1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17 #include <linux/shmem_fs.h>
20 #include <asm/pgalloc.h>
30 SCAN_LACK_REFERENCED_PAGE
,
44 SCAN_ALLOC_HUGE_PAGE_FAIL
,
45 SCAN_CGROUP_CHARGE_FAIL
,
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/huge_memory.h>
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly
;
55 static unsigned int khugepaged_pages_collapsed
;
56 static unsigned int khugepaged_full_scans
;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
60 static unsigned long khugepaged_sleep_expire
;
61 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
62 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
64 * default collapse hugepages if there is at least one pte mapped like
65 * it would have happened if the vma was large enough during page
68 static unsigned int khugepaged_max_ptes_none __read_mostly
;
69 static unsigned int khugepaged_max_ptes_swap __read_mostly
;
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
74 static struct kmem_cache
*mm_slot_cache __read_mostly
;
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
83 struct hlist_node hash
;
84 struct list_head mm_node
;
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
94 * There is only the one khugepaged_scan instance of this cursor structure.
96 struct khugepaged_scan
{
97 struct list_head mm_head
;
98 struct mm_slot
*mm_slot
;
99 unsigned long address
;
102 static struct khugepaged_scan khugepaged_scan
= {
103 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
107 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
108 struct kobj_attribute
*attr
,
111 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
114 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
115 struct kobj_attribute
*attr
,
116 const char *buf
, size_t count
)
121 err
= kstrtoul(buf
, 10, &msecs
);
122 if (err
|| msecs
> UINT_MAX
)
125 khugepaged_scan_sleep_millisecs
= msecs
;
126 khugepaged_sleep_expire
= 0;
127 wake_up_interruptible(&khugepaged_wait
);
131 static struct kobj_attribute scan_sleep_millisecs_attr
=
132 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
133 scan_sleep_millisecs_store
);
135 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
136 struct kobj_attribute
*attr
,
139 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
142 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
143 struct kobj_attribute
*attr
,
144 const char *buf
, size_t count
)
149 err
= kstrtoul(buf
, 10, &msecs
);
150 if (err
|| msecs
> UINT_MAX
)
153 khugepaged_alloc_sleep_millisecs
= msecs
;
154 khugepaged_sleep_expire
= 0;
155 wake_up_interruptible(&khugepaged_wait
);
159 static struct kobj_attribute alloc_sleep_millisecs_attr
=
160 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
161 alloc_sleep_millisecs_store
);
163 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
164 struct kobj_attribute
*attr
,
167 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
169 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
170 struct kobj_attribute
*attr
,
171 const char *buf
, size_t count
)
176 err
= kstrtoul(buf
, 10, &pages
);
177 if (err
|| !pages
|| pages
> UINT_MAX
)
180 khugepaged_pages_to_scan
= pages
;
184 static struct kobj_attribute pages_to_scan_attr
=
185 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
186 pages_to_scan_store
);
188 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
189 struct kobj_attribute
*attr
,
192 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
194 static struct kobj_attribute pages_collapsed_attr
=
195 __ATTR_RO(pages_collapsed
);
197 static ssize_t
full_scans_show(struct kobject
*kobj
,
198 struct kobj_attribute
*attr
,
201 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
203 static struct kobj_attribute full_scans_attr
=
204 __ATTR_RO(full_scans
);
206 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
207 struct kobj_attribute
*attr
, char *buf
)
209 return single_hugepage_flag_show(kobj
, attr
, buf
,
210 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
212 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
213 struct kobj_attribute
*attr
,
214 const char *buf
, size_t count
)
216 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
217 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
219 static struct kobj_attribute khugepaged_defrag_attr
=
220 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
221 khugepaged_defrag_store
);
224 * max_ptes_none controls if khugepaged should collapse hugepages over
225 * any unmapped ptes in turn potentially increasing the memory
226 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
227 * reduce the available free memory in the system as it
228 * runs. Increasing max_ptes_none will instead potentially reduce the
229 * free memory in the system during the khugepaged scan.
231 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
232 struct kobj_attribute
*attr
,
235 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
237 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
238 struct kobj_attribute
*attr
,
239 const char *buf
, size_t count
)
242 unsigned long max_ptes_none
;
244 err
= kstrtoul(buf
, 10, &max_ptes_none
);
245 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
248 khugepaged_max_ptes_none
= max_ptes_none
;
252 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
253 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
254 khugepaged_max_ptes_none_store
);
256 static ssize_t
khugepaged_max_ptes_swap_show(struct kobject
*kobj
,
257 struct kobj_attribute
*attr
,
260 return sprintf(buf
, "%u\n", khugepaged_max_ptes_swap
);
263 static ssize_t
khugepaged_max_ptes_swap_store(struct kobject
*kobj
,
264 struct kobj_attribute
*attr
,
265 const char *buf
, size_t count
)
268 unsigned long max_ptes_swap
;
270 err
= kstrtoul(buf
, 10, &max_ptes_swap
);
271 if (err
|| max_ptes_swap
> HPAGE_PMD_NR
-1)
274 khugepaged_max_ptes_swap
= max_ptes_swap
;
279 static struct kobj_attribute khugepaged_max_ptes_swap_attr
=
280 __ATTR(max_ptes_swap
, 0644, khugepaged_max_ptes_swap_show
,
281 khugepaged_max_ptes_swap_store
);
283 static struct attribute
*khugepaged_attr
[] = {
284 &khugepaged_defrag_attr
.attr
,
285 &khugepaged_max_ptes_none_attr
.attr
,
286 &pages_to_scan_attr
.attr
,
287 &pages_collapsed_attr
.attr
,
288 &full_scans_attr
.attr
,
289 &scan_sleep_millisecs_attr
.attr
,
290 &alloc_sleep_millisecs_attr
.attr
,
291 &khugepaged_max_ptes_swap_attr
.attr
,
295 struct attribute_group khugepaged_attr_group
= {
296 .attrs
= khugepaged_attr
,
297 .name
= "khugepaged",
299 #endif /* CONFIG_SYSFS */
301 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
303 int hugepage_madvise(struct vm_area_struct
*vma
,
304 unsigned long *vm_flags
, int advice
)
310 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
311 * can't handle this properly after s390_enable_sie, so we simply
312 * ignore the madvise to prevent qemu from causing a SIGSEGV.
314 if (mm_has_pgste(vma
->vm_mm
))
317 *vm_flags
&= ~VM_NOHUGEPAGE
;
318 *vm_flags
|= VM_HUGEPAGE
;
320 * If the vma become good for khugepaged to scan,
321 * register it here without waiting a page fault that
322 * may not happen any time soon.
324 if (!(*vm_flags
& VM_NO_KHUGEPAGED
) &&
325 khugepaged_enter_vma_merge(vma
, *vm_flags
))
328 case MADV_NOHUGEPAGE
:
329 *vm_flags
&= ~VM_HUGEPAGE
;
330 *vm_flags
|= VM_NOHUGEPAGE
;
332 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
333 * this vma even if we leave the mm registered in khugepaged if
334 * it got registered before VM_NOHUGEPAGE was set.
342 int __init
khugepaged_init(void)
344 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
345 sizeof(struct mm_slot
),
346 __alignof__(struct mm_slot
), 0, NULL
);
350 khugepaged_pages_to_scan
= HPAGE_PMD_NR
* 8;
351 khugepaged_max_ptes_none
= HPAGE_PMD_NR
- 1;
352 khugepaged_max_ptes_swap
= HPAGE_PMD_NR
/ 8;
357 void __init
khugepaged_destroy(void)
359 kmem_cache_destroy(mm_slot_cache
);
362 static inline struct mm_slot
*alloc_mm_slot(void)
364 if (!mm_slot_cache
) /* initialization failed */
366 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
369 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
371 kmem_cache_free(mm_slot_cache
, mm_slot
);
374 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
376 struct mm_slot
*mm_slot
;
378 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
379 if (mm
== mm_slot
->mm
)
385 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
386 struct mm_slot
*mm_slot
)
389 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
392 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
394 return atomic_read(&mm
->mm_users
) == 0;
397 int __khugepaged_enter(struct mm_struct
*mm
)
399 struct mm_slot
*mm_slot
;
402 mm_slot
= alloc_mm_slot();
406 /* __khugepaged_exit() must not run from under us */
407 VM_BUG_ON_MM(khugepaged_test_exit(mm
), mm
);
408 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
409 free_mm_slot(mm_slot
);
413 spin_lock(&khugepaged_mm_lock
);
414 insert_to_mm_slots_hash(mm
, mm_slot
);
416 * Insert just behind the scanning cursor, to let the area settle
419 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
420 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
421 spin_unlock(&khugepaged_mm_lock
);
423 atomic_inc(&mm
->mm_count
);
425 wake_up_interruptible(&khugepaged_wait
);
430 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
431 unsigned long vm_flags
)
433 unsigned long hstart
, hend
;
436 * Not yet faulted in so we will register later in the
437 * page fault if needed.
440 if (vma
->vm_ops
|| (vm_flags
& VM_NO_KHUGEPAGED
))
441 /* khugepaged not yet working on file or special mappings */
443 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
444 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
446 return khugepaged_enter(vma
, vm_flags
);
450 void __khugepaged_exit(struct mm_struct
*mm
)
452 struct mm_slot
*mm_slot
;
455 spin_lock(&khugepaged_mm_lock
);
456 mm_slot
= get_mm_slot(mm
);
457 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
458 hash_del(&mm_slot
->hash
);
459 list_del(&mm_slot
->mm_node
);
462 spin_unlock(&khugepaged_mm_lock
);
465 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
466 free_mm_slot(mm_slot
);
468 } else if (mm_slot
) {
470 * This is required to serialize against
471 * khugepaged_test_exit() (which is guaranteed to run
472 * under mmap sem read mode). Stop here (after we
473 * return all pagetables will be destroyed) until
474 * khugepaged has finished working on the pagetables
475 * under the mmap_sem.
477 down_write(&mm
->mmap_sem
);
478 up_write(&mm
->mmap_sem
);
482 static void release_pte_page(struct page
*page
)
484 /* 0 stands for page_is_file_cache(page) == false */
485 dec_node_page_state(page
, NR_ISOLATED_ANON
+ 0);
487 putback_lru_page(page
);
490 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
492 while (--_pte
>= pte
) {
493 pte_t pteval
= *_pte
;
494 if (!pte_none(pteval
) && !is_zero_pfn(pte_pfn(pteval
)))
495 release_pte_page(pte_page(pteval
));
499 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
500 unsigned long address
,
503 struct page
*page
= NULL
;
505 int none_or_zero
= 0, result
= 0, referenced
= 0;
506 bool writable
= false;
508 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
509 _pte
++, address
+= PAGE_SIZE
) {
510 pte_t pteval
= *_pte
;
511 if (pte_none(pteval
) || (pte_present(pteval
) &&
512 is_zero_pfn(pte_pfn(pteval
)))) {
513 if (!userfaultfd_armed(vma
) &&
514 ++none_or_zero
<= khugepaged_max_ptes_none
) {
517 result
= SCAN_EXCEED_NONE_PTE
;
521 if (!pte_present(pteval
)) {
522 result
= SCAN_PTE_NON_PRESENT
;
525 page
= vm_normal_page(vma
, address
, pteval
);
526 if (unlikely(!page
)) {
527 result
= SCAN_PAGE_NULL
;
531 /* TODO: teach khugepaged to collapse THP mapped with pte */
532 if (PageCompound(page
)) {
533 result
= SCAN_PAGE_COMPOUND
;
537 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
538 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
541 * We can do it before isolate_lru_page because the
542 * page can't be freed from under us. NOTE: PG_lock
543 * is needed to serialize against split_huge_page
544 * when invoked from the VM.
546 if (!trylock_page(page
)) {
547 result
= SCAN_PAGE_LOCK
;
552 * cannot use mapcount: can't collapse if there's a gup pin.
553 * The page must only be referenced by the scanned process
554 * and page swap cache.
556 if (page_count(page
) != 1 + !!PageSwapCache(page
)) {
558 result
= SCAN_PAGE_COUNT
;
561 if (pte_write(pteval
)) {
564 if (PageSwapCache(page
) &&
565 !reuse_swap_page(page
, NULL
)) {
567 result
= SCAN_SWAP_CACHE_PAGE
;
571 * Page is not in the swap cache. It can be collapsed
577 * Isolate the page to avoid collapsing an hugepage
578 * currently in use by the VM.
580 if (isolate_lru_page(page
)) {
582 result
= SCAN_DEL_PAGE_LRU
;
585 /* 0 stands for page_is_file_cache(page) == false */
586 inc_node_page_state(page
, NR_ISOLATED_ANON
+ 0);
587 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
588 VM_BUG_ON_PAGE(PageLRU(page
), page
);
590 /* There should be enough young pte to collapse the page */
591 if (pte_young(pteval
) ||
592 page_is_young(page
) || PageReferenced(page
) ||
593 mmu_notifier_test_young(vma
->vm_mm
, address
))
596 if (likely(writable
)) {
597 if (likely(referenced
)) {
598 result
= SCAN_SUCCEED
;
599 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
600 referenced
, writable
, result
);
604 result
= SCAN_PAGE_RO
;
608 release_pte_pages(pte
, _pte
);
609 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
610 referenced
, writable
, result
);
614 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
615 struct vm_area_struct
*vma
,
616 unsigned long address
,
620 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
621 pte_t pteval
= *_pte
;
622 struct page
*src_page
;
624 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
625 clear_user_highpage(page
, address
);
626 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
627 if (is_zero_pfn(pte_pfn(pteval
))) {
629 * ptl mostly unnecessary.
633 * paravirt calls inside pte_clear here are
636 pte_clear(vma
->vm_mm
, address
, _pte
);
640 src_page
= pte_page(pteval
);
641 copy_user_highpage(page
, src_page
, address
, vma
);
642 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
643 release_pte_page(src_page
);
645 * ptl mostly unnecessary, but preempt has to
646 * be disabled to update the per-cpu stats
647 * inside page_remove_rmap().
651 * paravirt calls inside pte_clear here are
654 pte_clear(vma
->vm_mm
, address
, _pte
);
655 page_remove_rmap(src_page
, false);
657 free_page_and_swap_cache(src_page
);
660 address
+= PAGE_SIZE
;
665 static void khugepaged_alloc_sleep(void)
669 add_wait_queue(&khugepaged_wait
, &wait
);
670 freezable_schedule_timeout_interruptible(
671 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
672 remove_wait_queue(&khugepaged_wait
, &wait
);
675 static int khugepaged_node_load
[MAX_NUMNODES
];
677 static bool khugepaged_scan_abort(int nid
)
682 * If node_reclaim_mode is disabled, then no extra effort is made to
683 * allocate memory locally.
685 if (!node_reclaim_mode
)
688 /* If there is a count for this node already, it must be acceptable */
689 if (khugepaged_node_load
[nid
])
692 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
693 if (!khugepaged_node_load
[i
])
695 if (node_distance(nid
, i
) > RECLAIM_DISTANCE
)
701 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
702 static inline gfp_t
alloc_hugepage_khugepaged_gfpmask(void)
704 return khugepaged_defrag() ? GFP_TRANSHUGE
: GFP_TRANSHUGE_LIGHT
;
708 static int khugepaged_find_target_node(void)
710 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
711 int nid
, target_node
= 0, max_value
= 0;
713 /* find first node with max normal pages hit */
714 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
715 if (khugepaged_node_load
[nid
] > max_value
) {
716 max_value
= khugepaged_node_load
[nid
];
720 /* do some balance if several nodes have the same hit record */
721 if (target_node
<= last_khugepaged_target_node
)
722 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
724 if (max_value
== khugepaged_node_load
[nid
]) {
729 last_khugepaged_target_node
= target_node
;
733 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
735 if (IS_ERR(*hpage
)) {
741 khugepaged_alloc_sleep();
751 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
753 VM_BUG_ON_PAGE(*hpage
, *hpage
);
755 *hpage
= __alloc_pages_node(node
, gfp
, HPAGE_PMD_ORDER
);
756 if (unlikely(!*hpage
)) {
757 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
758 *hpage
= ERR_PTR(-ENOMEM
);
762 prep_transhuge_page(*hpage
);
763 count_vm_event(THP_COLLAPSE_ALLOC
);
767 static int khugepaged_find_target_node(void)
772 static inline struct page
*alloc_khugepaged_hugepage(void)
776 page
= alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
779 prep_transhuge_page(page
);
783 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
788 hpage
= alloc_khugepaged_hugepage();
790 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
795 khugepaged_alloc_sleep();
797 count_vm_event(THP_COLLAPSE_ALLOC
);
798 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
803 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
806 *hpage
= khugepaged_alloc_hugepage(wait
);
808 if (unlikely(!*hpage
))
815 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
823 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
825 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
826 (vma
->vm_flags
& VM_NOHUGEPAGE
))
828 if (shmem_file(vma
->vm_file
)) {
829 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
831 return IS_ALIGNED((vma
->vm_start
>> PAGE_SHIFT
) - vma
->vm_pgoff
,
834 if (!vma
->anon_vma
|| vma
->vm_ops
)
836 if (is_vma_temporary_stack(vma
))
838 return !(vma
->vm_flags
& VM_NO_KHUGEPAGED
);
842 * If mmap_sem temporarily dropped, revalidate vma
843 * before taking mmap_sem.
844 * Return 0 if succeeds, otherwise return none-zero
848 static int hugepage_vma_revalidate(struct mm_struct
*mm
, unsigned long address
,
849 struct vm_area_struct
**vmap
)
851 struct vm_area_struct
*vma
;
852 unsigned long hstart
, hend
;
854 if (unlikely(khugepaged_test_exit(mm
)))
855 return SCAN_ANY_PROCESS
;
857 *vmap
= vma
= find_vma(mm
, address
);
859 return SCAN_VMA_NULL
;
861 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
862 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
863 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
864 return SCAN_ADDRESS_RANGE
;
865 if (!hugepage_vma_check(vma
))
866 return SCAN_VMA_CHECK
;
871 * Bring missing pages in from swap, to complete THP collapse.
872 * Only done if khugepaged_scan_pmd believes it is worthwhile.
874 * Called and returns without pte mapped or spinlocks held,
875 * but with mmap_sem held to protect against vma changes.
878 static bool __collapse_huge_page_swapin(struct mm_struct
*mm
,
879 struct vm_area_struct
*vma
,
880 unsigned long address
, pmd_t
*pmd
,
884 int swapped_in
= 0, ret
= 0;
885 struct fault_env fe
= {
888 .flags
= FAULT_FLAG_ALLOW_RETRY
,
892 /* we only decide to swapin, if there is enough young ptes */
893 if (referenced
< HPAGE_PMD_NR
/2) {
894 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
897 fe
.pte
= pte_offset_map(pmd
, address
);
898 for (; fe
.address
< address
+ HPAGE_PMD_NR
*PAGE_SIZE
;
899 fe
.pte
++, fe
.address
+= PAGE_SIZE
) {
901 if (!is_swap_pte(pteval
))
904 ret
= do_swap_page(&fe
, pteval
);
906 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
907 if (ret
& VM_FAULT_RETRY
) {
908 down_read(&mm
->mmap_sem
);
909 if (hugepage_vma_revalidate(mm
, address
, &fe
.vma
)) {
910 /* vma is no longer available, don't continue to swapin */
911 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
914 /* check if the pmd is still valid */
915 if (mm_find_pmd(mm
, address
) != pmd
)
918 if (ret
& VM_FAULT_ERROR
) {
919 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
922 /* pte is unmapped now, we need to map it */
923 fe
.pte
= pte_offset_map(pmd
, fe
.address
);
927 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 1);
931 static void collapse_huge_page(struct mm_struct
*mm
,
932 unsigned long address
,
934 int node
, int referenced
)
939 struct page
*new_page
;
940 spinlock_t
*pmd_ptl
, *pte_ptl
;
941 int isolated
= 0, result
= 0;
942 struct mem_cgroup
*memcg
;
943 struct vm_area_struct
*vma
;
944 unsigned long mmun_start
; /* For mmu_notifiers */
945 unsigned long mmun_end
; /* For mmu_notifiers */
948 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
950 /* Only allocate from the target node */
951 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE
| __GFP_THISNODE
;
954 * Before allocating the hugepage, release the mmap_sem read lock.
955 * The allocation can take potentially a long time if it involves
956 * sync compaction, and we do not need to hold the mmap_sem during
957 * that. We will recheck the vma after taking it again in write mode.
959 up_read(&mm
->mmap_sem
);
960 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
962 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
966 /* Do not oom kill for khugepaged charges */
967 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
| __GFP_NORETRY
,
969 result
= SCAN_CGROUP_CHARGE_FAIL
;
973 down_read(&mm
->mmap_sem
);
974 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
976 mem_cgroup_cancel_charge(new_page
, memcg
, true);
977 up_read(&mm
->mmap_sem
);
981 pmd
= mm_find_pmd(mm
, address
);
983 result
= SCAN_PMD_NULL
;
984 mem_cgroup_cancel_charge(new_page
, memcg
, true);
985 up_read(&mm
->mmap_sem
);
990 * __collapse_huge_page_swapin always returns with mmap_sem locked.
991 * If it fails, we release mmap_sem and jump out_nolock.
992 * Continuing to collapse causes inconsistency.
994 if (!__collapse_huge_page_swapin(mm
, vma
, address
, pmd
, referenced
)) {
995 mem_cgroup_cancel_charge(new_page
, memcg
, true);
996 up_read(&mm
->mmap_sem
);
1000 up_read(&mm
->mmap_sem
);
1002 * Prevent all access to pagetables with the exception of
1003 * gup_fast later handled by the ptep_clear_flush and the VM
1004 * handled by the anon_vma lock + PG_lock.
1006 down_write(&mm
->mmap_sem
);
1007 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
1010 /* check if the pmd is still valid */
1011 if (mm_find_pmd(mm
, address
) != pmd
)
1014 anon_vma_lock_write(vma
->anon_vma
);
1016 pte
= pte_offset_map(pmd
, address
);
1017 pte_ptl
= pte_lockptr(mm
, pmd
);
1019 mmun_start
= address
;
1020 mmun_end
= address
+ HPAGE_PMD_SIZE
;
1021 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1022 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
1024 * After this gup_fast can't run anymore. This also removes
1025 * any huge TLB entry from the CPU so we won't allow
1026 * huge and small TLB entries for the same virtual address
1027 * to avoid the risk of CPU bugs in that area.
1029 _pmd
= pmdp_collapse_flush(vma
, address
, pmd
);
1030 spin_unlock(pmd_ptl
);
1031 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1034 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
1035 spin_unlock(pte_ptl
);
1037 if (unlikely(!isolated
)) {
1040 BUG_ON(!pmd_none(*pmd
));
1042 * We can only use set_pmd_at when establishing
1043 * hugepmds and never for establishing regular pmds that
1044 * points to regular pagetables. Use pmd_populate for that
1046 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
1047 spin_unlock(pmd_ptl
);
1048 anon_vma_unlock_write(vma
->anon_vma
);
1054 * All pages are isolated and locked so anon_vma rmap
1055 * can't run anymore.
1057 anon_vma_unlock_write(vma
->anon_vma
);
1059 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
1061 __SetPageUptodate(new_page
);
1062 pgtable
= pmd_pgtable(_pmd
);
1064 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1065 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1068 * spin_lock() below is not the equivalent of smp_wmb(), so
1069 * this is needed to avoid the copy_huge_page writes to become
1070 * visible after the set_pmd_at() write.
1075 BUG_ON(!pmd_none(*pmd
));
1076 page_add_new_anon_rmap(new_page
, vma
, address
, true);
1077 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1078 lru_cache_add_active_or_unevictable(new_page
, vma
);
1079 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
1080 set_pmd_at(mm
, address
, pmd
, _pmd
);
1081 update_mmu_cache_pmd(vma
, address
, pmd
);
1082 spin_unlock(pmd_ptl
);
1086 khugepaged_pages_collapsed
++;
1087 result
= SCAN_SUCCEED
;
1089 up_write(&mm
->mmap_sem
);
1091 trace_mm_collapse_huge_page(mm
, isolated
, result
);
1094 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1098 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
1099 struct vm_area_struct
*vma
,
1100 unsigned long address
,
1101 struct page
**hpage
)
1105 int ret
= 0, none_or_zero
= 0, result
= 0, referenced
= 0;
1106 struct page
*page
= NULL
;
1107 unsigned long _address
;
1109 int node
= NUMA_NO_NODE
, unmapped
= 0;
1110 bool writable
= false;
1112 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1114 pmd
= mm_find_pmd(mm
, address
);
1116 result
= SCAN_PMD_NULL
;
1120 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1121 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1122 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1123 _pte
++, _address
+= PAGE_SIZE
) {
1124 pte_t pteval
= *_pte
;
1125 if (is_swap_pte(pteval
)) {
1126 if (++unmapped
<= khugepaged_max_ptes_swap
) {
1129 result
= SCAN_EXCEED_SWAP_PTE
;
1133 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
1134 if (!userfaultfd_armed(vma
) &&
1135 ++none_or_zero
<= khugepaged_max_ptes_none
) {
1138 result
= SCAN_EXCEED_NONE_PTE
;
1142 if (!pte_present(pteval
)) {
1143 result
= SCAN_PTE_NON_PRESENT
;
1146 if (pte_write(pteval
))
1149 page
= vm_normal_page(vma
, _address
, pteval
);
1150 if (unlikely(!page
)) {
1151 result
= SCAN_PAGE_NULL
;
1155 /* TODO: teach khugepaged to collapse THP mapped with pte */
1156 if (PageCompound(page
)) {
1157 result
= SCAN_PAGE_COMPOUND
;
1162 * Record which node the original page is from and save this
1163 * information to khugepaged_node_load[].
1164 * Khupaged will allocate hugepage from the node has the max
1167 node
= page_to_nid(page
);
1168 if (khugepaged_scan_abort(node
)) {
1169 result
= SCAN_SCAN_ABORT
;
1172 khugepaged_node_load
[node
]++;
1173 if (!PageLRU(page
)) {
1174 result
= SCAN_PAGE_LRU
;
1177 if (PageLocked(page
)) {
1178 result
= SCAN_PAGE_LOCK
;
1181 if (!PageAnon(page
)) {
1182 result
= SCAN_PAGE_ANON
;
1187 * cannot use mapcount: can't collapse if there's a gup pin.
1188 * The page must only be referenced by the scanned process
1189 * and page swap cache.
1191 if (page_count(page
) != 1 + !!PageSwapCache(page
)) {
1192 result
= SCAN_PAGE_COUNT
;
1195 if (pte_young(pteval
) ||
1196 page_is_young(page
) || PageReferenced(page
) ||
1197 mmu_notifier_test_young(vma
->vm_mm
, address
))
1202 result
= SCAN_SUCCEED
;
1205 result
= SCAN_LACK_REFERENCED_PAGE
;
1208 result
= SCAN_PAGE_RO
;
1211 pte_unmap_unlock(pte
, ptl
);
1213 node
= khugepaged_find_target_node();
1214 /* collapse_huge_page will return with the mmap_sem released */
1215 collapse_huge_page(mm
, address
, hpage
, node
, referenced
);
1218 trace_mm_khugepaged_scan_pmd(mm
, page
, writable
, referenced
,
1219 none_or_zero
, result
, unmapped
);
1223 static void collect_mm_slot(struct mm_slot
*mm_slot
)
1225 struct mm_struct
*mm
= mm_slot
->mm
;
1227 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1229 if (khugepaged_test_exit(mm
)) {
1231 hash_del(&mm_slot
->hash
);
1232 list_del(&mm_slot
->mm_node
);
1235 * Not strictly needed because the mm exited already.
1237 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1240 /* khugepaged_mm_lock actually not necessary for the below */
1241 free_mm_slot(mm_slot
);
1246 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1247 static void retract_page_tables(struct address_space
*mapping
, pgoff_t pgoff
)
1249 struct vm_area_struct
*vma
;
1253 i_mmap_lock_write(mapping
);
1254 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1255 /* probably overkill */
1258 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
1259 if (addr
& ~HPAGE_PMD_MASK
)
1261 if (vma
->vm_end
< addr
+ HPAGE_PMD_SIZE
)
1263 pmd
= mm_find_pmd(vma
->vm_mm
, addr
);
1267 * We need exclusive mmap_sem to retract page table.
1268 * If trylock fails we would end up with pte-mapped THP after
1269 * re-fault. Not ideal, but it's more important to not disturb
1270 * the system too much.
1272 if (down_write_trylock(&vma
->vm_mm
->mmap_sem
)) {
1273 spinlock_t
*ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1274 /* assume page table is clear */
1275 _pmd
= pmdp_collapse_flush(vma
, addr
, pmd
);
1277 up_write(&vma
->vm_mm
->mmap_sem
);
1278 atomic_long_dec(&vma
->vm_mm
->nr_ptes
);
1279 pte_free(vma
->vm_mm
, pmd_pgtable(_pmd
));
1282 i_mmap_unlock_write(mapping
);
1286 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1288 * Basic scheme is simple, details are more complex:
1289 * - allocate and freeze a new huge page;
1290 * - scan over radix tree replacing old pages the new one
1291 * + swap in pages if necessary;
1293 * + keep old pages around in case if rollback is required;
1294 * - if replacing succeed:
1297 * + unfreeze huge page;
1298 * - if replacing failed;
1299 * + put all pages back and unfreeze them;
1300 * + restore gaps in the radix-tree;
1303 static void collapse_shmem(struct mm_struct
*mm
,
1304 struct address_space
*mapping
, pgoff_t start
,
1305 struct page
**hpage
, int node
)
1308 struct page
*page
, *new_page
, *tmp
;
1309 struct mem_cgroup
*memcg
;
1310 pgoff_t index
, end
= start
+ HPAGE_PMD_NR
;
1311 LIST_HEAD(pagelist
);
1312 struct radix_tree_iter iter
;
1314 int nr_none
= 0, result
= SCAN_SUCCEED
;
1316 VM_BUG_ON(start
& (HPAGE_PMD_NR
- 1));
1318 /* Only allocate from the target node */
1319 gfp
= alloc_hugepage_khugepaged_gfpmask() |
1320 __GFP_OTHER_NODE
| __GFP_THISNODE
;
1322 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
1324 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
1328 /* Do not oom kill for khugepaged charges */
1329 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
| __GFP_NORETRY
,
1331 result
= SCAN_CGROUP_CHARGE_FAIL
;
1335 new_page
->index
= start
;
1336 new_page
->mapping
= mapping
;
1337 __SetPageSwapBacked(new_page
);
1338 __SetPageLocked(new_page
);
1339 BUG_ON(!page_ref_freeze(new_page
, 1));
1343 * At this point the new_page is 'frozen' (page_count() is zero), locked
1344 * and not up-to-date. It's safe to insert it into radix tree, because
1345 * nobody would be able to map it or use it in other way until we
1350 spin_lock_irq(&mapping
->tree_lock
);
1351 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1352 int n
= min(iter
.index
, end
) - index
;
1355 * Handle holes in the radix tree: charge it from shmem and
1356 * insert relevant subpage of new_page into the radix-tree.
1358 if (n
&& !shmem_charge(mapping
->host
, n
)) {
1363 for (; index
< min(iter
.index
, end
); index
++) {
1364 radix_tree_insert(&mapping
->page_tree
, index
,
1365 new_page
+ (index
% HPAGE_PMD_NR
));
1372 page
= radix_tree_deref_slot_protected(slot
,
1373 &mapping
->tree_lock
);
1374 if (radix_tree_exceptional_entry(page
) || !PageUptodate(page
)) {
1375 spin_unlock_irq(&mapping
->tree_lock
);
1376 /* swap in or instantiate fallocated page */
1377 if (shmem_getpage(mapping
->host
, index
, &page
,
1382 spin_lock_irq(&mapping
->tree_lock
);
1383 } else if (trylock_page(page
)) {
1386 result
= SCAN_PAGE_LOCK
;
1391 * The page must be locked, so we can drop the tree_lock
1392 * without racing with truncate.
1394 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1395 VM_BUG_ON_PAGE(!PageUptodate(page
), page
);
1396 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
1398 if (page_mapping(page
) != mapping
) {
1399 result
= SCAN_TRUNCATED
;
1402 spin_unlock_irq(&mapping
->tree_lock
);
1404 if (isolate_lru_page(page
)) {
1405 result
= SCAN_DEL_PAGE_LRU
;
1406 goto out_isolate_failed
;
1409 if (page_mapped(page
))
1410 unmap_mapping_range(mapping
, index
<< PAGE_SHIFT
,
1413 spin_lock_irq(&mapping
->tree_lock
);
1415 slot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
1416 VM_BUG_ON_PAGE(page
!= radix_tree_deref_slot_protected(slot
,
1417 &mapping
->tree_lock
), page
);
1418 VM_BUG_ON_PAGE(page_mapped(page
), page
);
1421 * The page is expected to have page_count() == 3:
1422 * - we hold a pin on it;
1423 * - one reference from radix tree;
1424 * - one from isolate_lru_page;
1426 if (!page_ref_freeze(page
, 3)) {
1427 result
= SCAN_PAGE_COUNT
;
1432 * Add the page to the list to be able to undo the collapse if
1433 * something go wrong.
1435 list_add_tail(&page
->lru
, &pagelist
);
1437 /* Finally, replace with the new page. */
1438 radix_tree_replace_slot(slot
,
1439 new_page
+ (index
% HPAGE_PMD_NR
));
1441 slot
= radix_tree_iter_next(&iter
);
1445 spin_unlock_irq(&mapping
->tree_lock
);
1446 putback_lru_page(page
);
1458 * Handle hole in radix tree at the end of the range.
1459 * This code only triggers if there's nothing in radix tree
1462 if (result
== SCAN_SUCCEED
&& index
< end
) {
1463 int n
= end
- index
;
1465 if (!shmem_charge(mapping
->host
, n
)) {
1470 for (; index
< end
; index
++) {
1471 radix_tree_insert(&mapping
->page_tree
, index
,
1472 new_page
+ (index
% HPAGE_PMD_NR
));
1478 spin_unlock_irq(&mapping
->tree_lock
);
1481 if (result
== SCAN_SUCCEED
) {
1482 unsigned long flags
;
1483 struct zone
*zone
= page_zone(new_page
);
1486 * Replacing old pages with new one has succeed, now we need to
1487 * copy the content and free old pages.
1489 list_for_each_entry_safe(page
, tmp
, &pagelist
, lru
) {
1490 copy_highpage(new_page
+ (page
->index
% HPAGE_PMD_NR
),
1492 list_del(&page
->lru
);
1494 page_ref_unfreeze(page
, 1);
1495 page
->mapping
= NULL
;
1496 ClearPageActive(page
);
1497 ClearPageUnevictable(page
);
1501 local_irq_save(flags
);
1502 __inc_node_page_state(new_page
, NR_SHMEM_THPS
);
1504 __mod_node_page_state(zone
->zone_pgdat
, NR_FILE_PAGES
, nr_none
);
1505 __mod_node_page_state(zone
->zone_pgdat
, NR_SHMEM
, nr_none
);
1507 local_irq_restore(flags
);
1510 * Remove pte page tables, so we can re-faulti
1513 retract_page_tables(mapping
, start
);
1515 /* Everything is ready, let's unfreeze the new_page */
1516 set_page_dirty(new_page
);
1517 SetPageUptodate(new_page
);
1518 page_ref_unfreeze(new_page
, HPAGE_PMD_NR
);
1519 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1520 lru_cache_add_anon(new_page
);
1521 unlock_page(new_page
);
1525 /* Something went wrong: rollback changes to the radix-tree */
1526 shmem_uncharge(mapping
->host
, nr_none
);
1527 spin_lock_irq(&mapping
->tree_lock
);
1528 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
,
1530 if (iter
.index
>= end
)
1532 page
= list_first_entry_or_null(&pagelist
,
1534 if (!page
|| iter
.index
< page
->index
) {
1538 /* Put holes back where they were */
1539 radix_tree_delete(&mapping
->page_tree
,
1541 slot
= radix_tree_iter_next(&iter
);
1545 VM_BUG_ON_PAGE(page
->index
!= iter
.index
, page
);
1547 /* Unfreeze the page. */
1548 list_del(&page
->lru
);
1549 page_ref_unfreeze(page
, 2);
1550 radix_tree_replace_slot(slot
, page
);
1551 spin_unlock_irq(&mapping
->tree_lock
);
1552 putback_lru_page(page
);
1554 spin_lock_irq(&mapping
->tree_lock
);
1555 slot
= radix_tree_iter_next(&iter
);
1558 spin_unlock_irq(&mapping
->tree_lock
);
1560 /* Unfreeze new_page, caller would take care about freeing it */
1561 page_ref_unfreeze(new_page
, 1);
1562 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1563 unlock_page(new_page
);
1564 new_page
->mapping
= NULL
;
1567 VM_BUG_ON(!list_empty(&pagelist
));
1568 /* TODO: tracepoints */
1571 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1572 struct address_space
*mapping
,
1573 pgoff_t start
, struct page
**hpage
)
1575 struct page
*page
= NULL
;
1576 struct radix_tree_iter iter
;
1579 int node
= NUMA_NO_NODE
;
1580 int result
= SCAN_SUCCEED
;
1584 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1586 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1587 if (iter
.index
>= start
+ HPAGE_PMD_NR
)
1590 page
= radix_tree_deref_slot(slot
);
1591 if (radix_tree_deref_retry(page
)) {
1592 slot
= radix_tree_iter_retry(&iter
);
1596 if (radix_tree_exception(page
)) {
1597 if (++swap
> khugepaged_max_ptes_swap
) {
1598 result
= SCAN_EXCEED_SWAP_PTE
;
1604 if (PageTransCompound(page
)) {
1605 result
= SCAN_PAGE_COMPOUND
;
1609 node
= page_to_nid(page
);
1610 if (khugepaged_scan_abort(node
)) {
1611 result
= SCAN_SCAN_ABORT
;
1614 khugepaged_node_load
[node
]++;
1616 if (!PageLRU(page
)) {
1617 result
= SCAN_PAGE_LRU
;
1621 if (page_count(page
) != 1 + page_mapcount(page
)) {
1622 result
= SCAN_PAGE_COUNT
;
1627 * We probably should check if the page is referenced here, but
1628 * nobody would transfer pte_young() to PageReferenced() for us.
1629 * And rmap walk here is just too costly...
1634 if (need_resched()) {
1636 slot
= radix_tree_iter_next(&iter
);
1641 if (result
== SCAN_SUCCEED
) {
1642 if (present
< HPAGE_PMD_NR
- khugepaged_max_ptes_none
) {
1643 result
= SCAN_EXCEED_NONE_PTE
;
1645 node
= khugepaged_find_target_node();
1646 collapse_shmem(mm
, mapping
, start
, hpage
, node
);
1650 /* TODO: tracepoints */
1653 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1654 struct address_space
*mapping
,
1655 pgoff_t start
, struct page
**hpage
)
1661 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
1662 struct page
**hpage
)
1663 __releases(&khugepaged_mm_lock
)
1664 __acquires(&khugepaged_mm_lock
)
1666 struct mm_slot
*mm_slot
;
1667 struct mm_struct
*mm
;
1668 struct vm_area_struct
*vma
;
1672 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1674 if (khugepaged_scan
.mm_slot
)
1675 mm_slot
= khugepaged_scan
.mm_slot
;
1677 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
1678 struct mm_slot
, mm_node
);
1679 khugepaged_scan
.address
= 0;
1680 khugepaged_scan
.mm_slot
= mm_slot
;
1682 spin_unlock(&khugepaged_mm_lock
);
1686 * Don't wait for semaphore (to avoid long wait times). Just move to
1687 * the next mm on the list.
1690 if (unlikely(!down_read_trylock(&mm
->mmap_sem
)))
1691 goto breakouterloop_mmap_sem
;
1692 if (likely(!khugepaged_test_exit(mm
)))
1693 vma
= find_vma(mm
, khugepaged_scan
.address
);
1696 for (; vma
; vma
= vma
->vm_next
) {
1697 unsigned long hstart
, hend
;
1700 if (unlikely(khugepaged_test_exit(mm
))) {
1704 if (!hugepage_vma_check(vma
)) {
1709 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1710 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1713 if (khugepaged_scan
.address
> hend
)
1715 if (khugepaged_scan
.address
< hstart
)
1716 khugepaged_scan
.address
= hstart
;
1717 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
1719 while (khugepaged_scan
.address
< hend
) {
1722 if (unlikely(khugepaged_test_exit(mm
)))
1723 goto breakouterloop
;
1725 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
1726 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
1728 if (shmem_file(vma
->vm_file
)) {
1730 pgoff_t pgoff
= linear_page_index(vma
,
1731 khugepaged_scan
.address
);
1732 if (!shmem_huge_enabled(vma
))
1734 file
= get_file(vma
->vm_file
);
1735 up_read(&mm
->mmap_sem
);
1737 khugepaged_scan_shmem(mm
, file
->f_mapping
,
1741 ret
= khugepaged_scan_pmd(mm
, vma
,
1742 khugepaged_scan
.address
,
1745 /* move to next address */
1746 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
1747 progress
+= HPAGE_PMD_NR
;
1749 /* we released mmap_sem so break loop */
1750 goto breakouterloop_mmap_sem
;
1751 if (progress
>= pages
)
1752 goto breakouterloop
;
1756 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
1757 breakouterloop_mmap_sem
:
1759 spin_lock(&khugepaged_mm_lock
);
1760 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
1762 * Release the current mm_slot if this mm is about to die, or
1763 * if we scanned all vmas of this mm.
1765 if (khugepaged_test_exit(mm
) || !vma
) {
1767 * Make sure that if mm_users is reaching zero while
1768 * khugepaged runs here, khugepaged_exit will find
1769 * mm_slot not pointing to the exiting mm.
1771 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
1772 khugepaged_scan
.mm_slot
= list_entry(
1773 mm_slot
->mm_node
.next
,
1774 struct mm_slot
, mm_node
);
1775 khugepaged_scan
.address
= 0;
1777 khugepaged_scan
.mm_slot
= NULL
;
1778 khugepaged_full_scans
++;
1781 collect_mm_slot(mm_slot
);
1787 static int khugepaged_has_work(void)
1789 return !list_empty(&khugepaged_scan
.mm_head
) &&
1790 khugepaged_enabled();
1793 static int khugepaged_wait_event(void)
1795 return !list_empty(&khugepaged_scan
.mm_head
) ||
1796 kthread_should_stop();
1799 static void khugepaged_do_scan(void)
1801 struct page
*hpage
= NULL
;
1802 unsigned int progress
= 0, pass_through_head
= 0;
1803 unsigned int pages
= khugepaged_pages_to_scan
;
1806 barrier(); /* write khugepaged_pages_to_scan to local stack */
1808 while (progress
< pages
) {
1809 if (!khugepaged_prealloc_page(&hpage
, &wait
))
1814 if (unlikely(kthread_should_stop() || try_to_freeze()))
1817 spin_lock(&khugepaged_mm_lock
);
1818 if (!khugepaged_scan
.mm_slot
)
1819 pass_through_head
++;
1820 if (khugepaged_has_work() &&
1821 pass_through_head
< 2)
1822 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
1826 spin_unlock(&khugepaged_mm_lock
);
1829 if (!IS_ERR_OR_NULL(hpage
))
1833 static bool khugepaged_should_wakeup(void)
1835 return kthread_should_stop() ||
1836 time_after_eq(jiffies
, khugepaged_sleep_expire
);
1839 static void khugepaged_wait_work(void)
1841 if (khugepaged_has_work()) {
1842 const unsigned long scan_sleep_jiffies
=
1843 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
);
1845 if (!scan_sleep_jiffies
)
1848 khugepaged_sleep_expire
= jiffies
+ scan_sleep_jiffies
;
1849 wait_event_freezable_timeout(khugepaged_wait
,
1850 khugepaged_should_wakeup(),
1851 scan_sleep_jiffies
);
1855 if (khugepaged_enabled())
1856 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
1859 static int khugepaged(void *none
)
1861 struct mm_slot
*mm_slot
;
1864 set_user_nice(current
, MAX_NICE
);
1866 while (!kthread_should_stop()) {
1867 khugepaged_do_scan();
1868 khugepaged_wait_work();
1871 spin_lock(&khugepaged_mm_lock
);
1872 mm_slot
= khugepaged_scan
.mm_slot
;
1873 khugepaged_scan
.mm_slot
= NULL
;
1875 collect_mm_slot(mm_slot
);
1876 spin_unlock(&khugepaged_mm_lock
);
1880 static void set_recommended_min_free_kbytes(void)
1884 unsigned long recommended_min
;
1886 for_each_populated_zone(zone
)
1889 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1890 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
1893 * Make sure that on average at least two pageblocks are almost free
1894 * of another type, one for a migratetype to fall back to and a
1895 * second to avoid subsequent fallbacks of other types There are 3
1896 * MIGRATE_TYPES we care about.
1898 recommended_min
+= pageblock_nr_pages
* nr_zones
*
1899 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
1901 /* don't ever allow to reserve more than 5% of the lowmem */
1902 recommended_min
= min(recommended_min
,
1903 (unsigned long) nr_free_buffer_pages() / 20);
1904 recommended_min
<<= (PAGE_SHIFT
-10);
1906 if (recommended_min
> min_free_kbytes
) {
1907 if (user_min_free_kbytes
>= 0)
1908 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1909 min_free_kbytes
, recommended_min
);
1911 min_free_kbytes
= recommended_min
;
1913 setup_per_zone_wmarks();
1916 int start_stop_khugepaged(void)
1918 static struct task_struct
*khugepaged_thread __read_mostly
;
1919 static DEFINE_MUTEX(khugepaged_mutex
);
1922 mutex_lock(&khugepaged_mutex
);
1923 if (khugepaged_enabled()) {
1924 if (!khugepaged_thread
)
1925 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
1927 if (IS_ERR(khugepaged_thread
)) {
1928 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1929 err
= PTR_ERR(khugepaged_thread
);
1930 khugepaged_thread
= NULL
;
1934 if (!list_empty(&khugepaged_scan
.mm_head
))
1935 wake_up_interruptible(&khugepaged_wait
);
1937 set_recommended_min_free_kbytes();
1938 } else if (khugepaged_thread
) {
1939 kthread_stop(khugepaged_thread
);
1940 khugepaged_thread
= NULL
;
1943 mutex_unlock(&khugepaged_mutex
);