2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
44 static struct vfsmount
*shm_mnt
;
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
84 #include <linux/uaccess.h>
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
102 struct shmem_falloc
{
103 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
104 pgoff_t start
; /* start of range currently being fallocated */
105 pgoff_t next
; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
110 struct shmem_options
{
111 unsigned long long blocks
;
112 unsigned long long inodes
;
113 struct mempolicy
*mpol
;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
125 static unsigned long shmem_default_max_blocks(void)
127 return totalram_pages() / 2;
130 static unsigned long shmem_default_max_inodes(void)
132 unsigned long nr_pages
= totalram_pages();
134 return min(nr_pages
- totalhigh_pages(), nr_pages
/ 2);
138 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
139 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
140 struct shmem_inode_info
*info
, pgoff_t index
);
141 static int shmem_swapin_page(struct inode
*inode
, pgoff_t index
,
142 struct page
**pagep
, enum sgp_type sgp
,
143 gfp_t gfp
, struct vm_area_struct
*vma
,
144 vm_fault_t
*fault_type
);
145 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
146 struct page
**pagep
, enum sgp_type sgp
,
147 gfp_t gfp
, struct vm_area_struct
*vma
,
148 struct vm_fault
*vmf
, vm_fault_t
*fault_type
);
150 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
151 struct page
**pagep
, enum sgp_type sgp
)
153 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
154 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
157 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
159 return sb
->s_fs_info
;
163 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
164 * for shared memory and for shared anonymous (/dev/zero) mappings
165 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
166 * consistent with the pre-accounting of private mappings ...
168 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
170 return (flags
& VM_NORESERVE
) ?
171 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
174 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
176 if (!(flags
& VM_NORESERVE
))
177 vm_unacct_memory(VM_ACCT(size
));
180 static inline int shmem_reacct_size(unsigned long flags
,
181 loff_t oldsize
, loff_t newsize
)
183 if (!(flags
& VM_NORESERVE
)) {
184 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
185 return security_vm_enough_memory_mm(current
->mm
,
186 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
187 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
188 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
194 * ... whereas tmpfs objects are accounted incrementally as
195 * pages are allocated, in order to allow large sparse files.
196 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
197 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 static inline int shmem_acct_block(unsigned long flags
, long pages
)
201 if (!(flags
& VM_NORESERVE
))
204 return security_vm_enough_memory_mm(current
->mm
,
205 pages
* VM_ACCT(PAGE_SIZE
));
208 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
210 if (flags
& VM_NORESERVE
)
211 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
214 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
216 struct shmem_inode_info
*info
= SHMEM_I(inode
);
217 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
219 if (shmem_acct_block(info
->flags
, pages
))
222 if (sbinfo
->max_blocks
) {
223 if (percpu_counter_compare(&sbinfo
->used_blocks
,
224 sbinfo
->max_blocks
- pages
) > 0)
226 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
232 shmem_unacct_blocks(info
->flags
, pages
);
236 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
238 struct shmem_inode_info
*info
= SHMEM_I(inode
);
239 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
241 if (sbinfo
->max_blocks
)
242 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
243 shmem_unacct_blocks(info
->flags
, pages
);
246 static const struct super_operations shmem_ops
;
247 static const struct address_space_operations shmem_aops
;
248 static const struct file_operations shmem_file_operations
;
249 static const struct inode_operations shmem_inode_operations
;
250 static const struct inode_operations shmem_dir_inode_operations
;
251 static const struct inode_operations shmem_special_inode_operations
;
252 static const struct vm_operations_struct shmem_vm_ops
;
253 static struct file_system_type shmem_fs_type
;
255 bool vma_is_shmem(struct vm_area_struct
*vma
)
257 return vma
->vm_ops
== &shmem_vm_ops
;
260 static LIST_HEAD(shmem_swaplist
);
261 static DEFINE_MUTEX(shmem_swaplist_mutex
);
263 static int shmem_reserve_inode(struct super_block
*sb
)
265 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
266 if (sbinfo
->max_inodes
) {
267 spin_lock(&sbinfo
->stat_lock
);
268 if (!sbinfo
->free_inodes
) {
269 spin_unlock(&sbinfo
->stat_lock
);
272 sbinfo
->free_inodes
--;
273 spin_unlock(&sbinfo
->stat_lock
);
278 static void shmem_free_inode(struct super_block
*sb
)
280 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
281 if (sbinfo
->max_inodes
) {
282 spin_lock(&sbinfo
->stat_lock
);
283 sbinfo
->free_inodes
++;
284 spin_unlock(&sbinfo
->stat_lock
);
289 * shmem_recalc_inode - recalculate the block usage of an inode
290 * @inode: inode to recalc
292 * We have to calculate the free blocks since the mm can drop
293 * undirtied hole pages behind our back.
295 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
296 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 * It has to be called with the spinlock held.
300 static void shmem_recalc_inode(struct inode
*inode
)
302 struct shmem_inode_info
*info
= SHMEM_I(inode
);
305 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
307 info
->alloced
-= freed
;
308 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
309 shmem_inode_unacct_blocks(inode
, freed
);
313 bool shmem_charge(struct inode
*inode
, long pages
)
315 struct shmem_inode_info
*info
= SHMEM_I(inode
);
318 if (!shmem_inode_acct_block(inode
, pages
))
321 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
322 inode
->i_mapping
->nrpages
+= pages
;
324 spin_lock_irqsave(&info
->lock
, flags
);
325 info
->alloced
+= pages
;
326 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
327 shmem_recalc_inode(inode
);
328 spin_unlock_irqrestore(&info
->lock
, flags
);
333 void shmem_uncharge(struct inode
*inode
, long pages
)
335 struct shmem_inode_info
*info
= SHMEM_I(inode
);
338 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340 spin_lock_irqsave(&info
->lock
, flags
);
341 info
->alloced
-= pages
;
342 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
343 shmem_recalc_inode(inode
);
344 spin_unlock_irqrestore(&info
->lock
, flags
);
346 shmem_inode_unacct_blocks(inode
, pages
);
350 * Replace item expected in xarray by a new item, while holding xa_lock.
352 static int shmem_replace_entry(struct address_space
*mapping
,
353 pgoff_t index
, void *expected
, void *replacement
)
355 XA_STATE(xas
, &mapping
->i_pages
, index
);
358 VM_BUG_ON(!expected
);
359 VM_BUG_ON(!replacement
);
360 item
= xas_load(&xas
);
361 if (item
!= expected
)
363 xas_store(&xas
, replacement
);
368 * Sometimes, before we decide whether to proceed or to fail, we must check
369 * that an entry was not already brought back from swap by a racing thread.
371 * Checking page is not enough: by the time a SwapCache page is locked, it
372 * might be reused, and again be SwapCache, using the same swap as before.
374 static bool shmem_confirm_swap(struct address_space
*mapping
,
375 pgoff_t index
, swp_entry_t swap
)
377 return xa_load(&mapping
->i_pages
, index
) == swp_to_radix_entry(swap
);
381 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
384 * disables huge pages for the mount;
386 * enables huge pages for the mount;
387 * SHMEM_HUGE_WITHIN_SIZE:
388 * only allocate huge pages if the page will be fully within i_size,
389 * also respect fadvise()/madvise() hints;
391 * only allocate huge pages if requested with fadvise()/madvise();
394 #define SHMEM_HUGE_NEVER 0
395 #define SHMEM_HUGE_ALWAYS 1
396 #define SHMEM_HUGE_WITHIN_SIZE 2
397 #define SHMEM_HUGE_ADVISE 3
401 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
404 * disables huge on shm_mnt and all mounts, for emergency use;
406 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
409 #define SHMEM_HUGE_DENY (-1)
410 #define SHMEM_HUGE_FORCE (-2)
412 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
413 /* ifdef here to avoid bloating shmem.o when not necessary */
415 static int shmem_huge __read_mostly
;
417 #if defined(CONFIG_SYSFS)
418 static int shmem_parse_huge(const char *str
)
420 if (!strcmp(str
, "never"))
421 return SHMEM_HUGE_NEVER
;
422 if (!strcmp(str
, "always"))
423 return SHMEM_HUGE_ALWAYS
;
424 if (!strcmp(str
, "within_size"))
425 return SHMEM_HUGE_WITHIN_SIZE
;
426 if (!strcmp(str
, "advise"))
427 return SHMEM_HUGE_ADVISE
;
428 if (!strcmp(str
, "deny"))
429 return SHMEM_HUGE_DENY
;
430 if (!strcmp(str
, "force"))
431 return SHMEM_HUGE_FORCE
;
436 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
437 static const char *shmem_format_huge(int huge
)
440 case SHMEM_HUGE_NEVER
:
442 case SHMEM_HUGE_ALWAYS
:
444 case SHMEM_HUGE_WITHIN_SIZE
:
445 return "within_size";
446 case SHMEM_HUGE_ADVISE
:
448 case SHMEM_HUGE_DENY
:
450 case SHMEM_HUGE_FORCE
:
459 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
460 struct shrink_control
*sc
, unsigned long nr_to_split
)
462 LIST_HEAD(list
), *pos
, *next
;
463 LIST_HEAD(to_remove
);
465 struct shmem_inode_info
*info
;
467 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
468 int removed
= 0, split
= 0;
470 if (list_empty(&sbinfo
->shrinklist
))
473 spin_lock(&sbinfo
->shrinklist_lock
);
474 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
475 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
478 inode
= igrab(&info
->vfs_inode
);
480 /* inode is about to be evicted */
482 list_del_init(&info
->shrinklist
);
487 /* Check if there's anything to gain */
488 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
489 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
490 list_move(&info
->shrinklist
, &to_remove
);
495 list_move(&info
->shrinklist
, &list
);
500 spin_unlock(&sbinfo
->shrinklist_lock
);
502 list_for_each_safe(pos
, next
, &to_remove
) {
503 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
504 inode
= &info
->vfs_inode
;
505 list_del_init(&info
->shrinklist
);
509 list_for_each_safe(pos
, next
, &list
) {
512 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
513 inode
= &info
->vfs_inode
;
515 if (nr_to_split
&& split
>= nr_to_split
)
518 page
= find_get_page(inode
->i_mapping
,
519 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
523 /* No huge page at the end of the file: nothing to split */
524 if (!PageTransHuge(page
)) {
530 * Leave the inode on the list if we failed to lock
531 * the page at this time.
533 * Waiting for the lock may lead to deadlock in the
536 if (!trylock_page(page
)) {
541 ret
= split_huge_page(page
);
545 /* If split failed leave the inode on the list */
551 list_del_init(&info
->shrinklist
);
557 spin_lock(&sbinfo
->shrinklist_lock
);
558 list_splice_tail(&list
, &sbinfo
->shrinklist
);
559 sbinfo
->shrinklist_len
-= removed
;
560 spin_unlock(&sbinfo
->shrinklist_lock
);
565 static long shmem_unused_huge_scan(struct super_block
*sb
,
566 struct shrink_control
*sc
)
568 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
570 if (!READ_ONCE(sbinfo
->shrinklist_len
))
573 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
576 static long shmem_unused_huge_count(struct super_block
*sb
,
577 struct shrink_control
*sc
)
579 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
580 return READ_ONCE(sbinfo
->shrinklist_len
);
582 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
584 #define shmem_huge SHMEM_HUGE_DENY
586 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
587 struct shrink_control
*sc
, unsigned long nr_to_split
)
591 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
593 static inline bool is_huge_enabled(struct shmem_sb_info
*sbinfo
)
595 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) &&
596 (shmem_huge
== SHMEM_HUGE_FORCE
|| sbinfo
->huge
) &&
597 shmem_huge
!= SHMEM_HUGE_DENY
)
603 * Like add_to_page_cache_locked, but error if expected item has gone.
605 static int shmem_add_to_page_cache(struct page
*page
,
606 struct address_space
*mapping
,
607 pgoff_t index
, void *expected
, gfp_t gfp
,
608 struct mm_struct
*charge_mm
)
610 XA_STATE_ORDER(xas
, &mapping
->i_pages
, index
, compound_order(page
));
612 unsigned long nr
= compound_nr(page
);
615 VM_BUG_ON_PAGE(PageTail(page
), page
);
616 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
617 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
618 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
619 VM_BUG_ON(expected
&& PageTransHuge(page
));
621 page_ref_add(page
, nr
);
622 page
->mapping
= mapping
;
625 if (!PageSwapCache(page
)) {
626 error
= mem_cgroup_charge(page
, charge_mm
, gfp
);
628 if (PageTransHuge(page
)) {
629 count_vm_event(THP_FILE_FALLBACK
);
630 count_vm_event(THP_FILE_FALLBACK_CHARGE
);
635 cgroup_throttle_swaprate(page
, gfp
);
640 entry
= xas_find_conflict(&xas
);
641 if (entry
!= expected
)
642 xas_set_err(&xas
, -EEXIST
);
643 xas_create_range(&xas
);
647 xas_store(&xas
, page
);
652 if (PageTransHuge(page
)) {
653 count_vm_event(THP_FILE_ALLOC
);
654 __inc_node_page_state(page
, NR_SHMEM_THPS
);
656 mapping
->nrpages
+= nr
;
657 __mod_lruvec_page_state(page
, NR_FILE_PAGES
, nr
);
658 __mod_lruvec_page_state(page
, NR_SHMEM
, nr
);
660 xas_unlock_irq(&xas
);
661 } while (xas_nomem(&xas
, gfp
));
663 if (xas_error(&xas
)) {
664 error
= xas_error(&xas
);
670 page
->mapping
= NULL
;
671 page_ref_sub(page
, nr
);
676 * Like delete_from_page_cache, but substitutes swap for page.
678 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
680 struct address_space
*mapping
= page
->mapping
;
683 VM_BUG_ON_PAGE(PageCompound(page
), page
);
685 xa_lock_irq(&mapping
->i_pages
);
686 error
= shmem_replace_entry(mapping
, page
->index
, page
, radswap
);
687 page
->mapping
= NULL
;
689 __dec_lruvec_page_state(page
, NR_FILE_PAGES
);
690 __dec_lruvec_page_state(page
, NR_SHMEM
);
691 xa_unlock_irq(&mapping
->i_pages
);
697 * Remove swap entry from page cache, free the swap and its page cache.
699 static int shmem_free_swap(struct address_space
*mapping
,
700 pgoff_t index
, void *radswap
)
704 old
= xa_cmpxchg_irq(&mapping
->i_pages
, index
, radswap
, NULL
, 0);
707 free_swap_and_cache(radix_to_swp_entry(radswap
));
712 * Determine (in bytes) how many of the shmem object's pages mapped by the
713 * given offsets are swapped out.
715 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
716 * as long as the inode doesn't go away and racy results are not a problem.
718 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
719 pgoff_t start
, pgoff_t end
)
721 XA_STATE(xas
, &mapping
->i_pages
, start
);
723 unsigned long swapped
= 0;
726 xas_for_each(&xas
, page
, end
- 1) {
727 if (xas_retry(&xas
, page
))
729 if (xa_is_value(page
))
732 if (need_resched()) {
740 return swapped
<< PAGE_SHIFT
;
744 * Determine (in bytes) how many of the shmem object's pages mapped by the
745 * given vma is swapped out.
747 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
748 * as long as the inode doesn't go away and racy results are not a problem.
750 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
752 struct inode
*inode
= file_inode(vma
->vm_file
);
753 struct shmem_inode_info
*info
= SHMEM_I(inode
);
754 struct address_space
*mapping
= inode
->i_mapping
;
755 unsigned long swapped
;
757 /* Be careful as we don't hold info->lock */
758 swapped
= READ_ONCE(info
->swapped
);
761 * The easier cases are when the shmem object has nothing in swap, or
762 * the vma maps it whole. Then we can simply use the stats that we
768 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
769 return swapped
<< PAGE_SHIFT
;
771 /* Here comes the more involved part */
772 return shmem_partial_swap_usage(mapping
,
773 linear_page_index(vma
, vma
->vm_start
),
774 linear_page_index(vma
, vma
->vm_end
));
778 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
780 void shmem_unlock_mapping(struct address_space
*mapping
)
783 pgoff_t indices
[PAGEVEC_SIZE
];
788 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
790 while (!mapping_unevictable(mapping
)) {
792 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
793 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
795 pvec
.nr
= find_get_entries(mapping
, index
,
796 PAGEVEC_SIZE
, pvec
.pages
, indices
);
799 index
= indices
[pvec
.nr
- 1] + 1;
800 pagevec_remove_exceptionals(&pvec
);
801 check_move_unevictable_pages(&pvec
);
802 pagevec_release(&pvec
);
808 * Check whether a hole-punch or truncation needs to split a huge page,
809 * returning true if no split was required, or the split has been successful.
811 * Eviction (or truncation to 0 size) should never need to split a huge page;
812 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
813 * head, and then succeeded to trylock on tail.
815 * A split can only succeed when there are no additional references on the
816 * huge page: so the split below relies upon find_get_entries() having stopped
817 * when it found a subpage of the huge page, without getting further references.
819 static bool shmem_punch_compound(struct page
*page
, pgoff_t start
, pgoff_t end
)
821 if (!PageTransCompound(page
))
824 /* Just proceed to delete a huge page wholly within the range punched */
825 if (PageHead(page
) &&
826 page
->index
>= start
&& page
->index
+ HPAGE_PMD_NR
<= end
)
829 /* Try to split huge page, so we can truly punch the hole or truncate */
830 return split_huge_page(page
) >= 0;
834 * Remove range of pages and swap entries from page cache, and free them.
835 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
837 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
840 struct address_space
*mapping
= inode
->i_mapping
;
841 struct shmem_inode_info
*info
= SHMEM_I(inode
);
842 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
843 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
844 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
845 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
847 pgoff_t indices
[PAGEVEC_SIZE
];
848 long nr_swaps_freed
= 0;
853 end
= -1; /* unsigned, so actually very big */
857 while (index
< end
) {
858 pvec
.nr
= find_get_entries(mapping
, index
,
859 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
860 pvec
.pages
, indices
);
863 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
864 struct page
*page
= pvec
.pages
[i
];
870 if (xa_is_value(page
)) {
873 nr_swaps_freed
+= !shmem_free_swap(mapping
,
878 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
880 if (!trylock_page(page
))
883 if ((!unfalloc
|| !PageUptodate(page
)) &&
884 page_mapping(page
) == mapping
) {
885 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
886 if (shmem_punch_compound(page
, start
, end
))
887 truncate_inode_page(mapping
, page
);
891 pagevec_remove_exceptionals(&pvec
);
892 pagevec_release(&pvec
);
898 struct page
*page
= NULL
;
899 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
901 unsigned int top
= PAGE_SIZE
;
906 zero_user_segment(page
, partial_start
, top
);
907 set_page_dirty(page
);
913 struct page
*page
= NULL
;
914 shmem_getpage(inode
, end
, &page
, SGP_READ
);
916 zero_user_segment(page
, 0, partial_end
);
917 set_page_dirty(page
);
926 while (index
< end
) {
929 pvec
.nr
= find_get_entries(mapping
, index
,
930 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
931 pvec
.pages
, indices
);
933 /* If all gone or hole-punch or unfalloc, we're done */
934 if (index
== start
|| end
!= -1)
936 /* But if truncating, restart to make sure all gone */
940 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
941 struct page
*page
= pvec
.pages
[i
];
947 if (xa_is_value(page
)) {
950 if (shmem_free_swap(mapping
, index
, page
)) {
951 /* Swap was replaced by page: retry */
961 if (!unfalloc
|| !PageUptodate(page
)) {
962 if (page_mapping(page
) != mapping
) {
963 /* Page was replaced by swap: retry */
968 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
969 if (shmem_punch_compound(page
, start
, end
))
970 truncate_inode_page(mapping
, page
);
971 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
)) {
972 /* Wipe the page and don't get stuck */
973 clear_highpage(page
);
974 flush_dcache_page(page
);
975 set_page_dirty(page
);
977 round_up(start
, HPAGE_PMD_NR
))
983 pagevec_remove_exceptionals(&pvec
);
984 pagevec_release(&pvec
);
988 spin_lock_irq(&info
->lock
);
989 info
->swapped
-= nr_swaps_freed
;
990 shmem_recalc_inode(inode
);
991 spin_unlock_irq(&info
->lock
);
994 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
996 shmem_undo_range(inode
, lstart
, lend
, false);
997 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
999 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
1001 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
1002 u32 request_mask
, unsigned int query_flags
)
1004 struct inode
*inode
= path
->dentry
->d_inode
;
1005 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1006 struct shmem_sb_info
*sb_info
= SHMEM_SB(inode
->i_sb
);
1008 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
1009 spin_lock_irq(&info
->lock
);
1010 shmem_recalc_inode(inode
);
1011 spin_unlock_irq(&info
->lock
);
1013 generic_fillattr(inode
, stat
);
1015 if (is_huge_enabled(sb_info
))
1016 stat
->blksize
= HPAGE_PMD_SIZE
;
1021 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1023 struct inode
*inode
= d_inode(dentry
);
1024 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1025 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1028 error
= setattr_prepare(dentry
, attr
);
1032 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1033 loff_t oldsize
= inode
->i_size
;
1034 loff_t newsize
= attr
->ia_size
;
1036 /* protected by i_mutex */
1037 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1038 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1041 if (newsize
!= oldsize
) {
1042 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1046 i_size_write(inode
, newsize
);
1047 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1049 if (newsize
<= oldsize
) {
1050 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1051 if (oldsize
> holebegin
)
1052 unmap_mapping_range(inode
->i_mapping
,
1055 shmem_truncate_range(inode
,
1056 newsize
, (loff_t
)-1);
1057 /* unmap again to remove racily COWed private pages */
1058 if (oldsize
> holebegin
)
1059 unmap_mapping_range(inode
->i_mapping
,
1063 * Part of the huge page can be beyond i_size: subject
1064 * to shrink under memory pressure.
1066 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
)) {
1067 spin_lock(&sbinfo
->shrinklist_lock
);
1069 * _careful to defend against unlocked access to
1070 * ->shrink_list in shmem_unused_huge_shrink()
1072 if (list_empty_careful(&info
->shrinklist
)) {
1073 list_add_tail(&info
->shrinklist
,
1074 &sbinfo
->shrinklist
);
1075 sbinfo
->shrinklist_len
++;
1077 spin_unlock(&sbinfo
->shrinklist_lock
);
1082 setattr_copy(inode
, attr
);
1083 if (attr
->ia_valid
& ATTR_MODE
)
1084 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1088 static void shmem_evict_inode(struct inode
*inode
)
1090 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1091 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1093 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1094 shmem_unacct_size(info
->flags
, inode
->i_size
);
1096 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1097 if (!list_empty(&info
->shrinklist
)) {
1098 spin_lock(&sbinfo
->shrinklist_lock
);
1099 if (!list_empty(&info
->shrinklist
)) {
1100 list_del_init(&info
->shrinklist
);
1101 sbinfo
->shrinklist_len
--;
1103 spin_unlock(&sbinfo
->shrinklist_lock
);
1105 while (!list_empty(&info
->swaplist
)) {
1106 /* Wait while shmem_unuse() is scanning this inode... */
1107 wait_var_event(&info
->stop_eviction
,
1108 !atomic_read(&info
->stop_eviction
));
1109 mutex_lock(&shmem_swaplist_mutex
);
1110 /* ...but beware of the race if we peeked too early */
1111 if (!atomic_read(&info
->stop_eviction
))
1112 list_del_init(&info
->swaplist
);
1113 mutex_unlock(&shmem_swaplist_mutex
);
1117 simple_xattrs_free(&info
->xattrs
);
1118 WARN_ON(inode
->i_blocks
);
1119 shmem_free_inode(inode
->i_sb
);
1123 extern struct swap_info_struct
*swap_info
[];
1125 static int shmem_find_swap_entries(struct address_space
*mapping
,
1126 pgoff_t start
, unsigned int nr_entries
,
1127 struct page
**entries
, pgoff_t
*indices
,
1128 unsigned int type
, bool frontswap
)
1130 XA_STATE(xas
, &mapping
->i_pages
, start
);
1133 unsigned int ret
= 0;
1139 xas_for_each(&xas
, page
, ULONG_MAX
) {
1140 if (xas_retry(&xas
, page
))
1143 if (!xa_is_value(page
))
1146 entry
= radix_to_swp_entry(page
);
1147 if (swp_type(entry
) != type
)
1150 !frontswap_test(swap_info
[type
], swp_offset(entry
)))
1153 indices
[ret
] = xas
.xa_index
;
1154 entries
[ret
] = page
;
1156 if (need_resched()) {
1160 if (++ret
== nr_entries
)
1169 * Move the swapped pages for an inode to page cache. Returns the count
1170 * of pages swapped in, or the error in case of failure.
1172 static int shmem_unuse_swap_entries(struct inode
*inode
, struct pagevec pvec
,
1178 struct address_space
*mapping
= inode
->i_mapping
;
1180 for (i
= 0; i
< pvec
.nr
; i
++) {
1181 struct page
*page
= pvec
.pages
[i
];
1183 if (!xa_is_value(page
))
1185 error
= shmem_swapin_page(inode
, indices
[i
],
1187 mapping_gfp_mask(mapping
),
1194 if (error
== -ENOMEM
)
1198 return error
? error
: ret
;
1202 * If swap found in inode, free it and move page from swapcache to filecache.
1204 static int shmem_unuse_inode(struct inode
*inode
, unsigned int type
,
1205 bool frontswap
, unsigned long *fs_pages_to_unuse
)
1207 struct address_space
*mapping
= inode
->i_mapping
;
1209 struct pagevec pvec
;
1210 pgoff_t indices
[PAGEVEC_SIZE
];
1211 bool frontswap_partial
= (frontswap
&& *fs_pages_to_unuse
> 0);
1214 pagevec_init(&pvec
);
1216 unsigned int nr_entries
= PAGEVEC_SIZE
;
1218 if (frontswap_partial
&& *fs_pages_to_unuse
< PAGEVEC_SIZE
)
1219 nr_entries
= *fs_pages_to_unuse
;
1221 pvec
.nr
= shmem_find_swap_entries(mapping
, start
, nr_entries
,
1222 pvec
.pages
, indices
,
1229 ret
= shmem_unuse_swap_entries(inode
, pvec
, indices
);
1233 if (frontswap_partial
) {
1234 *fs_pages_to_unuse
-= ret
;
1235 if (*fs_pages_to_unuse
== 0) {
1236 ret
= FRONTSWAP_PAGES_UNUSED
;
1241 start
= indices
[pvec
.nr
- 1];
1248 * Read all the shared memory data that resides in the swap
1249 * device 'type' back into memory, so the swap device can be
1252 int shmem_unuse(unsigned int type
, bool frontswap
,
1253 unsigned long *fs_pages_to_unuse
)
1255 struct shmem_inode_info
*info
, *next
;
1258 if (list_empty(&shmem_swaplist
))
1261 mutex_lock(&shmem_swaplist_mutex
);
1262 list_for_each_entry_safe(info
, next
, &shmem_swaplist
, swaplist
) {
1263 if (!info
->swapped
) {
1264 list_del_init(&info
->swaplist
);
1268 * Drop the swaplist mutex while searching the inode for swap;
1269 * but before doing so, make sure shmem_evict_inode() will not
1270 * remove placeholder inode from swaplist, nor let it be freed
1271 * (igrab() would protect from unlink, but not from unmount).
1273 atomic_inc(&info
->stop_eviction
);
1274 mutex_unlock(&shmem_swaplist_mutex
);
1276 error
= shmem_unuse_inode(&info
->vfs_inode
, type
, frontswap
,
1280 mutex_lock(&shmem_swaplist_mutex
);
1281 next
= list_next_entry(info
, swaplist
);
1283 list_del_init(&info
->swaplist
);
1284 if (atomic_dec_and_test(&info
->stop_eviction
))
1285 wake_up_var(&info
->stop_eviction
);
1289 mutex_unlock(&shmem_swaplist_mutex
);
1295 * Move the page from the page cache to the swap cache.
1297 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1299 struct shmem_inode_info
*info
;
1300 struct address_space
*mapping
;
1301 struct inode
*inode
;
1305 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1306 BUG_ON(!PageLocked(page
));
1307 mapping
= page
->mapping
;
1308 index
= page
->index
;
1309 inode
= mapping
->host
;
1310 info
= SHMEM_I(inode
);
1311 if (info
->flags
& VM_LOCKED
)
1313 if (!total_swap_pages
)
1317 * Our capabilities prevent regular writeback or sync from ever calling
1318 * shmem_writepage; but a stacking filesystem might use ->writepage of
1319 * its underlying filesystem, in which case tmpfs should write out to
1320 * swap only in response to memory pressure, and not for the writeback
1323 if (!wbc
->for_reclaim
) {
1324 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1329 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1330 * value into swapfile.c, the only way we can correctly account for a
1331 * fallocated page arriving here is now to initialize it and write it.
1333 * That's okay for a page already fallocated earlier, but if we have
1334 * not yet completed the fallocation, then (a) we want to keep track
1335 * of this page in case we have to undo it, and (b) it may not be a
1336 * good idea to continue anyway, once we're pushing into swap. So
1337 * reactivate the page, and let shmem_fallocate() quit when too many.
1339 if (!PageUptodate(page
)) {
1340 if (inode
->i_private
) {
1341 struct shmem_falloc
*shmem_falloc
;
1342 spin_lock(&inode
->i_lock
);
1343 shmem_falloc
= inode
->i_private
;
1345 !shmem_falloc
->waitq
&&
1346 index
>= shmem_falloc
->start
&&
1347 index
< shmem_falloc
->next
)
1348 shmem_falloc
->nr_unswapped
++;
1350 shmem_falloc
= NULL
;
1351 spin_unlock(&inode
->i_lock
);
1355 clear_highpage(page
);
1356 flush_dcache_page(page
);
1357 SetPageUptodate(page
);
1360 swap
= get_swap_page(page
);
1365 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1366 * if it's not already there. Do it now before the page is
1367 * moved to swap cache, when its pagelock no longer protects
1368 * the inode from eviction. But don't unlock the mutex until
1369 * we've incremented swapped, because shmem_unuse_inode() will
1370 * prune a !swapped inode from the swaplist under this mutex.
1372 mutex_lock(&shmem_swaplist_mutex
);
1373 if (list_empty(&info
->swaplist
))
1374 list_add(&info
->swaplist
, &shmem_swaplist
);
1376 if (add_to_swap_cache(page
, swap
,
1377 __GFP_HIGH
| __GFP_NOMEMALLOC
| __GFP_NOWARN
) == 0) {
1378 spin_lock_irq(&info
->lock
);
1379 shmem_recalc_inode(inode
);
1381 spin_unlock_irq(&info
->lock
);
1383 swap_shmem_alloc(swap
);
1384 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1386 mutex_unlock(&shmem_swaplist_mutex
);
1387 BUG_ON(page_mapped(page
));
1388 swap_writepage(page
, wbc
);
1392 mutex_unlock(&shmem_swaplist_mutex
);
1393 put_swap_page(page
, swap
);
1395 set_page_dirty(page
);
1396 if (wbc
->for_reclaim
)
1397 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1402 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1403 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1407 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1408 return; /* show nothing */
1410 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1412 seq_printf(seq
, ",mpol=%s", buffer
);
1415 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1417 struct mempolicy
*mpol
= NULL
;
1419 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1420 mpol
= sbinfo
->mpol
;
1422 spin_unlock(&sbinfo
->stat_lock
);
1426 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1427 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1430 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1434 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1436 #define vm_policy vm_private_data
1439 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1440 struct shmem_inode_info
*info
, pgoff_t index
)
1442 /* Create a pseudo vma that just contains the policy */
1443 vma_init(vma
, NULL
);
1444 /* Bias interleave by inode number to distribute better across nodes */
1445 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1446 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1449 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1451 /* Drop reference taken by mpol_shared_policy_lookup() */
1452 mpol_cond_put(vma
->vm_policy
);
1455 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1456 struct shmem_inode_info
*info
, pgoff_t index
)
1458 struct vm_area_struct pvma
;
1460 struct vm_fault vmf
;
1462 shmem_pseudo_vma_init(&pvma
, info
, index
);
1465 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1466 shmem_pseudo_vma_destroy(&pvma
);
1471 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1472 struct shmem_inode_info
*info
, pgoff_t index
)
1474 struct vm_area_struct pvma
;
1475 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1479 hindex
= round_down(index
, HPAGE_PMD_NR
);
1480 if (xa_find(&mapping
->i_pages
, &hindex
, hindex
+ HPAGE_PMD_NR
- 1,
1484 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1485 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1486 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1487 shmem_pseudo_vma_destroy(&pvma
);
1489 prep_transhuge_page(page
);
1491 count_vm_event(THP_FILE_FALLBACK
);
1495 static struct page
*shmem_alloc_page(gfp_t gfp
,
1496 struct shmem_inode_info
*info
, pgoff_t index
)
1498 struct vm_area_struct pvma
;
1501 shmem_pseudo_vma_init(&pvma
, info
, index
);
1502 page
= alloc_page_vma(gfp
, &pvma
, 0);
1503 shmem_pseudo_vma_destroy(&pvma
);
1508 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1509 struct inode
*inode
,
1510 pgoff_t index
, bool huge
)
1512 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1517 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
))
1519 nr
= huge
? HPAGE_PMD_NR
: 1;
1521 if (!shmem_inode_acct_block(inode
, nr
))
1525 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1527 page
= shmem_alloc_page(gfp
, info
, index
);
1529 __SetPageLocked(page
);
1530 __SetPageSwapBacked(page
);
1535 shmem_inode_unacct_blocks(inode
, nr
);
1537 return ERR_PTR(err
);
1541 * When a page is moved from swapcache to shmem filecache (either by the
1542 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1543 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1544 * ignorance of the mapping it belongs to. If that mapping has special
1545 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1546 * we may need to copy to a suitable page before moving to filecache.
1548 * In a future release, this may well be extended to respect cpuset and
1549 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1550 * but for now it is a simple matter of zone.
1552 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1554 return page_zonenum(page
) > gfp_zone(gfp
);
1557 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1558 struct shmem_inode_info
*info
, pgoff_t index
)
1560 struct page
*oldpage
, *newpage
;
1561 struct address_space
*swap_mapping
;
1567 entry
.val
= page_private(oldpage
);
1568 swap_index
= swp_offset(entry
);
1569 swap_mapping
= page_mapping(oldpage
);
1572 * We have arrived here because our zones are constrained, so don't
1573 * limit chance of success by further cpuset and node constraints.
1575 gfp
&= ~GFP_CONSTRAINT_MASK
;
1576 newpage
= shmem_alloc_page(gfp
, info
, index
);
1581 copy_highpage(newpage
, oldpage
);
1582 flush_dcache_page(newpage
);
1584 __SetPageLocked(newpage
);
1585 __SetPageSwapBacked(newpage
);
1586 SetPageUptodate(newpage
);
1587 set_page_private(newpage
, entry
.val
);
1588 SetPageSwapCache(newpage
);
1591 * Our caller will very soon move newpage out of swapcache, but it's
1592 * a nice clean interface for us to replace oldpage by newpage there.
1594 xa_lock_irq(&swap_mapping
->i_pages
);
1595 error
= shmem_replace_entry(swap_mapping
, swap_index
, oldpage
, newpage
);
1597 mem_cgroup_migrate(oldpage
, newpage
);
1598 __inc_lruvec_page_state(newpage
, NR_FILE_PAGES
);
1599 __dec_lruvec_page_state(oldpage
, NR_FILE_PAGES
);
1601 xa_unlock_irq(&swap_mapping
->i_pages
);
1603 if (unlikely(error
)) {
1605 * Is this possible? I think not, now that our callers check
1606 * both PageSwapCache and page_private after getting page lock;
1607 * but be defensive. Reverse old to newpage for clear and free.
1611 lru_cache_add(newpage
);
1615 ClearPageSwapCache(oldpage
);
1616 set_page_private(oldpage
, 0);
1618 unlock_page(oldpage
);
1625 * Swap in the page pointed to by *pagep.
1626 * Caller has to make sure that *pagep contains a valid swapped page.
1627 * Returns 0 and the page in pagep if success. On failure, returns the
1628 * the error code and NULL in *pagep.
1630 static int shmem_swapin_page(struct inode
*inode
, pgoff_t index
,
1631 struct page
**pagep
, enum sgp_type sgp
,
1632 gfp_t gfp
, struct vm_area_struct
*vma
,
1633 vm_fault_t
*fault_type
)
1635 struct address_space
*mapping
= inode
->i_mapping
;
1636 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1637 struct mm_struct
*charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1642 VM_BUG_ON(!*pagep
|| !xa_is_value(*pagep
));
1643 swap
= radix_to_swp_entry(*pagep
);
1646 /* Look it up and read it in.. */
1647 page
= lookup_swap_cache(swap
, NULL
, 0);
1649 /* Or update major stats only when swapin succeeds?? */
1651 *fault_type
|= VM_FAULT_MAJOR
;
1652 count_vm_event(PGMAJFAULT
);
1653 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1655 /* Here we actually start the io */
1656 page
= shmem_swapin(swap
, gfp
, info
, index
);
1663 /* We have to do this with page locked to prevent races */
1665 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1666 !shmem_confirm_swap(mapping
, index
, swap
)) {
1670 if (!PageUptodate(page
)) {
1674 wait_on_page_writeback(page
);
1676 if (shmem_should_replace_page(page
, gfp
)) {
1677 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1682 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1683 swp_to_radix_entry(swap
), gfp
,
1688 spin_lock_irq(&info
->lock
);
1690 shmem_recalc_inode(inode
);
1691 spin_unlock_irq(&info
->lock
);
1693 if (sgp
== SGP_WRITE
)
1694 mark_page_accessed(page
);
1696 delete_from_swap_cache(page
);
1697 set_page_dirty(page
);
1703 if (!shmem_confirm_swap(mapping
, index
, swap
))
1715 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1717 * If we allocate a new one we do not mark it dirty. That's up to the
1718 * vm. If we swap it in we mark it dirty since we also free the swap
1719 * entry since a page cannot live in both the swap and page cache.
1721 * vmf and fault_type are only supplied by shmem_fault:
1722 * otherwise they are NULL.
1724 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1725 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1726 struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
1727 vm_fault_t
*fault_type
)
1729 struct address_space
*mapping
= inode
->i_mapping
;
1730 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1731 struct shmem_sb_info
*sbinfo
;
1732 struct mm_struct
*charge_mm
;
1734 enum sgp_type sgp_huge
= sgp
;
1735 pgoff_t hindex
= index
;
1740 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1742 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1745 if (sgp
<= SGP_CACHE
&&
1746 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1750 sbinfo
= SHMEM_SB(inode
->i_sb
);
1751 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1753 page
= find_lock_entry(mapping
, index
);
1754 if (xa_is_value(page
)) {
1755 error
= shmem_swapin_page(inode
, index
, &page
,
1756 sgp
, gfp
, vma
, fault_type
);
1757 if (error
== -EEXIST
)
1764 if (page
&& sgp
== SGP_WRITE
)
1765 mark_page_accessed(page
);
1767 /* fallocated page? */
1768 if (page
&& !PageUptodate(page
)) {
1769 if (sgp
!= SGP_READ
)
1775 if (page
|| sgp
== SGP_READ
) {
1781 * Fast cache lookup did not find it:
1782 * bring it back from swap or allocate.
1785 if (vma
&& userfaultfd_missing(vma
)) {
1786 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1790 /* shmem_symlink() */
1791 if (mapping
->a_ops
!= &shmem_aops
)
1793 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1795 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1797 switch (sbinfo
->huge
) {
1798 case SHMEM_HUGE_NEVER
:
1800 case SHMEM_HUGE_WITHIN_SIZE
: {
1804 off
= round_up(index
, HPAGE_PMD_NR
);
1805 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1806 if (i_size
>= HPAGE_PMD_SIZE
&&
1807 i_size
>> PAGE_SHIFT
>= off
)
1812 case SHMEM_HUGE_ADVISE
:
1813 if (sgp_huge
== SGP_HUGE
)
1815 /* TODO: implement fadvise() hints */
1820 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1823 page
= shmem_alloc_and_acct_page(gfp
, inode
,
1829 error
= PTR_ERR(page
);
1831 if (error
!= -ENOSPC
)
1834 * Try to reclaim some space by splitting a huge page
1835 * beyond i_size on the filesystem.
1840 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1841 if (ret
== SHRINK_STOP
)
1849 if (PageTransHuge(page
))
1850 hindex
= round_down(index
, HPAGE_PMD_NR
);
1854 if (sgp
== SGP_WRITE
)
1855 __SetPageReferenced(page
);
1857 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1858 NULL
, gfp
& GFP_RECLAIM_MASK
,
1862 lru_cache_add(page
);
1864 spin_lock_irq(&info
->lock
);
1865 info
->alloced
+= compound_nr(page
);
1866 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1867 shmem_recalc_inode(inode
);
1868 spin_unlock_irq(&info
->lock
);
1871 if (PageTransHuge(page
) &&
1872 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1873 hindex
+ HPAGE_PMD_NR
- 1) {
1875 * Part of the huge page is beyond i_size: subject
1876 * to shrink under memory pressure.
1878 spin_lock(&sbinfo
->shrinklist_lock
);
1880 * _careful to defend against unlocked access to
1881 * ->shrink_list in shmem_unused_huge_shrink()
1883 if (list_empty_careful(&info
->shrinklist
)) {
1884 list_add_tail(&info
->shrinklist
,
1885 &sbinfo
->shrinklist
);
1886 sbinfo
->shrinklist_len
++;
1888 spin_unlock(&sbinfo
->shrinklist_lock
);
1892 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1894 if (sgp
== SGP_FALLOC
)
1898 * Let SGP_WRITE caller clear ends if write does not fill page;
1899 * but SGP_FALLOC on a page fallocated earlier must initialize
1900 * it now, lest undo on failure cancel our earlier guarantee.
1902 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1903 struct page
*head
= compound_head(page
);
1906 for (i
= 0; i
< compound_nr(head
); i
++) {
1907 clear_highpage(head
+ i
);
1908 flush_dcache_page(head
+ i
);
1910 SetPageUptodate(head
);
1913 /* Perhaps the file has been truncated since we checked */
1914 if (sgp
<= SGP_CACHE
&&
1915 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1917 ClearPageDirty(page
);
1918 delete_from_page_cache(page
);
1919 spin_lock_irq(&info
->lock
);
1920 shmem_recalc_inode(inode
);
1921 spin_unlock_irq(&info
->lock
);
1926 *pagep
= page
+ index
- hindex
;
1933 shmem_inode_unacct_blocks(inode
, compound_nr(page
));
1935 if (PageTransHuge(page
)) {
1945 if (error
== -ENOSPC
&& !once
++) {
1946 spin_lock_irq(&info
->lock
);
1947 shmem_recalc_inode(inode
);
1948 spin_unlock_irq(&info
->lock
);
1951 if (error
== -EEXIST
)
1957 * This is like autoremove_wake_function, but it removes the wait queue
1958 * entry unconditionally - even if something else had already woken the
1961 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1963 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1964 list_del_init(&wait
->entry
);
1968 static vm_fault_t
shmem_fault(struct vm_fault
*vmf
)
1970 struct vm_area_struct
*vma
= vmf
->vma
;
1971 struct inode
*inode
= file_inode(vma
->vm_file
);
1972 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1975 vm_fault_t ret
= VM_FAULT_LOCKED
;
1978 * Trinity finds that probing a hole which tmpfs is punching can
1979 * prevent the hole-punch from ever completing: which in turn
1980 * locks writers out with its hold on i_mutex. So refrain from
1981 * faulting pages into the hole while it's being punched. Although
1982 * shmem_undo_range() does remove the additions, it may be unable to
1983 * keep up, as each new page needs its own unmap_mapping_range() call,
1984 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1986 * It does not matter if we sometimes reach this check just before the
1987 * hole-punch begins, so that one fault then races with the punch:
1988 * we just need to make racing faults a rare case.
1990 * The implementation below would be much simpler if we just used a
1991 * standard mutex or completion: but we cannot take i_mutex in fault,
1992 * and bloating every shmem inode for this unlikely case would be sad.
1994 if (unlikely(inode
->i_private
)) {
1995 struct shmem_falloc
*shmem_falloc
;
1997 spin_lock(&inode
->i_lock
);
1998 shmem_falloc
= inode
->i_private
;
2000 shmem_falloc
->waitq
&&
2001 vmf
->pgoff
>= shmem_falloc
->start
&&
2002 vmf
->pgoff
< shmem_falloc
->next
) {
2004 wait_queue_head_t
*shmem_falloc_waitq
;
2005 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
2007 ret
= VM_FAULT_NOPAGE
;
2008 fpin
= maybe_unlock_mmap_for_io(vmf
, NULL
);
2010 ret
= VM_FAULT_RETRY
;
2012 shmem_falloc_waitq
= shmem_falloc
->waitq
;
2013 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
2014 TASK_UNINTERRUPTIBLE
);
2015 spin_unlock(&inode
->i_lock
);
2019 * shmem_falloc_waitq points into the shmem_fallocate()
2020 * stack of the hole-punching task: shmem_falloc_waitq
2021 * is usually invalid by the time we reach here, but
2022 * finish_wait() does not dereference it in that case;
2023 * though i_lock needed lest racing with wake_up_all().
2025 spin_lock(&inode
->i_lock
);
2026 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
2027 spin_unlock(&inode
->i_lock
);
2033 spin_unlock(&inode
->i_lock
);
2038 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
2039 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
2041 else if (vma
->vm_flags
& VM_HUGEPAGE
)
2044 err
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
2045 gfp
, vma
, vmf
, &ret
);
2047 return vmf_error(err
);
2051 unsigned long shmem_get_unmapped_area(struct file
*file
,
2052 unsigned long uaddr
, unsigned long len
,
2053 unsigned long pgoff
, unsigned long flags
)
2055 unsigned long (*get_area
)(struct file
*,
2056 unsigned long, unsigned long, unsigned long, unsigned long);
2058 unsigned long offset
;
2059 unsigned long inflated_len
;
2060 unsigned long inflated_addr
;
2061 unsigned long inflated_offset
;
2063 if (len
> TASK_SIZE
)
2066 get_area
= current
->mm
->get_unmapped_area
;
2067 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2069 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
))
2071 if (IS_ERR_VALUE(addr
))
2073 if (addr
& ~PAGE_MASK
)
2075 if (addr
> TASK_SIZE
- len
)
2078 if (shmem_huge
== SHMEM_HUGE_DENY
)
2080 if (len
< HPAGE_PMD_SIZE
)
2082 if (flags
& MAP_FIXED
)
2085 * Our priority is to support MAP_SHARED mapped hugely;
2086 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2087 * But if caller specified an address hint and we allocated area there
2088 * successfully, respect that as before.
2093 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2094 struct super_block
*sb
;
2097 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2098 sb
= file_inode(file
)->i_sb
;
2101 * Called directly from mm/mmap.c, or drivers/char/mem.c
2102 * for "/dev/zero", to create a shared anonymous object.
2104 if (IS_ERR(shm_mnt
))
2106 sb
= shm_mnt
->mnt_sb
;
2108 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2112 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2113 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2115 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2118 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2119 if (inflated_len
> TASK_SIZE
)
2121 if (inflated_len
< len
)
2124 inflated_addr
= get_area(NULL
, uaddr
, inflated_len
, 0, flags
);
2125 if (IS_ERR_VALUE(inflated_addr
))
2127 if (inflated_addr
& ~PAGE_MASK
)
2130 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2131 inflated_addr
+= offset
- inflated_offset
;
2132 if (inflated_offset
> offset
)
2133 inflated_addr
+= HPAGE_PMD_SIZE
;
2135 if (inflated_addr
> TASK_SIZE
- len
)
2137 return inflated_addr
;
2141 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2143 struct inode
*inode
= file_inode(vma
->vm_file
);
2144 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2147 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2150 struct inode
*inode
= file_inode(vma
->vm_file
);
2153 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2154 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2158 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2160 struct inode
*inode
= file_inode(file
);
2161 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2162 int retval
= -ENOMEM
;
2165 * What serializes the accesses to info->flags?
2166 * ipc_lock_object() when called from shmctl_do_lock(),
2167 * no serialization needed when called from shm_destroy().
2169 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2170 if (!user_shm_lock(inode
->i_size
, user
))
2172 info
->flags
|= VM_LOCKED
;
2173 mapping_set_unevictable(file
->f_mapping
);
2175 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2176 user_shm_unlock(inode
->i_size
, user
);
2177 info
->flags
&= ~VM_LOCKED
;
2178 mapping_clear_unevictable(file
->f_mapping
);
2186 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2188 struct shmem_inode_info
*info
= SHMEM_I(file_inode(file
));
2190 if (info
->seals
& F_SEAL_FUTURE_WRITE
) {
2192 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2193 * "future write" seal active.
2195 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_WRITE
))
2199 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2200 * MAP_SHARED and read-only, take care to not allow mprotect to
2201 * revert protections on such mappings. Do this only for shared
2202 * mappings. For private mappings, don't need to mask
2203 * VM_MAYWRITE as we still want them to be COW-writable.
2205 if (vma
->vm_flags
& VM_SHARED
)
2206 vma
->vm_flags
&= ~(VM_MAYWRITE
);
2209 file_accessed(file
);
2210 vma
->vm_ops
= &shmem_vm_ops
;
2211 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) &&
2212 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2213 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2214 khugepaged_enter(vma
, vma
->vm_flags
);
2219 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2220 umode_t mode
, dev_t dev
, unsigned long flags
)
2222 struct inode
*inode
;
2223 struct shmem_inode_info
*info
;
2224 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2226 if (shmem_reserve_inode(sb
))
2229 inode
= new_inode(sb
);
2231 inode
->i_ino
= get_next_ino();
2232 inode_init_owner(inode
, dir
, mode
);
2233 inode
->i_blocks
= 0;
2234 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2235 inode
->i_generation
= prandom_u32();
2236 info
= SHMEM_I(inode
);
2237 memset(info
, 0, (char *)inode
- (char *)info
);
2238 spin_lock_init(&info
->lock
);
2239 atomic_set(&info
->stop_eviction
, 0);
2240 info
->seals
= F_SEAL_SEAL
;
2241 info
->flags
= flags
& VM_NORESERVE
;
2242 INIT_LIST_HEAD(&info
->shrinklist
);
2243 INIT_LIST_HEAD(&info
->swaplist
);
2244 simple_xattrs_init(&info
->xattrs
);
2245 cache_no_acl(inode
);
2247 switch (mode
& S_IFMT
) {
2249 inode
->i_op
= &shmem_special_inode_operations
;
2250 init_special_inode(inode
, mode
, dev
);
2253 inode
->i_mapping
->a_ops
= &shmem_aops
;
2254 inode
->i_op
= &shmem_inode_operations
;
2255 inode
->i_fop
= &shmem_file_operations
;
2256 mpol_shared_policy_init(&info
->policy
,
2257 shmem_get_sbmpol(sbinfo
));
2261 /* Some things misbehave if size == 0 on a directory */
2262 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2263 inode
->i_op
= &shmem_dir_inode_operations
;
2264 inode
->i_fop
= &simple_dir_operations
;
2268 * Must not load anything in the rbtree,
2269 * mpol_free_shared_policy will not be called.
2271 mpol_shared_policy_init(&info
->policy
, NULL
);
2275 lockdep_annotate_inode_mutex_key(inode
);
2277 shmem_free_inode(sb
);
2281 bool shmem_mapping(struct address_space
*mapping
)
2283 return mapping
->a_ops
== &shmem_aops
;
2286 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2288 struct vm_area_struct
*dst_vma
,
2289 unsigned long dst_addr
,
2290 unsigned long src_addr
,
2292 struct page
**pagep
)
2294 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2295 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2296 struct address_space
*mapping
= inode
->i_mapping
;
2297 gfp_t gfp
= mapping_gfp_mask(mapping
);
2298 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2302 pte_t _dst_pte
, *dst_pte
;
2304 pgoff_t offset
, max_off
;
2307 if (!shmem_inode_acct_block(inode
, 1))
2311 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2313 goto out_unacct_blocks
;
2315 if (!zeropage
) { /* mcopy_atomic */
2316 page_kaddr
= kmap_atomic(page
);
2317 ret
= copy_from_user(page_kaddr
,
2318 (const void __user
*)src_addr
,
2320 kunmap_atomic(page_kaddr
);
2322 /* fallback to copy_from_user outside mmap_lock */
2323 if (unlikely(ret
)) {
2325 shmem_inode_unacct_blocks(inode
, 1);
2326 /* don't free the page */
2329 } else { /* mfill_zeropage_atomic */
2330 clear_highpage(page
);
2337 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2338 __SetPageLocked(page
);
2339 __SetPageSwapBacked(page
);
2340 __SetPageUptodate(page
);
2343 offset
= linear_page_index(dst_vma
, dst_addr
);
2344 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2345 if (unlikely(offset
>= max_off
))
2348 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
,
2349 gfp
& GFP_RECLAIM_MASK
, dst_mm
);
2353 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2354 if (dst_vma
->vm_flags
& VM_WRITE
)
2355 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2358 * We don't set the pte dirty if the vma has no
2359 * VM_WRITE permission, so mark the page dirty or it
2360 * could be freed from under us. We could do it
2361 * unconditionally before unlock_page(), but doing it
2362 * only if VM_WRITE is not set is faster.
2364 set_page_dirty(page
);
2367 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2370 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2371 if (unlikely(offset
>= max_off
))
2372 goto out_release_unlock
;
2375 if (!pte_none(*dst_pte
))
2376 goto out_release_unlock
;
2378 lru_cache_add(page
);
2380 spin_lock_irq(&info
->lock
);
2382 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2383 shmem_recalc_inode(inode
);
2384 spin_unlock_irq(&info
->lock
);
2386 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2387 page_add_file_rmap(page
, false);
2388 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2390 /* No need to invalidate - it was non-present before */
2391 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2392 pte_unmap_unlock(dst_pte
, ptl
);
2398 pte_unmap_unlock(dst_pte
, ptl
);
2399 ClearPageDirty(page
);
2400 delete_from_page_cache(page
);
2405 shmem_inode_unacct_blocks(inode
, 1);
2409 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2411 struct vm_area_struct
*dst_vma
,
2412 unsigned long dst_addr
,
2413 unsigned long src_addr
,
2414 struct page
**pagep
)
2416 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2417 dst_addr
, src_addr
, false, pagep
);
2420 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2422 struct vm_area_struct
*dst_vma
,
2423 unsigned long dst_addr
)
2425 struct page
*page
= NULL
;
2427 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2428 dst_addr
, 0, true, &page
);
2432 static const struct inode_operations shmem_symlink_inode_operations
;
2433 static const struct inode_operations shmem_short_symlink_operations
;
2435 #ifdef CONFIG_TMPFS_XATTR
2436 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2438 #define shmem_initxattrs NULL
2442 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2443 loff_t pos
, unsigned len
, unsigned flags
,
2444 struct page
**pagep
, void **fsdata
)
2446 struct inode
*inode
= mapping
->host
;
2447 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2448 pgoff_t index
= pos
>> PAGE_SHIFT
;
2450 /* i_mutex is held by caller */
2451 if (unlikely(info
->seals
& (F_SEAL_GROW
|
2452 F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
))) {
2453 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
))
2455 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2459 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2463 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2464 loff_t pos
, unsigned len
, unsigned copied
,
2465 struct page
*page
, void *fsdata
)
2467 struct inode
*inode
= mapping
->host
;
2469 if (pos
+ copied
> inode
->i_size
)
2470 i_size_write(inode
, pos
+ copied
);
2472 if (!PageUptodate(page
)) {
2473 struct page
*head
= compound_head(page
);
2474 if (PageTransCompound(page
)) {
2477 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2478 if (head
+ i
== page
)
2480 clear_highpage(head
+ i
);
2481 flush_dcache_page(head
+ i
);
2484 if (copied
< PAGE_SIZE
) {
2485 unsigned from
= pos
& (PAGE_SIZE
- 1);
2486 zero_user_segments(page
, 0, from
,
2487 from
+ copied
, PAGE_SIZE
);
2489 SetPageUptodate(head
);
2491 set_page_dirty(page
);
2498 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2500 struct file
*file
= iocb
->ki_filp
;
2501 struct inode
*inode
= file_inode(file
);
2502 struct address_space
*mapping
= inode
->i_mapping
;
2504 unsigned long offset
;
2505 enum sgp_type sgp
= SGP_READ
;
2508 loff_t
*ppos
= &iocb
->ki_pos
;
2511 * Might this read be for a stacking filesystem? Then when reading
2512 * holes of a sparse file, we actually need to allocate those pages,
2513 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2515 if (!iter_is_iovec(to
))
2518 index
= *ppos
>> PAGE_SHIFT
;
2519 offset
= *ppos
& ~PAGE_MASK
;
2522 struct page
*page
= NULL
;
2524 unsigned long nr
, ret
;
2525 loff_t i_size
= i_size_read(inode
);
2527 end_index
= i_size
>> PAGE_SHIFT
;
2528 if (index
> end_index
)
2530 if (index
== end_index
) {
2531 nr
= i_size
& ~PAGE_MASK
;
2536 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2538 if (error
== -EINVAL
)
2543 if (sgp
== SGP_CACHE
)
2544 set_page_dirty(page
);
2549 * We must evaluate after, since reads (unlike writes)
2550 * are called without i_mutex protection against truncate
2553 i_size
= i_size_read(inode
);
2554 end_index
= i_size
>> PAGE_SHIFT
;
2555 if (index
== end_index
) {
2556 nr
= i_size
& ~PAGE_MASK
;
2567 * If users can be writing to this page using arbitrary
2568 * virtual addresses, take care about potential aliasing
2569 * before reading the page on the kernel side.
2571 if (mapping_writably_mapped(mapping
))
2572 flush_dcache_page(page
);
2574 * Mark the page accessed if we read the beginning.
2577 mark_page_accessed(page
);
2579 page
= ZERO_PAGE(0);
2584 * Ok, we have the page, and it's up-to-date, so
2585 * now we can copy it to user space...
2587 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2590 index
+= offset
>> PAGE_SHIFT
;
2591 offset
&= ~PAGE_MASK
;
2594 if (!iov_iter_count(to
))
2603 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2604 file_accessed(file
);
2605 return retval
? retval
: error
;
2609 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2611 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2612 pgoff_t index
, pgoff_t end
, int whence
)
2615 struct pagevec pvec
;
2616 pgoff_t indices
[PAGEVEC_SIZE
];
2620 pagevec_init(&pvec
);
2621 pvec
.nr
= 1; /* start small: we may be there already */
2623 pvec
.nr
= find_get_entries(mapping
, index
,
2624 pvec
.nr
, pvec
.pages
, indices
);
2626 if (whence
== SEEK_DATA
)
2630 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2631 if (index
< indices
[i
]) {
2632 if (whence
== SEEK_HOLE
) {
2638 page
= pvec
.pages
[i
];
2639 if (page
&& !xa_is_value(page
)) {
2640 if (!PageUptodate(page
))
2644 (page
&& whence
== SEEK_DATA
) ||
2645 (!page
&& whence
== SEEK_HOLE
)) {
2650 pagevec_remove_exceptionals(&pvec
);
2651 pagevec_release(&pvec
);
2652 pvec
.nr
= PAGEVEC_SIZE
;
2658 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2660 struct address_space
*mapping
= file
->f_mapping
;
2661 struct inode
*inode
= mapping
->host
;
2665 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2666 return generic_file_llseek_size(file
, offset
, whence
,
2667 MAX_LFS_FILESIZE
, i_size_read(inode
));
2669 /* We're holding i_mutex so we can access i_size directly */
2671 if (offset
< 0 || offset
>= inode
->i_size
)
2674 start
= offset
>> PAGE_SHIFT
;
2675 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2676 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2677 new_offset
<<= PAGE_SHIFT
;
2678 if (new_offset
> offset
) {
2679 if (new_offset
< inode
->i_size
)
2680 offset
= new_offset
;
2681 else if (whence
== SEEK_DATA
)
2684 offset
= inode
->i_size
;
2689 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2690 inode_unlock(inode
);
2694 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2697 struct inode
*inode
= file_inode(file
);
2698 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2699 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2700 struct shmem_falloc shmem_falloc
;
2701 pgoff_t start
, index
, end
;
2704 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2709 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2710 struct address_space
*mapping
= file
->f_mapping
;
2711 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2712 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2713 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2715 /* protected by i_mutex */
2716 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
2721 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2722 shmem_falloc
.start
= (u64
)unmap_start
>> PAGE_SHIFT
;
2723 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2724 spin_lock(&inode
->i_lock
);
2725 inode
->i_private
= &shmem_falloc
;
2726 spin_unlock(&inode
->i_lock
);
2728 if ((u64
)unmap_end
> (u64
)unmap_start
)
2729 unmap_mapping_range(mapping
, unmap_start
,
2730 1 + unmap_end
- unmap_start
, 0);
2731 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2732 /* No need to unmap again: hole-punching leaves COWed pages */
2734 spin_lock(&inode
->i_lock
);
2735 inode
->i_private
= NULL
;
2736 wake_up_all(&shmem_falloc_waitq
);
2737 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2738 spin_unlock(&inode
->i_lock
);
2743 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2744 error
= inode_newsize_ok(inode
, offset
+ len
);
2748 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2753 start
= offset
>> PAGE_SHIFT
;
2754 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2755 /* Try to avoid a swapstorm if len is impossible to satisfy */
2756 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2761 shmem_falloc
.waitq
= NULL
;
2762 shmem_falloc
.start
= start
;
2763 shmem_falloc
.next
= start
;
2764 shmem_falloc
.nr_falloced
= 0;
2765 shmem_falloc
.nr_unswapped
= 0;
2766 spin_lock(&inode
->i_lock
);
2767 inode
->i_private
= &shmem_falloc
;
2768 spin_unlock(&inode
->i_lock
);
2770 for (index
= start
; index
< end
; index
++) {
2774 * Good, the fallocate(2) manpage permits EINTR: we may have
2775 * been interrupted because we are using up too much memory.
2777 if (signal_pending(current
))
2779 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2782 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2784 /* Remove the !PageUptodate pages we added */
2785 if (index
> start
) {
2786 shmem_undo_range(inode
,
2787 (loff_t
)start
<< PAGE_SHIFT
,
2788 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2794 * Inform shmem_writepage() how far we have reached.
2795 * No need for lock or barrier: we have the page lock.
2797 shmem_falloc
.next
++;
2798 if (!PageUptodate(page
))
2799 shmem_falloc
.nr_falloced
++;
2802 * If !PageUptodate, leave it that way so that freeable pages
2803 * can be recognized if we need to rollback on error later.
2804 * But set_page_dirty so that memory pressure will swap rather
2805 * than free the pages we are allocating (and SGP_CACHE pages
2806 * might still be clean: we now need to mark those dirty too).
2808 set_page_dirty(page
);
2814 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2815 i_size_write(inode
, offset
+ len
);
2816 inode
->i_ctime
= current_time(inode
);
2818 spin_lock(&inode
->i_lock
);
2819 inode
->i_private
= NULL
;
2820 spin_unlock(&inode
->i_lock
);
2822 inode_unlock(inode
);
2826 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2828 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2830 buf
->f_type
= TMPFS_MAGIC
;
2831 buf
->f_bsize
= PAGE_SIZE
;
2832 buf
->f_namelen
= NAME_MAX
;
2833 if (sbinfo
->max_blocks
) {
2834 buf
->f_blocks
= sbinfo
->max_blocks
;
2836 buf
->f_bfree
= sbinfo
->max_blocks
-
2837 percpu_counter_sum(&sbinfo
->used_blocks
);
2839 if (sbinfo
->max_inodes
) {
2840 buf
->f_files
= sbinfo
->max_inodes
;
2841 buf
->f_ffree
= sbinfo
->free_inodes
;
2843 /* else leave those fields 0 like simple_statfs */
2848 * File creation. Allocate an inode, and we're done..
2851 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2853 struct inode
*inode
;
2854 int error
= -ENOSPC
;
2856 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2858 error
= simple_acl_create(dir
, inode
);
2861 error
= security_inode_init_security(inode
, dir
,
2863 shmem_initxattrs
, NULL
);
2864 if (error
&& error
!= -EOPNOTSUPP
)
2868 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2869 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2870 d_instantiate(dentry
, inode
);
2871 dget(dentry
); /* Extra count - pin the dentry in core */
2880 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2882 struct inode
*inode
;
2883 int error
= -ENOSPC
;
2885 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2887 error
= security_inode_init_security(inode
, dir
,
2889 shmem_initxattrs
, NULL
);
2890 if (error
&& error
!= -EOPNOTSUPP
)
2892 error
= simple_acl_create(dir
, inode
);
2895 d_tmpfile(dentry
, inode
);
2903 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2907 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2913 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2916 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2922 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2924 struct inode
*inode
= d_inode(old_dentry
);
2928 * No ordinary (disk based) filesystem counts links as inodes;
2929 * but each new link needs a new dentry, pinning lowmem, and
2930 * tmpfs dentries cannot be pruned until they are unlinked.
2931 * But if an O_TMPFILE file is linked into the tmpfs, the
2932 * first link must skip that, to get the accounting right.
2934 if (inode
->i_nlink
) {
2935 ret
= shmem_reserve_inode(inode
->i_sb
);
2940 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2941 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2943 ihold(inode
); /* New dentry reference */
2944 dget(dentry
); /* Extra pinning count for the created dentry */
2945 d_instantiate(dentry
, inode
);
2950 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2952 struct inode
*inode
= d_inode(dentry
);
2954 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2955 shmem_free_inode(inode
->i_sb
);
2957 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2958 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2960 dput(dentry
); /* Undo the count from "create" - this does all the work */
2964 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2966 if (!simple_empty(dentry
))
2969 drop_nlink(d_inode(dentry
));
2971 return shmem_unlink(dir
, dentry
);
2974 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2976 bool old_is_dir
= d_is_dir(old_dentry
);
2977 bool new_is_dir
= d_is_dir(new_dentry
);
2979 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2981 drop_nlink(old_dir
);
2984 drop_nlink(new_dir
);
2988 old_dir
->i_ctime
= old_dir
->i_mtime
=
2989 new_dir
->i_ctime
= new_dir
->i_mtime
=
2990 d_inode(old_dentry
)->i_ctime
=
2991 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2996 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2998 struct dentry
*whiteout
;
3001 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
3005 error
= shmem_mknod(old_dir
, whiteout
,
3006 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
3012 * Cheat and hash the whiteout while the old dentry is still in
3013 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3015 * d_lookup() will consistently find one of them at this point,
3016 * not sure which one, but that isn't even important.
3023 * The VFS layer already does all the dentry stuff for rename,
3024 * we just have to decrement the usage count for the target if
3025 * it exists so that the VFS layer correctly free's it when it
3028 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3030 struct inode
*inode
= d_inode(old_dentry
);
3031 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3033 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3036 if (flags
& RENAME_EXCHANGE
)
3037 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3039 if (!simple_empty(new_dentry
))
3042 if (flags
& RENAME_WHITEOUT
) {
3045 error
= shmem_whiteout(old_dir
, old_dentry
);
3050 if (d_really_is_positive(new_dentry
)) {
3051 (void) shmem_unlink(new_dir
, new_dentry
);
3052 if (they_are_dirs
) {
3053 drop_nlink(d_inode(new_dentry
));
3054 drop_nlink(old_dir
);
3056 } else if (they_are_dirs
) {
3057 drop_nlink(old_dir
);
3061 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3062 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3063 old_dir
->i_ctime
= old_dir
->i_mtime
=
3064 new_dir
->i_ctime
= new_dir
->i_mtime
=
3065 inode
->i_ctime
= current_time(old_dir
);
3069 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3073 struct inode
*inode
;
3076 len
= strlen(symname
) + 1;
3077 if (len
> PAGE_SIZE
)
3078 return -ENAMETOOLONG
;
3080 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
| 0777, 0,
3085 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3086 shmem_initxattrs
, NULL
);
3087 if (error
&& error
!= -EOPNOTSUPP
) {
3092 inode
->i_size
= len
-1;
3093 if (len
<= SHORT_SYMLINK_LEN
) {
3094 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3095 if (!inode
->i_link
) {
3099 inode
->i_op
= &shmem_short_symlink_operations
;
3101 inode_nohighmem(inode
);
3102 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3107 inode
->i_mapping
->a_ops
= &shmem_aops
;
3108 inode
->i_op
= &shmem_symlink_inode_operations
;
3109 memcpy(page_address(page
), symname
, len
);
3110 SetPageUptodate(page
);
3111 set_page_dirty(page
);
3115 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3116 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3117 d_instantiate(dentry
, inode
);
3122 static void shmem_put_link(void *arg
)
3124 mark_page_accessed(arg
);
3128 static const char *shmem_get_link(struct dentry
*dentry
,
3129 struct inode
*inode
,
3130 struct delayed_call
*done
)
3132 struct page
*page
= NULL
;
3135 page
= find_get_page(inode
->i_mapping
, 0);
3137 return ERR_PTR(-ECHILD
);
3138 if (!PageUptodate(page
)) {
3140 return ERR_PTR(-ECHILD
);
3143 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3145 return ERR_PTR(error
);
3148 set_delayed_call(done
, shmem_put_link
, page
);
3149 return page_address(page
);
3152 #ifdef CONFIG_TMPFS_XATTR
3154 * Superblocks without xattr inode operations may get some security.* xattr
3155 * support from the LSM "for free". As soon as we have any other xattrs
3156 * like ACLs, we also need to implement the security.* handlers at
3157 * filesystem level, though.
3161 * Callback for security_inode_init_security() for acquiring xattrs.
3163 static int shmem_initxattrs(struct inode
*inode
,
3164 const struct xattr
*xattr_array
,
3167 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3168 const struct xattr
*xattr
;
3169 struct simple_xattr
*new_xattr
;
3172 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3173 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3177 len
= strlen(xattr
->name
) + 1;
3178 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3180 if (!new_xattr
->name
) {
3185 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3186 XATTR_SECURITY_PREFIX_LEN
);
3187 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3190 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3196 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3197 struct dentry
*unused
, struct inode
*inode
,
3198 const char *name
, void *buffer
, size_t size
)
3200 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3202 name
= xattr_full_name(handler
, name
);
3203 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3206 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3207 struct dentry
*unused
, struct inode
*inode
,
3208 const char *name
, const void *value
,
3209 size_t size
, int flags
)
3211 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3213 name
= xattr_full_name(handler
, name
);
3214 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
, NULL
);
3217 static const struct xattr_handler shmem_security_xattr_handler
= {
3218 .prefix
= XATTR_SECURITY_PREFIX
,
3219 .get
= shmem_xattr_handler_get
,
3220 .set
= shmem_xattr_handler_set
,
3223 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3224 .prefix
= XATTR_TRUSTED_PREFIX
,
3225 .get
= shmem_xattr_handler_get
,
3226 .set
= shmem_xattr_handler_set
,
3229 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3230 #ifdef CONFIG_TMPFS_POSIX_ACL
3231 &posix_acl_access_xattr_handler
,
3232 &posix_acl_default_xattr_handler
,
3234 &shmem_security_xattr_handler
,
3235 &shmem_trusted_xattr_handler
,
3239 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3241 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3242 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3244 #endif /* CONFIG_TMPFS_XATTR */
3246 static const struct inode_operations shmem_short_symlink_operations
= {
3247 .get_link
= simple_get_link
,
3248 #ifdef CONFIG_TMPFS_XATTR
3249 .listxattr
= shmem_listxattr
,
3253 static const struct inode_operations shmem_symlink_inode_operations
= {
3254 .get_link
= shmem_get_link
,
3255 #ifdef CONFIG_TMPFS_XATTR
3256 .listxattr
= shmem_listxattr
,
3260 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3262 return ERR_PTR(-ESTALE
);
3265 static int shmem_match(struct inode
*ino
, void *vfh
)
3269 inum
= (inum
<< 32) | fh
[1];
3270 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3273 /* Find any alias of inode, but prefer a hashed alias */
3274 static struct dentry
*shmem_find_alias(struct inode
*inode
)
3276 struct dentry
*alias
= d_find_alias(inode
);
3278 return alias
?: d_find_any_alias(inode
);
3282 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3283 struct fid
*fid
, int fh_len
, int fh_type
)
3285 struct inode
*inode
;
3286 struct dentry
*dentry
= NULL
;
3293 inum
= (inum
<< 32) | fid
->raw
[1];
3295 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3296 shmem_match
, fid
->raw
);
3298 dentry
= shmem_find_alias(inode
);
3305 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3306 struct inode
*parent
)
3310 return FILEID_INVALID
;
3313 if (inode_unhashed(inode
)) {
3314 /* Unfortunately insert_inode_hash is not idempotent,
3315 * so as we hash inodes here rather than at creation
3316 * time, we need a lock to ensure we only try
3319 static DEFINE_SPINLOCK(lock
);
3321 if (inode_unhashed(inode
))
3322 __insert_inode_hash(inode
,
3323 inode
->i_ino
+ inode
->i_generation
);
3327 fh
[0] = inode
->i_generation
;
3328 fh
[1] = inode
->i_ino
;
3329 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3335 static const struct export_operations shmem_export_ops
= {
3336 .get_parent
= shmem_get_parent
,
3337 .encode_fh
= shmem_encode_fh
,
3338 .fh_to_dentry
= shmem_fh_to_dentry
,
3352 static const struct constant_table shmem_param_enums_huge
[] = {
3353 {"never", SHMEM_HUGE_NEVER
},
3354 {"always", SHMEM_HUGE_ALWAYS
},
3355 {"within_size", SHMEM_HUGE_WITHIN_SIZE
},
3356 {"advise", SHMEM_HUGE_ADVISE
},
3360 const struct fs_parameter_spec shmem_fs_parameters
[] = {
3361 fsparam_u32 ("gid", Opt_gid
),
3362 fsparam_enum ("huge", Opt_huge
, shmem_param_enums_huge
),
3363 fsparam_u32oct("mode", Opt_mode
),
3364 fsparam_string("mpol", Opt_mpol
),
3365 fsparam_string("nr_blocks", Opt_nr_blocks
),
3366 fsparam_string("nr_inodes", Opt_nr_inodes
),
3367 fsparam_string("size", Opt_size
),
3368 fsparam_u32 ("uid", Opt_uid
),
3372 static int shmem_parse_one(struct fs_context
*fc
, struct fs_parameter
*param
)
3374 struct shmem_options
*ctx
= fc
->fs_private
;
3375 struct fs_parse_result result
;
3376 unsigned long long size
;
3380 opt
= fs_parse(fc
, shmem_fs_parameters
, param
, &result
);
3386 size
= memparse(param
->string
, &rest
);
3388 size
<<= PAGE_SHIFT
;
3389 size
*= totalram_pages();
3395 ctx
->blocks
= DIV_ROUND_UP(size
, PAGE_SIZE
);
3396 ctx
->seen
|= SHMEM_SEEN_BLOCKS
;
3399 ctx
->blocks
= memparse(param
->string
, &rest
);
3402 ctx
->seen
|= SHMEM_SEEN_BLOCKS
;
3405 ctx
->inodes
= memparse(param
->string
, &rest
);
3408 ctx
->seen
|= SHMEM_SEEN_INODES
;
3411 ctx
->mode
= result
.uint_32
& 07777;
3414 ctx
->uid
= make_kuid(current_user_ns(), result
.uint_32
);
3415 if (!uid_valid(ctx
->uid
))
3419 ctx
->gid
= make_kgid(current_user_ns(), result
.uint_32
);
3420 if (!gid_valid(ctx
->gid
))
3424 ctx
->huge
= result
.uint_32
;
3425 if (ctx
->huge
!= SHMEM_HUGE_NEVER
&&
3426 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) &&
3427 has_transparent_hugepage()))
3428 goto unsupported_parameter
;
3429 ctx
->seen
|= SHMEM_SEEN_HUGE
;
3432 if (IS_ENABLED(CONFIG_NUMA
)) {
3433 mpol_put(ctx
->mpol
);
3435 if (mpol_parse_str(param
->string
, &ctx
->mpol
))
3439 goto unsupported_parameter
;
3443 unsupported_parameter
:
3444 return invalfc(fc
, "Unsupported parameter '%s'", param
->key
);
3446 return invalfc(fc
, "Bad value for '%s'", param
->key
);
3449 static int shmem_parse_options(struct fs_context
*fc
, void *data
)
3451 char *options
= data
;
3454 int err
= security_sb_eat_lsm_opts(options
, &fc
->security
);
3459 while (options
!= NULL
) {
3460 char *this_char
= options
;
3463 * NUL-terminate this option: unfortunately,
3464 * mount options form a comma-separated list,
3465 * but mpol's nodelist may also contain commas.
3467 options
= strchr(options
, ',');
3468 if (options
== NULL
)
3471 if (!isdigit(*options
)) {
3477 char *value
= strchr(this_char
,'=');
3483 len
= strlen(value
);
3485 err
= vfs_parse_fs_string(fc
, this_char
, value
, len
);
3494 * Reconfigure a shmem filesystem.
3496 * Note that we disallow change from limited->unlimited blocks/inodes while any
3497 * are in use; but we must separately disallow unlimited->limited, because in
3498 * that case we have no record of how much is already in use.
3500 static int shmem_reconfigure(struct fs_context
*fc
)
3502 struct shmem_options
*ctx
= fc
->fs_private
;
3503 struct shmem_sb_info
*sbinfo
= SHMEM_SB(fc
->root
->d_sb
);
3504 unsigned long inodes
;
3507 spin_lock(&sbinfo
->stat_lock
);
3508 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3509 if ((ctx
->seen
& SHMEM_SEEN_BLOCKS
) && ctx
->blocks
) {
3510 if (!sbinfo
->max_blocks
) {
3511 err
= "Cannot retroactively limit size";
3514 if (percpu_counter_compare(&sbinfo
->used_blocks
,
3516 err
= "Too small a size for current use";
3520 if ((ctx
->seen
& SHMEM_SEEN_INODES
) && ctx
->inodes
) {
3521 if (!sbinfo
->max_inodes
) {
3522 err
= "Cannot retroactively limit inodes";
3525 if (ctx
->inodes
< inodes
) {
3526 err
= "Too few inodes for current use";
3531 if (ctx
->seen
& SHMEM_SEEN_HUGE
)
3532 sbinfo
->huge
= ctx
->huge
;
3533 if (ctx
->seen
& SHMEM_SEEN_BLOCKS
)
3534 sbinfo
->max_blocks
= ctx
->blocks
;
3535 if (ctx
->seen
& SHMEM_SEEN_INODES
) {
3536 sbinfo
->max_inodes
= ctx
->inodes
;
3537 sbinfo
->free_inodes
= ctx
->inodes
- inodes
;
3541 * Preserve previous mempolicy unless mpol remount option was specified.
3544 mpol_put(sbinfo
->mpol
);
3545 sbinfo
->mpol
= ctx
->mpol
; /* transfers initial ref */
3548 spin_unlock(&sbinfo
->stat_lock
);
3551 spin_unlock(&sbinfo
->stat_lock
);
3552 return invalfc(fc
, "%s", err
);
3555 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3557 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3559 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3560 seq_printf(seq
, ",size=%luk",
3561 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3562 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3563 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3564 if (sbinfo
->mode
!= (0777 | S_ISVTX
))
3565 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3566 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3567 seq_printf(seq
, ",uid=%u",
3568 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3569 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3570 seq_printf(seq
, ",gid=%u",
3571 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3573 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3575 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3577 shmem_show_mpol(seq
, sbinfo
->mpol
);
3581 #endif /* CONFIG_TMPFS */
3583 static void shmem_put_super(struct super_block
*sb
)
3585 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3587 percpu_counter_destroy(&sbinfo
->used_blocks
);
3588 mpol_put(sbinfo
->mpol
);
3590 sb
->s_fs_info
= NULL
;
3593 static int shmem_fill_super(struct super_block
*sb
, struct fs_context
*fc
)
3595 struct shmem_options
*ctx
= fc
->fs_private
;
3596 struct inode
*inode
;
3597 struct shmem_sb_info
*sbinfo
;
3600 /* Round up to L1_CACHE_BYTES to resist false sharing */
3601 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3602 L1_CACHE_BYTES
), GFP_KERNEL
);
3606 sb
->s_fs_info
= sbinfo
;
3610 * Per default we only allow half of the physical ram per
3611 * tmpfs instance, limiting inodes to one per page of lowmem;
3612 * but the internal instance is left unlimited.
3614 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3615 if (!(ctx
->seen
& SHMEM_SEEN_BLOCKS
))
3616 ctx
->blocks
= shmem_default_max_blocks();
3617 if (!(ctx
->seen
& SHMEM_SEEN_INODES
))
3618 ctx
->inodes
= shmem_default_max_inodes();
3620 sb
->s_flags
|= SB_NOUSER
;
3622 sb
->s_export_op
= &shmem_export_ops
;
3623 sb
->s_flags
|= SB_NOSEC
;
3625 sb
->s_flags
|= SB_NOUSER
;
3627 sbinfo
->max_blocks
= ctx
->blocks
;
3628 sbinfo
->free_inodes
= sbinfo
->max_inodes
= ctx
->inodes
;
3629 sbinfo
->uid
= ctx
->uid
;
3630 sbinfo
->gid
= ctx
->gid
;
3631 sbinfo
->mode
= ctx
->mode
;
3632 sbinfo
->huge
= ctx
->huge
;
3633 sbinfo
->mpol
= ctx
->mpol
;
3636 spin_lock_init(&sbinfo
->stat_lock
);
3637 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3639 spin_lock_init(&sbinfo
->shrinklist_lock
);
3640 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3642 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3643 sb
->s_blocksize
= PAGE_SIZE
;
3644 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3645 sb
->s_magic
= TMPFS_MAGIC
;
3646 sb
->s_op
= &shmem_ops
;
3647 sb
->s_time_gran
= 1;
3648 #ifdef CONFIG_TMPFS_XATTR
3649 sb
->s_xattr
= shmem_xattr_handlers
;
3651 #ifdef CONFIG_TMPFS_POSIX_ACL
3652 sb
->s_flags
|= SB_POSIXACL
;
3654 uuid_gen(&sb
->s_uuid
);
3656 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3659 inode
->i_uid
= sbinfo
->uid
;
3660 inode
->i_gid
= sbinfo
->gid
;
3661 sb
->s_root
= d_make_root(inode
);
3667 shmem_put_super(sb
);
3671 static int shmem_get_tree(struct fs_context
*fc
)
3673 return get_tree_nodev(fc
, shmem_fill_super
);
3676 static void shmem_free_fc(struct fs_context
*fc
)
3678 struct shmem_options
*ctx
= fc
->fs_private
;
3681 mpol_put(ctx
->mpol
);
3686 static const struct fs_context_operations shmem_fs_context_ops
= {
3687 .free
= shmem_free_fc
,
3688 .get_tree
= shmem_get_tree
,
3690 .parse_monolithic
= shmem_parse_options
,
3691 .parse_param
= shmem_parse_one
,
3692 .reconfigure
= shmem_reconfigure
,
3696 static struct kmem_cache
*shmem_inode_cachep
;
3698 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3700 struct shmem_inode_info
*info
;
3701 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3704 return &info
->vfs_inode
;
3707 static void shmem_free_in_core_inode(struct inode
*inode
)
3709 if (S_ISLNK(inode
->i_mode
))
3710 kfree(inode
->i_link
);
3711 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3714 static void shmem_destroy_inode(struct inode
*inode
)
3716 if (S_ISREG(inode
->i_mode
))
3717 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3720 static void shmem_init_inode(void *foo
)
3722 struct shmem_inode_info
*info
= foo
;
3723 inode_init_once(&info
->vfs_inode
);
3726 static void shmem_init_inodecache(void)
3728 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3729 sizeof(struct shmem_inode_info
),
3730 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3733 static void shmem_destroy_inodecache(void)
3735 kmem_cache_destroy(shmem_inode_cachep
);
3738 static const struct address_space_operations shmem_aops
= {
3739 .writepage
= shmem_writepage
,
3740 .set_page_dirty
= __set_page_dirty_no_writeback
,
3742 .write_begin
= shmem_write_begin
,
3743 .write_end
= shmem_write_end
,
3745 #ifdef CONFIG_MIGRATION
3746 .migratepage
= migrate_page
,
3748 .error_remove_page
= generic_error_remove_page
,
3751 static const struct file_operations shmem_file_operations
= {
3753 .get_unmapped_area
= shmem_get_unmapped_area
,
3755 .llseek
= shmem_file_llseek
,
3756 .read_iter
= shmem_file_read_iter
,
3757 .write_iter
= generic_file_write_iter
,
3758 .fsync
= noop_fsync
,
3759 .splice_read
= generic_file_splice_read
,
3760 .splice_write
= iter_file_splice_write
,
3761 .fallocate
= shmem_fallocate
,
3765 static const struct inode_operations shmem_inode_operations
= {
3766 .getattr
= shmem_getattr
,
3767 .setattr
= shmem_setattr
,
3768 #ifdef CONFIG_TMPFS_XATTR
3769 .listxattr
= shmem_listxattr
,
3770 .set_acl
= simple_set_acl
,
3774 static const struct inode_operations shmem_dir_inode_operations
= {
3776 .create
= shmem_create
,
3777 .lookup
= simple_lookup
,
3779 .unlink
= shmem_unlink
,
3780 .symlink
= shmem_symlink
,
3781 .mkdir
= shmem_mkdir
,
3782 .rmdir
= shmem_rmdir
,
3783 .mknod
= shmem_mknod
,
3784 .rename
= shmem_rename2
,
3785 .tmpfile
= shmem_tmpfile
,
3787 #ifdef CONFIG_TMPFS_XATTR
3788 .listxattr
= shmem_listxattr
,
3790 #ifdef CONFIG_TMPFS_POSIX_ACL
3791 .setattr
= shmem_setattr
,
3792 .set_acl
= simple_set_acl
,
3796 static const struct inode_operations shmem_special_inode_operations
= {
3797 #ifdef CONFIG_TMPFS_XATTR
3798 .listxattr
= shmem_listxattr
,
3800 #ifdef CONFIG_TMPFS_POSIX_ACL
3801 .setattr
= shmem_setattr
,
3802 .set_acl
= simple_set_acl
,
3806 static const struct super_operations shmem_ops
= {
3807 .alloc_inode
= shmem_alloc_inode
,
3808 .free_inode
= shmem_free_in_core_inode
,
3809 .destroy_inode
= shmem_destroy_inode
,
3811 .statfs
= shmem_statfs
,
3812 .show_options
= shmem_show_options
,
3814 .evict_inode
= shmem_evict_inode
,
3815 .drop_inode
= generic_delete_inode
,
3816 .put_super
= shmem_put_super
,
3817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3818 .nr_cached_objects
= shmem_unused_huge_count
,
3819 .free_cached_objects
= shmem_unused_huge_scan
,
3823 static const struct vm_operations_struct shmem_vm_ops
= {
3824 .fault
= shmem_fault
,
3825 .map_pages
= filemap_map_pages
,
3827 .set_policy
= shmem_set_policy
,
3828 .get_policy
= shmem_get_policy
,
3832 int shmem_init_fs_context(struct fs_context
*fc
)
3834 struct shmem_options
*ctx
;
3836 ctx
= kzalloc(sizeof(struct shmem_options
), GFP_KERNEL
);
3840 ctx
->mode
= 0777 | S_ISVTX
;
3841 ctx
->uid
= current_fsuid();
3842 ctx
->gid
= current_fsgid();
3844 fc
->fs_private
= ctx
;
3845 fc
->ops
= &shmem_fs_context_ops
;
3849 static struct file_system_type shmem_fs_type
= {
3850 .owner
= THIS_MODULE
,
3852 .init_fs_context
= shmem_init_fs_context
,
3854 .parameters
= shmem_fs_parameters
,
3856 .kill_sb
= kill_litter_super
,
3857 .fs_flags
= FS_USERNS_MOUNT
,
3860 int __init
shmem_init(void)
3864 shmem_init_inodecache();
3866 error
= register_filesystem(&shmem_fs_type
);
3868 pr_err("Could not register tmpfs\n");
3872 shm_mnt
= kern_mount(&shmem_fs_type
);
3873 if (IS_ERR(shm_mnt
)) {
3874 error
= PTR_ERR(shm_mnt
);
3875 pr_err("Could not kern_mount tmpfs\n");
3879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3880 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3881 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3883 shmem_huge
= 0; /* just in case it was patched */
3888 unregister_filesystem(&shmem_fs_type
);
3890 shmem_destroy_inodecache();
3891 shm_mnt
= ERR_PTR(error
);
3895 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3896 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3897 struct kobj_attribute
*attr
, char *buf
)
3899 static const int values
[] = {
3901 SHMEM_HUGE_WITHIN_SIZE
,
3909 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3910 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3912 count
+= sprintf(buf
+ count
, fmt
,
3913 shmem_format_huge(values
[i
]));
3915 buf
[count
- 1] = '\n';
3919 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3920 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3925 if (count
+ 1 > sizeof(tmp
))
3927 memcpy(tmp
, buf
, count
);
3929 if (count
&& tmp
[count
- 1] == '\n')
3930 tmp
[count
- 1] = '\0';
3932 huge
= shmem_parse_huge(tmp
);
3933 if (huge
== -EINVAL
)
3935 if (!has_transparent_hugepage() &&
3936 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3940 if (shmem_huge
> SHMEM_HUGE_DENY
)
3941 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3945 struct kobj_attribute shmem_enabled_attr
=
3946 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3950 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3952 struct inode
*inode
= file_inode(vma
->vm_file
);
3953 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3957 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
3958 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
3960 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3962 if (shmem_huge
== SHMEM_HUGE_DENY
)
3964 switch (sbinfo
->huge
) {
3965 case SHMEM_HUGE_NEVER
:
3967 case SHMEM_HUGE_ALWAYS
:
3969 case SHMEM_HUGE_WITHIN_SIZE
:
3970 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3971 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3972 if (i_size
>= HPAGE_PMD_SIZE
&&
3973 i_size
>> PAGE_SHIFT
>= off
)
3976 case SHMEM_HUGE_ADVISE
:
3977 /* TODO: implement fadvise() hints */
3978 return (vma
->vm_flags
& VM_HUGEPAGE
);
3984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3986 #else /* !CONFIG_SHMEM */
3989 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3991 * This is intended for small system where the benefits of the full
3992 * shmem code (swap-backed and resource-limited) are outweighed by
3993 * their complexity. On systems without swap this code should be
3994 * effectively equivalent, but much lighter weight.
3997 static struct file_system_type shmem_fs_type
= {
3999 .init_fs_context
= ramfs_init_fs_context
,
4000 .parameters
= ramfs_fs_parameters
,
4001 .kill_sb
= kill_litter_super
,
4002 .fs_flags
= FS_USERNS_MOUNT
,
4005 int __init
shmem_init(void)
4007 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
4009 shm_mnt
= kern_mount(&shmem_fs_type
);
4010 BUG_ON(IS_ERR(shm_mnt
));
4015 int shmem_unuse(unsigned int type
, bool frontswap
,
4016 unsigned long *fs_pages_to_unuse
)
4021 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
4026 void shmem_unlock_mapping(struct address_space
*mapping
)
4031 unsigned long shmem_get_unmapped_area(struct file
*file
,
4032 unsigned long addr
, unsigned long len
,
4033 unsigned long pgoff
, unsigned long flags
)
4035 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
4039 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
4041 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
4043 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
4045 #define shmem_vm_ops generic_file_vm_ops
4046 #define shmem_file_operations ramfs_file_operations
4047 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4048 #define shmem_acct_size(flags, size) 0
4049 #define shmem_unacct_size(flags, size) do {} while (0)
4051 #endif /* CONFIG_SHMEM */
4055 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
4056 unsigned long flags
, unsigned int i_flags
)
4058 struct inode
*inode
;
4062 return ERR_CAST(mnt
);
4064 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4065 return ERR_PTR(-EINVAL
);
4067 if (shmem_acct_size(flags
, size
))
4068 return ERR_PTR(-ENOMEM
);
4070 inode
= shmem_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0,
4072 if (unlikely(!inode
)) {
4073 shmem_unacct_size(flags
, size
);
4074 return ERR_PTR(-ENOSPC
);
4076 inode
->i_flags
|= i_flags
;
4077 inode
->i_size
= size
;
4078 clear_nlink(inode
); /* It is unlinked */
4079 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4081 res
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
4082 &shmem_file_operations
);
4089 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4090 * kernel internal. There will be NO LSM permission checks against the
4091 * underlying inode. So users of this interface must do LSM checks at a
4092 * higher layer. The users are the big_key and shm implementations. LSM
4093 * checks are provided at the key or shm level rather than the inode.
4094 * @name: name for dentry (to be seen in /proc/<pid>/maps
4095 * @size: size to be set for the file
4096 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4098 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4100 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
4104 * shmem_file_setup - get an unlinked file living in tmpfs
4105 * @name: name for dentry (to be seen in /proc/<pid>/maps
4106 * @size: size to be set for the file
4107 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4109 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4111 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
4113 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4116 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4117 * @mnt: the tmpfs mount where the file will be created
4118 * @name: name for dentry (to be seen in /proc/<pid>/maps
4119 * @size: size to be set for the file
4120 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4122 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
4123 loff_t size
, unsigned long flags
)
4125 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
4127 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
4130 * shmem_zero_setup - setup a shared anonymous mapping
4131 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4133 int shmem_zero_setup(struct vm_area_struct
*vma
)
4136 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4139 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4140 * between XFS directory reading and selinux: since this file is only
4141 * accessible to the user through its mapping, use S_PRIVATE flag to
4142 * bypass file security, in the same way as shmem_kernel_file_setup().
4144 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
4146 return PTR_ERR(file
);
4150 vma
->vm_file
= file
;
4151 vma
->vm_ops
= &shmem_vm_ops
;
4153 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) &&
4154 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4155 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4156 khugepaged_enter(vma
, vma
->vm_flags
);
4163 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4164 * @mapping: the page's address_space
4165 * @index: the page index
4166 * @gfp: the page allocator flags to use if allocating
4168 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4169 * with any new page allocations done using the specified allocation flags.
4170 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4171 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4172 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4174 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4175 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4177 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4178 pgoff_t index
, gfp_t gfp
)
4181 struct inode
*inode
= mapping
->host
;
4185 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4186 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4187 gfp
, NULL
, NULL
, NULL
);
4189 page
= ERR_PTR(error
);
4195 * The tiny !SHMEM case uses ramfs without swap
4197 return read_cache_page_gfp(mapping
, index
, gfp
);
4200 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);