2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm/sections.h>
28 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
29 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
34 struct memblock memblock __initdata_memblock
= {
35 .memory
.regions
= memblock_memory_init_regions
,
36 .memory
.cnt
= 1, /* empty dummy entry */
37 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
39 .reserved
.regions
= memblock_reserved_init_regions
,
40 .reserved
.cnt
= 1, /* empty dummy entry */
41 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem
.regions
= memblock_physmem_init_regions
,
45 .physmem
.cnt
= 1, /* empty dummy entry */
46 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
50 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
53 int memblock_debug __initdata_memblock
;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock
= false;
57 static bool system_has_some_mirror __initdata_memblock
= false;
58 static int memblock_can_resize __initdata_memblock
;
59 static int memblock_memory_in_slab __initdata_memblock
= 0;
60 static int memblock_reserved_in_slab __initdata_memblock
= 0;
62 ulong __init_memblock
choose_memblock_flags(void)
64 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock
const char *
69 memblock_type_name(struct memblock_type
*type
)
71 if (type
== &memblock
.memory
)
73 else if (type
== &memblock
.reserved
)
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
82 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
86 * Address comparison utilities
88 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
89 phys_addr_t base2
, phys_addr_t size2
)
91 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
94 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
95 phys_addr_t base
, phys_addr_t size
)
99 for (i
= 0; i
< type
->cnt
; i
++)
100 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
101 type
->regions
[i
].size
))
103 return i
< type
->cnt
;
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113 * @flags: pick from blocks based on memory attributes
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
118 * Found address on success, 0 on failure.
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
122 phys_addr_t size
, phys_addr_t align
, int nid
,
125 phys_addr_t this_start
, this_end
, cand
;
128 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
129 this_start
= clamp(this_start
, start
, end
);
130 this_end
= clamp(this_end
, start
, end
);
132 cand
= round_up(this_start
, align
);
133 if (cand
< this_end
&& this_end
- cand
>= size
)
141 * __memblock_find_range_top_down - find free area utility, in top-down
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147 * @flags: pick from blocks based on memory attributes
149 * Utility called from memblock_find_in_range_node(), find free area top-down.
152 * Found address on success, 0 on failure.
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
156 phys_addr_t size
, phys_addr_t align
, int nid
,
159 phys_addr_t this_start
, this_end
, cand
;
162 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
164 this_start
= clamp(this_start
, start
, end
);
165 this_end
= clamp(this_end
, start
, end
);
170 cand
= round_down(this_end
- size
, align
);
171 if (cand
>= this_start
)
179 * memblock_find_in_range_node - find free area in given range and node
180 * @size: size of free area to find
181 * @align: alignment of free area to find
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185 * @flags: pick from blocks based on memory attributes
187 * Find @size free area aligned to @align in the specified range and node.
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
195 * If bottom-up allocation failed, will try to allocate memory top-down.
198 * Found address on success, 0 on failure.
200 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
201 phys_addr_t align
, phys_addr_t start
,
202 phys_addr_t end
, int nid
, ulong flags
)
204 phys_addr_t kernel_end
, ret
;
207 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
208 end
= memblock
.current_limit
;
210 /* avoid allocating the first page */
211 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
212 end
= max(start
, end
);
213 kernel_end
= __pa_symbol(_end
);
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
219 if (memblock_bottom_up() && end
> kernel_end
) {
220 phys_addr_t bottom_up_start
;
222 /* make sure we will allocate above the kernel */
223 bottom_up_start
= max(start
, kernel_end
);
225 /* ok, try bottom-up allocation first */
226 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
227 size
, align
, nid
, flags
);
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
244 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
255 * Find @size free area aligned to @align in the specified range.
258 * Found address on success, 0 on failure.
260 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
261 phys_addr_t end
, phys_addr_t size
,
265 ulong flags
= choose_memblock_flags();
268 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
269 NUMA_NO_NODE
, flags
);
271 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
274 flags
&= ~MEMBLOCK_MIRROR
;
281 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
283 type
->total_size
-= type
->regions
[r
].size
;
284 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
285 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
288 /* Special case for empty arrays */
289 if (type
->cnt
== 0) {
290 WARN_ON(type
->total_size
!= 0);
292 type
->regions
[0].base
= 0;
293 type
->regions
[0].size
= 0;
294 type
->regions
[0].flags
= 0;
295 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
301 * Discard memory and reserved arrays if they were allocated
303 void __init
memblock_discard(void)
305 phys_addr_t addr
, size
;
307 if (memblock
.reserved
.regions
!= memblock_reserved_init_regions
) {
308 addr
= __pa(memblock
.reserved
.regions
);
309 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
310 memblock
.reserved
.max
);
311 __memblock_free_late(addr
, size
);
314 if (memblock
.memory
.regions
!= memblock_memory_init_regions
) {
315 addr
= __pa(memblock
.memory
.regions
);
316 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
317 memblock
.memory
.max
);
318 __memblock_free_late(addr
, size
);
324 * memblock_double_array - double the size of the memblock regions array
325 * @type: memblock type of the regions array being doubled
326 * @new_area_start: starting address of memory range to avoid overlap with
327 * @new_area_size: size of memory range to avoid overlap with
329 * Double the size of the @type regions array. If memblock is being used to
330 * allocate memory for a new reserved regions array and there is a previously
331 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
332 * waiting to be reserved, ensure the memory used by the new array does
336 * 0 on success, -1 on failure.
338 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
339 phys_addr_t new_area_start
,
340 phys_addr_t new_area_size
)
342 struct memblock_region
*new_array
, *old_array
;
343 phys_addr_t old_alloc_size
, new_alloc_size
;
344 phys_addr_t old_size
, new_size
, addr
;
345 int use_slab
= slab_is_available();
348 /* We don't allow resizing until we know about the reserved regions
349 * of memory that aren't suitable for allocation
351 if (!memblock_can_resize
)
354 /* Calculate new doubled size */
355 old_size
= type
->max
* sizeof(struct memblock_region
);
356 new_size
= old_size
<< 1;
358 * We need to allocated new one align to PAGE_SIZE,
359 * so we can free them completely later.
361 old_alloc_size
= PAGE_ALIGN(old_size
);
362 new_alloc_size
= PAGE_ALIGN(new_size
);
364 /* Retrieve the slab flag */
365 if (type
== &memblock
.memory
)
366 in_slab
= &memblock_memory_in_slab
;
368 in_slab
= &memblock_reserved_in_slab
;
370 /* Try to find some space for it.
372 * WARNING: We assume that either slab_is_available() and we use it or
373 * we use MEMBLOCK for allocations. That means that this is unsafe to
374 * use when bootmem is currently active (unless bootmem itself is
375 * implemented on top of MEMBLOCK which isn't the case yet)
377 * This should however not be an issue for now, as we currently only
378 * call into MEMBLOCK while it's still active, or much later when slab
379 * is active for memory hotplug operations
382 new_array
= kmalloc(new_size
, GFP_KERNEL
);
383 addr
= new_array
? __pa(new_array
) : 0;
385 /* only exclude range when trying to double reserved.regions */
386 if (type
!= &memblock
.reserved
)
387 new_area_start
= new_area_size
= 0;
389 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
390 memblock
.current_limit
,
391 new_alloc_size
, PAGE_SIZE
);
392 if (!addr
&& new_area_size
)
393 addr
= memblock_find_in_range(0,
394 min(new_area_start
, memblock
.current_limit
),
395 new_alloc_size
, PAGE_SIZE
);
397 new_array
= addr
? __va(addr
) : NULL
;
400 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
401 memblock_type_name(type
), type
->max
, type
->max
* 2);
405 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
406 memblock_type_name(type
), type
->max
* 2, (u64
)addr
,
407 (u64
)addr
+ new_size
- 1);
410 * Found space, we now need to move the array over before we add the
411 * reserved region since it may be our reserved array itself that is
414 memcpy(new_array
, type
->regions
, old_size
);
415 memset(new_array
+ type
->max
, 0, old_size
);
416 old_array
= type
->regions
;
417 type
->regions
= new_array
;
420 /* Free old array. We needn't free it if the array is the static one */
423 else if (old_array
!= memblock_memory_init_regions
&&
424 old_array
!= memblock_reserved_init_regions
)
425 memblock_free(__pa(old_array
), old_alloc_size
);
428 * Reserve the new array if that comes from the memblock. Otherwise, we
432 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
434 /* Update slab flag */
441 * memblock_merge_regions - merge neighboring compatible regions
442 * @type: memblock type to scan
444 * Scan @type and merge neighboring compatible regions.
446 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
450 /* cnt never goes below 1 */
451 while (i
< type
->cnt
- 1) {
452 struct memblock_region
*this = &type
->regions
[i
];
453 struct memblock_region
*next
= &type
->regions
[i
+ 1];
455 if (this->base
+ this->size
!= next
->base
||
456 memblock_get_region_node(this) !=
457 memblock_get_region_node(next
) ||
458 this->flags
!= next
->flags
) {
459 BUG_ON(this->base
+ this->size
> next
->base
);
464 this->size
+= next
->size
;
465 /* move forward from next + 1, index of which is i + 2 */
466 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
472 * memblock_insert_region - insert new memblock region
473 * @type: memblock type to insert into
474 * @idx: index for the insertion point
475 * @base: base address of the new region
476 * @size: size of the new region
477 * @nid: node id of the new region
478 * @flags: flags of the new region
480 * Insert new memblock region [@base,@base+@size) into @type at @idx.
481 * @type must already have extra room to accommodate the new region.
483 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
484 int idx
, phys_addr_t base
,
486 int nid
, unsigned long flags
)
488 struct memblock_region
*rgn
= &type
->regions
[idx
];
490 BUG_ON(type
->cnt
>= type
->max
);
491 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
495 memblock_set_region_node(rgn
, nid
);
497 type
->total_size
+= size
;
501 * memblock_add_range - add new memblock region
502 * @type: memblock type to add new region into
503 * @base: base address of the new region
504 * @size: size of the new region
505 * @nid: nid of the new region
506 * @flags: flags of the new region
508 * Add new memblock region [@base,@base+@size) into @type. The new region
509 * is allowed to overlap with existing ones - overlaps don't affect already
510 * existing regions. @type is guaranteed to be minimal (all neighbouring
511 * compatible regions are merged) after the addition.
514 * 0 on success, -errno on failure.
516 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
517 phys_addr_t base
, phys_addr_t size
,
518 int nid
, unsigned long flags
)
521 phys_addr_t obase
= base
;
522 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
524 struct memblock_region
*rgn
;
529 /* special case for empty array */
530 if (type
->regions
[0].size
== 0) {
531 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
532 type
->regions
[0].base
= base
;
533 type
->regions
[0].size
= size
;
534 type
->regions
[0].flags
= flags
;
535 memblock_set_region_node(&type
->regions
[0], nid
);
536 type
->total_size
= size
;
541 * The following is executed twice. Once with %false @insert and
542 * then with %true. The first counts the number of regions needed
543 * to accommodate the new area. The second actually inserts them.
548 for_each_memblock_type(type
, rgn
) {
549 phys_addr_t rbase
= rgn
->base
;
550 phys_addr_t rend
= rbase
+ rgn
->size
;
557 * @rgn overlaps. If it separates the lower part of new
558 * area, insert that portion.
561 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
562 WARN_ON(nid
!= memblock_get_region_node(rgn
));
564 WARN_ON(flags
!= rgn
->flags
);
567 memblock_insert_region(type
, idx
++, base
,
571 /* area below @rend is dealt with, forget about it */
572 base
= min(rend
, end
);
575 /* insert the remaining portion */
579 memblock_insert_region(type
, idx
, base
, end
- base
,
587 * If this was the first round, resize array and repeat for actual
588 * insertions; otherwise, merge and return.
591 while (type
->cnt
+ nr_new
> type
->max
)
592 if (memblock_double_array(type
, obase
, size
) < 0)
597 memblock_merge_regions(type
);
602 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
605 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
608 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
610 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
611 (unsigned long long)base
,
612 (unsigned long long)base
+ size
- 1,
613 0UL, (void *)_RET_IP_
);
615 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
619 * memblock_isolate_range - isolate given range into disjoint memblocks
620 * @type: memblock type to isolate range for
621 * @base: base of range to isolate
622 * @size: size of range to isolate
623 * @start_rgn: out parameter for the start of isolated region
624 * @end_rgn: out parameter for the end of isolated region
626 * Walk @type and ensure that regions don't cross the boundaries defined by
627 * [@base,@base+@size). Crossing regions are split at the boundaries,
628 * which may create at most two more regions. The index of the first
629 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
632 * 0 on success, -errno on failure.
634 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
635 phys_addr_t base
, phys_addr_t size
,
636 int *start_rgn
, int *end_rgn
)
638 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
640 struct memblock_region
*rgn
;
642 *start_rgn
= *end_rgn
= 0;
647 /* we'll create at most two more regions */
648 while (type
->cnt
+ 2 > type
->max
)
649 if (memblock_double_array(type
, base
, size
) < 0)
652 for_each_memblock_type(type
, rgn
) {
653 phys_addr_t rbase
= rgn
->base
;
654 phys_addr_t rend
= rbase
+ rgn
->size
;
663 * @rgn intersects from below. Split and continue
664 * to process the next region - the new top half.
667 rgn
->size
-= base
- rbase
;
668 type
->total_size
-= base
- rbase
;
669 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
670 memblock_get_region_node(rgn
),
672 } else if (rend
> end
) {
674 * @rgn intersects from above. Split and redo the
675 * current region - the new bottom half.
678 rgn
->size
-= end
- rbase
;
679 type
->total_size
-= end
- rbase
;
680 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
681 memblock_get_region_node(rgn
),
684 /* @rgn is fully contained, record it */
694 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
695 phys_addr_t base
, phys_addr_t size
)
697 int start_rgn
, end_rgn
;
700 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
704 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
705 memblock_remove_region(type
, i
);
709 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
711 return memblock_remove_range(&memblock
.memory
, base
, size
);
715 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
717 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
718 (unsigned long long)base
,
719 (unsigned long long)base
+ size
- 1,
722 kmemleak_free_part_phys(base
, size
);
723 return memblock_remove_range(&memblock
.reserved
, base
, size
);
726 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
728 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
729 (unsigned long long)base
,
730 (unsigned long long)base
+ size
- 1,
731 0UL, (void *)_RET_IP_
);
733 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
738 * This function isolates region [@base, @base + @size), and sets/clears flag
740 * Return 0 on success, -errno on failure.
742 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
743 phys_addr_t size
, int set
, int flag
)
745 struct memblock_type
*type
= &memblock
.memory
;
746 int i
, ret
, start_rgn
, end_rgn
;
748 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
752 for (i
= start_rgn
; i
< end_rgn
; i
++)
754 memblock_set_region_flags(&type
->regions
[i
], flag
);
756 memblock_clear_region_flags(&type
->regions
[i
], flag
);
758 memblock_merge_regions(type
);
763 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
764 * @base: the base phys addr of the region
765 * @size: the size of the region
767 * Return 0 on success, -errno on failure.
769 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
771 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
775 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
776 * @base: the base phys addr of the region
777 * @size: the size of the region
779 * Return 0 on success, -errno on failure.
781 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
783 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
787 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
788 * @base: the base phys addr of the region
789 * @size: the size of the region
791 * Return 0 on success, -errno on failure.
793 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
795 system_has_some_mirror
= true;
797 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
801 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
802 * @base: the base phys addr of the region
803 * @size: the size of the region
805 * Return 0 on success, -errno on failure.
807 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
809 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
813 * __next_reserved_mem_region - next function for for_each_reserved_region()
814 * @idx: pointer to u64 loop variable
815 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
816 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
818 * Iterate over all reserved memory regions.
820 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
821 phys_addr_t
*out_start
,
822 phys_addr_t
*out_end
)
824 struct memblock_type
*type
= &memblock
.reserved
;
826 if (*idx
< type
->cnt
) {
827 struct memblock_region
*r
= &type
->regions
[*idx
];
828 phys_addr_t base
= r
->base
;
829 phys_addr_t size
= r
->size
;
834 *out_end
= base
+ size
- 1;
840 /* signal end of iteration */
845 * __next__mem_range - next function for for_each_free_mem_range() etc.
846 * @idx: pointer to u64 loop variable
847 * @nid: node selector, %NUMA_NO_NODE for all nodes
848 * @flags: pick from blocks based on memory attributes
849 * @type_a: pointer to memblock_type from where the range is taken
850 * @type_b: pointer to memblock_type which excludes memory from being taken
851 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
852 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
853 * @out_nid: ptr to int for nid of the range, can be %NULL
855 * Find the first area from *@idx which matches @nid, fill the out
856 * parameters, and update *@idx for the next iteration. The lower 32bit of
857 * *@idx contains index into type_a and the upper 32bit indexes the
858 * areas before each region in type_b. For example, if type_b regions
859 * look like the following,
861 * 0:[0-16), 1:[32-48), 2:[128-130)
863 * The upper 32bit indexes the following regions.
865 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
867 * As both region arrays are sorted, the function advances the two indices
868 * in lockstep and returns each intersection.
870 void __init_memblock
__next_mem_range(u64
*idx
, int nid
, ulong flags
,
871 struct memblock_type
*type_a
,
872 struct memblock_type
*type_b
,
873 phys_addr_t
*out_start
,
874 phys_addr_t
*out_end
, int *out_nid
)
876 int idx_a
= *idx
& 0xffffffff;
877 int idx_b
= *idx
>> 32;
879 if (WARN_ONCE(nid
== MAX_NUMNODES
,
880 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
883 for (; idx_a
< type_a
->cnt
; idx_a
++) {
884 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
886 phys_addr_t m_start
= m
->base
;
887 phys_addr_t m_end
= m
->base
+ m
->size
;
888 int m_nid
= memblock_get_region_node(m
);
890 /* only memory regions are associated with nodes, check it */
891 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
894 /* skip hotpluggable memory regions if needed */
895 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
898 /* if we want mirror memory skip non-mirror memory regions */
899 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
902 /* skip nomap memory unless we were asked for it explicitly */
903 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
908 *out_start
= m_start
;
914 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
918 /* scan areas before each reservation */
919 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
920 struct memblock_region
*r
;
924 r
= &type_b
->regions
[idx_b
];
925 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
926 r_end
= idx_b
< type_b
->cnt
?
927 r
->base
: ULLONG_MAX
;
930 * if idx_b advanced past idx_a,
931 * break out to advance idx_a
933 if (r_start
>= m_end
)
935 /* if the two regions intersect, we're done */
936 if (m_start
< r_end
) {
939 max(m_start
, r_start
);
941 *out_end
= min(m_end
, r_end
);
945 * The region which ends first is
946 * advanced for the next iteration.
952 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
958 /* signal end of iteration */
963 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
965 * Finds the next range from type_a which is not marked as unsuitable
968 * @idx: pointer to u64 loop variable
969 * @nid: node selector, %NUMA_NO_NODE for all nodes
970 * @flags: pick from blocks based on memory attributes
971 * @type_a: pointer to memblock_type from where the range is taken
972 * @type_b: pointer to memblock_type which excludes memory from being taken
973 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
974 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
975 * @out_nid: ptr to int for nid of the range, can be %NULL
977 * Reverse of __next_mem_range().
979 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
, ulong flags
,
980 struct memblock_type
*type_a
,
981 struct memblock_type
*type_b
,
982 phys_addr_t
*out_start
,
983 phys_addr_t
*out_end
, int *out_nid
)
985 int idx_a
= *idx
& 0xffffffff;
986 int idx_b
= *idx
>> 32;
988 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
991 if (*idx
== (u64
)ULLONG_MAX
) {
992 idx_a
= type_a
->cnt
- 1;
999 for (; idx_a
>= 0; idx_a
--) {
1000 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1002 phys_addr_t m_start
= m
->base
;
1003 phys_addr_t m_end
= m
->base
+ m
->size
;
1004 int m_nid
= memblock_get_region_node(m
);
1006 /* only memory regions are associated with nodes, check it */
1007 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
1010 /* skip hotpluggable memory regions if needed */
1011 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
1014 /* if we want mirror memory skip non-mirror memory regions */
1015 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
1018 /* skip nomap memory unless we were asked for it explicitly */
1019 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
1024 *out_start
= m_start
;
1030 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1034 /* scan areas before each reservation */
1035 for (; idx_b
>= 0; idx_b
--) {
1036 struct memblock_region
*r
;
1037 phys_addr_t r_start
;
1040 r
= &type_b
->regions
[idx_b
];
1041 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1042 r_end
= idx_b
< type_b
->cnt
?
1043 r
->base
: ULLONG_MAX
;
1045 * if idx_b advanced past idx_a,
1046 * break out to advance idx_a
1049 if (r_end
<= m_start
)
1051 /* if the two regions intersect, we're done */
1052 if (m_end
> r_start
) {
1054 *out_start
= max(m_start
, r_start
);
1056 *out_end
= min(m_end
, r_end
);
1059 if (m_start
>= r_start
)
1063 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1068 /* signal end of iteration */
1072 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074 * Common iterator interface used to define for_each_mem_range().
1076 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1077 unsigned long *out_start_pfn
,
1078 unsigned long *out_end_pfn
, int *out_nid
)
1080 struct memblock_type
*type
= &memblock
.memory
;
1081 struct memblock_region
*r
;
1083 while (++*idx
< type
->cnt
) {
1084 r
= &type
->regions
[*idx
];
1086 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1088 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1091 if (*idx
>= type
->cnt
) {
1097 *out_start_pfn
= PFN_UP(r
->base
);
1099 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1105 * memblock_set_node - set node ID on memblock regions
1106 * @base: base of area to set node ID for
1107 * @size: size of area to set node ID for
1108 * @type: memblock type to set node ID for
1109 * @nid: node ID to set
1111 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1112 * Regions which cross the area boundaries are split as necessary.
1115 * 0 on success, -errno on failure.
1117 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1118 struct memblock_type
*type
, int nid
)
1120 int start_rgn
, end_rgn
;
1123 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1127 for (i
= start_rgn
; i
< end_rgn
; i
++)
1128 memblock_set_region_node(&type
->regions
[i
], nid
);
1130 memblock_merge_regions(type
);
1133 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1135 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1136 phys_addr_t align
, phys_addr_t start
,
1137 phys_addr_t end
, int nid
, ulong flags
)
1142 align
= SMP_CACHE_BYTES
;
1144 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1146 if (found
&& !memblock_reserve(found
, size
)) {
1148 * The min_count is set to 0 so that memblock allocations are
1149 * never reported as leaks.
1151 kmemleak_alloc_phys(found
, size
, 0, 0);
1157 phys_addr_t __init
memblock_alloc_range(phys_addr_t size
, phys_addr_t align
,
1158 phys_addr_t start
, phys_addr_t end
,
1161 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1165 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
1166 phys_addr_t align
, phys_addr_t max_addr
,
1167 int nid
, ulong flags
)
1169 return memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
, flags
);
1172 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1174 ulong flags
= choose_memblock_flags();
1178 ret
= memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
,
1181 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
1182 flags
&= ~MEMBLOCK_MIRROR
;
1188 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1190 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
,
1194 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1198 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1201 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1202 (unsigned long long) size
, (unsigned long long) max_addr
);
1207 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1209 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1212 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1214 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1218 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1222 * memblock_virt_alloc_internal - allocate boot memory block
1223 * @size: size of memory block to be allocated in bytes
1224 * @align: alignment of the region and block's size
1225 * @min_addr: the lower bound of the memory region to allocate (phys address)
1226 * @max_addr: the upper bound of the memory region to allocate (phys address)
1227 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1229 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1230 * will fall back to memory below @min_addr. Also, allocation may fall back
1231 * to any node in the system if the specified node can not
1232 * hold the requested memory.
1234 * The allocation is performed from memory region limited by
1235 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 * The phys address of allocated boot memory block is converted to virtual and
1240 * allocated memory is reset to 0.
1242 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1243 * allocated boot memory block, so that it is never reported as leaks.
1246 * Virtual address of allocated memory block on success, NULL on failure.
1248 static void * __init
memblock_virt_alloc_internal(
1249 phys_addr_t size
, phys_addr_t align
,
1250 phys_addr_t min_addr
, phys_addr_t max_addr
,
1255 ulong flags
= choose_memblock_flags();
1257 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1261 * Detect any accidental use of these APIs after slab is ready, as at
1262 * this moment memblock may be deinitialized already and its
1263 * internal data may be destroyed (after execution of free_all_bootmem)
1265 if (WARN_ON_ONCE(slab_is_available()))
1266 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1269 align
= SMP_CACHE_BYTES
;
1271 if (max_addr
> memblock
.current_limit
)
1272 max_addr
= memblock
.current_limit
;
1275 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1280 if (nid
!= NUMA_NO_NODE
) {
1281 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1282 max_addr
, NUMA_NO_NODE
,
1293 if (flags
& MEMBLOCK_MIRROR
) {
1294 flags
&= ~MEMBLOCK_MIRROR
;
1295 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1302 memblock_reserve(alloc
, size
);
1303 ptr
= phys_to_virt(alloc
);
1304 memset(ptr
, 0, size
);
1307 * The min_count is set to 0 so that bootmem allocated blocks
1308 * are never reported as leaks. This is because many of these blocks
1309 * are only referred via the physical address which is not
1310 * looked up by kmemleak.
1312 kmemleak_alloc(ptr
, size
, 0, 0);
1318 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1319 * @size: size of memory block to be allocated in bytes
1320 * @align: alignment of the region and block's size
1321 * @min_addr: the lower bound of the memory region from where the allocation
1322 * is preferred (phys address)
1323 * @max_addr: the upper bound of the memory region from where the allocation
1324 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1325 * allocate only from memory limited by memblock.current_limit value
1326 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1328 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1329 * additional debug information (including caller info), if enabled.
1332 * Virtual address of allocated memory block on success, NULL on failure.
1334 void * __init
memblock_virt_alloc_try_nid_nopanic(
1335 phys_addr_t size
, phys_addr_t align
,
1336 phys_addr_t min_addr
, phys_addr_t max_addr
,
1339 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1340 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1341 (u64
)max_addr
, (void *)_RET_IP_
);
1342 return memblock_virt_alloc_internal(size
, align
, min_addr
,
1347 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1348 * @size: size of memory block to be allocated in bytes
1349 * @align: alignment of the region and block's size
1350 * @min_addr: the lower bound of the memory region from where the allocation
1351 * is preferred (phys address)
1352 * @max_addr: the upper bound of the memory region from where the allocation
1353 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1354 * allocate only from memory limited by memblock.current_limit value
1355 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1357 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1358 * which provides debug information (including caller info), if enabled,
1359 * and panics if the request can not be satisfied.
1362 * Virtual address of allocated memory block on success, NULL on failure.
1364 void * __init
memblock_virt_alloc_try_nid(
1365 phys_addr_t size
, phys_addr_t align
,
1366 phys_addr_t min_addr
, phys_addr_t max_addr
,
1371 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1372 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1373 (u64
)max_addr
, (void *)_RET_IP_
);
1374 ptr
= memblock_virt_alloc_internal(size
, align
,
1375 min_addr
, max_addr
, nid
);
1379 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1380 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1386 * __memblock_free_early - free boot memory block
1387 * @base: phys starting address of the boot memory block
1388 * @size: size of the boot memory block in bytes
1390 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1391 * The freeing memory will not be released to the buddy allocator.
1393 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1395 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1396 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1398 kmemleak_free_part_phys(base
, size
);
1399 memblock_remove_range(&memblock
.reserved
, base
, size
);
1403 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1404 * @addr: phys starting address of the boot memory block
1405 * @size: size of the boot memory block in bytes
1407 * This is only useful when the bootmem allocator has already been torn
1408 * down, but we are still initializing the system. Pages are released directly
1409 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1411 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1415 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1416 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1418 kmemleak_free_part_phys(base
, size
);
1419 cursor
= PFN_UP(base
);
1420 end
= PFN_DOWN(base
+ size
);
1422 for (; cursor
< end
; cursor
++) {
1423 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
1429 * Remaining API functions
1432 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1434 return memblock
.memory
.total_size
;
1437 phys_addr_t __init_memblock
memblock_reserved_size(void)
1439 return memblock
.reserved
.total_size
;
1442 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1444 unsigned long pages
= 0;
1445 struct memblock_region
*r
;
1446 unsigned long start_pfn
, end_pfn
;
1448 for_each_memblock(memory
, r
) {
1449 start_pfn
= memblock_region_memory_base_pfn(r
);
1450 end_pfn
= memblock_region_memory_end_pfn(r
);
1451 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1452 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1453 pages
+= end_pfn
- start_pfn
;
1456 return PFN_PHYS(pages
);
1459 /* lowest address */
1460 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1462 return memblock
.memory
.regions
[0].base
;
1465 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1467 int idx
= memblock
.memory
.cnt
- 1;
1469 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1472 static phys_addr_t __init_memblock
__find_max_addr(phys_addr_t limit
)
1474 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1475 struct memblock_region
*r
;
1478 * translate the memory @limit size into the max address within one of
1479 * the memory memblock regions, if the @limit exceeds the total size
1480 * of those regions, max_addr will keep original value ULLONG_MAX
1482 for_each_memblock(memory
, r
) {
1483 if (limit
<= r
->size
) {
1484 max_addr
= r
->base
+ limit
;
1493 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1495 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1500 max_addr
= __find_max_addr(limit
);
1502 /* @limit exceeds the total size of the memory, do nothing */
1503 if (max_addr
== (phys_addr_t
)ULLONG_MAX
)
1506 /* truncate both memory and reserved regions */
1507 memblock_remove_range(&memblock
.memory
, max_addr
,
1508 (phys_addr_t
)ULLONG_MAX
);
1509 memblock_remove_range(&memblock
.reserved
, max_addr
,
1510 (phys_addr_t
)ULLONG_MAX
);
1513 void __init
memblock_mem_limit_remove_map(phys_addr_t limit
)
1515 struct memblock_type
*type
= &memblock
.memory
;
1516 phys_addr_t max_addr
;
1517 int i
, ret
, start_rgn
, end_rgn
;
1522 max_addr
= __find_max_addr(limit
);
1524 /* @limit exceeds the total size of the memory, do nothing */
1525 if (max_addr
== (phys_addr_t
)ULLONG_MAX
)
1528 ret
= memblock_isolate_range(type
, max_addr
, (phys_addr_t
)ULLONG_MAX
,
1529 &start_rgn
, &end_rgn
);
1533 /* remove all the MAP regions above the limit */
1534 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--) {
1535 if (!memblock_is_nomap(&type
->regions
[i
]))
1536 memblock_remove_region(type
, i
);
1538 /* truncate the reserved regions */
1539 memblock_remove_range(&memblock
.reserved
, max_addr
,
1540 (phys_addr_t
)ULLONG_MAX
);
1543 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1545 unsigned int left
= 0, right
= type
->cnt
;
1548 unsigned int mid
= (right
+ left
) / 2;
1550 if (addr
< type
->regions
[mid
].base
)
1552 else if (addr
>= (type
->regions
[mid
].base
+
1553 type
->regions
[mid
].size
))
1557 } while (left
< right
);
1561 bool __init
memblock_is_reserved(phys_addr_t addr
)
1563 return memblock_search(&memblock
.reserved
, addr
) != -1;
1566 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1568 return memblock_search(&memblock
.memory
, addr
) != -1;
1571 int __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1573 int i
= memblock_search(&memblock
.memory
, addr
);
1577 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1580 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1581 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1582 unsigned long *start_pfn
, unsigned long *end_pfn
)
1584 struct memblock_type
*type
= &memblock
.memory
;
1585 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1590 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1591 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1593 return type
->regions
[mid
].nid
;
1598 * memblock_is_region_memory - check if a region is a subset of memory
1599 * @base: base of region to check
1600 * @size: size of region to check
1602 * Check if the region [@base, @base+@size) is a subset of a memory block.
1605 * 0 if false, non-zero if true
1607 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1609 int idx
= memblock_search(&memblock
.memory
, base
);
1610 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1614 return memblock
.memory
.regions
[idx
].base
<= base
&&
1615 (memblock
.memory
.regions
[idx
].base
+
1616 memblock
.memory
.regions
[idx
].size
) >= end
;
1620 * memblock_is_region_reserved - check if a region intersects reserved memory
1621 * @base: base of region to check
1622 * @size: size of region to check
1624 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1627 * True if they intersect, false if not.
1629 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1631 memblock_cap_size(base
, &size
);
1632 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1635 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1637 phys_addr_t start
, end
, orig_start
, orig_end
;
1638 struct memblock_region
*r
;
1640 for_each_memblock(memory
, r
) {
1641 orig_start
= r
->base
;
1642 orig_end
= r
->base
+ r
->size
;
1643 start
= round_up(orig_start
, align
);
1644 end
= round_down(orig_end
, align
);
1646 if (start
== orig_start
&& end
== orig_end
)
1651 r
->size
= end
- start
;
1653 memblock_remove_region(&memblock
.memory
,
1654 r
- memblock
.memory
.regions
);
1660 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1662 memblock
.current_limit
= limit
;
1665 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1667 return memblock
.current_limit
;
1670 static void __init_memblock
memblock_dump(struct memblock_type
*type
, char *name
)
1672 unsigned long long base
, size
;
1673 unsigned long flags
;
1675 struct memblock_region
*rgn
;
1677 pr_info(" %s.cnt = 0x%lx\n", name
, type
->cnt
);
1679 for_each_memblock_type(type
, rgn
) {
1680 char nid_buf
[32] = "";
1685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1686 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1687 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1688 memblock_get_region_node(rgn
));
1690 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1691 name
, idx
, base
, base
+ size
- 1, size
, nid_buf
, flags
);
1695 extern unsigned long __init_memblock
1696 memblock_reserved_memory_within(phys_addr_t start_addr
, phys_addr_t end_addr
)
1698 struct memblock_region
*rgn
;
1699 unsigned long size
= 0;
1702 for_each_memblock_type((&memblock
.reserved
), rgn
) {
1703 phys_addr_t start
, end
;
1705 if (rgn
->base
+ rgn
->size
< start_addr
)
1707 if (rgn
->base
> end_addr
)
1711 end
= start
+ rgn
->size
;
1712 size
+= end
- start
;
1718 void __init_memblock
__memblock_dump_all(void)
1720 pr_info("MEMBLOCK configuration:\n");
1721 pr_info(" memory size = %#llx reserved size = %#llx\n",
1722 (unsigned long long)memblock
.memory
.total_size
,
1723 (unsigned long long)memblock
.reserved
.total_size
);
1725 memblock_dump(&memblock
.memory
, "memory");
1726 memblock_dump(&memblock
.reserved
, "reserved");
1729 void __init
memblock_allow_resize(void)
1731 memblock_can_resize
= 1;
1734 static int __init
early_memblock(char *p
)
1736 if (p
&& strstr(p
, "debug"))
1740 early_param("memblock", early_memblock
);
1742 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1744 static int memblock_debug_show(struct seq_file
*m
, void *private)
1746 struct memblock_type
*type
= m
->private;
1747 struct memblock_region
*reg
;
1750 for (i
= 0; i
< type
->cnt
; i
++) {
1751 reg
= &type
->regions
[i
];
1752 seq_printf(m
, "%4d: ", i
);
1753 if (sizeof(phys_addr_t
) == 4)
1754 seq_printf(m
, "0x%08lx..0x%08lx\n",
1755 (unsigned long)reg
->base
,
1756 (unsigned long)(reg
->base
+ reg
->size
- 1));
1758 seq_printf(m
, "0x%016llx..0x%016llx\n",
1759 (unsigned long long)reg
->base
,
1760 (unsigned long long)(reg
->base
+ reg
->size
- 1));
1766 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1768 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1771 static const struct file_operations memblock_debug_fops
= {
1772 .open
= memblock_debug_open
,
1774 .llseek
= seq_lseek
,
1775 .release
= single_release
,
1778 static int __init
memblock_init_debugfs(void)
1780 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1783 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1784 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1785 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1786 debugfs_create_file("physmem", S_IRUGO
, root
, &memblock
.physmem
, &memblock_debug_fops
);
1791 __initcall(memblock_init_debugfs
);
1793 #endif /* CONFIG_DEBUG_FS */