staging: unisys: replace kzalloc/kfree with UISMALLOC/UISFREE
[linux/fpc-iii.git] / arch / powerpc / kernel / signal_32.c
bloba67e00aa3caad1353630f4477a8cec38fb8461e4
1 /*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
10 * Derived from "arch/i386/kernel/signal.c"
11 * Copyright (C) 1991, 1992 Linus Torvalds
12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
55 #include "signal.h"
57 #undef DEBUG_SIG
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn compat_sys_rt_sigreturn
61 #define sys_swapcontext compat_sys_swapcontext
62 #define sys_sigreturn compat_sys_sigreturn
64 #define old_sigaction old_sigaction32
65 #define sigcontext sigcontext32
66 #define mcontext mcontext32
67 #define ucontext ucontext32
69 #define __save_altstack __compat_save_altstack
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end. We need to check for this case.
75 #define UCONTEXTSIZEWITHOUTVSX \
76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs. This is what we need
82 * to do when a signal has been delivered.
85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG ELF_NVRREG32
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
97 compat_sigset_t cset;
99 switch (_NSIG_WORDS) {
100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 cset.sig[7] = set->sig[3] >> 32;
102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 cset.sig[5] = set->sig[2] >> 32;
104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 cset.sig[3] = set->sig[1] >> 32;
106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 cset.sig[1] = set->sig[0] >> 32;
109 return copy_to_user(uset, &cset, sizeof(*uset));
112 static inline int get_sigset_t(sigset_t *set,
113 const compat_sigset_t __user *uset)
115 compat_sigset_t s32;
117 if (copy_from_user(&s32, uset, sizeof(*uset)))
118 return -EFAULT;
121 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 * in the "wrong" endian in 32-bit user storage).
124 switch (_NSIG_WORDS) {
125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
130 return 0;
133 #define to_user_ptr(p) ptr_to_compat(p)
134 #define from_user_ptr(p) compat_ptr(p)
136 static inline int save_general_regs(struct pt_regs *regs,
137 struct mcontext __user *frame)
139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 int i;
142 WARN_ON(!FULL_REGS(regs));
144 for (i = 0; i <= PT_RESULT; i ++) {
145 if (i == 14 && !FULL_REGS(regs))
146 i = 32;
147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 return -EFAULT;
150 return 0;
153 static inline int restore_general_regs(struct pt_regs *regs,
154 struct mcontext __user *sr)
156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 int i;
159 for (i = 0; i <= PT_RESULT; i++) {
160 if ((i == PT_MSR) || (i == PT_SOFTE))
161 continue;
162 if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 return -EFAULT;
165 return 0;
168 #else /* CONFIG_PPC64 */
170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
174 return copy_to_user(uset, set, sizeof(*uset));
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
179 return copy_from_user(set, uset, sizeof(*uset));
182 #define to_user_ptr(p) ((unsigned long)(p))
183 #define from_user_ptr(p) ((void __user *)(p))
185 static inline int save_general_regs(struct pt_regs *regs,
186 struct mcontext __user *frame)
188 WARN_ON(!FULL_REGS(regs));
189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
192 static inline int restore_general_regs(struct pt_regs *regs,
193 struct mcontext __user *sr)
195 /* copy up to but not including MSR */
196 if (__copy_from_user(regs, &sr->mc_gregs,
197 PT_MSR * sizeof(elf_greg_t)))
198 return -EFAULT;
199 /* copy from orig_r3 (the word after the MSR) up to the end */
200 if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 return -EFAULT;
203 return 0;
205 #endif
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 * an ABI gap of 56 words
211 * an mcontext struct
212 * a sigcontext struct
213 * a gap of __SIGNAL_FRAMESIZE bytes
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
219 struct sigframe {
220 struct sigcontext sctx; /* the sigcontext */
221 struct mcontext mctx; /* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 struct sigcontext sctx_transact;
224 struct mcontext mctx_transact;
225 #endif
227 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 * regs and 18 fp regs below sp before decrementing it.
230 int abigap[56];
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp mc_pad
237 * When we have rt signals to deliver, we set up on the
238 * user stack, going down from the original stack pointer:
239 * one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 * a gap of __SIGNAL_FRAMESIZE+16 bytes
241 * (the +16 is to get the siginfo and ucontext in the same
242 * positions as in older kernels).
244 * Each of these things must be a multiple of 16 bytes in size.
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 compat_siginfo_t info;
250 #else
251 struct siginfo info;
252 #endif
253 struct ucontext uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 struct ucontext uc_transact;
256 #endif
258 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 * regs and 18 fp regs below sp before decrementing it.
261 int abigap[56];
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 struct task_struct *task)
268 u64 buf[ELF_NFPREG];
269 int i;
271 /* save FPR copy to local buffer then write to the thread_struct */
272 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 buf[i] = task->thread.TS_FPR(i);
274 buf[i] = task->thread.fp_state.fpscr;
275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 void __user *from)
281 u64 buf[ELF_NFPREG];
282 int i;
284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 return 1;
286 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 task->thread.TS_FPR(i) = buf[i];
288 task->thread.fp_state.fpscr = buf[i];
290 return 0;
293 unsigned long copy_vsx_to_user(void __user *to,
294 struct task_struct *task)
296 u64 buf[ELF_NVSRHALFREG];
297 int i;
299 /* save FPR copy to local buffer then write to the thread_struct */
300 for (i = 0; i < ELF_NVSRHALFREG; i++)
301 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 void __user *from)
308 u64 buf[ELF_NVSRHALFREG];
309 int i;
311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 return 1;
313 for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 return 0;
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_transact_fpr_to_user(void __user *to,
320 struct task_struct *task)
322 u64 buf[ELF_NFPREG];
323 int i;
325 /* save FPR copy to local buffer then write to the thread_struct */
326 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 buf[i] = task->thread.TS_TRANS_FPR(i);
328 buf[i] = task->thread.transact_fp.fpscr;
329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
332 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333 void __user *from)
335 u64 buf[ELF_NFPREG];
336 int i;
338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 return 1;
340 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 task->thread.TS_TRANS_FPR(i) = buf[i];
342 task->thread.transact_fp.fpscr = buf[i];
344 return 0;
347 unsigned long copy_transact_vsx_to_user(void __user *to,
348 struct task_struct *task)
350 u64 buf[ELF_NVSRHALFREG];
351 int i;
353 /* save FPR copy to local buffer then write to the thread_struct */
354 for (i = 0; i < ELF_NVSRHALFREG; i++)
355 buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
359 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360 void __user *from)
362 u64 buf[ELF_NVSRHALFREG];
363 int i;
365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 return 1;
367 for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 return 0;
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 struct task_struct *task)
376 return __copy_to_user(to, task->thread.fp_state.fpr,
377 ELF_NFPREG * sizeof(double));
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 void __user *from)
383 return __copy_from_user(task->thread.fp_state.fpr, from,
384 ELF_NFPREG * sizeof(double));
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_transact_fpr_to_user(void __user *to,
389 struct task_struct *task)
391 return __copy_to_user(to, task->thread.transact_fp.fpr,
392 ELF_NFPREG * sizeof(double));
395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396 void __user *from)
398 return __copy_from_user(task->thread.transact_fp.fpr, from,
399 ELF_NFPREG * sizeof(double));
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 struct mcontext __user *tm_frame, int sigret,
411 int ctx_has_vsx_region)
413 unsigned long msr = regs->msr;
415 /* Make sure floating point registers are stored in regs */
416 flush_fp_to_thread(current);
418 /* save general registers */
419 if (save_general_regs(regs, frame))
420 return 1;
422 #ifdef CONFIG_ALTIVEC
423 /* save altivec registers */
424 if (current->thread.used_vr) {
425 flush_altivec_to_thread(current);
426 if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
427 ELF_NVRREG * sizeof(vector128)))
428 return 1;
429 /* set MSR_VEC in the saved MSR value to indicate that
430 frame->mc_vregs contains valid data */
431 msr |= MSR_VEC;
433 /* else assert((regs->msr & MSR_VEC) == 0) */
435 /* We always copy to/from vrsave, it's 0 if we don't have or don't
436 * use altivec. Since VSCR only contains 32 bits saved in the least
437 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438 * most significant bits of that same vector. --BenH
439 * Note that the current VRSAVE value is in the SPR at this point.
441 if (cpu_has_feature(CPU_FTR_ALTIVEC))
442 current->thread.vrsave = mfspr(SPRN_VRSAVE);
443 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
444 return 1;
445 #endif /* CONFIG_ALTIVEC */
446 if (copy_fpr_to_user(&frame->mc_fregs, current))
447 return 1;
450 * Clear the MSR VSX bit to indicate there is no valid state attached
451 * to this context, except in the specific case below where we set it.
453 msr &= ~MSR_VSX;
454 #ifdef CONFIG_VSX
456 * Copy VSR 0-31 upper half from thread_struct to local
457 * buffer, then write that to userspace. Also set MSR_VSX in
458 * the saved MSR value to indicate that frame->mc_vregs
459 * contains valid data
461 if (current->thread.used_vsr && ctx_has_vsx_region) {
462 __giveup_vsx(current);
463 if (copy_vsx_to_user(&frame->mc_vsregs, current))
464 return 1;
465 msr |= MSR_VSX;
467 #endif /* CONFIG_VSX */
468 #ifdef CONFIG_SPE
469 /* save spe registers */
470 if (current->thread.used_spe) {
471 flush_spe_to_thread(current);
472 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
473 ELF_NEVRREG * sizeof(u32)))
474 return 1;
475 /* set MSR_SPE in the saved MSR value to indicate that
476 frame->mc_vregs contains valid data */
477 msr |= MSR_SPE;
479 /* else assert((regs->msr & MSR_SPE) == 0) */
481 /* We always copy to/from spefscr */
482 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
483 return 1;
484 #endif /* CONFIG_SPE */
486 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
487 return 1;
488 /* We need to write 0 the MSR top 32 bits in the tm frame so that we
489 * can check it on the restore to see if TM is active
491 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
492 return 1;
494 if (sigret) {
495 /* Set up the sigreturn trampoline: li r0,sigret; sc */
496 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
497 || __put_user(0x44000002UL, &frame->tramp[1]))
498 return 1;
499 flush_icache_range((unsigned long) &frame->tramp[0],
500 (unsigned long) &frame->tramp[2]);
503 return 0;
506 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
508 * Save the current user registers on the user stack.
509 * We only save the altivec/spe registers if the process has used
510 * altivec/spe instructions at some point.
511 * We also save the transactional registers to a second ucontext in the
512 * frame.
514 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
516 static int save_tm_user_regs(struct pt_regs *regs,
517 struct mcontext __user *frame,
518 struct mcontext __user *tm_frame, int sigret)
520 unsigned long msr = regs->msr;
522 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
523 * just indicates to userland that we were doing a transaction, but we
524 * don't want to return in transactional state. This also ensures
525 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
527 regs->msr &= ~MSR_TS_MASK;
529 /* Make sure floating point registers are stored in regs */
530 flush_fp_to_thread(current);
532 /* Save both sets of general registers */
533 if (save_general_regs(&current->thread.ckpt_regs, frame)
534 || save_general_regs(regs, tm_frame))
535 return 1;
537 /* Stash the top half of the 64bit MSR into the 32bit MSR word
538 * of the transactional mcontext. This way we have a backward-compatible
539 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
540 * also look at what type of transaction (T or S) was active at the
541 * time of the signal.
543 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
544 return 1;
546 #ifdef CONFIG_ALTIVEC
547 /* save altivec registers */
548 if (current->thread.used_vr) {
549 flush_altivec_to_thread(current);
550 if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
551 ELF_NVRREG * sizeof(vector128)))
552 return 1;
553 if (msr & MSR_VEC) {
554 if (__copy_to_user(&tm_frame->mc_vregs,
555 &current->thread.transact_vr,
556 ELF_NVRREG * sizeof(vector128)))
557 return 1;
558 } else {
559 if (__copy_to_user(&tm_frame->mc_vregs,
560 &current->thread.vr_state,
561 ELF_NVRREG * sizeof(vector128)))
562 return 1;
565 /* set MSR_VEC in the saved MSR value to indicate that
566 * frame->mc_vregs contains valid data
568 msr |= MSR_VEC;
571 /* We always copy to/from vrsave, it's 0 if we don't have or don't
572 * use altivec. Since VSCR only contains 32 bits saved in the least
573 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
574 * most significant bits of that same vector. --BenH
576 if (cpu_has_feature(CPU_FTR_ALTIVEC))
577 current->thread.vrsave = mfspr(SPRN_VRSAVE);
578 if (__put_user(current->thread.vrsave,
579 (u32 __user *)&frame->mc_vregs[32]))
580 return 1;
581 if (msr & MSR_VEC) {
582 if (__put_user(current->thread.transact_vrsave,
583 (u32 __user *)&tm_frame->mc_vregs[32]))
584 return 1;
585 } else {
586 if (__put_user(current->thread.vrsave,
587 (u32 __user *)&tm_frame->mc_vregs[32]))
588 return 1;
590 #endif /* CONFIG_ALTIVEC */
592 if (copy_fpr_to_user(&frame->mc_fregs, current))
593 return 1;
594 if (msr & MSR_FP) {
595 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
596 return 1;
597 } else {
598 if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
599 return 1;
602 #ifdef CONFIG_VSX
604 * Copy VSR 0-31 upper half from thread_struct to local
605 * buffer, then write that to userspace. Also set MSR_VSX in
606 * the saved MSR value to indicate that frame->mc_vregs
607 * contains valid data
609 if (current->thread.used_vsr) {
610 __giveup_vsx(current);
611 if (copy_vsx_to_user(&frame->mc_vsregs, current))
612 return 1;
613 if (msr & MSR_VSX) {
614 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
615 current))
616 return 1;
617 } else {
618 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
619 return 1;
622 msr |= MSR_VSX;
624 #endif /* CONFIG_VSX */
625 #ifdef CONFIG_SPE
626 /* SPE regs are not checkpointed with TM, so this section is
627 * simply the same as in save_user_regs().
629 if (current->thread.used_spe) {
630 flush_spe_to_thread(current);
631 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
632 ELF_NEVRREG * sizeof(u32)))
633 return 1;
634 /* set MSR_SPE in the saved MSR value to indicate that
635 * frame->mc_vregs contains valid data */
636 msr |= MSR_SPE;
639 /* We always copy to/from spefscr */
640 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
641 return 1;
642 #endif /* CONFIG_SPE */
644 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
645 return 1;
646 if (sigret) {
647 /* Set up the sigreturn trampoline: li r0,sigret; sc */
648 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
649 || __put_user(0x44000002UL, &frame->tramp[1]))
650 return 1;
651 flush_icache_range((unsigned long) &frame->tramp[0],
652 (unsigned long) &frame->tramp[2]);
655 return 0;
657 #endif
660 * Restore the current user register values from the user stack,
661 * (except for MSR).
663 static long restore_user_regs(struct pt_regs *regs,
664 struct mcontext __user *sr, int sig)
666 long err;
667 unsigned int save_r2 = 0;
668 unsigned long msr;
669 #ifdef CONFIG_VSX
670 int i;
671 #endif
674 * restore general registers but not including MSR or SOFTE. Also
675 * take care of keeping r2 (TLS) intact if not a signal
677 if (!sig)
678 save_r2 = (unsigned int)regs->gpr[2];
679 err = restore_general_regs(regs, sr);
680 regs->trap = 0;
681 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
682 if (!sig)
683 regs->gpr[2] = (unsigned long) save_r2;
684 if (err)
685 return 1;
687 /* if doing signal return, restore the previous little-endian mode */
688 if (sig)
689 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
692 * Do this before updating the thread state in
693 * current->thread.fpr/vr/evr. That way, if we get preempted
694 * and another task grabs the FPU/Altivec/SPE, it won't be
695 * tempted to save the current CPU state into the thread_struct
696 * and corrupt what we are writing there.
698 discard_lazy_cpu_state();
700 #ifdef CONFIG_ALTIVEC
702 * Force the process to reload the altivec registers from
703 * current->thread when it next does altivec instructions
705 regs->msr &= ~MSR_VEC;
706 if (msr & MSR_VEC) {
707 /* restore altivec registers from the stack */
708 if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
709 sizeof(sr->mc_vregs)))
710 return 1;
711 } else if (current->thread.used_vr)
712 memset(&current->thread.vr_state, 0,
713 ELF_NVRREG * sizeof(vector128));
715 /* Always get VRSAVE back */
716 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
717 return 1;
718 if (cpu_has_feature(CPU_FTR_ALTIVEC))
719 mtspr(SPRN_VRSAVE, current->thread.vrsave);
720 #endif /* CONFIG_ALTIVEC */
721 if (copy_fpr_from_user(current, &sr->mc_fregs))
722 return 1;
724 #ifdef CONFIG_VSX
726 * Force the process to reload the VSX registers from
727 * current->thread when it next does VSX instruction.
729 regs->msr &= ~MSR_VSX;
730 if (msr & MSR_VSX) {
732 * Restore altivec registers from the stack to a local
733 * buffer, then write this out to the thread_struct
735 if (copy_vsx_from_user(current, &sr->mc_vsregs))
736 return 1;
737 } else if (current->thread.used_vsr)
738 for (i = 0; i < 32 ; i++)
739 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
740 #endif /* CONFIG_VSX */
742 * force the process to reload the FP registers from
743 * current->thread when it next does FP instructions
745 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
747 #ifdef CONFIG_SPE
748 /* force the process to reload the spe registers from
749 current->thread when it next does spe instructions */
750 regs->msr &= ~MSR_SPE;
751 if (msr & MSR_SPE) {
752 /* restore spe registers from the stack */
753 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
754 ELF_NEVRREG * sizeof(u32)))
755 return 1;
756 } else if (current->thread.used_spe)
757 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
759 /* Always get SPEFSCR back */
760 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
761 return 1;
762 #endif /* CONFIG_SPE */
764 return 0;
767 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
769 * Restore the current user register values from the user stack, except for
770 * MSR, and recheckpoint the original checkpointed register state for processes
771 * in transactions.
773 static long restore_tm_user_regs(struct pt_regs *regs,
774 struct mcontext __user *sr,
775 struct mcontext __user *tm_sr)
777 long err;
778 unsigned long msr, msr_hi;
779 #ifdef CONFIG_VSX
780 int i;
781 #endif
784 * restore general registers but not including MSR or SOFTE. Also
785 * take care of keeping r2 (TLS) intact if not a signal.
786 * See comment in signal_64.c:restore_tm_sigcontexts();
787 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
788 * were set by the signal delivery.
790 err = restore_general_regs(regs, tm_sr);
791 err |= restore_general_regs(&current->thread.ckpt_regs, sr);
793 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
795 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
796 if (err)
797 return 1;
799 /* Restore the previous little-endian mode */
800 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
803 * Do this before updating the thread state in
804 * current->thread.fpr/vr/evr. That way, if we get preempted
805 * and another task grabs the FPU/Altivec/SPE, it won't be
806 * tempted to save the current CPU state into the thread_struct
807 * and corrupt what we are writing there.
809 discard_lazy_cpu_state();
811 #ifdef CONFIG_ALTIVEC
812 regs->msr &= ~MSR_VEC;
813 if (msr & MSR_VEC) {
814 /* restore altivec registers from the stack */
815 if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
816 sizeof(sr->mc_vregs)) ||
817 __copy_from_user(&current->thread.transact_vr,
818 &tm_sr->mc_vregs,
819 sizeof(sr->mc_vregs)))
820 return 1;
821 } else if (current->thread.used_vr) {
822 memset(&current->thread.vr_state, 0,
823 ELF_NVRREG * sizeof(vector128));
824 memset(&current->thread.transact_vr, 0,
825 ELF_NVRREG * sizeof(vector128));
828 /* Always get VRSAVE back */
829 if (__get_user(current->thread.vrsave,
830 (u32 __user *)&sr->mc_vregs[32]) ||
831 __get_user(current->thread.transact_vrsave,
832 (u32 __user *)&tm_sr->mc_vregs[32]))
833 return 1;
834 if (cpu_has_feature(CPU_FTR_ALTIVEC))
835 mtspr(SPRN_VRSAVE, current->thread.vrsave);
836 #endif /* CONFIG_ALTIVEC */
838 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
840 if (copy_fpr_from_user(current, &sr->mc_fregs) ||
841 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
842 return 1;
844 #ifdef CONFIG_VSX
845 regs->msr &= ~MSR_VSX;
846 if (msr & MSR_VSX) {
848 * Restore altivec registers from the stack to a local
849 * buffer, then write this out to the thread_struct
851 if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
852 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
853 return 1;
854 } else if (current->thread.used_vsr)
855 for (i = 0; i < 32 ; i++) {
856 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
857 current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
859 #endif /* CONFIG_VSX */
861 #ifdef CONFIG_SPE
862 /* SPE regs are not checkpointed with TM, so this section is
863 * simply the same as in restore_user_regs().
865 regs->msr &= ~MSR_SPE;
866 if (msr & MSR_SPE) {
867 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
868 ELF_NEVRREG * sizeof(u32)))
869 return 1;
870 } else if (current->thread.used_spe)
871 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
873 /* Always get SPEFSCR back */
874 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
875 + ELF_NEVRREG))
876 return 1;
877 #endif /* CONFIG_SPE */
879 /* Now, recheckpoint. This loads up all of the checkpointed (older)
880 * registers, including FP and V[S]Rs. After recheckpointing, the
881 * transactional versions should be loaded.
883 tm_enable();
884 /* This loads the checkpointed FP/VEC state, if used */
885 tm_recheckpoint(&current->thread, msr);
886 /* Get the top half of the MSR */
887 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
888 return 1;
889 /* Pull in MSR TM from user context */
890 regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
892 /* This loads the speculative FP/VEC state, if used */
893 if (msr & MSR_FP) {
894 do_load_up_transact_fpu(&current->thread);
895 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
897 #ifdef CONFIG_ALTIVEC
898 if (msr & MSR_VEC) {
899 do_load_up_transact_altivec(&current->thread);
900 regs->msr |= MSR_VEC;
902 #endif
904 return 0;
906 #endif
908 #ifdef CONFIG_PPC64
909 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
911 int err;
913 if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
914 return -EFAULT;
916 /* If you change siginfo_t structure, please be sure
917 * this code is fixed accordingly.
918 * It should never copy any pad contained in the structure
919 * to avoid security leaks, but must copy the generic
920 * 3 ints plus the relevant union member.
921 * This routine must convert siginfo from 64bit to 32bit as well
922 * at the same time.
924 err = __put_user(s->si_signo, &d->si_signo);
925 err |= __put_user(s->si_errno, &d->si_errno);
926 err |= __put_user((short)s->si_code, &d->si_code);
927 if (s->si_code < 0)
928 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
929 SI_PAD_SIZE32);
930 else switch(s->si_code >> 16) {
931 case __SI_CHLD >> 16:
932 err |= __put_user(s->si_pid, &d->si_pid);
933 err |= __put_user(s->si_uid, &d->si_uid);
934 err |= __put_user(s->si_utime, &d->si_utime);
935 err |= __put_user(s->si_stime, &d->si_stime);
936 err |= __put_user(s->si_status, &d->si_status);
937 break;
938 case __SI_FAULT >> 16:
939 err |= __put_user((unsigned int)(unsigned long)s->si_addr,
940 &d->si_addr);
941 break;
942 case __SI_POLL >> 16:
943 err |= __put_user(s->si_band, &d->si_band);
944 err |= __put_user(s->si_fd, &d->si_fd);
945 break;
946 case __SI_TIMER >> 16:
947 err |= __put_user(s->si_tid, &d->si_tid);
948 err |= __put_user(s->si_overrun, &d->si_overrun);
949 err |= __put_user(s->si_int, &d->si_int);
950 break;
951 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */
952 case __SI_MESGQ >> 16:
953 err |= __put_user(s->si_int, &d->si_int);
954 /* fallthrough */
955 case __SI_KILL >> 16:
956 default:
957 err |= __put_user(s->si_pid, &d->si_pid);
958 err |= __put_user(s->si_uid, &d->si_uid);
959 break;
961 return err;
964 #define copy_siginfo_to_user copy_siginfo_to_user32
966 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
968 memset(to, 0, sizeof *to);
970 if (copy_from_user(to, from, 3*sizeof(int)) ||
971 copy_from_user(to->_sifields._pad,
972 from->_sifields._pad, SI_PAD_SIZE32))
973 return -EFAULT;
975 return 0;
977 #endif /* CONFIG_PPC64 */
980 * Set up a signal frame for a "real-time" signal handler
981 * (one which gets siginfo).
983 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
984 siginfo_t *info, sigset_t *oldset,
985 struct pt_regs *regs)
987 struct rt_sigframe __user *rt_sf;
988 struct mcontext __user *frame;
989 struct mcontext __user *tm_frame = NULL;
990 void __user *addr;
991 unsigned long newsp = 0;
992 int sigret;
993 unsigned long tramp;
995 /* Set up Signal Frame */
996 /* Put a Real Time Context onto stack */
997 rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
998 addr = rt_sf;
999 if (unlikely(rt_sf == NULL))
1000 goto badframe;
1002 /* Put the siginfo & fill in most of the ucontext */
1003 if (copy_siginfo_to_user(&rt_sf->info, info)
1004 || __put_user(0, &rt_sf->uc.uc_flags)
1005 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1006 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1007 &rt_sf->uc.uc_regs)
1008 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1009 goto badframe;
1011 /* Save user registers on the stack */
1012 frame = &rt_sf->uc.uc_mcontext;
1013 addr = frame;
1014 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1015 sigret = 0;
1016 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1017 } else {
1018 sigret = __NR_rt_sigreturn;
1019 tramp = (unsigned long) frame->tramp;
1022 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1023 tm_frame = &rt_sf->uc_transact.uc_mcontext;
1024 if (MSR_TM_ACTIVE(regs->msr)) {
1025 if (__put_user((unsigned long)&rt_sf->uc_transact,
1026 &rt_sf->uc.uc_link) ||
1027 __put_user((unsigned long)tm_frame,
1028 &rt_sf->uc_transact.uc_regs))
1029 goto badframe;
1030 if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1031 goto badframe;
1033 else
1034 #endif
1036 if (__put_user(0, &rt_sf->uc.uc_link))
1037 goto badframe;
1038 if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1039 goto badframe;
1041 regs->link = tramp;
1043 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
1045 /* create a stack frame for the caller of the handler */
1046 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1047 addr = (void __user *)regs->gpr[1];
1048 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1049 goto badframe;
1051 /* Fill registers for signal handler */
1052 regs->gpr[1] = newsp;
1053 regs->gpr[3] = sig;
1054 regs->gpr[4] = (unsigned long) &rt_sf->info;
1055 regs->gpr[5] = (unsigned long) &rt_sf->uc;
1056 regs->gpr[6] = (unsigned long) rt_sf;
1057 regs->nip = (unsigned long) ka->sa.sa_handler;
1058 /* enter the signal handler in native-endian mode */
1059 regs->msr &= ~MSR_LE;
1060 regs->msr |= (MSR_KERNEL & MSR_LE);
1061 return 1;
1063 badframe:
1064 #ifdef DEBUG_SIG
1065 printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1066 regs, frame, newsp);
1067 #endif
1068 if (show_unhandled_signals)
1069 printk_ratelimited(KERN_INFO
1070 "%s[%d]: bad frame in handle_rt_signal32: "
1071 "%p nip %08lx lr %08lx\n",
1072 current->comm, current->pid,
1073 addr, regs->nip, regs->link);
1075 force_sigsegv(sig, current);
1076 return 0;
1079 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1081 sigset_t set;
1082 struct mcontext __user *mcp;
1084 if (get_sigset_t(&set, &ucp->uc_sigmask))
1085 return -EFAULT;
1086 #ifdef CONFIG_PPC64
1088 u32 cmcp;
1090 if (__get_user(cmcp, &ucp->uc_regs))
1091 return -EFAULT;
1092 mcp = (struct mcontext __user *)(u64)cmcp;
1093 /* no need to check access_ok(mcp), since mcp < 4GB */
1095 #else
1096 if (__get_user(mcp, &ucp->uc_regs))
1097 return -EFAULT;
1098 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1099 return -EFAULT;
1100 #endif
1101 set_current_blocked(&set);
1102 if (restore_user_regs(regs, mcp, sig))
1103 return -EFAULT;
1105 return 0;
1108 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1109 static int do_setcontext_tm(struct ucontext __user *ucp,
1110 struct ucontext __user *tm_ucp,
1111 struct pt_regs *regs)
1113 sigset_t set;
1114 struct mcontext __user *mcp;
1115 struct mcontext __user *tm_mcp;
1116 u32 cmcp;
1117 u32 tm_cmcp;
1119 if (get_sigset_t(&set, &ucp->uc_sigmask))
1120 return -EFAULT;
1122 if (__get_user(cmcp, &ucp->uc_regs) ||
1123 __get_user(tm_cmcp, &tm_ucp->uc_regs))
1124 return -EFAULT;
1125 mcp = (struct mcontext __user *)(u64)cmcp;
1126 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1127 /* no need to check access_ok(mcp), since mcp < 4GB */
1129 set_current_blocked(&set);
1130 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1131 return -EFAULT;
1133 return 0;
1135 #endif
1137 long sys_swapcontext(struct ucontext __user *old_ctx,
1138 struct ucontext __user *new_ctx,
1139 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1141 unsigned char tmp;
1142 int ctx_has_vsx_region = 0;
1144 #ifdef CONFIG_PPC64
1145 unsigned long new_msr = 0;
1147 if (new_ctx) {
1148 struct mcontext __user *mcp;
1149 u32 cmcp;
1152 * Get pointer to the real mcontext. No need for
1153 * access_ok since we are dealing with compat
1154 * pointers.
1156 if (__get_user(cmcp, &new_ctx->uc_regs))
1157 return -EFAULT;
1158 mcp = (struct mcontext __user *)(u64)cmcp;
1159 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1160 return -EFAULT;
1163 * Check that the context is not smaller than the original
1164 * size (with VMX but without VSX)
1166 if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1167 return -EINVAL;
1169 * If the new context state sets the MSR VSX bits but
1170 * it doesn't provide VSX state.
1172 if ((ctx_size < sizeof(struct ucontext)) &&
1173 (new_msr & MSR_VSX))
1174 return -EINVAL;
1175 /* Does the context have enough room to store VSX data? */
1176 if (ctx_size >= sizeof(struct ucontext))
1177 ctx_has_vsx_region = 1;
1178 #else
1179 /* Context size is for future use. Right now, we only make sure
1180 * we are passed something we understand
1182 if (ctx_size < sizeof(struct ucontext))
1183 return -EINVAL;
1184 #endif
1185 if (old_ctx != NULL) {
1186 struct mcontext __user *mctx;
1189 * old_ctx might not be 16-byte aligned, in which
1190 * case old_ctx->uc_mcontext won't be either.
1191 * Because we have the old_ctx->uc_pad2 field
1192 * before old_ctx->uc_mcontext, we need to round down
1193 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1195 mctx = (struct mcontext __user *)
1196 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1197 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1198 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1199 || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1200 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1201 return -EFAULT;
1203 if (new_ctx == NULL)
1204 return 0;
1205 if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1206 || __get_user(tmp, (u8 __user *) new_ctx)
1207 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1208 return -EFAULT;
1211 * If we get a fault copying the context into the kernel's
1212 * image of the user's registers, we can't just return -EFAULT
1213 * because the user's registers will be corrupted. For instance
1214 * the NIP value may have been updated but not some of the
1215 * other registers. Given that we have done the access_ok
1216 * and successfully read the first and last bytes of the region
1217 * above, this should only happen in an out-of-memory situation
1218 * or if another thread unmaps the region containing the context.
1219 * We kill the task with a SIGSEGV in this situation.
1221 if (do_setcontext(new_ctx, regs, 0))
1222 do_exit(SIGSEGV);
1224 set_thread_flag(TIF_RESTOREALL);
1225 return 0;
1228 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1229 struct pt_regs *regs)
1231 struct rt_sigframe __user *rt_sf;
1232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1233 struct ucontext __user *uc_transact;
1234 unsigned long msr_hi;
1235 unsigned long tmp;
1236 int tm_restore = 0;
1237 #endif
1238 /* Always make any pending restarted system calls return -EINTR */
1239 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1241 rt_sf = (struct rt_sigframe __user *)
1242 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1243 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1244 goto bad;
1245 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1246 if (__get_user(tmp, &rt_sf->uc.uc_link))
1247 goto bad;
1248 uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1249 if (uc_transact) {
1250 u32 cmcp;
1251 struct mcontext __user *mcp;
1253 if (__get_user(cmcp, &uc_transact->uc_regs))
1254 return -EFAULT;
1255 mcp = (struct mcontext __user *)(u64)cmcp;
1256 /* The top 32 bits of the MSR are stashed in the transactional
1257 * ucontext. */
1258 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1259 goto bad;
1261 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1262 /* We only recheckpoint on return if we're
1263 * transaction.
1265 tm_restore = 1;
1266 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1267 goto bad;
1270 if (!tm_restore)
1271 /* Fall through, for non-TM restore */
1272 #endif
1273 if (do_setcontext(&rt_sf->uc, regs, 1))
1274 goto bad;
1277 * It's not clear whether or why it is desirable to save the
1278 * sigaltstack setting on signal delivery and restore it on
1279 * signal return. But other architectures do this and we have
1280 * always done it up until now so it is probably better not to
1281 * change it. -- paulus
1283 #ifdef CONFIG_PPC64
1284 if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1285 goto bad;
1286 #else
1287 if (restore_altstack(&rt_sf->uc.uc_stack))
1288 goto bad;
1289 #endif
1290 set_thread_flag(TIF_RESTOREALL);
1291 return 0;
1293 bad:
1294 if (show_unhandled_signals)
1295 printk_ratelimited(KERN_INFO
1296 "%s[%d]: bad frame in sys_rt_sigreturn: "
1297 "%p nip %08lx lr %08lx\n",
1298 current->comm, current->pid,
1299 rt_sf, regs->nip, regs->link);
1301 force_sig(SIGSEGV, current);
1302 return 0;
1305 #ifdef CONFIG_PPC32
1306 int sys_debug_setcontext(struct ucontext __user *ctx,
1307 int ndbg, struct sig_dbg_op __user *dbg,
1308 int r6, int r7, int r8,
1309 struct pt_regs *regs)
1311 struct sig_dbg_op op;
1312 int i;
1313 unsigned char tmp;
1314 unsigned long new_msr = regs->msr;
1315 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1316 unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1317 #endif
1319 for (i=0; i<ndbg; i++) {
1320 if (copy_from_user(&op, dbg + i, sizeof(op)))
1321 return -EFAULT;
1322 switch (op.dbg_type) {
1323 case SIG_DBG_SINGLE_STEPPING:
1324 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1325 if (op.dbg_value) {
1326 new_msr |= MSR_DE;
1327 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1328 } else {
1329 new_dbcr0 &= ~DBCR0_IC;
1330 if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1331 current->thread.debug.dbcr1)) {
1332 new_msr &= ~MSR_DE;
1333 new_dbcr0 &= ~DBCR0_IDM;
1336 #else
1337 if (op.dbg_value)
1338 new_msr |= MSR_SE;
1339 else
1340 new_msr &= ~MSR_SE;
1341 #endif
1342 break;
1343 case SIG_DBG_BRANCH_TRACING:
1344 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1345 return -EINVAL;
1346 #else
1347 if (op.dbg_value)
1348 new_msr |= MSR_BE;
1349 else
1350 new_msr &= ~MSR_BE;
1351 #endif
1352 break;
1354 default:
1355 return -EINVAL;
1359 /* We wait until here to actually install the values in the
1360 registers so if we fail in the above loop, it will not
1361 affect the contents of these registers. After this point,
1362 failure is a problem, anyway, and it's very unlikely unless
1363 the user is really doing something wrong. */
1364 regs->msr = new_msr;
1365 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1366 current->thread.debug.dbcr0 = new_dbcr0;
1367 #endif
1369 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1370 || __get_user(tmp, (u8 __user *) ctx)
1371 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1372 return -EFAULT;
1375 * If we get a fault copying the context into the kernel's
1376 * image of the user's registers, we can't just return -EFAULT
1377 * because the user's registers will be corrupted. For instance
1378 * the NIP value may have been updated but not some of the
1379 * other registers. Given that we have done the access_ok
1380 * and successfully read the first and last bytes of the region
1381 * above, this should only happen in an out-of-memory situation
1382 * or if another thread unmaps the region containing the context.
1383 * We kill the task with a SIGSEGV in this situation.
1385 if (do_setcontext(ctx, regs, 1)) {
1386 if (show_unhandled_signals)
1387 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1388 "sys_debug_setcontext: %p nip %08lx "
1389 "lr %08lx\n",
1390 current->comm, current->pid,
1391 ctx, regs->nip, regs->link);
1393 force_sig(SIGSEGV, current);
1394 goto out;
1398 * It's not clear whether or why it is desirable to save the
1399 * sigaltstack setting on signal delivery and restore it on
1400 * signal return. But other architectures do this and we have
1401 * always done it up until now so it is probably better not to
1402 * change it. -- paulus
1404 restore_altstack(&ctx->uc_stack);
1406 set_thread_flag(TIF_RESTOREALL);
1407 out:
1408 return 0;
1410 #endif
1413 * OK, we're invoking a handler
1415 int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1416 siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1418 struct sigcontext __user *sc;
1419 struct sigframe __user *frame;
1420 struct mcontext __user *tm_mctx = NULL;
1421 unsigned long newsp = 0;
1422 int sigret;
1423 unsigned long tramp;
1425 /* Set up Signal Frame */
1426 frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1427 if (unlikely(frame == NULL))
1428 goto badframe;
1429 sc = (struct sigcontext __user *) &frame->sctx;
1431 #if _NSIG != 64
1432 #error "Please adjust handle_signal()"
1433 #endif
1434 if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1435 || __put_user(oldset->sig[0], &sc->oldmask)
1436 #ifdef CONFIG_PPC64
1437 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1438 #else
1439 || __put_user(oldset->sig[1], &sc->_unused[3])
1440 #endif
1441 || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1442 || __put_user(sig, &sc->signal))
1443 goto badframe;
1445 if (vdso32_sigtramp && current->mm->context.vdso_base) {
1446 sigret = 0;
1447 tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1448 } else {
1449 sigret = __NR_sigreturn;
1450 tramp = (unsigned long) frame->mctx.tramp;
1453 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1454 tm_mctx = &frame->mctx_transact;
1455 if (MSR_TM_ACTIVE(regs->msr)) {
1456 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1457 sigret))
1458 goto badframe;
1460 else
1461 #endif
1463 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1464 goto badframe;
1467 regs->link = tramp;
1469 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
1471 /* create a stack frame for the caller of the handler */
1472 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1473 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1474 goto badframe;
1476 regs->gpr[1] = newsp;
1477 regs->gpr[3] = sig;
1478 regs->gpr[4] = (unsigned long) sc;
1479 regs->nip = (unsigned long) ka->sa.sa_handler;
1480 /* enter the signal handler in big-endian mode */
1481 regs->msr &= ~MSR_LE;
1482 return 1;
1484 badframe:
1485 #ifdef DEBUG_SIG
1486 printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1487 regs, frame, newsp);
1488 #endif
1489 if (show_unhandled_signals)
1490 printk_ratelimited(KERN_INFO
1491 "%s[%d]: bad frame in handle_signal32: "
1492 "%p nip %08lx lr %08lx\n",
1493 current->comm, current->pid,
1494 frame, regs->nip, regs->link);
1496 force_sigsegv(sig, current);
1497 return 0;
1501 * Do a signal return; undo the signal stack.
1503 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1504 struct pt_regs *regs)
1506 struct sigframe __user *sf;
1507 struct sigcontext __user *sc;
1508 struct sigcontext sigctx;
1509 struct mcontext __user *sr;
1510 void __user *addr;
1511 sigset_t set;
1512 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1513 struct mcontext __user *mcp, *tm_mcp;
1514 unsigned long msr_hi;
1515 #endif
1517 /* Always make any pending restarted system calls return -EINTR */
1518 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1520 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1521 sc = &sf->sctx;
1522 addr = sc;
1523 if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1524 goto badframe;
1526 #ifdef CONFIG_PPC64
1528 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1529 * unused part of the signal stackframe
1531 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1532 #else
1533 set.sig[0] = sigctx.oldmask;
1534 set.sig[1] = sigctx._unused[3];
1535 #endif
1536 set_current_blocked(&set);
1538 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1539 mcp = (struct mcontext __user *)&sf->mctx;
1540 tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1541 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1542 goto badframe;
1543 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1544 if (!cpu_has_feature(CPU_FTR_TM))
1545 goto badframe;
1546 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1547 goto badframe;
1548 } else
1549 #endif
1551 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1552 addr = sr;
1553 if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1554 || restore_user_regs(regs, sr, 1))
1555 goto badframe;
1558 set_thread_flag(TIF_RESTOREALL);
1559 return 0;
1561 badframe:
1562 if (show_unhandled_signals)
1563 printk_ratelimited(KERN_INFO
1564 "%s[%d]: bad frame in sys_sigreturn: "
1565 "%p nip %08lx lr %08lx\n",
1566 current->comm, current->pid,
1567 addr, regs->nip, regs->link);
1569 force_sig(SIGSEGV, current);
1570 return 0;