4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
40 LIST_HEAD(super_blocks
);
41 DEFINE_SPINLOCK(sb_lock
);
43 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static unsigned long super_cache_scan(struct shrinker
*shrink
,
57 struct shrink_control
*sc
)
59 struct super_block
*sb
;
66 sb
= container_of(shrink
, struct super_block
, s_shrink
);
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
72 if (!(sc
->gfp_mask
& __GFP_FS
))
75 if (!grab_super_passive(sb
))
78 if (sb
->s_op
->nr_cached_objects
)
79 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
->nid
);
81 inodes
= list_lru_count_node(&sb
->s_inode_lru
, sc
->nid
);
82 dentries
= list_lru_count_node(&sb
->s_dentry_lru
, sc
->nid
);
83 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
87 /* proportion the scan between the caches */
88 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
89 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
95 freed
= prune_dcache_sb(sb
, dentries
, sc
->nid
);
96 freed
+= prune_icache_sb(sb
, inodes
, sc
->nid
);
99 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
,
101 freed
+= sb
->s_op
->free_cached_objects(sb
, fs_objects
,
109 static unsigned long super_cache_count(struct shrinker
*shrink
,
110 struct shrink_control
*sc
)
112 struct super_block
*sb
;
113 long total_objects
= 0;
115 sb
= container_of(shrink
, struct super_block
, s_shrink
);
118 * Don't call grab_super_passive as it is a potential
119 * scalability bottleneck. The counts could get updated
120 * between super_cache_count and super_cache_scan anyway.
121 * Call to super_cache_count with shrinker_rwsem held
122 * ensures the safety of call to list_lru_count_node() and
123 * s_op->nr_cached_objects().
125 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
126 total_objects
= sb
->s_op
->nr_cached_objects(sb
,
129 total_objects
+= list_lru_count_node(&sb
->s_dentry_lru
,
131 total_objects
+= list_lru_count_node(&sb
->s_inode_lru
,
134 total_objects
= vfs_pressure_ratio(total_objects
);
135 return total_objects
;
139 * destroy_super - frees a superblock
140 * @s: superblock to free
142 * Frees a superblock.
144 static void destroy_super(struct super_block
*s
)
147 list_lru_destroy(&s
->s_dentry_lru
);
148 list_lru_destroy(&s
->s_inode_lru
);
149 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
150 percpu_counter_destroy(&s
->s_writers
.counter
[i
]);
152 WARN_ON(!list_empty(&s
->s_mounts
));
159 * alloc_super - create new superblock
160 * @type: filesystem type superblock should belong to
161 * @flags: the mount flags
163 * Allocates and initializes a new &struct super_block. alloc_super()
164 * returns a pointer new superblock or %NULL if allocation had failed.
166 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
)
168 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
169 static const struct super_operations default_op
;
175 INIT_LIST_HEAD(&s
->s_mounts
);
177 if (security_sb_alloc(s
))
180 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
181 if (percpu_counter_init(&s
->s_writers
.counter
[i
], 0) < 0)
183 lockdep_init_map(&s
->s_writers
.lock_map
[i
], sb_writers_name
[i
],
184 &type
->s_writers_key
[i
], 0);
186 init_waitqueue_head(&s
->s_writers
.wait
);
187 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
189 s
->s_bdi
= &default_backing_dev_info
;
190 INIT_HLIST_NODE(&s
->s_instances
);
191 INIT_HLIST_BL_HEAD(&s
->s_anon
);
192 INIT_LIST_HEAD(&s
->s_inodes
);
194 if (list_lru_init(&s
->s_dentry_lru
))
196 if (list_lru_init(&s
->s_inode_lru
))
199 init_rwsem(&s
->s_umount
);
200 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
202 * sget() can have s_umount recursion.
204 * When it cannot find a suitable sb, it allocates a new
205 * one (this one), and tries again to find a suitable old
208 * In case that succeeds, it will acquire the s_umount
209 * lock of the old one. Since these are clearly distrinct
210 * locks, and this object isn't exposed yet, there's no
213 * Annotate this by putting this lock in a different
216 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
218 atomic_set(&s
->s_active
, 1);
219 mutex_init(&s
->s_vfs_rename_mutex
);
220 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
221 mutex_init(&s
->s_dquot
.dqio_mutex
);
222 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
223 init_rwsem(&s
->s_dquot
.dqptr_sem
);
224 s
->s_maxbytes
= MAX_NON_LFS
;
225 s
->s_op
= &default_op
;
226 s
->s_time_gran
= 1000000000;
227 s
->cleancache_poolid
= -1;
229 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
230 s
->s_shrink
.scan_objects
= super_cache_scan
;
231 s
->s_shrink
.count_objects
= super_cache_count
;
232 s
->s_shrink
.batch
= 1024;
233 s
->s_shrink
.flags
= SHRINKER_NUMA_AWARE
;
241 /* Superblock refcounting */
244 * Drop a superblock's refcount. The caller must hold sb_lock.
246 static void __put_super(struct super_block
*sb
)
248 if (!--sb
->s_count
) {
249 list_del_init(&sb
->s_list
);
255 * put_super - drop a temporary reference to superblock
256 * @sb: superblock in question
258 * Drops a temporary reference, frees superblock if there's no
261 static void put_super(struct super_block
*sb
)
265 spin_unlock(&sb_lock
);
270 * deactivate_locked_super - drop an active reference to superblock
271 * @s: superblock to deactivate
273 * Drops an active reference to superblock, converting it into a temprory
274 * one if there is no other active references left. In that case we
275 * tell fs driver to shut it down and drop the temporary reference we
278 * Caller holds exclusive lock on superblock; that lock is released.
280 void deactivate_locked_super(struct super_block
*s
)
282 struct file_system_type
*fs
= s
->s_type
;
283 if (atomic_dec_and_test(&s
->s_active
)) {
284 cleancache_invalidate_fs(s
);
285 unregister_shrinker(&s
->s_shrink
);
291 up_write(&s
->s_umount
);
295 EXPORT_SYMBOL(deactivate_locked_super
);
298 * deactivate_super - drop an active reference to superblock
299 * @s: superblock to deactivate
301 * Variant of deactivate_locked_super(), except that superblock is *not*
302 * locked by caller. If we are going to drop the final active reference,
303 * lock will be acquired prior to that.
305 void deactivate_super(struct super_block
*s
)
307 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
308 down_write(&s
->s_umount
);
309 deactivate_locked_super(s
);
313 EXPORT_SYMBOL(deactivate_super
);
316 * grab_super - acquire an active reference
317 * @s: reference we are trying to make active
319 * Tries to acquire an active reference. grab_super() is used when we
320 * had just found a superblock in super_blocks or fs_type->fs_supers
321 * and want to turn it into a full-blown active reference. grab_super()
322 * is called with sb_lock held and drops it. Returns 1 in case of
323 * success, 0 if we had failed (superblock contents was already dead or
324 * dying when grab_super() had been called). Note that this is only
325 * called for superblocks not in rundown mode (== ones still on ->fs_supers
326 * of their type), so increment of ->s_count is OK here.
328 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
331 spin_unlock(&sb_lock
);
332 down_write(&s
->s_umount
);
333 if ((s
->s_flags
& MS_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
337 up_write(&s
->s_umount
);
343 * grab_super_passive - acquire a passive reference
344 * @sb: reference we are trying to grab
346 * Tries to acquire a passive reference. This is used in places where we
347 * cannot take an active reference but we need to ensure that the
348 * superblock does not go away while we are working on it. It returns
349 * false if a reference was not gained, and returns true with the s_umount
350 * lock held in read mode if a reference is gained. On successful return,
351 * the caller must drop the s_umount lock and the passive reference when
354 bool grab_super_passive(struct super_block
*sb
)
357 if (hlist_unhashed(&sb
->s_instances
)) {
358 spin_unlock(&sb_lock
);
363 spin_unlock(&sb_lock
);
365 if (down_read_trylock(&sb
->s_umount
)) {
366 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
368 up_read(&sb
->s_umount
);
376 * generic_shutdown_super - common helper for ->kill_sb()
377 * @sb: superblock to kill
379 * generic_shutdown_super() does all fs-independent work on superblock
380 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
381 * that need destruction out of superblock, call generic_shutdown_super()
382 * and release aforementioned objects. Note: dentries and inodes _are_
383 * taken care of and do not need specific handling.
385 * Upon calling this function, the filesystem may no longer alter or
386 * rearrange the set of dentries belonging to this super_block, nor may it
387 * change the attachments of dentries to inodes.
389 void generic_shutdown_super(struct super_block
*sb
)
391 const struct super_operations
*sop
= sb
->s_op
;
394 shrink_dcache_for_umount(sb
);
396 sb
->s_flags
&= ~MS_ACTIVE
;
398 fsnotify_unmount_inodes(&sb
->s_inodes
);
402 if (sb
->s_dio_done_wq
) {
403 destroy_workqueue(sb
->s_dio_done_wq
);
404 sb
->s_dio_done_wq
= NULL
;
410 if (!list_empty(&sb
->s_inodes
)) {
411 printk("VFS: Busy inodes after unmount of %s. "
412 "Self-destruct in 5 seconds. Have a nice day...\n",
417 /* should be initialized for __put_super_and_need_restart() */
418 hlist_del_init(&sb
->s_instances
);
419 spin_unlock(&sb_lock
);
420 up_write(&sb
->s_umount
);
423 EXPORT_SYMBOL(generic_shutdown_super
);
426 * sget - find or create a superblock
427 * @type: filesystem type superblock should belong to
428 * @test: comparison callback
429 * @set: setup callback
430 * @flags: mount flags
431 * @data: argument to each of them
433 struct super_block
*sget(struct file_system_type
*type
,
434 int (*test
)(struct super_block
*,void *),
435 int (*set
)(struct super_block
*,void *),
439 struct super_block
*s
= NULL
;
440 struct super_block
*old
;
446 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
447 if (!test(old
, data
))
449 if (!grab_super(old
))
452 up_write(&s
->s_umount
);
460 spin_unlock(&sb_lock
);
461 s
= alloc_super(type
, flags
);
463 return ERR_PTR(-ENOMEM
);
469 spin_unlock(&sb_lock
);
470 up_write(&s
->s_umount
);
475 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
476 list_add_tail(&s
->s_list
, &super_blocks
);
477 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
478 spin_unlock(&sb_lock
);
479 get_filesystem(type
);
480 register_shrinker(&s
->s_shrink
);
486 void drop_super(struct super_block
*sb
)
488 up_read(&sb
->s_umount
);
492 EXPORT_SYMBOL(drop_super
);
495 * iterate_supers - call function for all active superblocks
496 * @f: function to call
497 * @arg: argument to pass to it
499 * Scans the superblock list and calls given function, passing it
500 * locked superblock and given argument.
502 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
504 struct super_block
*sb
, *p
= NULL
;
507 list_for_each_entry(sb
, &super_blocks
, s_list
) {
508 if (hlist_unhashed(&sb
->s_instances
))
511 spin_unlock(&sb_lock
);
513 down_read(&sb
->s_umount
);
514 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
516 up_read(&sb
->s_umount
);
525 spin_unlock(&sb_lock
);
529 * iterate_supers_type - call function for superblocks of given type
531 * @f: function to call
532 * @arg: argument to pass to it
534 * Scans the superblock list and calls given function, passing it
535 * locked superblock and given argument.
537 void iterate_supers_type(struct file_system_type
*type
,
538 void (*f
)(struct super_block
*, void *), void *arg
)
540 struct super_block
*sb
, *p
= NULL
;
543 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
545 spin_unlock(&sb_lock
);
547 down_read(&sb
->s_umount
);
548 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
550 up_read(&sb
->s_umount
);
559 spin_unlock(&sb_lock
);
562 EXPORT_SYMBOL(iterate_supers_type
);
565 * get_super - get the superblock of a device
566 * @bdev: device to get the superblock for
568 * Scans the superblock list and finds the superblock of the file system
569 * mounted on the device given. %NULL is returned if no match is found.
572 struct super_block
*get_super(struct block_device
*bdev
)
574 struct super_block
*sb
;
581 list_for_each_entry(sb
, &super_blocks
, s_list
) {
582 if (hlist_unhashed(&sb
->s_instances
))
584 if (sb
->s_bdev
== bdev
) {
586 spin_unlock(&sb_lock
);
587 down_read(&sb
->s_umount
);
589 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
591 up_read(&sb
->s_umount
);
592 /* nope, got unmounted */
598 spin_unlock(&sb_lock
);
602 EXPORT_SYMBOL(get_super
);
605 * get_super_thawed - get thawed superblock of a device
606 * @bdev: device to get the superblock for
608 * Scans the superblock list and finds the superblock of the file system
609 * mounted on the device. The superblock is returned once it is thawed
610 * (or immediately if it was not frozen). %NULL is returned if no match
613 struct super_block
*get_super_thawed(struct block_device
*bdev
)
616 struct super_block
*s
= get_super(bdev
);
617 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
619 up_read(&s
->s_umount
);
620 wait_event(s
->s_writers
.wait_unfrozen
,
621 s
->s_writers
.frozen
== SB_UNFROZEN
);
625 EXPORT_SYMBOL(get_super_thawed
);
628 * get_active_super - get an active reference to the superblock of a device
629 * @bdev: device to get the superblock for
631 * Scans the superblock list and finds the superblock of the file system
632 * mounted on the device given. Returns the superblock with an active
633 * reference or %NULL if none was found.
635 struct super_block
*get_active_super(struct block_device
*bdev
)
637 struct super_block
*sb
;
644 list_for_each_entry(sb
, &super_blocks
, s_list
) {
645 if (hlist_unhashed(&sb
->s_instances
))
647 if (sb
->s_bdev
== bdev
) {
650 up_write(&sb
->s_umount
);
654 spin_unlock(&sb_lock
);
658 struct super_block
*user_get_super(dev_t dev
)
660 struct super_block
*sb
;
664 list_for_each_entry(sb
, &super_blocks
, s_list
) {
665 if (hlist_unhashed(&sb
->s_instances
))
667 if (sb
->s_dev
== dev
) {
669 spin_unlock(&sb_lock
);
670 down_read(&sb
->s_umount
);
672 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
674 up_read(&sb
->s_umount
);
675 /* nope, got unmounted */
681 spin_unlock(&sb_lock
);
686 * do_remount_sb - asks filesystem to change mount options.
687 * @sb: superblock in question
688 * @flags: numeric part of options
689 * @data: the rest of options
690 * @force: whether or not to force the change
692 * Alters the mount options of a mounted file system.
694 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
699 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
703 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
707 if (flags
& MS_RDONLY
)
709 shrink_dcache_sb(sb
);
711 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
713 /* If we are remounting RDONLY and current sb is read/write,
714 make sure there are no rw files opened */
717 sb
->s_readonly_remount
= 1;
720 retval
= sb_prepare_remount_readonly(sb
);
728 if (sb
->s_op
->remount_fs
) {
729 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
732 goto cancel_readonly
;
733 /* If forced remount, go ahead despite any errors */
734 WARN(1, "forced remount of a %s fs returned %i\n",
735 sb
->s_type
->name
, retval
);
738 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
739 /* Needs to be ordered wrt mnt_is_readonly() */
741 sb
->s_readonly_remount
= 0;
744 * Some filesystems modify their metadata via some other path than the
745 * bdev buffer cache (eg. use a private mapping, or directories in
746 * pagecache, etc). Also file data modifications go via their own
747 * mappings. So If we try to mount readonly then copy the filesystem
748 * from bdev, we could get stale data, so invalidate it to give a best
749 * effort at coherency.
751 if (remount_ro
&& sb
->s_bdev
)
752 invalidate_bdev(sb
->s_bdev
);
756 sb
->s_readonly_remount
= 0;
760 static void do_emergency_remount(struct work_struct
*work
)
762 struct super_block
*sb
, *p
= NULL
;
765 list_for_each_entry(sb
, &super_blocks
, s_list
) {
766 if (hlist_unhashed(&sb
->s_instances
))
769 spin_unlock(&sb_lock
);
770 down_write(&sb
->s_umount
);
771 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& MS_BORN
) &&
772 !(sb
->s_flags
& MS_RDONLY
)) {
774 * What lock protects sb->s_flags??
776 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
778 up_write(&sb
->s_umount
);
786 spin_unlock(&sb_lock
);
788 printk("Emergency Remount complete\n");
791 void emergency_remount(void)
793 struct work_struct
*work
;
795 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
797 INIT_WORK(work
, do_emergency_remount
);
803 * Unnamed block devices are dummy devices used by virtual
804 * filesystems which don't use real block-devices. -- jrs
807 static DEFINE_IDA(unnamed_dev_ida
);
808 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
809 /* Many userspace utilities consider an FSID of 0 invalid.
810 * Always return at least 1 from get_anon_bdev.
812 static int unnamed_dev_start
= 1;
814 int get_anon_bdev(dev_t
*p
)
820 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
822 spin_lock(&unnamed_dev_lock
);
823 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
825 unnamed_dev_start
= dev
+ 1;
826 spin_unlock(&unnamed_dev_lock
);
827 if (error
== -EAGAIN
)
828 /* We raced and lost with another CPU. */
833 if (dev
== (1 << MINORBITS
)) {
834 spin_lock(&unnamed_dev_lock
);
835 ida_remove(&unnamed_dev_ida
, dev
);
836 if (unnamed_dev_start
> dev
)
837 unnamed_dev_start
= dev
;
838 spin_unlock(&unnamed_dev_lock
);
841 *p
= MKDEV(0, dev
& MINORMASK
);
844 EXPORT_SYMBOL(get_anon_bdev
);
846 void free_anon_bdev(dev_t dev
)
848 int slot
= MINOR(dev
);
849 spin_lock(&unnamed_dev_lock
);
850 ida_remove(&unnamed_dev_ida
, slot
);
851 if (slot
< unnamed_dev_start
)
852 unnamed_dev_start
= slot
;
853 spin_unlock(&unnamed_dev_lock
);
855 EXPORT_SYMBOL(free_anon_bdev
);
857 int set_anon_super(struct super_block
*s
, void *data
)
859 int error
= get_anon_bdev(&s
->s_dev
);
861 s
->s_bdi
= &noop_backing_dev_info
;
865 EXPORT_SYMBOL(set_anon_super
);
867 void kill_anon_super(struct super_block
*sb
)
869 dev_t dev
= sb
->s_dev
;
870 generic_shutdown_super(sb
);
874 EXPORT_SYMBOL(kill_anon_super
);
876 void kill_litter_super(struct super_block
*sb
)
879 d_genocide(sb
->s_root
);
883 EXPORT_SYMBOL(kill_litter_super
);
885 static int ns_test_super(struct super_block
*sb
, void *data
)
887 return sb
->s_fs_info
== data
;
890 static int ns_set_super(struct super_block
*sb
, void *data
)
892 sb
->s_fs_info
= data
;
893 return set_anon_super(sb
, NULL
);
896 struct dentry
*mount_ns(struct file_system_type
*fs_type
, int flags
,
897 void *data
, int (*fill_super
)(struct super_block
*, void *, int))
899 struct super_block
*sb
;
901 sb
= sget(fs_type
, ns_test_super
, ns_set_super
, flags
, data
);
907 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
909 deactivate_locked_super(sb
);
913 sb
->s_flags
|= MS_ACTIVE
;
916 return dget(sb
->s_root
);
919 EXPORT_SYMBOL(mount_ns
);
922 static int set_bdev_super(struct super_block
*s
, void *data
)
925 s
->s_dev
= s
->s_bdev
->bd_dev
;
928 * We set the bdi here to the queue backing, file systems can
929 * overwrite this in ->fill_super()
931 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
935 static int test_bdev_super(struct super_block
*s
, void *data
)
937 return (void *)s
->s_bdev
== data
;
940 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
941 int flags
, const char *dev_name
, void *data
,
942 int (*fill_super
)(struct super_block
*, void *, int))
944 struct block_device
*bdev
;
945 struct super_block
*s
;
946 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
949 if (!(flags
& MS_RDONLY
))
952 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
954 return ERR_CAST(bdev
);
957 * once the super is inserted into the list by sget, s_umount
958 * will protect the lockfs code from trying to start a snapshot
959 * while we are mounting
961 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
962 if (bdev
->bd_fsfreeze_count
> 0) {
963 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
967 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| MS_NOSEC
,
969 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
974 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
975 deactivate_locked_super(s
);
981 * s_umount nests inside bd_mutex during
982 * __invalidate_device(). blkdev_put() acquires
983 * bd_mutex and can't be called under s_umount. Drop
984 * s_umount temporarily. This is safe as we're
985 * holding an active reference.
987 up_write(&s
->s_umount
);
988 blkdev_put(bdev
, mode
);
989 down_write(&s
->s_umount
);
991 char b
[BDEVNAME_SIZE
];
994 strlcpy(s
->s_id
, bdevname(bdev
, b
), sizeof(s
->s_id
));
995 sb_set_blocksize(s
, block_size(bdev
));
996 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
998 deactivate_locked_super(s
);
1002 s
->s_flags
|= MS_ACTIVE
;
1006 return dget(s
->s_root
);
1011 blkdev_put(bdev
, mode
);
1013 return ERR_PTR(error
);
1015 EXPORT_SYMBOL(mount_bdev
);
1017 void kill_block_super(struct super_block
*sb
)
1019 struct block_device
*bdev
= sb
->s_bdev
;
1020 fmode_t mode
= sb
->s_mode
;
1022 bdev
->bd_super
= NULL
;
1023 generic_shutdown_super(sb
);
1024 sync_blockdev(bdev
);
1025 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1026 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1029 EXPORT_SYMBOL(kill_block_super
);
1032 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1033 int flags
, void *data
,
1034 int (*fill_super
)(struct super_block
*, void *, int))
1037 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1042 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1044 deactivate_locked_super(s
);
1045 return ERR_PTR(error
);
1047 s
->s_flags
|= MS_ACTIVE
;
1048 return dget(s
->s_root
);
1050 EXPORT_SYMBOL(mount_nodev
);
1052 static int compare_single(struct super_block
*s
, void *p
)
1057 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1058 int flags
, void *data
,
1059 int (*fill_super
)(struct super_block
*, void *, int))
1061 struct super_block
*s
;
1064 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1068 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1070 deactivate_locked_super(s
);
1071 return ERR_PTR(error
);
1073 s
->s_flags
|= MS_ACTIVE
;
1075 do_remount_sb(s
, flags
, data
, 0);
1077 return dget(s
->s_root
);
1079 EXPORT_SYMBOL(mount_single
);
1082 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1084 struct dentry
*root
;
1085 struct super_block
*sb
;
1086 char *secdata
= NULL
;
1087 int error
= -ENOMEM
;
1089 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1090 secdata
= alloc_secdata();
1094 error
= security_sb_copy_data(data
, secdata
);
1096 goto out_free_secdata
;
1099 root
= type
->mount(type
, flags
, name
, data
);
1101 error
= PTR_ERR(root
);
1102 goto out_free_secdata
;
1106 WARN_ON(!sb
->s_bdi
);
1107 WARN_ON(sb
->s_bdi
== &default_backing_dev_info
);
1108 sb
->s_flags
|= MS_BORN
;
1110 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1115 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1116 * but s_maxbytes was an unsigned long long for many releases. Throw
1117 * this warning for a little while to try and catch filesystems that
1118 * violate this rule.
1120 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1121 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1123 up_write(&sb
->s_umount
);
1124 free_secdata(secdata
);
1128 deactivate_locked_super(sb
);
1130 free_secdata(secdata
);
1132 return ERR_PTR(error
);
1136 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1139 void __sb_end_write(struct super_block
*sb
, int level
)
1141 percpu_counter_dec(&sb
->s_writers
.counter
[level
-1]);
1143 * Make sure s_writers are updated before we wake up waiters in
1147 if (waitqueue_active(&sb
->s_writers
.wait
))
1148 wake_up(&sb
->s_writers
.wait
);
1149 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _RET_IP_
);
1151 EXPORT_SYMBOL(__sb_end_write
);
1153 #ifdef CONFIG_LOCKDEP
1155 * We want lockdep to tell us about possible deadlocks with freezing but
1156 * it's it bit tricky to properly instrument it. Getting a freeze protection
1157 * works as getting a read lock but there are subtle problems. XFS for example
1158 * gets freeze protection on internal level twice in some cases, which is OK
1159 * only because we already hold a freeze protection also on higher level. Due
1160 * to these cases we have to tell lockdep we are doing trylock when we
1161 * already hold a freeze protection for a higher freeze level.
1163 static void acquire_freeze_lock(struct super_block
*sb
, int level
, bool trylock
,
1169 for (i
= 0; i
< level
- 1; i
++)
1170 if (lock_is_held(&sb
->s_writers
.lock_map
[i
])) {
1175 rwsem_acquire_read(&sb
->s_writers
.lock_map
[level
-1], 0, trylock
, ip
);
1180 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1183 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1186 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1189 wait_event(sb
->s_writers
.wait_unfrozen
,
1190 sb
->s_writers
.frozen
< level
);
1193 #ifdef CONFIG_LOCKDEP
1194 acquire_freeze_lock(sb
, level
, !wait
, _RET_IP_
);
1196 percpu_counter_inc(&sb
->s_writers
.counter
[level
-1]);
1198 * Make sure counter is updated before we check for frozen.
1199 * freeze_super() first sets frozen and then checks the counter.
1202 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1203 __sb_end_write(sb
, level
);
1208 EXPORT_SYMBOL(__sb_start_write
);
1211 * sb_wait_write - wait until all writers to given file system finish
1212 * @sb: the super for which we wait
1213 * @level: type of writers we wait for (normal vs page fault)
1215 * This function waits until there are no writers of given type to given file
1216 * system. Caller of this function should make sure there can be no new writers
1217 * of type @level before calling this function. Otherwise this function can
1220 static void sb_wait_write(struct super_block
*sb
, int level
)
1225 * We just cycle-through lockdep here so that it does not complain
1226 * about returning with lock to userspace
1228 rwsem_acquire(&sb
->s_writers
.lock_map
[level
-1], 0, 0, _THIS_IP_
);
1229 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _THIS_IP_
);
1235 * We use a barrier in prepare_to_wait() to separate setting
1236 * of frozen and checking of the counter
1238 prepare_to_wait(&sb
->s_writers
.wait
, &wait
,
1239 TASK_UNINTERRUPTIBLE
);
1241 writers
= percpu_counter_sum(&sb
->s_writers
.counter
[level
-1]);
1245 finish_wait(&sb
->s_writers
.wait
, &wait
);
1250 * freeze_super - lock the filesystem and force it into a consistent state
1251 * @sb: the super to lock
1253 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1254 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1257 * During this function, sb->s_writers.frozen goes through these values:
1259 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1261 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1262 * writes should be blocked, though page faults are still allowed. We wait for
1263 * all writes to complete and then proceed to the next stage.
1265 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1266 * but internal fs threads can still modify the filesystem (although they
1267 * should not dirty new pages or inodes), writeback can run etc. After waiting
1268 * for all running page faults we sync the filesystem which will clean all
1269 * dirty pages and inodes (no new dirty pages or inodes can be created when
1272 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1273 * modification are blocked (e.g. XFS preallocation truncation on inode
1274 * reclaim). This is usually implemented by blocking new transactions for
1275 * filesystems that have them and need this additional guard. After all
1276 * internal writers are finished we call ->freeze_fs() to finish filesystem
1277 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1278 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1280 * sb->s_writers.frozen is protected by sb->s_umount.
1282 int freeze_super(struct super_block
*sb
)
1286 atomic_inc(&sb
->s_active
);
1287 down_write(&sb
->s_umount
);
1288 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1289 deactivate_locked_super(sb
);
1293 if (!(sb
->s_flags
& MS_BORN
)) {
1294 up_write(&sb
->s_umount
);
1295 return 0; /* sic - it's "nothing to do" */
1298 if (sb
->s_flags
& MS_RDONLY
) {
1299 /* Nothing to do really... */
1300 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1301 up_write(&sb
->s_umount
);
1305 /* From now on, no new normal writers can start */
1306 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1309 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1310 up_write(&sb
->s_umount
);
1312 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1314 /* Now we go and block page faults... */
1315 down_write(&sb
->s_umount
);
1316 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1319 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1321 /* All writers are done so after syncing there won't be dirty data */
1322 sync_filesystem(sb
);
1324 /* Now wait for internal filesystem counter */
1325 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1327 sb_wait_write(sb
, SB_FREEZE_FS
);
1329 if (sb
->s_op
->freeze_fs
) {
1330 ret
= sb
->s_op
->freeze_fs(sb
);
1333 "VFS:Filesystem freeze failed\n");
1334 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1336 wake_up(&sb
->s_writers
.wait_unfrozen
);
1337 deactivate_locked_super(sb
);
1342 * This is just for debugging purposes so that fs can warn if it
1343 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1345 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1346 up_write(&sb
->s_umount
);
1349 EXPORT_SYMBOL(freeze_super
);
1352 * thaw_super -- unlock filesystem
1353 * @sb: the super to thaw
1355 * Unlocks the filesystem and marks it writeable again after freeze_super().
1357 int thaw_super(struct super_block
*sb
)
1361 down_write(&sb
->s_umount
);
1362 if (sb
->s_writers
.frozen
== SB_UNFROZEN
) {
1363 up_write(&sb
->s_umount
);
1367 if (sb
->s_flags
& MS_RDONLY
)
1370 if (sb
->s_op
->unfreeze_fs
) {
1371 error
= sb
->s_op
->unfreeze_fs(sb
);
1374 "VFS:Filesystem thaw failed\n");
1375 up_write(&sb
->s_umount
);
1381 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1383 wake_up(&sb
->s_writers
.wait_unfrozen
);
1384 deactivate_locked_super(sb
);
1388 EXPORT_SYMBOL(thaw_super
);