ALSA: hda/realtek - Fix pop noise on Lenovo P50 & co
[linux/fpc-iii.git] / mm / vmalloc.c
blob195de42bea1f7d548b23fb4430fb8ee0ad1dd941
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
35 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
39 #include "internal.h"
41 struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
47 static void __vunmap(const void *, int);
49 static void free_work(struct work_struct *w)
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
60 /*** Page table manipulation functions ***/
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 pte_t *pte;
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 pmd_t *pmd;
76 unsigned long next;
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
81 if (pmd_clear_huge(pmd))
82 continue;
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
91 pud_t *pud;
92 unsigned long next;
94 pud = pud_offset(pgd, addr);
95 do {
96 next = pud_addr_end(addr, end);
97 if (pud_clear_huge(pud))
98 continue;
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
105 static void vunmap_page_range(unsigned long addr, unsigned long end)
107 pgd_t *pgd;
108 unsigned long next;
110 BUG_ON(addr >= end);
111 pgd = pgd_offset_k(addr);
112 do {
113 next = pgd_addr_end(addr, end);
114 if (pgd_none_or_clear_bad(pgd))
115 continue;
116 vunmap_pud_range(pgd, addr, next);
117 } while (pgd++, addr = next, addr != end);
120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
121 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
123 pte_t *pte;
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
130 pte = pte_alloc_kernel(pmd, addr);
131 if (!pte)
132 return -ENOMEM;
133 do {
134 struct page *page = pages[*nr];
136 if (WARN_ON(!pte_none(*pte)))
137 return -EBUSY;
138 if (WARN_ON(!page))
139 return -ENOMEM;
140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
141 (*nr)++;
142 } while (pte++, addr += PAGE_SIZE, addr != end);
143 return 0;
146 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
149 pmd_t *pmd;
150 unsigned long next;
152 pmd = pmd_alloc(&init_mm, pud, addr);
153 if (!pmd)
154 return -ENOMEM;
155 do {
156 next = pmd_addr_end(addr, end);
157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
158 return -ENOMEM;
159 } while (pmd++, addr = next, addr != end);
160 return 0;
163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
166 pud_t *pud;
167 unsigned long next;
169 pud = pud_alloc(&init_mm, pgd, addr);
170 if (!pud)
171 return -ENOMEM;
172 do {
173 next = pud_addr_end(addr, end);
174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
175 return -ENOMEM;
176 } while (pud++, addr = next, addr != end);
177 return 0;
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
186 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 pgprot_t prot, struct page **pages)
189 pgd_t *pgd;
190 unsigned long next;
191 unsigned long addr = start;
192 int err = 0;
193 int nr = 0;
195 BUG_ON(addr >= end);
196 pgd = pgd_offset_k(addr);
197 do {
198 next = pgd_addr_end(addr, end);
199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
200 if (err)
201 return err;
202 } while (pgd++, addr = next, addr != end);
204 return nr;
207 static int vmap_page_range(unsigned long start, unsigned long end,
208 pgprot_t prot, struct page **pages)
210 int ret;
212 ret = vmap_page_range_noflush(start, end, prot, pages);
213 flush_cache_vmap(start, end);
214 return ret;
217 int is_vmalloc_or_module_addr(const void *x)
220 * ARM, x86-64 and sparc64 put modules in a special place,
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr = (unsigned long)x;
226 if (addr >= MODULES_VADDR && addr < MODULES_END)
227 return 1;
228 #endif
229 return is_vmalloc_addr(x);
233 * Walk a vmap address to the struct page it maps.
235 struct page *vmalloc_to_page(const void *vmalloc_addr)
237 unsigned long addr = (unsigned long) vmalloc_addr;
238 struct page *page = NULL;
239 pgd_t *pgd = pgd_offset_k(addr);
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
248 * Don't dereference bad PUD or PMD (below) entries. This will also
249 * identify huge mappings, which we may encounter on architectures
250 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
251 * identified as vmalloc addresses by is_vmalloc_addr(), but are
252 * not [unambiguously] associated with a struct page, so there is
253 * no correct value to return for them.
255 if (!pgd_none(*pgd)) {
256 pud_t *pud = pud_offset(pgd, addr);
257 WARN_ON_ONCE(pud_bad(*pud));
258 if (!pud_none(*pud) && !pud_bad(*pud)) {
259 pmd_t *pmd = pmd_offset(pud, addr);
260 WARN_ON_ONCE(pmd_bad(*pmd));
261 if (!pmd_none(*pmd) && !pmd_bad(*pmd)) {
262 pte_t *ptep, pte;
264 ptep = pte_offset_map(pmd, addr);
265 pte = *ptep;
266 if (pte_present(pte))
267 page = pte_page(pte);
268 pte_unmap(ptep);
272 return page;
274 EXPORT_SYMBOL(vmalloc_to_page);
277 * Map a vmalloc()-space virtual address to the physical page frame number.
279 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
281 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
283 EXPORT_SYMBOL(vmalloc_to_pfn);
286 /*** Global kva allocator ***/
288 #define VM_VM_AREA 0x04
290 static DEFINE_SPINLOCK(vmap_area_lock);
291 /* Export for kexec only */
292 LIST_HEAD(vmap_area_list);
293 static LLIST_HEAD(vmap_purge_list);
294 static struct rb_root vmap_area_root = RB_ROOT;
296 /* The vmap cache globals are protected by vmap_area_lock */
297 static struct rb_node *free_vmap_cache;
298 static unsigned long cached_hole_size;
299 static unsigned long cached_vstart;
300 static unsigned long cached_align;
302 static unsigned long vmap_area_pcpu_hole;
304 static struct vmap_area *__find_vmap_area(unsigned long addr)
306 struct rb_node *n = vmap_area_root.rb_node;
308 while (n) {
309 struct vmap_area *va;
311 va = rb_entry(n, struct vmap_area, rb_node);
312 if (addr < va->va_start)
313 n = n->rb_left;
314 else if (addr >= va->va_end)
315 n = n->rb_right;
316 else
317 return va;
320 return NULL;
323 static void __insert_vmap_area(struct vmap_area *va)
325 struct rb_node **p = &vmap_area_root.rb_node;
326 struct rb_node *parent = NULL;
327 struct rb_node *tmp;
329 while (*p) {
330 struct vmap_area *tmp_va;
332 parent = *p;
333 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
334 if (va->va_start < tmp_va->va_end)
335 p = &(*p)->rb_left;
336 else if (va->va_end > tmp_va->va_start)
337 p = &(*p)->rb_right;
338 else
339 BUG();
342 rb_link_node(&va->rb_node, parent, p);
343 rb_insert_color(&va->rb_node, &vmap_area_root);
345 /* address-sort this list */
346 tmp = rb_prev(&va->rb_node);
347 if (tmp) {
348 struct vmap_area *prev;
349 prev = rb_entry(tmp, struct vmap_area, rb_node);
350 list_add_rcu(&va->list, &prev->list);
351 } else
352 list_add_rcu(&va->list, &vmap_area_list);
355 static void purge_vmap_area_lazy(void);
357 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
360 * Allocate a region of KVA of the specified size and alignment, within the
361 * vstart and vend.
363 static struct vmap_area *alloc_vmap_area(unsigned long size,
364 unsigned long align,
365 unsigned long vstart, unsigned long vend,
366 int node, gfp_t gfp_mask)
368 struct vmap_area *va;
369 struct rb_node *n;
370 unsigned long addr;
371 int purged = 0;
372 struct vmap_area *first;
374 BUG_ON(!size);
375 BUG_ON(offset_in_page(size));
376 BUG_ON(!is_power_of_2(align));
378 might_sleep_if(gfpflags_allow_blocking(gfp_mask));
380 va = kmalloc_node(sizeof(struct vmap_area),
381 gfp_mask & GFP_RECLAIM_MASK, node);
382 if (unlikely(!va))
383 return ERR_PTR(-ENOMEM);
386 * Only scan the relevant parts containing pointers to other objects
387 * to avoid false negatives.
389 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
391 retry:
392 spin_lock(&vmap_area_lock);
394 * Invalidate cache if we have more permissive parameters.
395 * cached_hole_size notes the largest hole noticed _below_
396 * the vmap_area cached in free_vmap_cache: if size fits
397 * into that hole, we want to scan from vstart to reuse
398 * the hole instead of allocating above free_vmap_cache.
399 * Note that __free_vmap_area may update free_vmap_cache
400 * without updating cached_hole_size or cached_align.
402 if (!free_vmap_cache ||
403 size < cached_hole_size ||
404 vstart < cached_vstart ||
405 align < cached_align) {
406 nocache:
407 cached_hole_size = 0;
408 free_vmap_cache = NULL;
410 /* record if we encounter less permissive parameters */
411 cached_vstart = vstart;
412 cached_align = align;
414 /* find starting point for our search */
415 if (free_vmap_cache) {
416 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
417 addr = ALIGN(first->va_end, align);
418 if (addr < vstart)
419 goto nocache;
420 if (addr + size < addr)
421 goto overflow;
423 } else {
424 addr = ALIGN(vstart, align);
425 if (addr + size < addr)
426 goto overflow;
428 n = vmap_area_root.rb_node;
429 first = NULL;
431 while (n) {
432 struct vmap_area *tmp;
433 tmp = rb_entry(n, struct vmap_area, rb_node);
434 if (tmp->va_end >= addr) {
435 first = tmp;
436 if (tmp->va_start <= addr)
437 break;
438 n = n->rb_left;
439 } else
440 n = n->rb_right;
443 if (!first)
444 goto found;
447 /* from the starting point, walk areas until a suitable hole is found */
448 while (addr + size > first->va_start && addr + size <= vend) {
449 if (addr + cached_hole_size < first->va_start)
450 cached_hole_size = first->va_start - addr;
451 addr = ALIGN(first->va_end, align);
452 if (addr + size < addr)
453 goto overflow;
455 if (list_is_last(&first->list, &vmap_area_list))
456 goto found;
458 first = list_next_entry(first, list);
461 found:
462 if (addr + size > vend)
463 goto overflow;
465 va->va_start = addr;
466 va->va_end = addr + size;
467 va->flags = 0;
468 __insert_vmap_area(va);
469 free_vmap_cache = &va->rb_node;
470 spin_unlock(&vmap_area_lock);
472 BUG_ON(!IS_ALIGNED(va->va_start, align));
473 BUG_ON(va->va_start < vstart);
474 BUG_ON(va->va_end > vend);
476 return va;
478 overflow:
479 spin_unlock(&vmap_area_lock);
480 if (!purged) {
481 purge_vmap_area_lazy();
482 purged = 1;
483 goto retry;
486 if (gfpflags_allow_blocking(gfp_mask)) {
487 unsigned long freed = 0;
488 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
489 if (freed > 0) {
490 purged = 0;
491 goto retry;
495 if (printk_ratelimit())
496 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
497 size);
498 kfree(va);
499 return ERR_PTR(-EBUSY);
502 int register_vmap_purge_notifier(struct notifier_block *nb)
504 return blocking_notifier_chain_register(&vmap_notify_list, nb);
506 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
508 int unregister_vmap_purge_notifier(struct notifier_block *nb)
510 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
512 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
514 static void __free_vmap_area(struct vmap_area *va)
516 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
518 if (free_vmap_cache) {
519 if (va->va_end < cached_vstart) {
520 free_vmap_cache = NULL;
521 } else {
522 struct vmap_area *cache;
523 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
524 if (va->va_start <= cache->va_start) {
525 free_vmap_cache = rb_prev(&va->rb_node);
527 * We don't try to update cached_hole_size or
528 * cached_align, but it won't go very wrong.
533 rb_erase(&va->rb_node, &vmap_area_root);
534 RB_CLEAR_NODE(&va->rb_node);
535 list_del_rcu(&va->list);
538 * Track the highest possible candidate for pcpu area
539 * allocation. Areas outside of vmalloc area can be returned
540 * here too, consider only end addresses which fall inside
541 * vmalloc area proper.
543 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
544 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
546 kfree_rcu(va, rcu_head);
550 * Free a region of KVA allocated by alloc_vmap_area
552 static void free_vmap_area(struct vmap_area *va)
554 spin_lock(&vmap_area_lock);
555 __free_vmap_area(va);
556 spin_unlock(&vmap_area_lock);
560 * Clear the pagetable entries of a given vmap_area
562 static void unmap_vmap_area(struct vmap_area *va)
564 vunmap_page_range(va->va_start, va->va_end);
567 static void vmap_debug_free_range(unsigned long start, unsigned long end)
570 * Unmap page tables and force a TLB flush immediately if pagealloc
571 * debugging is enabled. This catches use after free bugs similarly to
572 * those in linear kernel virtual address space after a page has been
573 * freed.
575 * All the lazy freeing logic is still retained, in order to minimise
576 * intrusiveness of this debugging feature.
578 * This is going to be *slow* (linear kernel virtual address debugging
579 * doesn't do a broadcast TLB flush so it is a lot faster).
581 if (debug_pagealloc_enabled()) {
582 vunmap_page_range(start, end);
583 flush_tlb_kernel_range(start, end);
588 * lazy_max_pages is the maximum amount of virtual address space we gather up
589 * before attempting to purge with a TLB flush.
591 * There is a tradeoff here: a larger number will cover more kernel page tables
592 * and take slightly longer to purge, but it will linearly reduce the number of
593 * global TLB flushes that must be performed. It would seem natural to scale
594 * this number up linearly with the number of CPUs (because vmapping activity
595 * could also scale linearly with the number of CPUs), however it is likely
596 * that in practice, workloads might be constrained in other ways that mean
597 * vmap activity will not scale linearly with CPUs. Also, I want to be
598 * conservative and not introduce a big latency on huge systems, so go with
599 * a less aggressive log scale. It will still be an improvement over the old
600 * code, and it will be simple to change the scale factor if we find that it
601 * becomes a problem on bigger systems.
603 static unsigned long lazy_max_pages(void)
605 unsigned int log;
607 log = fls(num_online_cpus());
609 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
612 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
614 /* for per-CPU blocks */
615 static void purge_fragmented_blocks_allcpus(void);
618 * called before a call to iounmap() if the caller wants vm_area_struct's
619 * immediately freed.
621 void set_iounmap_nonlazy(void)
623 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
627 * Purges all lazily-freed vmap areas.
629 * If sync is 0 then don't purge if there is already a purge in progress.
630 * If force_flush is 1, then flush kernel TLBs between *start and *end even
631 * if we found no lazy vmap areas to unmap (callers can use this to optimise
632 * their own TLB flushing).
633 * Returns with *start = min(*start, lowest purged address)
634 * *end = max(*end, highest purged address)
636 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
637 int sync, int force_flush)
639 static DEFINE_SPINLOCK(purge_lock);
640 struct llist_node *valist;
641 struct vmap_area *va;
642 struct vmap_area *n_va;
643 int nr = 0;
646 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
647 * should not expect such behaviour. This just simplifies locking for
648 * the case that isn't actually used at the moment anyway.
650 if (!sync && !force_flush) {
651 if (!spin_trylock(&purge_lock))
652 return;
653 } else
654 spin_lock(&purge_lock);
656 if (sync)
657 purge_fragmented_blocks_allcpus();
659 valist = llist_del_all(&vmap_purge_list);
660 llist_for_each_entry(va, valist, purge_list) {
661 if (va->va_start < *start)
662 *start = va->va_start;
663 if (va->va_end > *end)
664 *end = va->va_end;
665 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
668 if (nr)
669 atomic_sub(nr, &vmap_lazy_nr);
671 if (nr || force_flush)
672 flush_tlb_kernel_range(*start, *end);
674 if (nr) {
675 spin_lock(&vmap_area_lock);
676 llist_for_each_entry_safe(va, n_va, valist, purge_list)
677 __free_vmap_area(va);
678 spin_unlock(&vmap_area_lock);
680 spin_unlock(&purge_lock);
684 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
685 * is already purging.
687 static void try_purge_vmap_area_lazy(void)
689 unsigned long start = ULONG_MAX, end = 0;
691 __purge_vmap_area_lazy(&start, &end, 0, 0);
695 * Kick off a purge of the outstanding lazy areas.
697 static void purge_vmap_area_lazy(void)
699 unsigned long start = ULONG_MAX, end = 0;
701 __purge_vmap_area_lazy(&start, &end, 1, 0);
705 * Free a vmap area, caller ensuring that the area has been unmapped
706 * and flush_cache_vunmap had been called for the correct range
707 * previously.
709 static void free_vmap_area_noflush(struct vmap_area *va)
711 int nr_lazy;
713 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
714 &vmap_lazy_nr);
716 /* After this point, we may free va at any time */
717 llist_add(&va->purge_list, &vmap_purge_list);
719 if (unlikely(nr_lazy > lazy_max_pages()))
720 try_purge_vmap_area_lazy();
724 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
725 * called for the correct range previously.
727 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
729 unmap_vmap_area(va);
730 free_vmap_area_noflush(va);
734 * Free and unmap a vmap area
736 static void free_unmap_vmap_area(struct vmap_area *va)
738 flush_cache_vunmap(va->va_start, va->va_end);
739 free_unmap_vmap_area_noflush(va);
742 static struct vmap_area *find_vmap_area(unsigned long addr)
744 struct vmap_area *va;
746 spin_lock(&vmap_area_lock);
747 va = __find_vmap_area(addr);
748 spin_unlock(&vmap_area_lock);
750 return va;
753 static void free_unmap_vmap_area_addr(unsigned long addr)
755 struct vmap_area *va;
757 va = find_vmap_area(addr);
758 BUG_ON(!va);
759 free_unmap_vmap_area(va);
763 /*** Per cpu kva allocator ***/
766 * vmap space is limited especially on 32 bit architectures. Ensure there is
767 * room for at least 16 percpu vmap blocks per CPU.
770 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
771 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
772 * instead (we just need a rough idea)
774 #if BITS_PER_LONG == 32
775 #define VMALLOC_SPACE (128UL*1024*1024)
776 #else
777 #define VMALLOC_SPACE (128UL*1024*1024*1024)
778 #endif
780 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
781 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
782 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
783 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
784 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
785 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
786 #define VMAP_BBMAP_BITS \
787 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
788 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
789 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
791 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
793 static bool vmap_initialized __read_mostly = false;
795 struct vmap_block_queue {
796 spinlock_t lock;
797 struct list_head free;
800 struct vmap_block {
801 spinlock_t lock;
802 struct vmap_area *va;
803 unsigned long free, dirty;
804 unsigned long dirty_min, dirty_max; /*< dirty range */
805 struct list_head free_list;
806 struct rcu_head rcu_head;
807 struct list_head purge;
810 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
811 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
814 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
815 * in the free path. Could get rid of this if we change the API to return a
816 * "cookie" from alloc, to be passed to free. But no big deal yet.
818 static DEFINE_SPINLOCK(vmap_block_tree_lock);
819 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
822 * We should probably have a fallback mechanism to allocate virtual memory
823 * out of partially filled vmap blocks. However vmap block sizing should be
824 * fairly reasonable according to the vmalloc size, so it shouldn't be a
825 * big problem.
828 static unsigned long addr_to_vb_idx(unsigned long addr)
830 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
831 addr /= VMAP_BLOCK_SIZE;
832 return addr;
835 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
837 unsigned long addr;
839 addr = va_start + (pages_off << PAGE_SHIFT);
840 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
841 return (void *)addr;
845 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
846 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
847 * @order: how many 2^order pages should be occupied in newly allocated block
848 * @gfp_mask: flags for the page level allocator
850 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
852 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
854 struct vmap_block_queue *vbq;
855 struct vmap_block *vb;
856 struct vmap_area *va;
857 unsigned long vb_idx;
858 int node, err;
859 void *vaddr;
861 node = numa_node_id();
863 vb = kmalloc_node(sizeof(struct vmap_block),
864 gfp_mask & GFP_RECLAIM_MASK, node);
865 if (unlikely(!vb))
866 return ERR_PTR(-ENOMEM);
868 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
869 VMALLOC_START, VMALLOC_END,
870 node, gfp_mask);
871 if (IS_ERR(va)) {
872 kfree(vb);
873 return ERR_CAST(va);
876 err = radix_tree_preload(gfp_mask);
877 if (unlikely(err)) {
878 kfree(vb);
879 free_vmap_area(va);
880 return ERR_PTR(err);
883 vaddr = vmap_block_vaddr(va->va_start, 0);
884 spin_lock_init(&vb->lock);
885 vb->va = va;
886 /* At least something should be left free */
887 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
888 vb->free = VMAP_BBMAP_BITS - (1UL << order);
889 vb->dirty = 0;
890 vb->dirty_min = VMAP_BBMAP_BITS;
891 vb->dirty_max = 0;
892 INIT_LIST_HEAD(&vb->free_list);
894 vb_idx = addr_to_vb_idx(va->va_start);
895 spin_lock(&vmap_block_tree_lock);
896 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
897 spin_unlock(&vmap_block_tree_lock);
898 BUG_ON(err);
899 radix_tree_preload_end();
901 vbq = &get_cpu_var(vmap_block_queue);
902 spin_lock(&vbq->lock);
903 list_add_tail_rcu(&vb->free_list, &vbq->free);
904 spin_unlock(&vbq->lock);
905 put_cpu_var(vmap_block_queue);
907 return vaddr;
910 static void free_vmap_block(struct vmap_block *vb)
912 struct vmap_block *tmp;
913 unsigned long vb_idx;
915 vb_idx = addr_to_vb_idx(vb->va->va_start);
916 spin_lock(&vmap_block_tree_lock);
917 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
918 spin_unlock(&vmap_block_tree_lock);
919 BUG_ON(tmp != vb);
921 free_vmap_area_noflush(vb->va);
922 kfree_rcu(vb, rcu_head);
925 static void purge_fragmented_blocks(int cpu)
927 LIST_HEAD(purge);
928 struct vmap_block *vb;
929 struct vmap_block *n_vb;
930 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
932 rcu_read_lock();
933 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
935 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
936 continue;
938 spin_lock(&vb->lock);
939 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
940 vb->free = 0; /* prevent further allocs after releasing lock */
941 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
942 vb->dirty_min = 0;
943 vb->dirty_max = VMAP_BBMAP_BITS;
944 spin_lock(&vbq->lock);
945 list_del_rcu(&vb->free_list);
946 spin_unlock(&vbq->lock);
947 spin_unlock(&vb->lock);
948 list_add_tail(&vb->purge, &purge);
949 } else
950 spin_unlock(&vb->lock);
952 rcu_read_unlock();
954 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
955 list_del(&vb->purge);
956 free_vmap_block(vb);
960 static void purge_fragmented_blocks_allcpus(void)
962 int cpu;
964 for_each_possible_cpu(cpu)
965 purge_fragmented_blocks(cpu);
968 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
970 struct vmap_block_queue *vbq;
971 struct vmap_block *vb;
972 void *vaddr = NULL;
973 unsigned int order;
975 BUG_ON(offset_in_page(size));
976 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
977 if (WARN_ON(size == 0)) {
979 * Allocating 0 bytes isn't what caller wants since
980 * get_order(0) returns funny result. Just warn and terminate
981 * early.
983 return NULL;
985 order = get_order(size);
987 rcu_read_lock();
988 vbq = &get_cpu_var(vmap_block_queue);
989 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
990 unsigned long pages_off;
992 spin_lock(&vb->lock);
993 if (vb->free < (1UL << order)) {
994 spin_unlock(&vb->lock);
995 continue;
998 pages_off = VMAP_BBMAP_BITS - vb->free;
999 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1000 vb->free -= 1UL << order;
1001 if (vb->free == 0) {
1002 spin_lock(&vbq->lock);
1003 list_del_rcu(&vb->free_list);
1004 spin_unlock(&vbq->lock);
1007 spin_unlock(&vb->lock);
1008 break;
1011 put_cpu_var(vmap_block_queue);
1012 rcu_read_unlock();
1014 /* Allocate new block if nothing was found */
1015 if (!vaddr)
1016 vaddr = new_vmap_block(order, gfp_mask);
1018 return vaddr;
1021 static void vb_free(const void *addr, unsigned long size)
1023 unsigned long offset;
1024 unsigned long vb_idx;
1025 unsigned int order;
1026 struct vmap_block *vb;
1028 BUG_ON(offset_in_page(size));
1029 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1031 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1033 order = get_order(size);
1035 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1036 offset >>= PAGE_SHIFT;
1038 vb_idx = addr_to_vb_idx((unsigned long)addr);
1039 rcu_read_lock();
1040 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1041 rcu_read_unlock();
1042 BUG_ON(!vb);
1044 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1046 spin_lock(&vb->lock);
1048 /* Expand dirty range */
1049 vb->dirty_min = min(vb->dirty_min, offset);
1050 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1052 vb->dirty += 1UL << order;
1053 if (vb->dirty == VMAP_BBMAP_BITS) {
1054 BUG_ON(vb->free);
1055 spin_unlock(&vb->lock);
1056 free_vmap_block(vb);
1057 } else
1058 spin_unlock(&vb->lock);
1062 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1064 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1065 * to amortize TLB flushing overheads. What this means is that any page you
1066 * have now, may, in a former life, have been mapped into kernel virtual
1067 * address by the vmap layer and so there might be some CPUs with TLB entries
1068 * still referencing that page (additional to the regular 1:1 kernel mapping).
1070 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1071 * be sure that none of the pages we have control over will have any aliases
1072 * from the vmap layer.
1074 void vm_unmap_aliases(void)
1076 unsigned long start = ULONG_MAX, end = 0;
1077 int cpu;
1078 int flush = 0;
1080 if (unlikely(!vmap_initialized))
1081 return;
1083 for_each_possible_cpu(cpu) {
1084 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1085 struct vmap_block *vb;
1087 rcu_read_lock();
1088 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1089 spin_lock(&vb->lock);
1090 if (vb->dirty) {
1091 unsigned long va_start = vb->va->va_start;
1092 unsigned long s, e;
1094 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1095 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1097 start = min(s, start);
1098 end = max(e, end);
1100 flush = 1;
1102 spin_unlock(&vb->lock);
1104 rcu_read_unlock();
1107 __purge_vmap_area_lazy(&start, &end, 1, flush);
1109 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1112 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1113 * @mem: the pointer returned by vm_map_ram
1114 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1116 void vm_unmap_ram(const void *mem, unsigned int count)
1118 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1119 unsigned long addr = (unsigned long)mem;
1121 BUG_ON(!addr);
1122 BUG_ON(addr < VMALLOC_START);
1123 BUG_ON(addr > VMALLOC_END);
1124 BUG_ON(!PAGE_ALIGNED(addr));
1126 debug_check_no_locks_freed(mem, size);
1127 vmap_debug_free_range(addr, addr+size);
1129 if (likely(count <= VMAP_MAX_ALLOC))
1130 vb_free(mem, size);
1131 else
1132 free_unmap_vmap_area_addr(addr);
1134 EXPORT_SYMBOL(vm_unmap_ram);
1137 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1138 * @pages: an array of pointers to the pages to be mapped
1139 * @count: number of pages
1140 * @node: prefer to allocate data structures on this node
1141 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1143 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1144 * faster than vmap so it's good. But if you mix long-life and short-life
1145 * objects with vm_map_ram(), it could consume lots of address space through
1146 * fragmentation (especially on a 32bit machine). You could see failures in
1147 * the end. Please use this function for short-lived objects.
1149 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1151 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1153 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1154 unsigned long addr;
1155 void *mem;
1157 if (likely(count <= VMAP_MAX_ALLOC)) {
1158 mem = vb_alloc(size, GFP_KERNEL);
1159 if (IS_ERR(mem))
1160 return NULL;
1161 addr = (unsigned long)mem;
1162 } else {
1163 struct vmap_area *va;
1164 va = alloc_vmap_area(size, PAGE_SIZE,
1165 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1166 if (IS_ERR(va))
1167 return NULL;
1169 addr = va->va_start;
1170 mem = (void *)addr;
1172 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1173 vm_unmap_ram(mem, count);
1174 return NULL;
1176 return mem;
1178 EXPORT_SYMBOL(vm_map_ram);
1180 static struct vm_struct *vmlist __initdata;
1182 * vm_area_add_early - add vmap area early during boot
1183 * @vm: vm_struct to add
1185 * This function is used to add fixed kernel vm area to vmlist before
1186 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1187 * should contain proper values and the other fields should be zero.
1189 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1191 void __init vm_area_add_early(struct vm_struct *vm)
1193 struct vm_struct *tmp, **p;
1195 BUG_ON(vmap_initialized);
1196 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1197 if (tmp->addr >= vm->addr) {
1198 BUG_ON(tmp->addr < vm->addr + vm->size);
1199 break;
1200 } else
1201 BUG_ON(tmp->addr + tmp->size > vm->addr);
1203 vm->next = *p;
1204 *p = vm;
1208 * vm_area_register_early - register vmap area early during boot
1209 * @vm: vm_struct to register
1210 * @align: requested alignment
1212 * This function is used to register kernel vm area before
1213 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1214 * proper values on entry and other fields should be zero. On return,
1215 * vm->addr contains the allocated address.
1217 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1219 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1221 static size_t vm_init_off __initdata;
1222 unsigned long addr;
1224 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1225 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1227 vm->addr = (void *)addr;
1229 vm_area_add_early(vm);
1232 void __init vmalloc_init(void)
1234 struct vmap_area *va;
1235 struct vm_struct *tmp;
1236 int i;
1238 for_each_possible_cpu(i) {
1239 struct vmap_block_queue *vbq;
1240 struct vfree_deferred *p;
1242 vbq = &per_cpu(vmap_block_queue, i);
1243 spin_lock_init(&vbq->lock);
1244 INIT_LIST_HEAD(&vbq->free);
1245 p = &per_cpu(vfree_deferred, i);
1246 init_llist_head(&p->list);
1247 INIT_WORK(&p->wq, free_work);
1250 /* Import existing vmlist entries. */
1251 for (tmp = vmlist; tmp; tmp = tmp->next) {
1252 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1253 va->flags = VM_VM_AREA;
1254 va->va_start = (unsigned long)tmp->addr;
1255 va->va_end = va->va_start + tmp->size;
1256 va->vm = tmp;
1257 __insert_vmap_area(va);
1260 vmap_area_pcpu_hole = VMALLOC_END;
1262 vmap_initialized = true;
1266 * map_kernel_range_noflush - map kernel VM area with the specified pages
1267 * @addr: start of the VM area to map
1268 * @size: size of the VM area to map
1269 * @prot: page protection flags to use
1270 * @pages: pages to map
1272 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1273 * specify should have been allocated using get_vm_area() and its
1274 * friends.
1276 * NOTE:
1277 * This function does NOT do any cache flushing. The caller is
1278 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1279 * before calling this function.
1281 * RETURNS:
1282 * The number of pages mapped on success, -errno on failure.
1284 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1285 pgprot_t prot, struct page **pages)
1287 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1291 * unmap_kernel_range_noflush - unmap kernel VM area
1292 * @addr: start of the VM area to unmap
1293 * @size: size of the VM area to unmap
1295 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1296 * specify should have been allocated using get_vm_area() and its
1297 * friends.
1299 * NOTE:
1300 * This function does NOT do any cache flushing. The caller is
1301 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1302 * before calling this function and flush_tlb_kernel_range() after.
1304 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1306 vunmap_page_range(addr, addr + size);
1308 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1311 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1312 * @addr: start of the VM area to unmap
1313 * @size: size of the VM area to unmap
1315 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1316 * the unmapping and tlb after.
1318 void unmap_kernel_range(unsigned long addr, unsigned long size)
1320 unsigned long end = addr + size;
1322 flush_cache_vunmap(addr, end);
1323 vunmap_page_range(addr, end);
1324 flush_tlb_kernel_range(addr, end);
1326 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1328 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1330 unsigned long addr = (unsigned long)area->addr;
1331 unsigned long end = addr + get_vm_area_size(area);
1332 int err;
1334 err = vmap_page_range(addr, end, prot, pages);
1336 return err > 0 ? 0 : err;
1338 EXPORT_SYMBOL_GPL(map_vm_area);
1340 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1341 unsigned long flags, const void *caller)
1343 spin_lock(&vmap_area_lock);
1344 vm->flags = flags;
1345 vm->addr = (void *)va->va_start;
1346 vm->size = va->va_end - va->va_start;
1347 vm->caller = caller;
1348 va->vm = vm;
1349 va->flags |= VM_VM_AREA;
1350 spin_unlock(&vmap_area_lock);
1353 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1356 * Before removing VM_UNINITIALIZED,
1357 * we should make sure that vm has proper values.
1358 * Pair with smp_rmb() in show_numa_info().
1360 smp_wmb();
1361 vm->flags &= ~VM_UNINITIALIZED;
1364 static struct vm_struct *__get_vm_area_node(unsigned long size,
1365 unsigned long align, unsigned long flags, unsigned long start,
1366 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1368 struct vmap_area *va;
1369 struct vm_struct *area;
1371 BUG_ON(in_interrupt());
1372 size = PAGE_ALIGN(size);
1373 if (unlikely(!size))
1374 return NULL;
1376 if (flags & VM_IOREMAP)
1377 align = 1ul << clamp_t(int, get_count_order_long(size),
1378 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1380 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1381 if (unlikely(!area))
1382 return NULL;
1384 if (!(flags & VM_NO_GUARD))
1385 size += PAGE_SIZE;
1387 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1388 if (IS_ERR(va)) {
1389 kfree(area);
1390 return NULL;
1393 setup_vmalloc_vm(area, va, flags, caller);
1395 return area;
1398 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1399 unsigned long start, unsigned long end)
1401 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1402 GFP_KERNEL, __builtin_return_address(0));
1404 EXPORT_SYMBOL_GPL(__get_vm_area);
1406 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1407 unsigned long start, unsigned long end,
1408 const void *caller)
1410 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1411 GFP_KERNEL, caller);
1415 * get_vm_area - reserve a contiguous kernel virtual area
1416 * @size: size of the area
1417 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1419 * Search an area of @size in the kernel virtual mapping area,
1420 * and reserved it for out purposes. Returns the area descriptor
1421 * on success or %NULL on failure.
1423 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1425 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1426 NUMA_NO_NODE, GFP_KERNEL,
1427 __builtin_return_address(0));
1430 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1431 const void *caller)
1433 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1434 NUMA_NO_NODE, GFP_KERNEL, caller);
1438 * find_vm_area - find a continuous kernel virtual area
1439 * @addr: base address
1441 * Search for the kernel VM area starting at @addr, and return it.
1442 * It is up to the caller to do all required locking to keep the returned
1443 * pointer valid.
1445 struct vm_struct *find_vm_area(const void *addr)
1447 struct vmap_area *va;
1449 va = find_vmap_area((unsigned long)addr);
1450 if (va && va->flags & VM_VM_AREA)
1451 return va->vm;
1453 return NULL;
1457 * remove_vm_area - find and remove a continuous kernel virtual area
1458 * @addr: base address
1460 * Search for the kernel VM area starting at @addr, and remove it.
1461 * This function returns the found VM area, but using it is NOT safe
1462 * on SMP machines, except for its size or flags.
1464 struct vm_struct *remove_vm_area(const void *addr)
1466 struct vmap_area *va;
1468 va = find_vmap_area((unsigned long)addr);
1469 if (va && va->flags & VM_VM_AREA) {
1470 struct vm_struct *vm = va->vm;
1472 spin_lock(&vmap_area_lock);
1473 va->vm = NULL;
1474 va->flags &= ~VM_VM_AREA;
1475 spin_unlock(&vmap_area_lock);
1477 vmap_debug_free_range(va->va_start, va->va_end);
1478 kasan_free_shadow(vm);
1479 free_unmap_vmap_area(va);
1481 return vm;
1483 return NULL;
1486 static void __vunmap(const void *addr, int deallocate_pages)
1488 struct vm_struct *area;
1490 if (!addr)
1491 return;
1493 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1494 addr))
1495 return;
1497 area = remove_vm_area(addr);
1498 if (unlikely(!area)) {
1499 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1500 addr);
1501 return;
1504 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1505 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1507 if (deallocate_pages) {
1508 int i;
1510 for (i = 0; i < area->nr_pages; i++) {
1511 struct page *page = area->pages[i];
1513 BUG_ON(!page);
1514 __free_pages(page, 0);
1517 kvfree(area->pages);
1520 kfree(area);
1521 return;
1525 * vfree - release memory allocated by vmalloc()
1526 * @addr: memory base address
1528 * Free the virtually continuous memory area starting at @addr, as
1529 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1530 * NULL, no operation is performed.
1532 * Must not be called in NMI context (strictly speaking, only if we don't
1533 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1534 * conventions for vfree() arch-depenedent would be a really bad idea)
1536 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1538 void vfree(const void *addr)
1540 BUG_ON(in_nmi());
1542 kmemleak_free(addr);
1544 if (!addr)
1545 return;
1546 if (unlikely(in_interrupt())) {
1547 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1548 if (llist_add((struct llist_node *)addr, &p->list))
1549 schedule_work(&p->wq);
1550 } else
1551 __vunmap(addr, 1);
1553 EXPORT_SYMBOL(vfree);
1556 * vunmap - release virtual mapping obtained by vmap()
1557 * @addr: memory base address
1559 * Free the virtually contiguous memory area starting at @addr,
1560 * which was created from the page array passed to vmap().
1562 * Must not be called in interrupt context.
1564 void vunmap(const void *addr)
1566 BUG_ON(in_interrupt());
1567 might_sleep();
1568 if (addr)
1569 __vunmap(addr, 0);
1571 EXPORT_SYMBOL(vunmap);
1574 * vmap - map an array of pages into virtually contiguous space
1575 * @pages: array of page pointers
1576 * @count: number of pages to map
1577 * @flags: vm_area->flags
1578 * @prot: page protection for the mapping
1580 * Maps @count pages from @pages into contiguous kernel virtual
1581 * space.
1583 void *vmap(struct page **pages, unsigned int count,
1584 unsigned long flags, pgprot_t prot)
1586 struct vm_struct *area;
1587 unsigned long size; /* In bytes */
1589 might_sleep();
1591 if (count > totalram_pages)
1592 return NULL;
1594 size = (unsigned long)count << PAGE_SHIFT;
1595 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1596 if (!area)
1597 return NULL;
1599 if (map_vm_area(area, prot, pages)) {
1600 vunmap(area->addr);
1601 return NULL;
1604 return area->addr;
1606 EXPORT_SYMBOL(vmap);
1608 static void *__vmalloc_node(unsigned long size, unsigned long align,
1609 gfp_t gfp_mask, pgprot_t prot,
1610 int node, const void *caller);
1611 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1612 pgprot_t prot, int node)
1614 struct page **pages;
1615 unsigned int nr_pages, array_size, i;
1616 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1617 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1619 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1620 array_size = (nr_pages * sizeof(struct page *));
1622 area->nr_pages = nr_pages;
1623 /* Please note that the recursion is strictly bounded. */
1624 if (array_size > PAGE_SIZE) {
1625 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1626 PAGE_KERNEL, node, area->caller);
1627 } else {
1628 pages = kmalloc_node(array_size, nested_gfp, node);
1630 area->pages = pages;
1631 if (!area->pages) {
1632 remove_vm_area(area->addr);
1633 kfree(area);
1634 return NULL;
1637 for (i = 0; i < area->nr_pages; i++) {
1638 struct page *page;
1640 if (node == NUMA_NO_NODE)
1641 page = alloc_page(alloc_mask);
1642 else
1643 page = alloc_pages_node(node, alloc_mask, 0);
1645 if (unlikely(!page)) {
1646 /* Successfully allocated i pages, free them in __vunmap() */
1647 area->nr_pages = i;
1648 goto fail;
1650 area->pages[i] = page;
1651 if (gfpflags_allow_blocking(gfp_mask))
1652 cond_resched();
1655 if (map_vm_area(area, prot, pages))
1656 goto fail;
1657 return area->addr;
1659 fail:
1660 warn_alloc(gfp_mask,
1661 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1662 (area->nr_pages*PAGE_SIZE), area->size);
1663 vfree(area->addr);
1664 return NULL;
1668 * __vmalloc_node_range - allocate virtually contiguous memory
1669 * @size: allocation size
1670 * @align: desired alignment
1671 * @start: vm area range start
1672 * @end: vm area range end
1673 * @gfp_mask: flags for the page level allocator
1674 * @prot: protection mask for the allocated pages
1675 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1676 * @node: node to use for allocation or NUMA_NO_NODE
1677 * @caller: caller's return address
1679 * Allocate enough pages to cover @size from the page level
1680 * allocator with @gfp_mask flags. Map them into contiguous
1681 * kernel virtual space, using a pagetable protection of @prot.
1683 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1684 unsigned long start, unsigned long end, gfp_t gfp_mask,
1685 pgprot_t prot, unsigned long vm_flags, int node,
1686 const void *caller)
1688 struct vm_struct *area;
1689 void *addr;
1690 unsigned long real_size = size;
1692 size = PAGE_ALIGN(size);
1693 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1694 goto fail;
1696 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1697 vm_flags, start, end, node, gfp_mask, caller);
1698 if (!area)
1699 goto fail;
1701 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1702 if (!addr)
1703 return NULL;
1706 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1707 * flag. It means that vm_struct is not fully initialized.
1708 * Now, it is fully initialized, so remove this flag here.
1710 clear_vm_uninitialized_flag(area);
1713 * A ref_count = 2 is needed because vm_struct allocated in
1714 * __get_vm_area_node() contains a reference to the virtual address of
1715 * the vmalloc'ed block.
1717 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1719 return addr;
1721 fail:
1722 warn_alloc(gfp_mask,
1723 "vmalloc: allocation failure: %lu bytes", real_size);
1724 return NULL;
1728 * __vmalloc_node - allocate virtually contiguous memory
1729 * @size: allocation size
1730 * @align: desired alignment
1731 * @gfp_mask: flags for the page level allocator
1732 * @prot: protection mask for the allocated pages
1733 * @node: node to use for allocation or NUMA_NO_NODE
1734 * @caller: caller's return address
1736 * Allocate enough pages to cover @size from the page level
1737 * allocator with @gfp_mask flags. Map them into contiguous
1738 * kernel virtual space, using a pagetable protection of @prot.
1740 static void *__vmalloc_node(unsigned long size, unsigned long align,
1741 gfp_t gfp_mask, pgprot_t prot,
1742 int node, const void *caller)
1744 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1745 gfp_mask, prot, 0, node, caller);
1748 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1750 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1751 __builtin_return_address(0));
1753 EXPORT_SYMBOL(__vmalloc);
1755 static inline void *__vmalloc_node_flags(unsigned long size,
1756 int node, gfp_t flags)
1758 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1759 node, __builtin_return_address(0));
1763 * vmalloc - allocate virtually contiguous memory
1764 * @size: allocation size
1765 * Allocate enough pages to cover @size from the page level
1766 * allocator and map them into contiguous kernel virtual space.
1768 * For tight control over page level allocator and protection flags
1769 * use __vmalloc() instead.
1771 void *vmalloc(unsigned long size)
1773 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1774 GFP_KERNEL | __GFP_HIGHMEM);
1776 EXPORT_SYMBOL(vmalloc);
1779 * vzalloc - allocate virtually contiguous memory with zero fill
1780 * @size: allocation size
1781 * Allocate enough pages to cover @size from the page level
1782 * allocator and map them into contiguous kernel virtual space.
1783 * The memory allocated is set to zero.
1785 * For tight control over page level allocator and protection flags
1786 * use __vmalloc() instead.
1788 void *vzalloc(unsigned long size)
1790 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1791 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1793 EXPORT_SYMBOL(vzalloc);
1796 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1797 * @size: allocation size
1799 * The resulting memory area is zeroed so it can be mapped to userspace
1800 * without leaking data.
1802 void *vmalloc_user(unsigned long size)
1804 struct vm_struct *area;
1805 void *ret;
1807 ret = __vmalloc_node(size, SHMLBA,
1808 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1809 PAGE_KERNEL, NUMA_NO_NODE,
1810 __builtin_return_address(0));
1811 if (ret) {
1812 area = find_vm_area(ret);
1813 area->flags |= VM_USERMAP;
1815 return ret;
1817 EXPORT_SYMBOL(vmalloc_user);
1820 * vmalloc_node - allocate memory on a specific node
1821 * @size: allocation size
1822 * @node: numa node
1824 * Allocate enough pages to cover @size from the page level
1825 * allocator and map them into contiguous kernel virtual space.
1827 * For tight control over page level allocator and protection flags
1828 * use __vmalloc() instead.
1830 void *vmalloc_node(unsigned long size, int node)
1832 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1833 node, __builtin_return_address(0));
1835 EXPORT_SYMBOL(vmalloc_node);
1838 * vzalloc_node - allocate memory on a specific node with zero fill
1839 * @size: allocation size
1840 * @node: numa node
1842 * Allocate enough pages to cover @size from the page level
1843 * allocator and map them into contiguous kernel virtual space.
1844 * The memory allocated is set to zero.
1846 * For tight control over page level allocator and protection flags
1847 * use __vmalloc_node() instead.
1849 void *vzalloc_node(unsigned long size, int node)
1851 return __vmalloc_node_flags(size, node,
1852 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1854 EXPORT_SYMBOL(vzalloc_node);
1856 #ifndef PAGE_KERNEL_EXEC
1857 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1858 #endif
1861 * vmalloc_exec - allocate virtually contiguous, executable memory
1862 * @size: allocation size
1864 * Kernel-internal function to allocate enough pages to cover @size
1865 * the page level allocator and map them into contiguous and
1866 * executable kernel virtual space.
1868 * For tight control over page level allocator and protection flags
1869 * use __vmalloc() instead.
1872 void *vmalloc_exec(unsigned long size)
1874 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1875 NUMA_NO_NODE, __builtin_return_address(0));
1878 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1879 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1880 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1881 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1882 #else
1883 #define GFP_VMALLOC32 GFP_KERNEL
1884 #endif
1887 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1888 * @size: allocation size
1890 * Allocate enough 32bit PA addressable pages to cover @size from the
1891 * page level allocator and map them into contiguous kernel virtual space.
1893 void *vmalloc_32(unsigned long size)
1895 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1896 NUMA_NO_NODE, __builtin_return_address(0));
1898 EXPORT_SYMBOL(vmalloc_32);
1901 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1902 * @size: allocation size
1904 * The resulting memory area is 32bit addressable and zeroed so it can be
1905 * mapped to userspace without leaking data.
1907 void *vmalloc_32_user(unsigned long size)
1909 struct vm_struct *area;
1910 void *ret;
1912 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1913 NUMA_NO_NODE, __builtin_return_address(0));
1914 if (ret) {
1915 area = find_vm_area(ret);
1916 area->flags |= VM_USERMAP;
1918 return ret;
1920 EXPORT_SYMBOL(vmalloc_32_user);
1923 * small helper routine , copy contents to buf from addr.
1924 * If the page is not present, fill zero.
1927 static int aligned_vread(char *buf, char *addr, unsigned long count)
1929 struct page *p;
1930 int copied = 0;
1932 while (count) {
1933 unsigned long offset, length;
1935 offset = offset_in_page(addr);
1936 length = PAGE_SIZE - offset;
1937 if (length > count)
1938 length = count;
1939 p = vmalloc_to_page(addr);
1941 * To do safe access to this _mapped_ area, we need
1942 * lock. But adding lock here means that we need to add
1943 * overhead of vmalloc()/vfree() calles for this _debug_
1944 * interface, rarely used. Instead of that, we'll use
1945 * kmap() and get small overhead in this access function.
1947 if (p) {
1949 * we can expect USER0 is not used (see vread/vwrite's
1950 * function description)
1952 void *map = kmap_atomic(p);
1953 memcpy(buf, map + offset, length);
1954 kunmap_atomic(map);
1955 } else
1956 memset(buf, 0, length);
1958 addr += length;
1959 buf += length;
1960 copied += length;
1961 count -= length;
1963 return copied;
1966 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1968 struct page *p;
1969 int copied = 0;
1971 while (count) {
1972 unsigned long offset, length;
1974 offset = offset_in_page(addr);
1975 length = PAGE_SIZE - offset;
1976 if (length > count)
1977 length = count;
1978 p = vmalloc_to_page(addr);
1980 * To do safe access to this _mapped_ area, we need
1981 * lock. But adding lock here means that we need to add
1982 * overhead of vmalloc()/vfree() calles for this _debug_
1983 * interface, rarely used. Instead of that, we'll use
1984 * kmap() and get small overhead in this access function.
1986 if (p) {
1988 * we can expect USER0 is not used (see vread/vwrite's
1989 * function description)
1991 void *map = kmap_atomic(p);
1992 memcpy(map + offset, buf, length);
1993 kunmap_atomic(map);
1995 addr += length;
1996 buf += length;
1997 copied += length;
1998 count -= length;
2000 return copied;
2004 * vread() - read vmalloc area in a safe way.
2005 * @buf: buffer for reading data
2006 * @addr: vm address.
2007 * @count: number of bytes to be read.
2009 * Returns # of bytes which addr and buf should be increased.
2010 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2011 * includes any intersect with alive vmalloc area.
2013 * This function checks that addr is a valid vmalloc'ed area, and
2014 * copy data from that area to a given buffer. If the given memory range
2015 * of [addr...addr+count) includes some valid address, data is copied to
2016 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2017 * IOREMAP area is treated as memory hole and no copy is done.
2019 * If [addr...addr+count) doesn't includes any intersects with alive
2020 * vm_struct area, returns 0. @buf should be kernel's buffer.
2022 * Note: In usual ops, vread() is never necessary because the caller
2023 * should know vmalloc() area is valid and can use memcpy().
2024 * This is for routines which have to access vmalloc area without
2025 * any informaion, as /dev/kmem.
2029 long vread(char *buf, char *addr, unsigned long count)
2031 struct vmap_area *va;
2032 struct vm_struct *vm;
2033 char *vaddr, *buf_start = buf;
2034 unsigned long buflen = count;
2035 unsigned long n;
2037 /* Don't allow overflow */
2038 if ((unsigned long) addr + count < count)
2039 count = -(unsigned long) addr;
2041 spin_lock(&vmap_area_lock);
2042 list_for_each_entry(va, &vmap_area_list, list) {
2043 if (!count)
2044 break;
2046 if (!(va->flags & VM_VM_AREA))
2047 continue;
2049 vm = va->vm;
2050 vaddr = (char *) vm->addr;
2051 if (addr >= vaddr + get_vm_area_size(vm))
2052 continue;
2053 while (addr < vaddr) {
2054 if (count == 0)
2055 goto finished;
2056 *buf = '\0';
2057 buf++;
2058 addr++;
2059 count--;
2061 n = vaddr + get_vm_area_size(vm) - addr;
2062 if (n > count)
2063 n = count;
2064 if (!(vm->flags & VM_IOREMAP))
2065 aligned_vread(buf, addr, n);
2066 else /* IOREMAP area is treated as memory hole */
2067 memset(buf, 0, n);
2068 buf += n;
2069 addr += n;
2070 count -= n;
2072 finished:
2073 spin_unlock(&vmap_area_lock);
2075 if (buf == buf_start)
2076 return 0;
2077 /* zero-fill memory holes */
2078 if (buf != buf_start + buflen)
2079 memset(buf, 0, buflen - (buf - buf_start));
2081 return buflen;
2085 * vwrite() - write vmalloc area in a safe way.
2086 * @buf: buffer for source data
2087 * @addr: vm address.
2088 * @count: number of bytes to be read.
2090 * Returns # of bytes which addr and buf should be incresed.
2091 * (same number to @count).
2092 * If [addr...addr+count) doesn't includes any intersect with valid
2093 * vmalloc area, returns 0.
2095 * This function checks that addr is a valid vmalloc'ed area, and
2096 * copy data from a buffer to the given addr. If specified range of
2097 * [addr...addr+count) includes some valid address, data is copied from
2098 * proper area of @buf. If there are memory holes, no copy to hole.
2099 * IOREMAP area is treated as memory hole and no copy is done.
2101 * If [addr...addr+count) doesn't includes any intersects with alive
2102 * vm_struct area, returns 0. @buf should be kernel's buffer.
2104 * Note: In usual ops, vwrite() is never necessary because the caller
2105 * should know vmalloc() area is valid and can use memcpy().
2106 * This is for routines which have to access vmalloc area without
2107 * any informaion, as /dev/kmem.
2110 long vwrite(char *buf, char *addr, unsigned long count)
2112 struct vmap_area *va;
2113 struct vm_struct *vm;
2114 char *vaddr;
2115 unsigned long n, buflen;
2116 int copied = 0;
2118 /* Don't allow overflow */
2119 if ((unsigned long) addr + count < count)
2120 count = -(unsigned long) addr;
2121 buflen = count;
2123 spin_lock(&vmap_area_lock);
2124 list_for_each_entry(va, &vmap_area_list, list) {
2125 if (!count)
2126 break;
2128 if (!(va->flags & VM_VM_AREA))
2129 continue;
2131 vm = va->vm;
2132 vaddr = (char *) vm->addr;
2133 if (addr >= vaddr + get_vm_area_size(vm))
2134 continue;
2135 while (addr < vaddr) {
2136 if (count == 0)
2137 goto finished;
2138 buf++;
2139 addr++;
2140 count--;
2142 n = vaddr + get_vm_area_size(vm) - addr;
2143 if (n > count)
2144 n = count;
2145 if (!(vm->flags & VM_IOREMAP)) {
2146 aligned_vwrite(buf, addr, n);
2147 copied++;
2149 buf += n;
2150 addr += n;
2151 count -= n;
2153 finished:
2154 spin_unlock(&vmap_area_lock);
2155 if (!copied)
2156 return 0;
2157 return buflen;
2161 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2162 * @vma: vma to cover
2163 * @uaddr: target user address to start at
2164 * @kaddr: virtual address of vmalloc kernel memory
2165 * @size: size of map area
2167 * Returns: 0 for success, -Exxx on failure
2169 * This function checks that @kaddr is a valid vmalloc'ed area,
2170 * and that it is big enough to cover the range starting at
2171 * @uaddr in @vma. Will return failure if that criteria isn't
2172 * met.
2174 * Similar to remap_pfn_range() (see mm/memory.c)
2176 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2177 void *kaddr, unsigned long size)
2179 struct vm_struct *area;
2181 size = PAGE_ALIGN(size);
2183 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2184 return -EINVAL;
2186 area = find_vm_area(kaddr);
2187 if (!area)
2188 return -EINVAL;
2190 if (!(area->flags & VM_USERMAP))
2191 return -EINVAL;
2193 if (kaddr + size > area->addr + area->size)
2194 return -EINVAL;
2196 do {
2197 struct page *page = vmalloc_to_page(kaddr);
2198 int ret;
2200 ret = vm_insert_page(vma, uaddr, page);
2201 if (ret)
2202 return ret;
2204 uaddr += PAGE_SIZE;
2205 kaddr += PAGE_SIZE;
2206 size -= PAGE_SIZE;
2207 } while (size > 0);
2209 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2211 return 0;
2213 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2216 * remap_vmalloc_range - map vmalloc pages to userspace
2217 * @vma: vma to cover (map full range of vma)
2218 * @addr: vmalloc memory
2219 * @pgoff: number of pages into addr before first page to map
2221 * Returns: 0 for success, -Exxx on failure
2223 * This function checks that addr is a valid vmalloc'ed area, and
2224 * that it is big enough to cover the vma. Will return failure if
2225 * that criteria isn't met.
2227 * Similar to remap_pfn_range() (see mm/memory.c)
2229 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2230 unsigned long pgoff)
2232 return remap_vmalloc_range_partial(vma, vma->vm_start,
2233 addr + (pgoff << PAGE_SHIFT),
2234 vma->vm_end - vma->vm_start);
2236 EXPORT_SYMBOL(remap_vmalloc_range);
2239 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2240 * have one.
2242 void __weak vmalloc_sync_all(void)
2247 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2249 pte_t ***p = data;
2251 if (p) {
2252 *(*p) = pte;
2253 (*p)++;
2255 return 0;
2259 * alloc_vm_area - allocate a range of kernel address space
2260 * @size: size of the area
2261 * @ptes: returns the PTEs for the address space
2263 * Returns: NULL on failure, vm_struct on success
2265 * This function reserves a range of kernel address space, and
2266 * allocates pagetables to map that range. No actual mappings
2267 * are created.
2269 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2270 * allocated for the VM area are returned.
2272 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2274 struct vm_struct *area;
2276 area = get_vm_area_caller(size, VM_IOREMAP,
2277 __builtin_return_address(0));
2278 if (area == NULL)
2279 return NULL;
2282 * This ensures that page tables are constructed for this region
2283 * of kernel virtual address space and mapped into init_mm.
2285 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2286 size, f, ptes ? &ptes : NULL)) {
2287 free_vm_area(area);
2288 return NULL;
2291 return area;
2293 EXPORT_SYMBOL_GPL(alloc_vm_area);
2295 void free_vm_area(struct vm_struct *area)
2297 struct vm_struct *ret;
2298 ret = remove_vm_area(area->addr);
2299 BUG_ON(ret != area);
2300 kfree(area);
2302 EXPORT_SYMBOL_GPL(free_vm_area);
2304 #ifdef CONFIG_SMP
2305 static struct vmap_area *node_to_va(struct rb_node *n)
2307 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2311 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2312 * @end: target address
2313 * @pnext: out arg for the next vmap_area
2314 * @pprev: out arg for the previous vmap_area
2316 * Returns: %true if either or both of next and prev are found,
2317 * %false if no vmap_area exists
2319 * Find vmap_areas end addresses of which enclose @end. ie. if not
2320 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2322 static bool pvm_find_next_prev(unsigned long end,
2323 struct vmap_area **pnext,
2324 struct vmap_area **pprev)
2326 struct rb_node *n = vmap_area_root.rb_node;
2327 struct vmap_area *va = NULL;
2329 while (n) {
2330 va = rb_entry(n, struct vmap_area, rb_node);
2331 if (end < va->va_end)
2332 n = n->rb_left;
2333 else if (end > va->va_end)
2334 n = n->rb_right;
2335 else
2336 break;
2339 if (!va)
2340 return false;
2342 if (va->va_end > end) {
2343 *pnext = va;
2344 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2345 } else {
2346 *pprev = va;
2347 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2349 return true;
2353 * pvm_determine_end - find the highest aligned address between two vmap_areas
2354 * @pnext: in/out arg for the next vmap_area
2355 * @pprev: in/out arg for the previous vmap_area
2356 * @align: alignment
2358 * Returns: determined end address
2360 * Find the highest aligned address between *@pnext and *@pprev below
2361 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2362 * down address is between the end addresses of the two vmap_areas.
2364 * Please note that the address returned by this function may fall
2365 * inside *@pnext vmap_area. The caller is responsible for checking
2366 * that.
2368 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2369 struct vmap_area **pprev,
2370 unsigned long align)
2372 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2373 unsigned long addr;
2375 if (*pnext)
2376 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2377 else
2378 addr = vmalloc_end;
2380 while (*pprev && (*pprev)->va_end > addr) {
2381 *pnext = *pprev;
2382 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2385 return addr;
2389 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2390 * @offsets: array containing offset of each area
2391 * @sizes: array containing size of each area
2392 * @nr_vms: the number of areas to allocate
2393 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2395 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2396 * vm_structs on success, %NULL on failure
2398 * Percpu allocator wants to use congruent vm areas so that it can
2399 * maintain the offsets among percpu areas. This function allocates
2400 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2401 * be scattered pretty far, distance between two areas easily going up
2402 * to gigabytes. To avoid interacting with regular vmallocs, these
2403 * areas are allocated from top.
2405 * Despite its complicated look, this allocator is rather simple. It
2406 * does everything top-down and scans areas from the end looking for
2407 * matching slot. While scanning, if any of the areas overlaps with
2408 * existing vmap_area, the base address is pulled down to fit the
2409 * area. Scanning is repeated till all the areas fit and then all
2410 * necessary data structres are inserted and the result is returned.
2412 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2413 const size_t *sizes, int nr_vms,
2414 size_t align)
2416 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2417 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2418 struct vmap_area **vas, *prev, *next;
2419 struct vm_struct **vms;
2420 int area, area2, last_area, term_area;
2421 unsigned long base, start, end, last_end;
2422 bool purged = false;
2424 /* verify parameters and allocate data structures */
2425 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2426 for (last_area = 0, area = 0; area < nr_vms; area++) {
2427 start = offsets[area];
2428 end = start + sizes[area];
2430 /* is everything aligned properly? */
2431 BUG_ON(!IS_ALIGNED(offsets[area], align));
2432 BUG_ON(!IS_ALIGNED(sizes[area], align));
2434 /* detect the area with the highest address */
2435 if (start > offsets[last_area])
2436 last_area = area;
2438 for (area2 = 0; area2 < nr_vms; area2++) {
2439 unsigned long start2 = offsets[area2];
2440 unsigned long end2 = start2 + sizes[area2];
2442 if (area2 == area)
2443 continue;
2445 BUG_ON(start2 >= start && start2 < end);
2446 BUG_ON(end2 <= end && end2 > start);
2449 last_end = offsets[last_area] + sizes[last_area];
2451 if (vmalloc_end - vmalloc_start < last_end) {
2452 WARN_ON(true);
2453 return NULL;
2456 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2457 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2458 if (!vas || !vms)
2459 goto err_free2;
2461 for (area = 0; area < nr_vms; area++) {
2462 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2463 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2464 if (!vas[area] || !vms[area])
2465 goto err_free;
2467 retry:
2468 spin_lock(&vmap_area_lock);
2470 /* start scanning - we scan from the top, begin with the last area */
2471 area = term_area = last_area;
2472 start = offsets[area];
2473 end = start + sizes[area];
2475 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2476 base = vmalloc_end - last_end;
2477 goto found;
2479 base = pvm_determine_end(&next, &prev, align) - end;
2481 while (true) {
2482 BUG_ON(next && next->va_end <= base + end);
2483 BUG_ON(prev && prev->va_end > base + end);
2486 * base might have underflowed, add last_end before
2487 * comparing.
2489 if (base + last_end < vmalloc_start + last_end) {
2490 spin_unlock(&vmap_area_lock);
2491 if (!purged) {
2492 purge_vmap_area_lazy();
2493 purged = true;
2494 goto retry;
2496 goto err_free;
2500 * If next overlaps, move base downwards so that it's
2501 * right below next and then recheck.
2503 if (next && next->va_start < base + end) {
2504 base = pvm_determine_end(&next, &prev, align) - end;
2505 term_area = area;
2506 continue;
2510 * If prev overlaps, shift down next and prev and move
2511 * base so that it's right below new next and then
2512 * recheck.
2514 if (prev && prev->va_end > base + start) {
2515 next = prev;
2516 prev = node_to_va(rb_prev(&next->rb_node));
2517 base = pvm_determine_end(&next, &prev, align) - end;
2518 term_area = area;
2519 continue;
2523 * This area fits, move on to the previous one. If
2524 * the previous one is the terminal one, we're done.
2526 area = (area + nr_vms - 1) % nr_vms;
2527 if (area == term_area)
2528 break;
2529 start = offsets[area];
2530 end = start + sizes[area];
2531 pvm_find_next_prev(base + end, &next, &prev);
2533 found:
2534 /* we've found a fitting base, insert all va's */
2535 for (area = 0; area < nr_vms; area++) {
2536 struct vmap_area *va = vas[area];
2538 va->va_start = base + offsets[area];
2539 va->va_end = va->va_start + sizes[area];
2540 __insert_vmap_area(va);
2543 vmap_area_pcpu_hole = base + offsets[last_area];
2545 spin_unlock(&vmap_area_lock);
2547 /* insert all vm's */
2548 for (area = 0; area < nr_vms; area++)
2549 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2550 pcpu_get_vm_areas);
2552 kfree(vas);
2553 return vms;
2555 err_free:
2556 for (area = 0; area < nr_vms; area++) {
2557 kfree(vas[area]);
2558 kfree(vms[area]);
2560 err_free2:
2561 kfree(vas);
2562 kfree(vms);
2563 return NULL;
2567 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2568 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2569 * @nr_vms: the number of allocated areas
2571 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2573 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2575 int i;
2577 for (i = 0; i < nr_vms; i++)
2578 free_vm_area(vms[i]);
2579 kfree(vms);
2581 #endif /* CONFIG_SMP */
2583 #ifdef CONFIG_PROC_FS
2584 static void *s_start(struct seq_file *m, loff_t *pos)
2585 __acquires(&vmap_area_lock)
2587 loff_t n = *pos;
2588 struct vmap_area *va;
2590 spin_lock(&vmap_area_lock);
2591 va = list_first_entry(&vmap_area_list, typeof(*va), list);
2592 while (n > 0 && &va->list != &vmap_area_list) {
2593 n--;
2594 va = list_next_entry(va, list);
2596 if (!n && &va->list != &vmap_area_list)
2597 return va;
2599 return NULL;
2603 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2605 struct vmap_area *va = p, *next;
2607 ++*pos;
2608 next = list_next_entry(va, list);
2609 if (&next->list != &vmap_area_list)
2610 return next;
2612 return NULL;
2615 static void s_stop(struct seq_file *m, void *p)
2616 __releases(&vmap_area_lock)
2618 spin_unlock(&vmap_area_lock);
2621 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2623 if (IS_ENABLED(CONFIG_NUMA)) {
2624 unsigned int nr, *counters = m->private;
2626 if (!counters)
2627 return;
2629 if (v->flags & VM_UNINITIALIZED)
2630 return;
2631 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2632 smp_rmb();
2634 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2636 for (nr = 0; nr < v->nr_pages; nr++)
2637 counters[page_to_nid(v->pages[nr])]++;
2639 for_each_node_state(nr, N_HIGH_MEMORY)
2640 if (counters[nr])
2641 seq_printf(m, " N%u=%u", nr, counters[nr]);
2645 static int s_show(struct seq_file *m, void *p)
2647 struct vmap_area *va = p;
2648 struct vm_struct *v;
2651 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2652 * behalf of vmap area is being tear down or vm_map_ram allocation.
2654 if (!(va->flags & VM_VM_AREA))
2655 return 0;
2657 v = va->vm;
2659 seq_printf(m, "0x%pK-0x%pK %7ld",
2660 v->addr, v->addr + v->size, v->size);
2662 if (v->caller)
2663 seq_printf(m, " %pS", v->caller);
2665 if (v->nr_pages)
2666 seq_printf(m, " pages=%d", v->nr_pages);
2668 if (v->phys_addr)
2669 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2671 if (v->flags & VM_IOREMAP)
2672 seq_puts(m, " ioremap");
2674 if (v->flags & VM_ALLOC)
2675 seq_puts(m, " vmalloc");
2677 if (v->flags & VM_MAP)
2678 seq_puts(m, " vmap");
2680 if (v->flags & VM_USERMAP)
2681 seq_puts(m, " user");
2683 if (is_vmalloc_addr(v->pages))
2684 seq_puts(m, " vpages");
2686 show_numa_info(m, v);
2687 seq_putc(m, '\n');
2688 return 0;
2691 static const struct seq_operations vmalloc_op = {
2692 .start = s_start,
2693 .next = s_next,
2694 .stop = s_stop,
2695 .show = s_show,
2698 static int vmalloc_open(struct inode *inode, struct file *file)
2700 if (IS_ENABLED(CONFIG_NUMA))
2701 return seq_open_private(file, &vmalloc_op,
2702 nr_node_ids * sizeof(unsigned int));
2703 else
2704 return seq_open(file, &vmalloc_op);
2707 static const struct file_operations proc_vmalloc_operations = {
2708 .open = vmalloc_open,
2709 .read = seq_read,
2710 .llseek = seq_lseek,
2711 .release = seq_release_private,
2714 static int __init proc_vmalloc_init(void)
2716 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2717 return 0;
2719 module_init(proc_vmalloc_init);
2721 #endif