4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
35 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
41 struct vfree_deferred
{
42 struct llist_head list
;
43 struct work_struct wq
;
45 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
47 static void __vunmap(const void *, int);
49 static void free_work(struct work_struct
*w
)
51 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
52 struct llist_node
*llnode
= llist_del_all(&p
->list
);
55 llnode
= llist_next(llnode
);
60 /*** Page table manipulation functions ***/
62 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
66 pte
= pte_offset_kernel(pmd
, addr
);
68 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
69 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
70 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
73 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
78 pmd
= pmd_offset(pud
, addr
);
80 next
= pmd_addr_end(addr
, end
);
81 if (pmd_clear_huge(pmd
))
83 if (pmd_none_or_clear_bad(pmd
))
85 vunmap_pte_range(pmd
, addr
, next
);
86 } while (pmd
++, addr
= next
, addr
!= end
);
89 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
94 pud
= pud_offset(pgd
, addr
);
96 next
= pud_addr_end(addr
, end
);
97 if (pud_clear_huge(pud
))
99 if (pud_none_or_clear_bad(pud
))
101 vunmap_pmd_range(pud
, addr
, next
);
102 } while (pud
++, addr
= next
, addr
!= end
);
105 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
111 pgd
= pgd_offset_k(addr
);
113 next
= pgd_addr_end(addr
, end
);
114 if (pgd_none_or_clear_bad(pgd
))
116 vunmap_pud_range(pgd
, addr
, next
);
117 } while (pgd
++, addr
= next
, addr
!= end
);
120 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
121 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
130 pte
= pte_alloc_kernel(pmd
, addr
);
134 struct page
*page
= pages
[*nr
];
136 if (WARN_ON(!pte_none(*pte
)))
140 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
142 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
146 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
147 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
152 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
156 next
= pmd_addr_end(addr
, end
);
157 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
159 } while (pmd
++, addr
= next
, addr
!= end
);
163 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
164 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
169 pud
= pud_alloc(&init_mm
, pgd
, addr
);
173 next
= pud_addr_end(addr
, end
);
174 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
176 } while (pud
++, addr
= next
, addr
!= end
);
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
186 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
187 pgprot_t prot
, struct page
**pages
)
191 unsigned long addr
= start
;
196 pgd
= pgd_offset_k(addr
);
198 next
= pgd_addr_end(addr
, end
);
199 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
202 } while (pgd
++, addr
= next
, addr
!= end
);
207 static int vmap_page_range(unsigned long start
, unsigned long end
,
208 pgprot_t prot
, struct page
**pages
)
212 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
213 flush_cache_vmap(start
, end
);
217 int is_vmalloc_or_module_addr(const void *x
)
220 * ARM, x86-64 and sparc64 put modules in a special place,
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr
= (unsigned long)x
;
226 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
229 return is_vmalloc_addr(x
);
233 * Walk a vmap address to the struct page it maps.
235 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
237 unsigned long addr
= (unsigned long) vmalloc_addr
;
238 struct page
*page
= NULL
;
239 pgd_t
*pgd
= pgd_offset_k(addr
);
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
248 * Don't dereference bad PUD or PMD (below) entries. This will also
249 * identify huge mappings, which we may encounter on architectures
250 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
251 * identified as vmalloc addresses by is_vmalloc_addr(), but are
252 * not [unambiguously] associated with a struct page, so there is
253 * no correct value to return for them.
255 if (!pgd_none(*pgd
)) {
256 pud_t
*pud
= pud_offset(pgd
, addr
);
257 WARN_ON_ONCE(pud_bad(*pud
));
258 if (!pud_none(*pud
) && !pud_bad(*pud
)) {
259 pmd_t
*pmd
= pmd_offset(pud
, addr
);
260 WARN_ON_ONCE(pmd_bad(*pmd
));
261 if (!pmd_none(*pmd
) && !pmd_bad(*pmd
)) {
264 ptep
= pte_offset_map(pmd
, addr
);
266 if (pte_present(pte
))
267 page
= pte_page(pte
);
274 EXPORT_SYMBOL(vmalloc_to_page
);
277 * Map a vmalloc()-space virtual address to the physical page frame number.
279 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
281 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
283 EXPORT_SYMBOL(vmalloc_to_pfn
);
286 /*** Global kva allocator ***/
288 #define VM_VM_AREA 0x04
290 static DEFINE_SPINLOCK(vmap_area_lock
);
291 /* Export for kexec only */
292 LIST_HEAD(vmap_area_list
);
293 static LLIST_HEAD(vmap_purge_list
);
294 static struct rb_root vmap_area_root
= RB_ROOT
;
296 /* The vmap cache globals are protected by vmap_area_lock */
297 static struct rb_node
*free_vmap_cache
;
298 static unsigned long cached_hole_size
;
299 static unsigned long cached_vstart
;
300 static unsigned long cached_align
;
302 static unsigned long vmap_area_pcpu_hole
;
304 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
306 struct rb_node
*n
= vmap_area_root
.rb_node
;
309 struct vmap_area
*va
;
311 va
= rb_entry(n
, struct vmap_area
, rb_node
);
312 if (addr
< va
->va_start
)
314 else if (addr
>= va
->va_end
)
323 static void __insert_vmap_area(struct vmap_area
*va
)
325 struct rb_node
**p
= &vmap_area_root
.rb_node
;
326 struct rb_node
*parent
= NULL
;
330 struct vmap_area
*tmp_va
;
333 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
334 if (va
->va_start
< tmp_va
->va_end
)
336 else if (va
->va_end
> tmp_va
->va_start
)
342 rb_link_node(&va
->rb_node
, parent
, p
);
343 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
345 /* address-sort this list */
346 tmp
= rb_prev(&va
->rb_node
);
348 struct vmap_area
*prev
;
349 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
350 list_add_rcu(&va
->list
, &prev
->list
);
352 list_add_rcu(&va
->list
, &vmap_area_list
);
355 static void purge_vmap_area_lazy(void);
357 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list
);
360 * Allocate a region of KVA of the specified size and alignment, within the
363 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
365 unsigned long vstart
, unsigned long vend
,
366 int node
, gfp_t gfp_mask
)
368 struct vmap_area
*va
;
372 struct vmap_area
*first
;
375 BUG_ON(offset_in_page(size
));
376 BUG_ON(!is_power_of_2(align
));
378 might_sleep_if(gfpflags_allow_blocking(gfp_mask
));
380 va
= kmalloc_node(sizeof(struct vmap_area
),
381 gfp_mask
& GFP_RECLAIM_MASK
, node
);
383 return ERR_PTR(-ENOMEM
);
386 * Only scan the relevant parts containing pointers to other objects
387 * to avoid false negatives.
389 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
& GFP_RECLAIM_MASK
);
392 spin_lock(&vmap_area_lock
);
394 * Invalidate cache if we have more permissive parameters.
395 * cached_hole_size notes the largest hole noticed _below_
396 * the vmap_area cached in free_vmap_cache: if size fits
397 * into that hole, we want to scan from vstart to reuse
398 * the hole instead of allocating above free_vmap_cache.
399 * Note that __free_vmap_area may update free_vmap_cache
400 * without updating cached_hole_size or cached_align.
402 if (!free_vmap_cache
||
403 size
< cached_hole_size
||
404 vstart
< cached_vstart
||
405 align
< cached_align
) {
407 cached_hole_size
= 0;
408 free_vmap_cache
= NULL
;
410 /* record if we encounter less permissive parameters */
411 cached_vstart
= vstart
;
412 cached_align
= align
;
414 /* find starting point for our search */
415 if (free_vmap_cache
) {
416 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
417 addr
= ALIGN(first
->va_end
, align
);
420 if (addr
+ size
< addr
)
424 addr
= ALIGN(vstart
, align
);
425 if (addr
+ size
< addr
)
428 n
= vmap_area_root
.rb_node
;
432 struct vmap_area
*tmp
;
433 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
434 if (tmp
->va_end
>= addr
) {
436 if (tmp
->va_start
<= addr
)
447 /* from the starting point, walk areas until a suitable hole is found */
448 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
449 if (addr
+ cached_hole_size
< first
->va_start
)
450 cached_hole_size
= first
->va_start
- addr
;
451 addr
= ALIGN(first
->va_end
, align
);
452 if (addr
+ size
< addr
)
455 if (list_is_last(&first
->list
, &vmap_area_list
))
458 first
= list_next_entry(first
, list
);
462 if (addr
+ size
> vend
)
466 va
->va_end
= addr
+ size
;
468 __insert_vmap_area(va
);
469 free_vmap_cache
= &va
->rb_node
;
470 spin_unlock(&vmap_area_lock
);
472 BUG_ON(!IS_ALIGNED(va
->va_start
, align
));
473 BUG_ON(va
->va_start
< vstart
);
474 BUG_ON(va
->va_end
> vend
);
479 spin_unlock(&vmap_area_lock
);
481 purge_vmap_area_lazy();
486 if (gfpflags_allow_blocking(gfp_mask
)) {
487 unsigned long freed
= 0;
488 blocking_notifier_call_chain(&vmap_notify_list
, 0, &freed
);
495 if (printk_ratelimit())
496 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
499 return ERR_PTR(-EBUSY
);
502 int register_vmap_purge_notifier(struct notifier_block
*nb
)
504 return blocking_notifier_chain_register(&vmap_notify_list
, nb
);
506 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier
);
508 int unregister_vmap_purge_notifier(struct notifier_block
*nb
)
510 return blocking_notifier_chain_unregister(&vmap_notify_list
, nb
);
512 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier
);
514 static void __free_vmap_area(struct vmap_area
*va
)
516 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
518 if (free_vmap_cache
) {
519 if (va
->va_end
< cached_vstart
) {
520 free_vmap_cache
= NULL
;
522 struct vmap_area
*cache
;
523 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
524 if (va
->va_start
<= cache
->va_start
) {
525 free_vmap_cache
= rb_prev(&va
->rb_node
);
527 * We don't try to update cached_hole_size or
528 * cached_align, but it won't go very wrong.
533 rb_erase(&va
->rb_node
, &vmap_area_root
);
534 RB_CLEAR_NODE(&va
->rb_node
);
535 list_del_rcu(&va
->list
);
538 * Track the highest possible candidate for pcpu area
539 * allocation. Areas outside of vmalloc area can be returned
540 * here too, consider only end addresses which fall inside
541 * vmalloc area proper.
543 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
544 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
546 kfree_rcu(va
, rcu_head
);
550 * Free a region of KVA allocated by alloc_vmap_area
552 static void free_vmap_area(struct vmap_area
*va
)
554 spin_lock(&vmap_area_lock
);
555 __free_vmap_area(va
);
556 spin_unlock(&vmap_area_lock
);
560 * Clear the pagetable entries of a given vmap_area
562 static void unmap_vmap_area(struct vmap_area
*va
)
564 vunmap_page_range(va
->va_start
, va
->va_end
);
567 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
570 * Unmap page tables and force a TLB flush immediately if pagealloc
571 * debugging is enabled. This catches use after free bugs similarly to
572 * those in linear kernel virtual address space after a page has been
575 * All the lazy freeing logic is still retained, in order to minimise
576 * intrusiveness of this debugging feature.
578 * This is going to be *slow* (linear kernel virtual address debugging
579 * doesn't do a broadcast TLB flush so it is a lot faster).
581 if (debug_pagealloc_enabled()) {
582 vunmap_page_range(start
, end
);
583 flush_tlb_kernel_range(start
, end
);
588 * lazy_max_pages is the maximum amount of virtual address space we gather up
589 * before attempting to purge with a TLB flush.
591 * There is a tradeoff here: a larger number will cover more kernel page tables
592 * and take slightly longer to purge, but it will linearly reduce the number of
593 * global TLB flushes that must be performed. It would seem natural to scale
594 * this number up linearly with the number of CPUs (because vmapping activity
595 * could also scale linearly with the number of CPUs), however it is likely
596 * that in practice, workloads might be constrained in other ways that mean
597 * vmap activity will not scale linearly with CPUs. Also, I want to be
598 * conservative and not introduce a big latency on huge systems, so go with
599 * a less aggressive log scale. It will still be an improvement over the old
600 * code, and it will be simple to change the scale factor if we find that it
601 * becomes a problem on bigger systems.
603 static unsigned long lazy_max_pages(void)
607 log
= fls(num_online_cpus());
609 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
612 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
614 /* for per-CPU blocks */
615 static void purge_fragmented_blocks_allcpus(void);
618 * called before a call to iounmap() if the caller wants vm_area_struct's
621 void set_iounmap_nonlazy(void)
623 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
627 * Purges all lazily-freed vmap areas.
629 * If sync is 0 then don't purge if there is already a purge in progress.
630 * If force_flush is 1, then flush kernel TLBs between *start and *end even
631 * if we found no lazy vmap areas to unmap (callers can use this to optimise
632 * their own TLB flushing).
633 * Returns with *start = min(*start, lowest purged address)
634 * *end = max(*end, highest purged address)
636 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
637 int sync
, int force_flush
)
639 static DEFINE_SPINLOCK(purge_lock
);
640 struct llist_node
*valist
;
641 struct vmap_area
*va
;
642 struct vmap_area
*n_va
;
646 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
647 * should not expect such behaviour. This just simplifies locking for
648 * the case that isn't actually used at the moment anyway.
650 if (!sync
&& !force_flush
) {
651 if (!spin_trylock(&purge_lock
))
654 spin_lock(&purge_lock
);
657 purge_fragmented_blocks_allcpus();
659 valist
= llist_del_all(&vmap_purge_list
);
660 llist_for_each_entry(va
, valist
, purge_list
) {
661 if (va
->va_start
< *start
)
662 *start
= va
->va_start
;
663 if (va
->va_end
> *end
)
665 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
669 atomic_sub(nr
, &vmap_lazy_nr
);
671 if (nr
|| force_flush
)
672 flush_tlb_kernel_range(*start
, *end
);
675 spin_lock(&vmap_area_lock
);
676 llist_for_each_entry_safe(va
, n_va
, valist
, purge_list
)
677 __free_vmap_area(va
);
678 spin_unlock(&vmap_area_lock
);
680 spin_unlock(&purge_lock
);
684 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
685 * is already purging.
687 static void try_purge_vmap_area_lazy(void)
689 unsigned long start
= ULONG_MAX
, end
= 0;
691 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
695 * Kick off a purge of the outstanding lazy areas.
697 static void purge_vmap_area_lazy(void)
699 unsigned long start
= ULONG_MAX
, end
= 0;
701 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
705 * Free a vmap area, caller ensuring that the area has been unmapped
706 * and flush_cache_vunmap had been called for the correct range
709 static void free_vmap_area_noflush(struct vmap_area
*va
)
713 nr_lazy
= atomic_add_return((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
,
716 /* After this point, we may free va at any time */
717 llist_add(&va
->purge_list
, &vmap_purge_list
);
719 if (unlikely(nr_lazy
> lazy_max_pages()))
720 try_purge_vmap_area_lazy();
724 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
725 * called for the correct range previously.
727 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
730 free_vmap_area_noflush(va
);
734 * Free and unmap a vmap area
736 static void free_unmap_vmap_area(struct vmap_area
*va
)
738 flush_cache_vunmap(va
->va_start
, va
->va_end
);
739 free_unmap_vmap_area_noflush(va
);
742 static struct vmap_area
*find_vmap_area(unsigned long addr
)
744 struct vmap_area
*va
;
746 spin_lock(&vmap_area_lock
);
747 va
= __find_vmap_area(addr
);
748 spin_unlock(&vmap_area_lock
);
753 static void free_unmap_vmap_area_addr(unsigned long addr
)
755 struct vmap_area
*va
;
757 va
= find_vmap_area(addr
);
759 free_unmap_vmap_area(va
);
763 /*** Per cpu kva allocator ***/
766 * vmap space is limited especially on 32 bit architectures. Ensure there is
767 * room for at least 16 percpu vmap blocks per CPU.
770 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
771 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
772 * instead (we just need a rough idea)
774 #if BITS_PER_LONG == 32
775 #define VMALLOC_SPACE (128UL*1024*1024)
777 #define VMALLOC_SPACE (128UL*1024*1024*1024)
780 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
781 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
782 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
783 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
784 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
785 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
786 #define VMAP_BBMAP_BITS \
787 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
788 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
789 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
791 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
793 static bool vmap_initialized __read_mostly
= false;
795 struct vmap_block_queue
{
797 struct list_head free
;
802 struct vmap_area
*va
;
803 unsigned long free
, dirty
;
804 unsigned long dirty_min
, dirty_max
; /*< dirty range */
805 struct list_head free_list
;
806 struct rcu_head rcu_head
;
807 struct list_head purge
;
810 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
811 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
814 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
815 * in the free path. Could get rid of this if we change the API to return a
816 * "cookie" from alloc, to be passed to free. But no big deal yet.
818 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
819 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
822 * We should probably have a fallback mechanism to allocate virtual memory
823 * out of partially filled vmap blocks. However vmap block sizing should be
824 * fairly reasonable according to the vmalloc size, so it shouldn't be a
828 static unsigned long addr_to_vb_idx(unsigned long addr
)
830 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
831 addr
/= VMAP_BLOCK_SIZE
;
835 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
839 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
840 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
845 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
846 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
847 * @order: how many 2^order pages should be occupied in newly allocated block
848 * @gfp_mask: flags for the page level allocator
850 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
852 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
854 struct vmap_block_queue
*vbq
;
855 struct vmap_block
*vb
;
856 struct vmap_area
*va
;
857 unsigned long vb_idx
;
861 node
= numa_node_id();
863 vb
= kmalloc_node(sizeof(struct vmap_block
),
864 gfp_mask
& GFP_RECLAIM_MASK
, node
);
866 return ERR_PTR(-ENOMEM
);
868 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
869 VMALLOC_START
, VMALLOC_END
,
876 err
= radix_tree_preload(gfp_mask
);
883 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
884 spin_lock_init(&vb
->lock
);
886 /* At least something should be left free */
887 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
888 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
890 vb
->dirty_min
= VMAP_BBMAP_BITS
;
892 INIT_LIST_HEAD(&vb
->free_list
);
894 vb_idx
= addr_to_vb_idx(va
->va_start
);
895 spin_lock(&vmap_block_tree_lock
);
896 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
897 spin_unlock(&vmap_block_tree_lock
);
899 radix_tree_preload_end();
901 vbq
= &get_cpu_var(vmap_block_queue
);
902 spin_lock(&vbq
->lock
);
903 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
904 spin_unlock(&vbq
->lock
);
905 put_cpu_var(vmap_block_queue
);
910 static void free_vmap_block(struct vmap_block
*vb
)
912 struct vmap_block
*tmp
;
913 unsigned long vb_idx
;
915 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
916 spin_lock(&vmap_block_tree_lock
);
917 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
918 spin_unlock(&vmap_block_tree_lock
);
921 free_vmap_area_noflush(vb
->va
);
922 kfree_rcu(vb
, rcu_head
);
925 static void purge_fragmented_blocks(int cpu
)
928 struct vmap_block
*vb
;
929 struct vmap_block
*n_vb
;
930 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
933 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
935 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
938 spin_lock(&vb
->lock
);
939 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
940 vb
->free
= 0; /* prevent further allocs after releasing lock */
941 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
943 vb
->dirty_max
= VMAP_BBMAP_BITS
;
944 spin_lock(&vbq
->lock
);
945 list_del_rcu(&vb
->free_list
);
946 spin_unlock(&vbq
->lock
);
947 spin_unlock(&vb
->lock
);
948 list_add_tail(&vb
->purge
, &purge
);
950 spin_unlock(&vb
->lock
);
954 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
955 list_del(&vb
->purge
);
960 static void purge_fragmented_blocks_allcpus(void)
964 for_each_possible_cpu(cpu
)
965 purge_fragmented_blocks(cpu
);
968 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
970 struct vmap_block_queue
*vbq
;
971 struct vmap_block
*vb
;
975 BUG_ON(offset_in_page(size
));
976 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
977 if (WARN_ON(size
== 0)) {
979 * Allocating 0 bytes isn't what caller wants since
980 * get_order(0) returns funny result. Just warn and terminate
985 order
= get_order(size
);
988 vbq
= &get_cpu_var(vmap_block_queue
);
989 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
990 unsigned long pages_off
;
992 spin_lock(&vb
->lock
);
993 if (vb
->free
< (1UL << order
)) {
994 spin_unlock(&vb
->lock
);
998 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
999 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
1000 vb
->free
-= 1UL << order
;
1001 if (vb
->free
== 0) {
1002 spin_lock(&vbq
->lock
);
1003 list_del_rcu(&vb
->free_list
);
1004 spin_unlock(&vbq
->lock
);
1007 spin_unlock(&vb
->lock
);
1011 put_cpu_var(vmap_block_queue
);
1014 /* Allocate new block if nothing was found */
1016 vaddr
= new_vmap_block(order
, gfp_mask
);
1021 static void vb_free(const void *addr
, unsigned long size
)
1023 unsigned long offset
;
1024 unsigned long vb_idx
;
1026 struct vmap_block
*vb
;
1028 BUG_ON(offset_in_page(size
));
1029 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
1031 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
1033 order
= get_order(size
);
1035 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
1036 offset
>>= PAGE_SHIFT
;
1038 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
1040 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
1044 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
1046 spin_lock(&vb
->lock
);
1048 /* Expand dirty range */
1049 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
1050 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
1052 vb
->dirty
+= 1UL << order
;
1053 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1055 spin_unlock(&vb
->lock
);
1056 free_vmap_block(vb
);
1058 spin_unlock(&vb
->lock
);
1062 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1064 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1065 * to amortize TLB flushing overheads. What this means is that any page you
1066 * have now, may, in a former life, have been mapped into kernel virtual
1067 * address by the vmap layer and so there might be some CPUs with TLB entries
1068 * still referencing that page (additional to the regular 1:1 kernel mapping).
1070 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1071 * be sure that none of the pages we have control over will have any aliases
1072 * from the vmap layer.
1074 void vm_unmap_aliases(void)
1076 unsigned long start
= ULONG_MAX
, end
= 0;
1080 if (unlikely(!vmap_initialized
))
1083 for_each_possible_cpu(cpu
) {
1084 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1085 struct vmap_block
*vb
;
1088 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1089 spin_lock(&vb
->lock
);
1091 unsigned long va_start
= vb
->va
->va_start
;
1094 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
1095 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
1097 start
= min(s
, start
);
1102 spin_unlock(&vb
->lock
);
1107 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1109 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1112 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1113 * @mem: the pointer returned by vm_map_ram
1114 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1116 void vm_unmap_ram(const void *mem
, unsigned int count
)
1118 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1119 unsigned long addr
= (unsigned long)mem
;
1122 BUG_ON(addr
< VMALLOC_START
);
1123 BUG_ON(addr
> VMALLOC_END
);
1124 BUG_ON(!PAGE_ALIGNED(addr
));
1126 debug_check_no_locks_freed(mem
, size
);
1127 vmap_debug_free_range(addr
, addr
+size
);
1129 if (likely(count
<= VMAP_MAX_ALLOC
))
1132 free_unmap_vmap_area_addr(addr
);
1134 EXPORT_SYMBOL(vm_unmap_ram
);
1137 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1138 * @pages: an array of pointers to the pages to be mapped
1139 * @count: number of pages
1140 * @node: prefer to allocate data structures on this node
1141 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1143 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1144 * faster than vmap so it's good. But if you mix long-life and short-life
1145 * objects with vm_map_ram(), it could consume lots of address space through
1146 * fragmentation (especially on a 32bit machine). You could see failures in
1147 * the end. Please use this function for short-lived objects.
1149 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1151 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1153 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1157 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1158 mem
= vb_alloc(size
, GFP_KERNEL
);
1161 addr
= (unsigned long)mem
;
1163 struct vmap_area
*va
;
1164 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1165 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1169 addr
= va
->va_start
;
1172 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1173 vm_unmap_ram(mem
, count
);
1178 EXPORT_SYMBOL(vm_map_ram
);
1180 static struct vm_struct
*vmlist __initdata
;
1182 * vm_area_add_early - add vmap area early during boot
1183 * @vm: vm_struct to add
1185 * This function is used to add fixed kernel vm area to vmlist before
1186 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1187 * should contain proper values and the other fields should be zero.
1189 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1191 void __init
vm_area_add_early(struct vm_struct
*vm
)
1193 struct vm_struct
*tmp
, **p
;
1195 BUG_ON(vmap_initialized
);
1196 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1197 if (tmp
->addr
>= vm
->addr
) {
1198 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1201 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1208 * vm_area_register_early - register vmap area early during boot
1209 * @vm: vm_struct to register
1210 * @align: requested alignment
1212 * This function is used to register kernel vm area before
1213 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1214 * proper values on entry and other fields should be zero. On return,
1215 * vm->addr contains the allocated address.
1217 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1219 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1221 static size_t vm_init_off __initdata
;
1224 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1225 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1227 vm
->addr
= (void *)addr
;
1229 vm_area_add_early(vm
);
1232 void __init
vmalloc_init(void)
1234 struct vmap_area
*va
;
1235 struct vm_struct
*tmp
;
1238 for_each_possible_cpu(i
) {
1239 struct vmap_block_queue
*vbq
;
1240 struct vfree_deferred
*p
;
1242 vbq
= &per_cpu(vmap_block_queue
, i
);
1243 spin_lock_init(&vbq
->lock
);
1244 INIT_LIST_HEAD(&vbq
->free
);
1245 p
= &per_cpu(vfree_deferred
, i
);
1246 init_llist_head(&p
->list
);
1247 INIT_WORK(&p
->wq
, free_work
);
1250 /* Import existing vmlist entries. */
1251 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1252 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1253 va
->flags
= VM_VM_AREA
;
1254 va
->va_start
= (unsigned long)tmp
->addr
;
1255 va
->va_end
= va
->va_start
+ tmp
->size
;
1257 __insert_vmap_area(va
);
1260 vmap_area_pcpu_hole
= VMALLOC_END
;
1262 vmap_initialized
= true;
1266 * map_kernel_range_noflush - map kernel VM area with the specified pages
1267 * @addr: start of the VM area to map
1268 * @size: size of the VM area to map
1269 * @prot: page protection flags to use
1270 * @pages: pages to map
1272 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1273 * specify should have been allocated using get_vm_area() and its
1277 * This function does NOT do any cache flushing. The caller is
1278 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1279 * before calling this function.
1282 * The number of pages mapped on success, -errno on failure.
1284 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1285 pgprot_t prot
, struct page
**pages
)
1287 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1291 * unmap_kernel_range_noflush - unmap kernel VM area
1292 * @addr: start of the VM area to unmap
1293 * @size: size of the VM area to unmap
1295 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1296 * specify should have been allocated using get_vm_area() and its
1300 * This function does NOT do any cache flushing. The caller is
1301 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1302 * before calling this function and flush_tlb_kernel_range() after.
1304 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1306 vunmap_page_range(addr
, addr
+ size
);
1308 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1311 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1312 * @addr: start of the VM area to unmap
1313 * @size: size of the VM area to unmap
1315 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1316 * the unmapping and tlb after.
1318 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1320 unsigned long end
= addr
+ size
;
1322 flush_cache_vunmap(addr
, end
);
1323 vunmap_page_range(addr
, end
);
1324 flush_tlb_kernel_range(addr
, end
);
1326 EXPORT_SYMBOL_GPL(unmap_kernel_range
);
1328 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
**pages
)
1330 unsigned long addr
= (unsigned long)area
->addr
;
1331 unsigned long end
= addr
+ get_vm_area_size(area
);
1334 err
= vmap_page_range(addr
, end
, prot
, pages
);
1336 return err
> 0 ? 0 : err
;
1338 EXPORT_SYMBOL_GPL(map_vm_area
);
1340 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1341 unsigned long flags
, const void *caller
)
1343 spin_lock(&vmap_area_lock
);
1345 vm
->addr
= (void *)va
->va_start
;
1346 vm
->size
= va
->va_end
- va
->va_start
;
1347 vm
->caller
= caller
;
1349 va
->flags
|= VM_VM_AREA
;
1350 spin_unlock(&vmap_area_lock
);
1353 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1356 * Before removing VM_UNINITIALIZED,
1357 * we should make sure that vm has proper values.
1358 * Pair with smp_rmb() in show_numa_info().
1361 vm
->flags
&= ~VM_UNINITIALIZED
;
1364 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1365 unsigned long align
, unsigned long flags
, unsigned long start
,
1366 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1368 struct vmap_area
*va
;
1369 struct vm_struct
*area
;
1371 BUG_ON(in_interrupt());
1372 size
= PAGE_ALIGN(size
);
1373 if (unlikely(!size
))
1376 if (flags
& VM_IOREMAP
)
1377 align
= 1ul << clamp_t(int, get_count_order_long(size
),
1378 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1380 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1381 if (unlikely(!area
))
1384 if (!(flags
& VM_NO_GUARD
))
1387 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1393 setup_vmalloc_vm(area
, va
, flags
, caller
);
1398 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1399 unsigned long start
, unsigned long end
)
1401 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1402 GFP_KERNEL
, __builtin_return_address(0));
1404 EXPORT_SYMBOL_GPL(__get_vm_area
);
1406 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1407 unsigned long start
, unsigned long end
,
1410 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1411 GFP_KERNEL
, caller
);
1415 * get_vm_area - reserve a contiguous kernel virtual area
1416 * @size: size of the area
1417 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1419 * Search an area of @size in the kernel virtual mapping area,
1420 * and reserved it for out purposes. Returns the area descriptor
1421 * on success or %NULL on failure.
1423 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1425 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1426 NUMA_NO_NODE
, GFP_KERNEL
,
1427 __builtin_return_address(0));
1430 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1433 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1434 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1438 * find_vm_area - find a continuous kernel virtual area
1439 * @addr: base address
1441 * Search for the kernel VM area starting at @addr, and return it.
1442 * It is up to the caller to do all required locking to keep the returned
1445 struct vm_struct
*find_vm_area(const void *addr
)
1447 struct vmap_area
*va
;
1449 va
= find_vmap_area((unsigned long)addr
);
1450 if (va
&& va
->flags
& VM_VM_AREA
)
1457 * remove_vm_area - find and remove a continuous kernel virtual area
1458 * @addr: base address
1460 * Search for the kernel VM area starting at @addr, and remove it.
1461 * This function returns the found VM area, but using it is NOT safe
1462 * on SMP machines, except for its size or flags.
1464 struct vm_struct
*remove_vm_area(const void *addr
)
1466 struct vmap_area
*va
;
1468 va
= find_vmap_area((unsigned long)addr
);
1469 if (va
&& va
->flags
& VM_VM_AREA
) {
1470 struct vm_struct
*vm
= va
->vm
;
1472 spin_lock(&vmap_area_lock
);
1474 va
->flags
&= ~VM_VM_AREA
;
1475 spin_unlock(&vmap_area_lock
);
1477 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1478 kasan_free_shadow(vm
);
1479 free_unmap_vmap_area(va
);
1486 static void __vunmap(const void *addr
, int deallocate_pages
)
1488 struct vm_struct
*area
;
1493 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1497 area
= remove_vm_area(addr
);
1498 if (unlikely(!area
)) {
1499 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1504 debug_check_no_locks_freed(addr
, get_vm_area_size(area
));
1505 debug_check_no_obj_freed(addr
, get_vm_area_size(area
));
1507 if (deallocate_pages
) {
1510 for (i
= 0; i
< area
->nr_pages
; i
++) {
1511 struct page
*page
= area
->pages
[i
];
1514 __free_pages(page
, 0);
1517 kvfree(area
->pages
);
1525 * vfree - release memory allocated by vmalloc()
1526 * @addr: memory base address
1528 * Free the virtually continuous memory area starting at @addr, as
1529 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1530 * NULL, no operation is performed.
1532 * Must not be called in NMI context (strictly speaking, only if we don't
1533 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1534 * conventions for vfree() arch-depenedent would be a really bad idea)
1536 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1538 void vfree(const void *addr
)
1542 kmemleak_free(addr
);
1546 if (unlikely(in_interrupt())) {
1547 struct vfree_deferred
*p
= this_cpu_ptr(&vfree_deferred
);
1548 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1549 schedule_work(&p
->wq
);
1553 EXPORT_SYMBOL(vfree
);
1556 * vunmap - release virtual mapping obtained by vmap()
1557 * @addr: memory base address
1559 * Free the virtually contiguous memory area starting at @addr,
1560 * which was created from the page array passed to vmap().
1562 * Must not be called in interrupt context.
1564 void vunmap(const void *addr
)
1566 BUG_ON(in_interrupt());
1571 EXPORT_SYMBOL(vunmap
);
1574 * vmap - map an array of pages into virtually contiguous space
1575 * @pages: array of page pointers
1576 * @count: number of pages to map
1577 * @flags: vm_area->flags
1578 * @prot: page protection for the mapping
1580 * Maps @count pages from @pages into contiguous kernel virtual
1583 void *vmap(struct page
**pages
, unsigned int count
,
1584 unsigned long flags
, pgprot_t prot
)
1586 struct vm_struct
*area
;
1587 unsigned long size
; /* In bytes */
1591 if (count
> totalram_pages
)
1594 size
= (unsigned long)count
<< PAGE_SHIFT
;
1595 area
= get_vm_area_caller(size
, flags
, __builtin_return_address(0));
1599 if (map_vm_area(area
, prot
, pages
)) {
1606 EXPORT_SYMBOL(vmap
);
1608 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1609 gfp_t gfp_mask
, pgprot_t prot
,
1610 int node
, const void *caller
);
1611 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1612 pgprot_t prot
, int node
)
1614 struct page
**pages
;
1615 unsigned int nr_pages
, array_size
, i
;
1616 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1617 const gfp_t alloc_mask
= gfp_mask
| __GFP_NOWARN
;
1619 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
1620 array_size
= (nr_pages
* sizeof(struct page
*));
1622 area
->nr_pages
= nr_pages
;
1623 /* Please note that the recursion is strictly bounded. */
1624 if (array_size
> PAGE_SIZE
) {
1625 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1626 PAGE_KERNEL
, node
, area
->caller
);
1628 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1630 area
->pages
= pages
;
1632 remove_vm_area(area
->addr
);
1637 for (i
= 0; i
< area
->nr_pages
; i
++) {
1640 if (node
== NUMA_NO_NODE
)
1641 page
= alloc_page(alloc_mask
);
1643 page
= alloc_pages_node(node
, alloc_mask
, 0);
1645 if (unlikely(!page
)) {
1646 /* Successfully allocated i pages, free them in __vunmap() */
1650 area
->pages
[i
] = page
;
1651 if (gfpflags_allow_blocking(gfp_mask
))
1655 if (map_vm_area(area
, prot
, pages
))
1660 warn_alloc(gfp_mask
,
1661 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1662 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1668 * __vmalloc_node_range - allocate virtually contiguous memory
1669 * @size: allocation size
1670 * @align: desired alignment
1671 * @start: vm area range start
1672 * @end: vm area range end
1673 * @gfp_mask: flags for the page level allocator
1674 * @prot: protection mask for the allocated pages
1675 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1676 * @node: node to use for allocation or NUMA_NO_NODE
1677 * @caller: caller's return address
1679 * Allocate enough pages to cover @size from the page level
1680 * allocator with @gfp_mask flags. Map them into contiguous
1681 * kernel virtual space, using a pagetable protection of @prot.
1683 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1684 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1685 pgprot_t prot
, unsigned long vm_flags
, int node
,
1688 struct vm_struct
*area
;
1690 unsigned long real_size
= size
;
1692 size
= PAGE_ALIGN(size
);
1693 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1696 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
|
1697 vm_flags
, start
, end
, node
, gfp_mask
, caller
);
1701 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
);
1706 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1707 * flag. It means that vm_struct is not fully initialized.
1708 * Now, it is fully initialized, so remove this flag here.
1710 clear_vm_uninitialized_flag(area
);
1713 * A ref_count = 2 is needed because vm_struct allocated in
1714 * __get_vm_area_node() contains a reference to the virtual address of
1715 * the vmalloc'ed block.
1717 kmemleak_alloc(addr
, real_size
, 2, gfp_mask
);
1722 warn_alloc(gfp_mask
,
1723 "vmalloc: allocation failure: %lu bytes", real_size
);
1728 * __vmalloc_node - allocate virtually contiguous memory
1729 * @size: allocation size
1730 * @align: desired alignment
1731 * @gfp_mask: flags for the page level allocator
1732 * @prot: protection mask for the allocated pages
1733 * @node: node to use for allocation or NUMA_NO_NODE
1734 * @caller: caller's return address
1736 * Allocate enough pages to cover @size from the page level
1737 * allocator with @gfp_mask flags. Map them into contiguous
1738 * kernel virtual space, using a pagetable protection of @prot.
1740 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1741 gfp_t gfp_mask
, pgprot_t prot
,
1742 int node
, const void *caller
)
1744 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1745 gfp_mask
, prot
, 0, node
, caller
);
1748 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1750 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1751 __builtin_return_address(0));
1753 EXPORT_SYMBOL(__vmalloc
);
1755 static inline void *__vmalloc_node_flags(unsigned long size
,
1756 int node
, gfp_t flags
)
1758 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1759 node
, __builtin_return_address(0));
1763 * vmalloc - allocate virtually contiguous memory
1764 * @size: allocation size
1765 * Allocate enough pages to cover @size from the page level
1766 * allocator and map them into contiguous kernel virtual space.
1768 * For tight control over page level allocator and protection flags
1769 * use __vmalloc() instead.
1771 void *vmalloc(unsigned long size
)
1773 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1774 GFP_KERNEL
| __GFP_HIGHMEM
);
1776 EXPORT_SYMBOL(vmalloc
);
1779 * vzalloc - allocate virtually contiguous memory with zero fill
1780 * @size: allocation size
1781 * Allocate enough pages to cover @size from the page level
1782 * allocator and map them into contiguous kernel virtual space.
1783 * The memory allocated is set to zero.
1785 * For tight control over page level allocator and protection flags
1786 * use __vmalloc() instead.
1788 void *vzalloc(unsigned long size
)
1790 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1791 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1793 EXPORT_SYMBOL(vzalloc
);
1796 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1797 * @size: allocation size
1799 * The resulting memory area is zeroed so it can be mapped to userspace
1800 * without leaking data.
1802 void *vmalloc_user(unsigned long size
)
1804 struct vm_struct
*area
;
1807 ret
= __vmalloc_node(size
, SHMLBA
,
1808 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1809 PAGE_KERNEL
, NUMA_NO_NODE
,
1810 __builtin_return_address(0));
1812 area
= find_vm_area(ret
);
1813 area
->flags
|= VM_USERMAP
;
1817 EXPORT_SYMBOL(vmalloc_user
);
1820 * vmalloc_node - allocate memory on a specific node
1821 * @size: allocation size
1824 * Allocate enough pages to cover @size from the page level
1825 * allocator and map them into contiguous kernel virtual space.
1827 * For tight control over page level allocator and protection flags
1828 * use __vmalloc() instead.
1830 void *vmalloc_node(unsigned long size
, int node
)
1832 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1833 node
, __builtin_return_address(0));
1835 EXPORT_SYMBOL(vmalloc_node
);
1838 * vzalloc_node - allocate memory on a specific node with zero fill
1839 * @size: allocation size
1842 * Allocate enough pages to cover @size from the page level
1843 * allocator and map them into contiguous kernel virtual space.
1844 * The memory allocated is set to zero.
1846 * For tight control over page level allocator and protection flags
1847 * use __vmalloc_node() instead.
1849 void *vzalloc_node(unsigned long size
, int node
)
1851 return __vmalloc_node_flags(size
, node
,
1852 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1854 EXPORT_SYMBOL(vzalloc_node
);
1856 #ifndef PAGE_KERNEL_EXEC
1857 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1861 * vmalloc_exec - allocate virtually contiguous, executable memory
1862 * @size: allocation size
1864 * Kernel-internal function to allocate enough pages to cover @size
1865 * the page level allocator and map them into contiguous and
1866 * executable kernel virtual space.
1868 * For tight control over page level allocator and protection flags
1869 * use __vmalloc() instead.
1872 void *vmalloc_exec(unsigned long size
)
1874 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1875 NUMA_NO_NODE
, __builtin_return_address(0));
1878 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1879 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1880 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1881 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1883 #define GFP_VMALLOC32 GFP_KERNEL
1887 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1888 * @size: allocation size
1890 * Allocate enough 32bit PA addressable pages to cover @size from the
1891 * page level allocator and map them into contiguous kernel virtual space.
1893 void *vmalloc_32(unsigned long size
)
1895 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1896 NUMA_NO_NODE
, __builtin_return_address(0));
1898 EXPORT_SYMBOL(vmalloc_32
);
1901 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1902 * @size: allocation size
1904 * The resulting memory area is 32bit addressable and zeroed so it can be
1905 * mapped to userspace without leaking data.
1907 void *vmalloc_32_user(unsigned long size
)
1909 struct vm_struct
*area
;
1912 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1913 NUMA_NO_NODE
, __builtin_return_address(0));
1915 area
= find_vm_area(ret
);
1916 area
->flags
|= VM_USERMAP
;
1920 EXPORT_SYMBOL(vmalloc_32_user
);
1923 * small helper routine , copy contents to buf from addr.
1924 * If the page is not present, fill zero.
1927 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1933 unsigned long offset
, length
;
1935 offset
= offset_in_page(addr
);
1936 length
= PAGE_SIZE
- offset
;
1939 p
= vmalloc_to_page(addr
);
1941 * To do safe access to this _mapped_ area, we need
1942 * lock. But adding lock here means that we need to add
1943 * overhead of vmalloc()/vfree() calles for this _debug_
1944 * interface, rarely used. Instead of that, we'll use
1945 * kmap() and get small overhead in this access function.
1949 * we can expect USER0 is not used (see vread/vwrite's
1950 * function description)
1952 void *map
= kmap_atomic(p
);
1953 memcpy(buf
, map
+ offset
, length
);
1956 memset(buf
, 0, length
);
1966 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1972 unsigned long offset
, length
;
1974 offset
= offset_in_page(addr
);
1975 length
= PAGE_SIZE
- offset
;
1978 p
= vmalloc_to_page(addr
);
1980 * To do safe access to this _mapped_ area, we need
1981 * lock. But adding lock here means that we need to add
1982 * overhead of vmalloc()/vfree() calles for this _debug_
1983 * interface, rarely used. Instead of that, we'll use
1984 * kmap() and get small overhead in this access function.
1988 * we can expect USER0 is not used (see vread/vwrite's
1989 * function description)
1991 void *map
= kmap_atomic(p
);
1992 memcpy(map
+ offset
, buf
, length
);
2004 * vread() - read vmalloc area in a safe way.
2005 * @buf: buffer for reading data
2006 * @addr: vm address.
2007 * @count: number of bytes to be read.
2009 * Returns # of bytes which addr and buf should be increased.
2010 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2011 * includes any intersect with alive vmalloc area.
2013 * This function checks that addr is a valid vmalloc'ed area, and
2014 * copy data from that area to a given buffer. If the given memory range
2015 * of [addr...addr+count) includes some valid address, data is copied to
2016 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2017 * IOREMAP area is treated as memory hole and no copy is done.
2019 * If [addr...addr+count) doesn't includes any intersects with alive
2020 * vm_struct area, returns 0. @buf should be kernel's buffer.
2022 * Note: In usual ops, vread() is never necessary because the caller
2023 * should know vmalloc() area is valid and can use memcpy().
2024 * This is for routines which have to access vmalloc area without
2025 * any informaion, as /dev/kmem.
2029 long vread(char *buf
, char *addr
, unsigned long count
)
2031 struct vmap_area
*va
;
2032 struct vm_struct
*vm
;
2033 char *vaddr
, *buf_start
= buf
;
2034 unsigned long buflen
= count
;
2037 /* Don't allow overflow */
2038 if ((unsigned long) addr
+ count
< count
)
2039 count
= -(unsigned long) addr
;
2041 spin_lock(&vmap_area_lock
);
2042 list_for_each_entry(va
, &vmap_area_list
, list
) {
2046 if (!(va
->flags
& VM_VM_AREA
))
2050 vaddr
= (char *) vm
->addr
;
2051 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2053 while (addr
< vaddr
) {
2061 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2064 if (!(vm
->flags
& VM_IOREMAP
))
2065 aligned_vread(buf
, addr
, n
);
2066 else /* IOREMAP area is treated as memory hole */
2073 spin_unlock(&vmap_area_lock
);
2075 if (buf
== buf_start
)
2077 /* zero-fill memory holes */
2078 if (buf
!= buf_start
+ buflen
)
2079 memset(buf
, 0, buflen
- (buf
- buf_start
));
2085 * vwrite() - write vmalloc area in a safe way.
2086 * @buf: buffer for source data
2087 * @addr: vm address.
2088 * @count: number of bytes to be read.
2090 * Returns # of bytes which addr and buf should be incresed.
2091 * (same number to @count).
2092 * If [addr...addr+count) doesn't includes any intersect with valid
2093 * vmalloc area, returns 0.
2095 * This function checks that addr is a valid vmalloc'ed area, and
2096 * copy data from a buffer to the given addr. If specified range of
2097 * [addr...addr+count) includes some valid address, data is copied from
2098 * proper area of @buf. If there are memory holes, no copy to hole.
2099 * IOREMAP area is treated as memory hole and no copy is done.
2101 * If [addr...addr+count) doesn't includes any intersects with alive
2102 * vm_struct area, returns 0. @buf should be kernel's buffer.
2104 * Note: In usual ops, vwrite() is never necessary because the caller
2105 * should know vmalloc() area is valid and can use memcpy().
2106 * This is for routines which have to access vmalloc area without
2107 * any informaion, as /dev/kmem.
2110 long vwrite(char *buf
, char *addr
, unsigned long count
)
2112 struct vmap_area
*va
;
2113 struct vm_struct
*vm
;
2115 unsigned long n
, buflen
;
2118 /* Don't allow overflow */
2119 if ((unsigned long) addr
+ count
< count
)
2120 count
= -(unsigned long) addr
;
2123 spin_lock(&vmap_area_lock
);
2124 list_for_each_entry(va
, &vmap_area_list
, list
) {
2128 if (!(va
->flags
& VM_VM_AREA
))
2132 vaddr
= (char *) vm
->addr
;
2133 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2135 while (addr
< vaddr
) {
2142 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2145 if (!(vm
->flags
& VM_IOREMAP
)) {
2146 aligned_vwrite(buf
, addr
, n
);
2154 spin_unlock(&vmap_area_lock
);
2161 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2162 * @vma: vma to cover
2163 * @uaddr: target user address to start at
2164 * @kaddr: virtual address of vmalloc kernel memory
2165 * @size: size of map area
2167 * Returns: 0 for success, -Exxx on failure
2169 * This function checks that @kaddr is a valid vmalloc'ed area,
2170 * and that it is big enough to cover the range starting at
2171 * @uaddr in @vma. Will return failure if that criteria isn't
2174 * Similar to remap_pfn_range() (see mm/memory.c)
2176 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2177 void *kaddr
, unsigned long size
)
2179 struct vm_struct
*area
;
2181 size
= PAGE_ALIGN(size
);
2183 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2186 area
= find_vm_area(kaddr
);
2190 if (!(area
->flags
& VM_USERMAP
))
2193 if (kaddr
+ size
> area
->addr
+ area
->size
)
2197 struct page
*page
= vmalloc_to_page(kaddr
);
2200 ret
= vm_insert_page(vma
, uaddr
, page
);
2209 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2213 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2216 * remap_vmalloc_range - map vmalloc pages to userspace
2217 * @vma: vma to cover (map full range of vma)
2218 * @addr: vmalloc memory
2219 * @pgoff: number of pages into addr before first page to map
2221 * Returns: 0 for success, -Exxx on failure
2223 * This function checks that addr is a valid vmalloc'ed area, and
2224 * that it is big enough to cover the vma. Will return failure if
2225 * that criteria isn't met.
2227 * Similar to remap_pfn_range() (see mm/memory.c)
2229 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2230 unsigned long pgoff
)
2232 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2233 addr
+ (pgoff
<< PAGE_SHIFT
),
2234 vma
->vm_end
- vma
->vm_start
);
2236 EXPORT_SYMBOL(remap_vmalloc_range
);
2239 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2242 void __weak
vmalloc_sync_all(void)
2247 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2259 * alloc_vm_area - allocate a range of kernel address space
2260 * @size: size of the area
2261 * @ptes: returns the PTEs for the address space
2263 * Returns: NULL on failure, vm_struct on success
2265 * This function reserves a range of kernel address space, and
2266 * allocates pagetables to map that range. No actual mappings
2269 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2270 * allocated for the VM area are returned.
2272 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2274 struct vm_struct
*area
;
2276 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2277 __builtin_return_address(0));
2282 * This ensures that page tables are constructed for this region
2283 * of kernel virtual address space and mapped into init_mm.
2285 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2286 size
, f
, ptes
? &ptes
: NULL
)) {
2293 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2295 void free_vm_area(struct vm_struct
*area
)
2297 struct vm_struct
*ret
;
2298 ret
= remove_vm_area(area
->addr
);
2299 BUG_ON(ret
!= area
);
2302 EXPORT_SYMBOL_GPL(free_vm_area
);
2305 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2307 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2311 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2312 * @end: target address
2313 * @pnext: out arg for the next vmap_area
2314 * @pprev: out arg for the previous vmap_area
2316 * Returns: %true if either or both of next and prev are found,
2317 * %false if no vmap_area exists
2319 * Find vmap_areas end addresses of which enclose @end. ie. if not
2320 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2322 static bool pvm_find_next_prev(unsigned long end
,
2323 struct vmap_area
**pnext
,
2324 struct vmap_area
**pprev
)
2326 struct rb_node
*n
= vmap_area_root
.rb_node
;
2327 struct vmap_area
*va
= NULL
;
2330 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2331 if (end
< va
->va_end
)
2333 else if (end
> va
->va_end
)
2342 if (va
->va_end
> end
) {
2344 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2347 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2353 * pvm_determine_end - find the highest aligned address between two vmap_areas
2354 * @pnext: in/out arg for the next vmap_area
2355 * @pprev: in/out arg for the previous vmap_area
2358 * Returns: determined end address
2360 * Find the highest aligned address between *@pnext and *@pprev below
2361 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2362 * down address is between the end addresses of the two vmap_areas.
2364 * Please note that the address returned by this function may fall
2365 * inside *@pnext vmap_area. The caller is responsible for checking
2368 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2369 struct vmap_area
**pprev
,
2370 unsigned long align
)
2372 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2376 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2380 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2382 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2389 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2390 * @offsets: array containing offset of each area
2391 * @sizes: array containing size of each area
2392 * @nr_vms: the number of areas to allocate
2393 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2395 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2396 * vm_structs on success, %NULL on failure
2398 * Percpu allocator wants to use congruent vm areas so that it can
2399 * maintain the offsets among percpu areas. This function allocates
2400 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2401 * be scattered pretty far, distance between two areas easily going up
2402 * to gigabytes. To avoid interacting with regular vmallocs, these
2403 * areas are allocated from top.
2405 * Despite its complicated look, this allocator is rather simple. It
2406 * does everything top-down and scans areas from the end looking for
2407 * matching slot. While scanning, if any of the areas overlaps with
2408 * existing vmap_area, the base address is pulled down to fit the
2409 * area. Scanning is repeated till all the areas fit and then all
2410 * necessary data structres are inserted and the result is returned.
2412 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2413 const size_t *sizes
, int nr_vms
,
2416 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2417 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2418 struct vmap_area
**vas
, *prev
, *next
;
2419 struct vm_struct
**vms
;
2420 int area
, area2
, last_area
, term_area
;
2421 unsigned long base
, start
, end
, last_end
;
2422 bool purged
= false;
2424 /* verify parameters and allocate data structures */
2425 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
2426 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2427 start
= offsets
[area
];
2428 end
= start
+ sizes
[area
];
2430 /* is everything aligned properly? */
2431 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2432 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2434 /* detect the area with the highest address */
2435 if (start
> offsets
[last_area
])
2438 for (area2
= 0; area2
< nr_vms
; area2
++) {
2439 unsigned long start2
= offsets
[area2
];
2440 unsigned long end2
= start2
+ sizes
[area2
];
2445 BUG_ON(start2
>= start
&& start2
< end
);
2446 BUG_ON(end2
<= end
&& end2
> start
);
2449 last_end
= offsets
[last_area
] + sizes
[last_area
];
2451 if (vmalloc_end
- vmalloc_start
< last_end
) {
2456 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2457 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2461 for (area
= 0; area
< nr_vms
; area
++) {
2462 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2463 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2464 if (!vas
[area
] || !vms
[area
])
2468 spin_lock(&vmap_area_lock
);
2470 /* start scanning - we scan from the top, begin with the last area */
2471 area
= term_area
= last_area
;
2472 start
= offsets
[area
];
2473 end
= start
+ sizes
[area
];
2475 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2476 base
= vmalloc_end
- last_end
;
2479 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2482 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2483 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2486 * base might have underflowed, add last_end before
2489 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2490 spin_unlock(&vmap_area_lock
);
2492 purge_vmap_area_lazy();
2500 * If next overlaps, move base downwards so that it's
2501 * right below next and then recheck.
2503 if (next
&& next
->va_start
< base
+ end
) {
2504 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2510 * If prev overlaps, shift down next and prev and move
2511 * base so that it's right below new next and then
2514 if (prev
&& prev
->va_end
> base
+ start
) {
2516 prev
= node_to_va(rb_prev(&next
->rb_node
));
2517 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2523 * This area fits, move on to the previous one. If
2524 * the previous one is the terminal one, we're done.
2526 area
= (area
+ nr_vms
- 1) % nr_vms
;
2527 if (area
== term_area
)
2529 start
= offsets
[area
];
2530 end
= start
+ sizes
[area
];
2531 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2534 /* we've found a fitting base, insert all va's */
2535 for (area
= 0; area
< nr_vms
; area
++) {
2536 struct vmap_area
*va
= vas
[area
];
2538 va
->va_start
= base
+ offsets
[area
];
2539 va
->va_end
= va
->va_start
+ sizes
[area
];
2540 __insert_vmap_area(va
);
2543 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2545 spin_unlock(&vmap_area_lock
);
2547 /* insert all vm's */
2548 for (area
= 0; area
< nr_vms
; area
++)
2549 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2556 for (area
= 0; area
< nr_vms
; area
++) {
2567 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2568 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2569 * @nr_vms: the number of allocated areas
2571 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2573 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2577 for (i
= 0; i
< nr_vms
; i
++)
2578 free_vm_area(vms
[i
]);
2581 #endif /* CONFIG_SMP */
2583 #ifdef CONFIG_PROC_FS
2584 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2585 __acquires(&vmap_area_lock
)
2588 struct vmap_area
*va
;
2590 spin_lock(&vmap_area_lock
);
2591 va
= list_first_entry(&vmap_area_list
, typeof(*va
), list
);
2592 while (n
> 0 && &va
->list
!= &vmap_area_list
) {
2594 va
= list_next_entry(va
, list
);
2596 if (!n
&& &va
->list
!= &vmap_area_list
)
2603 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2605 struct vmap_area
*va
= p
, *next
;
2608 next
= list_next_entry(va
, list
);
2609 if (&next
->list
!= &vmap_area_list
)
2615 static void s_stop(struct seq_file
*m
, void *p
)
2616 __releases(&vmap_area_lock
)
2618 spin_unlock(&vmap_area_lock
);
2621 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2623 if (IS_ENABLED(CONFIG_NUMA
)) {
2624 unsigned int nr
, *counters
= m
->private;
2629 if (v
->flags
& VM_UNINITIALIZED
)
2631 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2634 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2636 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2637 counters
[page_to_nid(v
->pages
[nr
])]++;
2639 for_each_node_state(nr
, N_HIGH_MEMORY
)
2641 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2645 static int s_show(struct seq_file
*m
, void *p
)
2647 struct vmap_area
*va
= p
;
2648 struct vm_struct
*v
;
2651 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2652 * behalf of vmap area is being tear down or vm_map_ram allocation.
2654 if (!(va
->flags
& VM_VM_AREA
))
2659 seq_printf(m
, "0x%pK-0x%pK %7ld",
2660 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2663 seq_printf(m
, " %pS", v
->caller
);
2666 seq_printf(m
, " pages=%d", v
->nr_pages
);
2669 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2671 if (v
->flags
& VM_IOREMAP
)
2672 seq_puts(m
, " ioremap");
2674 if (v
->flags
& VM_ALLOC
)
2675 seq_puts(m
, " vmalloc");
2677 if (v
->flags
& VM_MAP
)
2678 seq_puts(m
, " vmap");
2680 if (v
->flags
& VM_USERMAP
)
2681 seq_puts(m
, " user");
2683 if (is_vmalloc_addr(v
->pages
))
2684 seq_puts(m
, " vpages");
2686 show_numa_info(m
, v
);
2691 static const struct seq_operations vmalloc_op
= {
2698 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2700 if (IS_ENABLED(CONFIG_NUMA
))
2701 return seq_open_private(file
, &vmalloc_op
,
2702 nr_node_ids
* sizeof(unsigned int));
2704 return seq_open(file
, &vmalloc_op
);
2707 static const struct file_operations proc_vmalloc_operations
= {
2708 .open
= vmalloc_open
,
2710 .llseek
= seq_lseek
,
2711 .release
= seq_release_private
,
2714 static int __init
proc_vmalloc_init(void)
2716 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2719 module_init(proc_vmalloc_init
);