)) {
1602 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1608 * unpoison_memory() can encounter thp only when the thp is being
1609 * worked by memory_failure() and the page lock is not held yet.
1610 * In such case, we yield to memory_failure() and make unpoison fail.
1612 if (!PageHuge(page
) && PageTransHuge(page
)) {
1613 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1618 if (!get_hwpoison_page(p
)) {
1619 if (TestClearPageHWPoison(p
))
1620 num_poisoned_pages_dec();
1621 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1628 * This test is racy because PG_hwpoison is set outside of page lock.
1629 * That's acceptable because that won't trigger kernel panic. Instead,
1630 * the PG_hwpoison page will be caught and isolated on the entrance to
1631 * the free buddy page pool.
1633 if (TestClearPageHWPoison(page
)) {
1634 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1636 num_poisoned_pages_dec();
1641 put_hwpoison_page(page
);
1642 if (freeit
&& !(pfn
== my_zero_pfn(0) && page_count(p
) == 1))
1643 put_hwpoison_page(page
);
1647 EXPORT_SYMBOL(unpoison_memory
);
1649 static struct page
*new_page(struct page
*p
, unsigned long private)
1651 int nid
= page_to_nid(p
);
1653 return new_page_nodemask(p
, nid
, &node_states
[N_MEMORY
]);
1657 * Safely get reference count of an arbitrary page.
1658 * Returns 0 for a free page, -EIO for a zero refcount page
1659 * that is not free, and 1 for any other page type.
1660 * For 1 the page is returned with increased page count, otherwise not.
1662 static int __get_any_page(struct page
*p
, unsigned long pfn
, int flags
)
1666 if (flags
& MF_COUNT_INCREASED
)
1670 * When the target page is a free hugepage, just remove it
1671 * from free hugepage list.
1673 if (!get_hwpoison_page(p
)) {
1675 pr_info("%s: %#lx free huge page\n", __func__
, pfn
);
1677 } else if (is_free_buddy_page(p
)) {
1678 pr_info("%s: %#lx free buddy page\n", __func__
, pfn
);
1681 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1682 __func__
, pfn
, p
->flags
);
1686 /* Not a free page */
1692 static int get_any_page(struct page
*page
, unsigned long pfn
, int flags
)
1694 int ret
= __get_any_page(page
, pfn
, flags
);
1696 if (ret
== 1 && !PageHuge(page
) &&
1697 !PageLRU(page
) && !__PageMovable(page
)) {
1701 put_hwpoison_page(page
);
1702 shake_page(page
, 1);
1707 ret
= __get_any_page(page
, pfn
, 0);
1708 if (ret
== 1 && !PageLRU(page
)) {
1709 /* Drop page reference which is from __get_any_page() */
1710 put_hwpoison_page(page
);
1711 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1712 pfn
, page
->flags
, &page
->flags
);
1719 static int soft_offline_huge_page(struct page
*page
, int flags
)
1722 unsigned long pfn
= page_to_pfn(page
);
1723 struct page
*hpage
= compound_head(page
);
1724 LIST_HEAD(pagelist
);
1727 * This double-check of PageHWPoison is to avoid the race with
1728 * memory_failure(). See also comment in __soft_offline_page().
1731 if (PageHWPoison(hpage
)) {
1733 put_hwpoison_page(hpage
);
1734 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn
);
1739 ret
= isolate_huge_page(hpage
, &pagelist
);
1741 * get_any_page() and isolate_huge_page() takes a refcount each,
1742 * so need to drop one here.
1744 put_hwpoison_page(hpage
);
1746 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn
);
1750 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1751 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1753 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1754 pfn
, ret
, page
->flags
, &page
->flags
);
1755 if (!list_empty(&pagelist
))
1756 putback_movable_pages(&pagelist
);
1761 * We set PG_hwpoison only when the migration source hugepage
1762 * was successfully dissolved, because otherwise hwpoisoned
1763 * hugepage remains on free hugepage list, then userspace will
1764 * find it as SIGBUS by allocation failure. That's not expected
1765 * in soft-offlining.
1767 ret
= dissolve_free_huge_page(page
);
1769 if (set_hwpoison_free_buddy_page(page
))
1770 num_poisoned_pages_inc();
1778 static int __soft_offline_page(struct page
*page
, int flags
)
1781 unsigned long pfn
= page_to_pfn(page
);
1784 * Check PageHWPoison again inside page lock because PageHWPoison
1785 * is set by memory_failure() outside page lock. Note that
1786 * memory_failure() also double-checks PageHWPoison inside page lock,
1787 * so there's no race between soft_offline_page() and memory_failure().
1790 wait_on_page_writeback(page
);
1791 if (PageHWPoison(page
)) {
1793 put_hwpoison_page(page
);
1794 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1798 * Try to invalidate first. This should work for
1799 * non dirty unmapped page cache pages.
1801 ret
= invalidate_inode_page(page
);
1804 * RED-PEN would be better to keep it isolated here, but we
1805 * would need to fix isolation locking first.
1808 put_hwpoison_page(page
);
1809 pr_info("soft_offline: %#lx: invalidated\n", pfn
);
1810 SetPageHWPoison(page
);
1811 num_poisoned_pages_inc();
1816 * Simple invalidation didn't work.
1817 * Try to migrate to a new page instead. migrate.c
1818 * handles a large number of cases for us.
1821 ret
= isolate_lru_page(page
);
1823 ret
= isolate_movable_page(page
, ISOLATE_UNEVICTABLE
);
1825 * Drop page reference which is came from get_any_page()
1826 * successful isolate_lru_page() already took another one.
1828 put_hwpoison_page(page
);
1830 LIST_HEAD(pagelist
);
1832 * After isolated lru page, the PageLRU will be cleared,
1833 * so use !__PageMovable instead for LRU page's mapping
1834 * cannot have PAGE_MAPPING_MOVABLE.
1836 if (!__PageMovable(page
))
1837 inc_node_page_state(page
, NR_ISOLATED_ANON
+
1838 page_is_file_lru(page
));
1839 list_add(&page
->lru
, &pagelist
);
1840 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1841 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1843 if (!list_empty(&pagelist
))
1844 putback_movable_pages(&pagelist
);
1846 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1847 pfn
, ret
, page
->flags
, &page
->flags
);
1852 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1853 pfn
, ret
, page_count(page
), page
->flags
, &page
->flags
);
1858 static int soft_offline_in_use_page(struct page
*page
, int flags
)
1862 struct page
*hpage
= compound_head(page
);
1864 if (!PageHuge(page
) && PageTransHuge(hpage
)) {
1866 if (!PageAnon(page
) || unlikely(split_huge_page(page
))) {
1868 if (!PageAnon(page
))
1869 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page
));
1871 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page
));
1872 put_hwpoison_page(page
);
1879 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1880 * to free list immediately (not via pcplist) when released after
1881 * successful page migration. Otherwise we can't guarantee that the
1882 * page is really free after put_page() returns, so
1883 * set_hwpoison_free_buddy_page() highly likely fails.
1885 mt
= get_pageblock_migratetype(page
);
1886 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
1888 ret
= soft_offline_huge_page(page
, flags
);
1890 ret
= __soft_offline_page(page
, flags
);
1891 set_pageblock_migratetype(page
, mt
);
1895 static int soft_offline_free_page(struct page
*page
)
1897 int rc
= dissolve_free_huge_page(page
);
1900 if (set_hwpoison_free_buddy_page(page
))
1901 num_poisoned_pages_inc();
1909 * soft_offline_page - Soft offline a page.
1910 * @pfn: pfn to soft-offline
1911 * @flags: flags. Same as memory_failure().
1913 * Returns 0 on success, otherwise negated errno.
1915 * Soft offline a page, by migration or invalidation,
1916 * without killing anything. This is for the case when
1917 * a page is not corrupted yet (so it's still valid to access),
1918 * but has had a number of corrected errors and is better taken
1921 * The actual policy on when to do that is maintained by
1924 * This should never impact any application or cause data loss,
1925 * however it might take some time.
1927 * This is not a 100% solution for all memory, but tries to be
1928 * ``good enough'' for the majority of memory.
1930 int soft_offline_page(unsigned long pfn
, int flags
)
1935 if (!pfn_valid(pfn
))
1937 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1938 page
= pfn_to_online_page(pfn
);
1942 if (PageHWPoison(page
)) {
1943 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1944 if (flags
& MF_COUNT_INCREASED
)
1945 put_hwpoison_page(page
);
1950 ret
= get_any_page(page
, pfn
, flags
);
1954 ret
= soft_offline_in_use_page(page
, flags
);
1956 ret
= soft_offline_free_page(page
);