time: settimeofday: Validate the values of tv from user
[linux/fpc-iii.git] / fs / super.c
blob440ef51cd696f9dc555d85030a23a8aa9fb83d15
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
66 sb = container_of(shrink, struct super_block, s_shrink);
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
75 if (!grab_super_passive(sb))
76 return SHRINK_STOP;
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
81 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
82 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
83 total_objects = dentries + inodes + fs_objects + 1;
84 if (!total_objects)
85 total_objects = 1;
87 /* proportion the scan between the caches */
88 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
95 freed = prune_dcache_sb(sb, dentries, sc->nid);
96 freed += prune_icache_sb(sb, inodes, sc->nid);
98 if (fs_objects) {
99 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
100 total_objects);
101 freed += sb->s_op->free_cached_objects(sb, fs_objects,
102 sc->nid);
105 drop_super(sb);
106 return freed;
109 static unsigned long super_cache_count(struct shrinker *shrink,
110 struct shrink_control *sc)
112 struct super_block *sb;
113 long total_objects = 0;
115 sb = container_of(shrink, struct super_block, s_shrink);
118 * Don't call grab_super_passive as it is a potential
119 * scalability bottleneck. The counts could get updated
120 * between super_cache_count and super_cache_scan anyway.
121 * Call to super_cache_count with shrinker_rwsem held
122 * ensures the safety of call to list_lru_count_node() and
123 * s_op->nr_cached_objects().
125 if (sb->s_op && sb->s_op->nr_cached_objects)
126 total_objects = sb->s_op->nr_cached_objects(sb,
127 sc->nid);
129 total_objects += list_lru_count_node(&sb->s_dentry_lru,
130 sc->nid);
131 total_objects += list_lru_count_node(&sb->s_inode_lru,
132 sc->nid);
134 total_objects = vfs_pressure_ratio(total_objects);
135 return total_objects;
139 * destroy_super - frees a superblock
140 * @s: superblock to free
142 * Frees a superblock.
144 static void destroy_super(struct super_block *s)
146 int i;
147 list_lru_destroy(&s->s_dentry_lru);
148 list_lru_destroy(&s->s_inode_lru);
149 for (i = 0; i < SB_FREEZE_LEVELS; i++)
150 percpu_counter_destroy(&s->s_writers.counter[i]);
151 security_sb_free(s);
152 WARN_ON(!list_empty(&s->s_mounts));
153 kfree(s->s_subtype);
154 kfree(s->s_options);
155 kfree_rcu(s, rcu);
159 * alloc_super - create new superblock
160 * @type: filesystem type superblock should belong to
161 * @flags: the mount flags
163 * Allocates and initializes a new &struct super_block. alloc_super()
164 * returns a pointer new superblock or %NULL if allocation had failed.
166 static struct super_block *alloc_super(struct file_system_type *type, int flags)
168 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
169 static const struct super_operations default_op;
170 int i;
172 if (!s)
173 return NULL;
175 INIT_LIST_HEAD(&s->s_mounts);
177 if (security_sb_alloc(s))
178 goto fail;
180 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
181 if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
182 goto fail;
183 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
184 &type->s_writers_key[i], 0);
186 init_waitqueue_head(&s->s_writers.wait);
187 init_waitqueue_head(&s->s_writers.wait_unfrozen);
188 s->s_flags = flags;
189 s->s_bdi = &default_backing_dev_info;
190 INIT_HLIST_NODE(&s->s_instances);
191 INIT_HLIST_BL_HEAD(&s->s_anon);
192 INIT_LIST_HEAD(&s->s_inodes);
194 if (list_lru_init(&s->s_dentry_lru))
195 goto fail;
196 if (list_lru_init(&s->s_inode_lru))
197 goto fail;
199 init_rwsem(&s->s_umount);
200 lockdep_set_class(&s->s_umount, &type->s_umount_key);
202 * sget() can have s_umount recursion.
204 * When it cannot find a suitable sb, it allocates a new
205 * one (this one), and tries again to find a suitable old
206 * one.
208 * In case that succeeds, it will acquire the s_umount
209 * lock of the old one. Since these are clearly distrinct
210 * locks, and this object isn't exposed yet, there's no
211 * risk of deadlocks.
213 * Annotate this by putting this lock in a different
214 * subclass.
216 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
217 s->s_count = 1;
218 atomic_set(&s->s_active, 1);
219 mutex_init(&s->s_vfs_rename_mutex);
220 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
221 mutex_init(&s->s_dquot.dqio_mutex);
222 mutex_init(&s->s_dquot.dqonoff_mutex);
223 init_rwsem(&s->s_dquot.dqptr_sem);
224 s->s_maxbytes = MAX_NON_LFS;
225 s->s_op = &default_op;
226 s->s_time_gran = 1000000000;
227 s->cleancache_poolid = -1;
229 s->s_shrink.seeks = DEFAULT_SEEKS;
230 s->s_shrink.scan_objects = super_cache_scan;
231 s->s_shrink.count_objects = super_cache_count;
232 s->s_shrink.batch = 1024;
233 s->s_shrink.flags = SHRINKER_NUMA_AWARE;
234 return s;
236 fail:
237 destroy_super(s);
238 return NULL;
241 /* Superblock refcounting */
244 * Drop a superblock's refcount. The caller must hold sb_lock.
246 static void __put_super(struct super_block *sb)
248 if (!--sb->s_count) {
249 list_del_init(&sb->s_list);
250 destroy_super(sb);
255 * put_super - drop a temporary reference to superblock
256 * @sb: superblock in question
258 * Drops a temporary reference, frees superblock if there's no
259 * references left.
261 static void put_super(struct super_block *sb)
263 spin_lock(&sb_lock);
264 __put_super(sb);
265 spin_unlock(&sb_lock);
270 * deactivate_locked_super - drop an active reference to superblock
271 * @s: superblock to deactivate
273 * Drops an active reference to superblock, converting it into a temprory
274 * one if there is no other active references left. In that case we
275 * tell fs driver to shut it down and drop the temporary reference we
276 * had just acquired.
278 * Caller holds exclusive lock on superblock; that lock is released.
280 void deactivate_locked_super(struct super_block *s)
282 struct file_system_type *fs = s->s_type;
283 if (atomic_dec_and_test(&s->s_active)) {
284 cleancache_invalidate_fs(s);
285 unregister_shrinker(&s->s_shrink);
286 fs->kill_sb(s);
288 put_filesystem(fs);
289 put_super(s);
290 } else {
291 up_write(&s->s_umount);
295 EXPORT_SYMBOL(deactivate_locked_super);
298 * deactivate_super - drop an active reference to superblock
299 * @s: superblock to deactivate
301 * Variant of deactivate_locked_super(), except that superblock is *not*
302 * locked by caller. If we are going to drop the final active reference,
303 * lock will be acquired prior to that.
305 void deactivate_super(struct super_block *s)
307 if (!atomic_add_unless(&s->s_active, -1, 1)) {
308 down_write(&s->s_umount);
309 deactivate_locked_super(s);
313 EXPORT_SYMBOL(deactivate_super);
316 * grab_super - acquire an active reference
317 * @s: reference we are trying to make active
319 * Tries to acquire an active reference. grab_super() is used when we
320 * had just found a superblock in super_blocks or fs_type->fs_supers
321 * and want to turn it into a full-blown active reference. grab_super()
322 * is called with sb_lock held and drops it. Returns 1 in case of
323 * success, 0 if we had failed (superblock contents was already dead or
324 * dying when grab_super() had been called). Note that this is only
325 * called for superblocks not in rundown mode (== ones still on ->fs_supers
326 * of their type), so increment of ->s_count is OK here.
328 static int grab_super(struct super_block *s) __releases(sb_lock)
330 s->s_count++;
331 spin_unlock(&sb_lock);
332 down_write(&s->s_umount);
333 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
334 put_super(s);
335 return 1;
337 up_write(&s->s_umount);
338 put_super(s);
339 return 0;
343 * grab_super_passive - acquire a passive reference
344 * @sb: reference we are trying to grab
346 * Tries to acquire a passive reference. This is used in places where we
347 * cannot take an active reference but we need to ensure that the
348 * superblock does not go away while we are working on it. It returns
349 * false if a reference was not gained, and returns true with the s_umount
350 * lock held in read mode if a reference is gained. On successful return,
351 * the caller must drop the s_umount lock and the passive reference when
352 * done.
354 bool grab_super_passive(struct super_block *sb)
356 spin_lock(&sb_lock);
357 if (hlist_unhashed(&sb->s_instances)) {
358 spin_unlock(&sb_lock);
359 return false;
362 sb->s_count++;
363 spin_unlock(&sb_lock);
365 if (down_read_trylock(&sb->s_umount)) {
366 if (sb->s_root && (sb->s_flags & MS_BORN))
367 return true;
368 up_read(&sb->s_umount);
371 put_super(sb);
372 return false;
376 * generic_shutdown_super - common helper for ->kill_sb()
377 * @sb: superblock to kill
379 * generic_shutdown_super() does all fs-independent work on superblock
380 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
381 * that need destruction out of superblock, call generic_shutdown_super()
382 * and release aforementioned objects. Note: dentries and inodes _are_
383 * taken care of and do not need specific handling.
385 * Upon calling this function, the filesystem may no longer alter or
386 * rearrange the set of dentries belonging to this super_block, nor may it
387 * change the attachments of dentries to inodes.
389 void generic_shutdown_super(struct super_block *sb)
391 const struct super_operations *sop = sb->s_op;
393 if (sb->s_root) {
394 shrink_dcache_for_umount(sb);
395 sync_filesystem(sb);
396 sb->s_flags &= ~MS_ACTIVE;
398 fsnotify_unmount_inodes(&sb->s_inodes);
400 evict_inodes(sb);
402 if (sb->s_dio_done_wq) {
403 destroy_workqueue(sb->s_dio_done_wq);
404 sb->s_dio_done_wq = NULL;
407 if (sop->put_super)
408 sop->put_super(sb);
410 if (!list_empty(&sb->s_inodes)) {
411 printk("VFS: Busy inodes after unmount of %s. "
412 "Self-destruct in 5 seconds. Have a nice day...\n",
413 sb->s_id);
416 spin_lock(&sb_lock);
417 /* should be initialized for __put_super_and_need_restart() */
418 hlist_del_init(&sb->s_instances);
419 spin_unlock(&sb_lock);
420 up_write(&sb->s_umount);
423 EXPORT_SYMBOL(generic_shutdown_super);
426 * sget - find or create a superblock
427 * @type: filesystem type superblock should belong to
428 * @test: comparison callback
429 * @set: setup callback
430 * @flags: mount flags
431 * @data: argument to each of them
433 struct super_block *sget(struct file_system_type *type,
434 int (*test)(struct super_block *,void *),
435 int (*set)(struct super_block *,void *),
436 int flags,
437 void *data)
439 struct super_block *s = NULL;
440 struct super_block *old;
441 int err;
443 retry:
444 spin_lock(&sb_lock);
445 if (test) {
446 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
447 if (!test(old, data))
448 continue;
449 if (!grab_super(old))
450 goto retry;
451 if (s) {
452 up_write(&s->s_umount);
453 destroy_super(s);
454 s = NULL;
456 return old;
459 if (!s) {
460 spin_unlock(&sb_lock);
461 s = alloc_super(type, flags);
462 if (!s)
463 return ERR_PTR(-ENOMEM);
464 goto retry;
467 err = set(s, data);
468 if (err) {
469 spin_unlock(&sb_lock);
470 up_write(&s->s_umount);
471 destroy_super(s);
472 return ERR_PTR(err);
474 s->s_type = type;
475 strlcpy(s->s_id, type->name, sizeof(s->s_id));
476 list_add_tail(&s->s_list, &super_blocks);
477 hlist_add_head(&s->s_instances, &type->fs_supers);
478 spin_unlock(&sb_lock);
479 get_filesystem(type);
480 register_shrinker(&s->s_shrink);
481 return s;
484 EXPORT_SYMBOL(sget);
486 void drop_super(struct super_block *sb)
488 up_read(&sb->s_umount);
489 put_super(sb);
492 EXPORT_SYMBOL(drop_super);
495 * iterate_supers - call function for all active superblocks
496 * @f: function to call
497 * @arg: argument to pass to it
499 * Scans the superblock list and calls given function, passing it
500 * locked superblock and given argument.
502 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
504 struct super_block *sb, *p = NULL;
506 spin_lock(&sb_lock);
507 list_for_each_entry(sb, &super_blocks, s_list) {
508 if (hlist_unhashed(&sb->s_instances))
509 continue;
510 sb->s_count++;
511 spin_unlock(&sb_lock);
513 down_read(&sb->s_umount);
514 if (sb->s_root && (sb->s_flags & MS_BORN))
515 f(sb, arg);
516 up_read(&sb->s_umount);
518 spin_lock(&sb_lock);
519 if (p)
520 __put_super(p);
521 p = sb;
523 if (p)
524 __put_super(p);
525 spin_unlock(&sb_lock);
529 * iterate_supers_type - call function for superblocks of given type
530 * @type: fs type
531 * @f: function to call
532 * @arg: argument to pass to it
534 * Scans the superblock list and calls given function, passing it
535 * locked superblock and given argument.
537 void iterate_supers_type(struct file_system_type *type,
538 void (*f)(struct super_block *, void *), void *arg)
540 struct super_block *sb, *p = NULL;
542 spin_lock(&sb_lock);
543 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
544 sb->s_count++;
545 spin_unlock(&sb_lock);
547 down_read(&sb->s_umount);
548 if (sb->s_root && (sb->s_flags & MS_BORN))
549 f(sb, arg);
550 up_read(&sb->s_umount);
552 spin_lock(&sb_lock);
553 if (p)
554 __put_super(p);
555 p = sb;
557 if (p)
558 __put_super(p);
559 spin_unlock(&sb_lock);
562 EXPORT_SYMBOL(iterate_supers_type);
565 * get_super - get the superblock of a device
566 * @bdev: device to get the superblock for
568 * Scans the superblock list and finds the superblock of the file system
569 * mounted on the device given. %NULL is returned if no match is found.
572 struct super_block *get_super(struct block_device *bdev)
574 struct super_block *sb;
576 if (!bdev)
577 return NULL;
579 spin_lock(&sb_lock);
580 rescan:
581 list_for_each_entry(sb, &super_blocks, s_list) {
582 if (hlist_unhashed(&sb->s_instances))
583 continue;
584 if (sb->s_bdev == bdev) {
585 sb->s_count++;
586 spin_unlock(&sb_lock);
587 down_read(&sb->s_umount);
588 /* still alive? */
589 if (sb->s_root && (sb->s_flags & MS_BORN))
590 return sb;
591 up_read(&sb->s_umount);
592 /* nope, got unmounted */
593 spin_lock(&sb_lock);
594 __put_super(sb);
595 goto rescan;
598 spin_unlock(&sb_lock);
599 return NULL;
602 EXPORT_SYMBOL(get_super);
605 * get_super_thawed - get thawed superblock of a device
606 * @bdev: device to get the superblock for
608 * Scans the superblock list and finds the superblock of the file system
609 * mounted on the device. The superblock is returned once it is thawed
610 * (or immediately if it was not frozen). %NULL is returned if no match
611 * is found.
613 struct super_block *get_super_thawed(struct block_device *bdev)
615 while (1) {
616 struct super_block *s = get_super(bdev);
617 if (!s || s->s_writers.frozen == SB_UNFROZEN)
618 return s;
619 up_read(&s->s_umount);
620 wait_event(s->s_writers.wait_unfrozen,
621 s->s_writers.frozen == SB_UNFROZEN);
622 put_super(s);
625 EXPORT_SYMBOL(get_super_thawed);
628 * get_active_super - get an active reference to the superblock of a device
629 * @bdev: device to get the superblock for
631 * Scans the superblock list and finds the superblock of the file system
632 * mounted on the device given. Returns the superblock with an active
633 * reference or %NULL if none was found.
635 struct super_block *get_active_super(struct block_device *bdev)
637 struct super_block *sb;
639 if (!bdev)
640 return NULL;
642 restart:
643 spin_lock(&sb_lock);
644 list_for_each_entry(sb, &super_blocks, s_list) {
645 if (hlist_unhashed(&sb->s_instances))
646 continue;
647 if (sb->s_bdev == bdev) {
648 if (!grab_super(sb))
649 goto restart;
650 up_write(&sb->s_umount);
651 return sb;
654 spin_unlock(&sb_lock);
655 return NULL;
658 struct super_block *user_get_super(dev_t dev)
660 struct super_block *sb;
662 spin_lock(&sb_lock);
663 rescan:
664 list_for_each_entry(sb, &super_blocks, s_list) {
665 if (hlist_unhashed(&sb->s_instances))
666 continue;
667 if (sb->s_dev == dev) {
668 sb->s_count++;
669 spin_unlock(&sb_lock);
670 down_read(&sb->s_umount);
671 /* still alive? */
672 if (sb->s_root && (sb->s_flags & MS_BORN))
673 return sb;
674 up_read(&sb->s_umount);
675 /* nope, got unmounted */
676 spin_lock(&sb_lock);
677 __put_super(sb);
678 goto rescan;
681 spin_unlock(&sb_lock);
682 return NULL;
686 * do_remount_sb - asks filesystem to change mount options.
687 * @sb: superblock in question
688 * @flags: numeric part of options
689 * @data: the rest of options
690 * @force: whether or not to force the change
692 * Alters the mount options of a mounted file system.
694 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
696 int retval;
697 int remount_ro;
699 if (sb->s_writers.frozen != SB_UNFROZEN)
700 return -EBUSY;
702 #ifdef CONFIG_BLOCK
703 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
704 return -EACCES;
705 #endif
707 if (flags & MS_RDONLY)
708 acct_auto_close(sb);
709 shrink_dcache_sb(sb);
711 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
713 /* If we are remounting RDONLY and current sb is read/write,
714 make sure there are no rw files opened */
715 if (remount_ro) {
716 if (force) {
717 sb->s_readonly_remount = 1;
718 smp_wmb();
719 } else {
720 retval = sb_prepare_remount_readonly(sb);
721 if (retval)
722 return retval;
726 sync_filesystem(sb);
728 if (sb->s_op->remount_fs) {
729 retval = sb->s_op->remount_fs(sb, &flags, data);
730 if (retval) {
731 if (!force)
732 goto cancel_readonly;
733 /* If forced remount, go ahead despite any errors */
734 WARN(1, "forced remount of a %s fs returned %i\n",
735 sb->s_type->name, retval);
738 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
739 /* Needs to be ordered wrt mnt_is_readonly() */
740 smp_wmb();
741 sb->s_readonly_remount = 0;
744 * Some filesystems modify their metadata via some other path than the
745 * bdev buffer cache (eg. use a private mapping, or directories in
746 * pagecache, etc). Also file data modifications go via their own
747 * mappings. So If we try to mount readonly then copy the filesystem
748 * from bdev, we could get stale data, so invalidate it to give a best
749 * effort at coherency.
751 if (remount_ro && sb->s_bdev)
752 invalidate_bdev(sb->s_bdev);
753 return 0;
755 cancel_readonly:
756 sb->s_readonly_remount = 0;
757 return retval;
760 static void do_emergency_remount(struct work_struct *work)
762 struct super_block *sb, *p = NULL;
764 spin_lock(&sb_lock);
765 list_for_each_entry(sb, &super_blocks, s_list) {
766 if (hlist_unhashed(&sb->s_instances))
767 continue;
768 sb->s_count++;
769 spin_unlock(&sb_lock);
770 down_write(&sb->s_umount);
771 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
772 !(sb->s_flags & MS_RDONLY)) {
774 * What lock protects sb->s_flags??
776 do_remount_sb(sb, MS_RDONLY, NULL, 1);
778 up_write(&sb->s_umount);
779 spin_lock(&sb_lock);
780 if (p)
781 __put_super(p);
782 p = sb;
784 if (p)
785 __put_super(p);
786 spin_unlock(&sb_lock);
787 kfree(work);
788 printk("Emergency Remount complete\n");
791 void emergency_remount(void)
793 struct work_struct *work;
795 work = kmalloc(sizeof(*work), GFP_ATOMIC);
796 if (work) {
797 INIT_WORK(work, do_emergency_remount);
798 schedule_work(work);
803 * Unnamed block devices are dummy devices used by virtual
804 * filesystems which don't use real block-devices. -- jrs
807 static DEFINE_IDA(unnamed_dev_ida);
808 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
809 /* Many userspace utilities consider an FSID of 0 invalid.
810 * Always return at least 1 from get_anon_bdev.
812 static int unnamed_dev_start = 1;
814 int get_anon_bdev(dev_t *p)
816 int dev;
817 int error;
819 retry:
820 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
821 return -ENOMEM;
822 spin_lock(&unnamed_dev_lock);
823 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
824 if (!error)
825 unnamed_dev_start = dev + 1;
826 spin_unlock(&unnamed_dev_lock);
827 if (error == -EAGAIN)
828 /* We raced and lost with another CPU. */
829 goto retry;
830 else if (error)
831 return -EAGAIN;
833 if (dev == (1 << MINORBITS)) {
834 spin_lock(&unnamed_dev_lock);
835 ida_remove(&unnamed_dev_ida, dev);
836 if (unnamed_dev_start > dev)
837 unnamed_dev_start = dev;
838 spin_unlock(&unnamed_dev_lock);
839 return -EMFILE;
841 *p = MKDEV(0, dev & MINORMASK);
842 return 0;
844 EXPORT_SYMBOL(get_anon_bdev);
846 void free_anon_bdev(dev_t dev)
848 int slot = MINOR(dev);
849 spin_lock(&unnamed_dev_lock);
850 ida_remove(&unnamed_dev_ida, slot);
851 if (slot < unnamed_dev_start)
852 unnamed_dev_start = slot;
853 spin_unlock(&unnamed_dev_lock);
855 EXPORT_SYMBOL(free_anon_bdev);
857 int set_anon_super(struct super_block *s, void *data)
859 int error = get_anon_bdev(&s->s_dev);
860 if (!error)
861 s->s_bdi = &noop_backing_dev_info;
862 return error;
865 EXPORT_SYMBOL(set_anon_super);
867 void kill_anon_super(struct super_block *sb)
869 dev_t dev = sb->s_dev;
870 generic_shutdown_super(sb);
871 free_anon_bdev(dev);
874 EXPORT_SYMBOL(kill_anon_super);
876 void kill_litter_super(struct super_block *sb)
878 if (sb->s_root)
879 d_genocide(sb->s_root);
880 kill_anon_super(sb);
883 EXPORT_SYMBOL(kill_litter_super);
885 static int ns_test_super(struct super_block *sb, void *data)
887 return sb->s_fs_info == data;
890 static int ns_set_super(struct super_block *sb, void *data)
892 sb->s_fs_info = data;
893 return set_anon_super(sb, NULL);
896 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
897 void *data, int (*fill_super)(struct super_block *, void *, int))
899 struct super_block *sb;
901 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
902 if (IS_ERR(sb))
903 return ERR_CAST(sb);
905 if (!sb->s_root) {
906 int err;
907 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
908 if (err) {
909 deactivate_locked_super(sb);
910 return ERR_PTR(err);
913 sb->s_flags |= MS_ACTIVE;
916 return dget(sb->s_root);
919 EXPORT_SYMBOL(mount_ns);
921 #ifdef CONFIG_BLOCK
922 static int set_bdev_super(struct super_block *s, void *data)
924 s->s_bdev = data;
925 s->s_dev = s->s_bdev->bd_dev;
928 * We set the bdi here to the queue backing, file systems can
929 * overwrite this in ->fill_super()
931 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
932 return 0;
935 static int test_bdev_super(struct super_block *s, void *data)
937 return (void *)s->s_bdev == data;
940 struct dentry *mount_bdev(struct file_system_type *fs_type,
941 int flags, const char *dev_name, void *data,
942 int (*fill_super)(struct super_block *, void *, int))
944 struct block_device *bdev;
945 struct super_block *s;
946 fmode_t mode = FMODE_READ | FMODE_EXCL;
947 int error = 0;
949 if (!(flags & MS_RDONLY))
950 mode |= FMODE_WRITE;
952 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
953 if (IS_ERR(bdev))
954 return ERR_CAST(bdev);
957 * once the super is inserted into the list by sget, s_umount
958 * will protect the lockfs code from trying to start a snapshot
959 * while we are mounting
961 mutex_lock(&bdev->bd_fsfreeze_mutex);
962 if (bdev->bd_fsfreeze_count > 0) {
963 mutex_unlock(&bdev->bd_fsfreeze_mutex);
964 error = -EBUSY;
965 goto error_bdev;
967 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
968 bdev);
969 mutex_unlock(&bdev->bd_fsfreeze_mutex);
970 if (IS_ERR(s))
971 goto error_s;
973 if (s->s_root) {
974 if ((flags ^ s->s_flags) & MS_RDONLY) {
975 deactivate_locked_super(s);
976 error = -EBUSY;
977 goto error_bdev;
981 * s_umount nests inside bd_mutex during
982 * __invalidate_device(). blkdev_put() acquires
983 * bd_mutex and can't be called under s_umount. Drop
984 * s_umount temporarily. This is safe as we're
985 * holding an active reference.
987 up_write(&s->s_umount);
988 blkdev_put(bdev, mode);
989 down_write(&s->s_umount);
990 } else {
991 char b[BDEVNAME_SIZE];
993 s->s_mode = mode;
994 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
995 sb_set_blocksize(s, block_size(bdev));
996 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
997 if (error) {
998 deactivate_locked_super(s);
999 goto error;
1002 s->s_flags |= MS_ACTIVE;
1003 bdev->bd_super = s;
1006 return dget(s->s_root);
1008 error_s:
1009 error = PTR_ERR(s);
1010 error_bdev:
1011 blkdev_put(bdev, mode);
1012 error:
1013 return ERR_PTR(error);
1015 EXPORT_SYMBOL(mount_bdev);
1017 void kill_block_super(struct super_block *sb)
1019 struct block_device *bdev = sb->s_bdev;
1020 fmode_t mode = sb->s_mode;
1022 bdev->bd_super = NULL;
1023 generic_shutdown_super(sb);
1024 sync_blockdev(bdev);
1025 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1026 blkdev_put(bdev, mode | FMODE_EXCL);
1029 EXPORT_SYMBOL(kill_block_super);
1030 #endif
1032 struct dentry *mount_nodev(struct file_system_type *fs_type,
1033 int flags, void *data,
1034 int (*fill_super)(struct super_block *, void *, int))
1036 int error;
1037 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1039 if (IS_ERR(s))
1040 return ERR_CAST(s);
1042 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1043 if (error) {
1044 deactivate_locked_super(s);
1045 return ERR_PTR(error);
1047 s->s_flags |= MS_ACTIVE;
1048 return dget(s->s_root);
1050 EXPORT_SYMBOL(mount_nodev);
1052 static int compare_single(struct super_block *s, void *p)
1054 return 1;
1057 struct dentry *mount_single(struct file_system_type *fs_type,
1058 int flags, void *data,
1059 int (*fill_super)(struct super_block *, void *, int))
1061 struct super_block *s;
1062 int error;
1064 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1065 if (IS_ERR(s))
1066 return ERR_CAST(s);
1067 if (!s->s_root) {
1068 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1069 if (error) {
1070 deactivate_locked_super(s);
1071 return ERR_PTR(error);
1073 s->s_flags |= MS_ACTIVE;
1074 } else {
1075 do_remount_sb(s, flags, data, 0);
1077 return dget(s->s_root);
1079 EXPORT_SYMBOL(mount_single);
1081 struct dentry *
1082 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1084 struct dentry *root;
1085 struct super_block *sb;
1086 char *secdata = NULL;
1087 int error = -ENOMEM;
1089 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1090 secdata = alloc_secdata();
1091 if (!secdata)
1092 goto out;
1094 error = security_sb_copy_data(data, secdata);
1095 if (error)
1096 goto out_free_secdata;
1099 root = type->mount(type, flags, name, data);
1100 if (IS_ERR(root)) {
1101 error = PTR_ERR(root);
1102 goto out_free_secdata;
1104 sb = root->d_sb;
1105 BUG_ON(!sb);
1106 WARN_ON(!sb->s_bdi);
1107 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1108 sb->s_flags |= MS_BORN;
1110 error = security_sb_kern_mount(sb, flags, secdata);
1111 if (error)
1112 goto out_sb;
1115 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1116 * but s_maxbytes was an unsigned long long for many releases. Throw
1117 * this warning for a little while to try and catch filesystems that
1118 * violate this rule.
1120 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1121 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1123 up_write(&sb->s_umount);
1124 free_secdata(secdata);
1125 return root;
1126 out_sb:
1127 dput(root);
1128 deactivate_locked_super(sb);
1129 out_free_secdata:
1130 free_secdata(secdata);
1131 out:
1132 return ERR_PTR(error);
1136 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1137 * instead.
1139 void __sb_end_write(struct super_block *sb, int level)
1141 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1143 * Make sure s_writers are updated before we wake up waiters in
1144 * freeze_super().
1146 smp_mb();
1147 if (waitqueue_active(&sb->s_writers.wait))
1148 wake_up(&sb->s_writers.wait);
1149 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1151 EXPORT_SYMBOL(__sb_end_write);
1153 #ifdef CONFIG_LOCKDEP
1155 * We want lockdep to tell us about possible deadlocks with freezing but
1156 * it's it bit tricky to properly instrument it. Getting a freeze protection
1157 * works as getting a read lock but there are subtle problems. XFS for example
1158 * gets freeze protection on internal level twice in some cases, which is OK
1159 * only because we already hold a freeze protection also on higher level. Due
1160 * to these cases we have to tell lockdep we are doing trylock when we
1161 * already hold a freeze protection for a higher freeze level.
1163 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1164 unsigned long ip)
1166 int i;
1168 if (!trylock) {
1169 for (i = 0; i < level - 1; i++)
1170 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1171 trylock = true;
1172 break;
1175 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1177 #endif
1180 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1181 * instead.
1183 int __sb_start_write(struct super_block *sb, int level, bool wait)
1185 retry:
1186 if (unlikely(sb->s_writers.frozen >= level)) {
1187 if (!wait)
1188 return 0;
1189 wait_event(sb->s_writers.wait_unfrozen,
1190 sb->s_writers.frozen < level);
1193 #ifdef CONFIG_LOCKDEP
1194 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1195 #endif
1196 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1198 * Make sure counter is updated before we check for frozen.
1199 * freeze_super() first sets frozen and then checks the counter.
1201 smp_mb();
1202 if (unlikely(sb->s_writers.frozen >= level)) {
1203 __sb_end_write(sb, level);
1204 goto retry;
1206 return 1;
1208 EXPORT_SYMBOL(__sb_start_write);
1211 * sb_wait_write - wait until all writers to given file system finish
1212 * @sb: the super for which we wait
1213 * @level: type of writers we wait for (normal vs page fault)
1215 * This function waits until there are no writers of given type to given file
1216 * system. Caller of this function should make sure there can be no new writers
1217 * of type @level before calling this function. Otherwise this function can
1218 * livelock.
1220 static void sb_wait_write(struct super_block *sb, int level)
1222 s64 writers;
1225 * We just cycle-through lockdep here so that it does not complain
1226 * about returning with lock to userspace
1228 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1229 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1231 do {
1232 DEFINE_WAIT(wait);
1235 * We use a barrier in prepare_to_wait() to separate setting
1236 * of frozen and checking of the counter
1238 prepare_to_wait(&sb->s_writers.wait, &wait,
1239 TASK_UNINTERRUPTIBLE);
1241 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1242 if (writers)
1243 schedule();
1245 finish_wait(&sb->s_writers.wait, &wait);
1246 } while (writers);
1250 * freeze_super - lock the filesystem and force it into a consistent state
1251 * @sb: the super to lock
1253 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1254 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1255 * -EBUSY.
1257 * During this function, sb->s_writers.frozen goes through these values:
1259 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1261 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1262 * writes should be blocked, though page faults are still allowed. We wait for
1263 * all writes to complete and then proceed to the next stage.
1265 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1266 * but internal fs threads can still modify the filesystem (although they
1267 * should not dirty new pages or inodes), writeback can run etc. After waiting
1268 * for all running page faults we sync the filesystem which will clean all
1269 * dirty pages and inodes (no new dirty pages or inodes can be created when
1270 * sync is running).
1272 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1273 * modification are blocked (e.g. XFS preallocation truncation on inode
1274 * reclaim). This is usually implemented by blocking new transactions for
1275 * filesystems that have them and need this additional guard. After all
1276 * internal writers are finished we call ->freeze_fs() to finish filesystem
1277 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1278 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1280 * sb->s_writers.frozen is protected by sb->s_umount.
1282 int freeze_super(struct super_block *sb)
1284 int ret;
1286 atomic_inc(&sb->s_active);
1287 down_write(&sb->s_umount);
1288 if (sb->s_writers.frozen != SB_UNFROZEN) {
1289 deactivate_locked_super(sb);
1290 return -EBUSY;
1293 if (!(sb->s_flags & MS_BORN)) {
1294 up_write(&sb->s_umount);
1295 return 0; /* sic - it's "nothing to do" */
1298 if (sb->s_flags & MS_RDONLY) {
1299 /* Nothing to do really... */
1300 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1301 up_write(&sb->s_umount);
1302 return 0;
1305 /* From now on, no new normal writers can start */
1306 sb->s_writers.frozen = SB_FREEZE_WRITE;
1307 smp_wmb();
1309 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1310 up_write(&sb->s_umount);
1312 sb_wait_write(sb, SB_FREEZE_WRITE);
1314 /* Now we go and block page faults... */
1315 down_write(&sb->s_umount);
1316 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1317 smp_wmb();
1319 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1321 /* All writers are done so after syncing there won't be dirty data */
1322 sync_filesystem(sb);
1324 /* Now wait for internal filesystem counter */
1325 sb->s_writers.frozen = SB_FREEZE_FS;
1326 smp_wmb();
1327 sb_wait_write(sb, SB_FREEZE_FS);
1329 if (sb->s_op->freeze_fs) {
1330 ret = sb->s_op->freeze_fs(sb);
1331 if (ret) {
1332 printk(KERN_ERR
1333 "VFS:Filesystem freeze failed\n");
1334 sb->s_writers.frozen = SB_UNFROZEN;
1335 smp_wmb();
1336 wake_up(&sb->s_writers.wait_unfrozen);
1337 deactivate_locked_super(sb);
1338 return ret;
1342 * This is just for debugging purposes so that fs can warn if it
1343 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1345 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1346 up_write(&sb->s_umount);
1347 return 0;
1349 EXPORT_SYMBOL(freeze_super);
1352 * thaw_super -- unlock filesystem
1353 * @sb: the super to thaw
1355 * Unlocks the filesystem and marks it writeable again after freeze_super().
1357 int thaw_super(struct super_block *sb)
1359 int error;
1361 down_write(&sb->s_umount);
1362 if (sb->s_writers.frozen == SB_UNFROZEN) {
1363 up_write(&sb->s_umount);
1364 return -EINVAL;
1367 if (sb->s_flags & MS_RDONLY)
1368 goto out;
1370 if (sb->s_op->unfreeze_fs) {
1371 error = sb->s_op->unfreeze_fs(sb);
1372 if (error) {
1373 printk(KERN_ERR
1374 "VFS:Filesystem thaw failed\n");
1375 up_write(&sb->s_umount);
1376 return error;
1380 out:
1381 sb->s_writers.frozen = SB_UNFROZEN;
1382 smp_wmb();
1383 wake_up(&sb->s_writers.wait_unfrozen);
1384 deactivate_locked_super(sb);
1386 return 0;
1388 EXPORT_SYMBOL(thaw_super);