1 // SPDX-License-Identifier: GPL-2.0-only
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
32 static inline int is_dma_buf_file(struct file
*);
35 struct list_head head
;
39 static struct dma_buf_list db_list
;
41 static char *dmabuffs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
43 struct dma_buf
*dmabuf
;
44 char name
[DMA_BUF_NAME_LEN
];
47 dmabuf
= dentry
->d_fsdata
;
48 dma_resv_lock(dmabuf
->resv
, NULL
);
50 ret
= strlcpy(name
, dmabuf
->name
, DMA_BUF_NAME_LEN
);
51 dma_resv_unlock(dmabuf
->resv
);
53 return dynamic_dname(dentry
, buffer
, buflen
, "/%s:%s",
54 dentry
->d_name
.name
, ret
> 0 ? name
: "");
57 static const struct dentry_operations dma_buf_dentry_ops
= {
58 .d_dname
= dmabuffs_dname
,
61 static struct vfsmount
*dma_buf_mnt
;
63 static int dma_buf_fs_init_context(struct fs_context
*fc
)
65 struct pseudo_fs_context
*ctx
;
67 ctx
= init_pseudo(fc
, DMA_BUF_MAGIC
);
70 ctx
->dops
= &dma_buf_dentry_ops
;
74 static struct file_system_type dma_buf_fs_type
= {
76 .init_fs_context
= dma_buf_fs_init_context
,
77 .kill_sb
= kill_anon_super
,
80 static int dma_buf_release(struct inode
*inode
, struct file
*file
)
82 struct dma_buf
*dmabuf
;
84 if (!is_dma_buf_file(file
))
87 dmabuf
= file
->private_data
;
89 BUG_ON(dmabuf
->vmapping_counter
);
92 * Any fences that a dma-buf poll can wait on should be signaled
93 * before releasing dma-buf. This is the responsibility of each
94 * driver that uses the reservation objects.
96 * If you hit this BUG() it means someone dropped their ref to the
97 * dma-buf while still having pending operation to the buffer.
99 BUG_ON(dmabuf
->cb_shared
.active
|| dmabuf
->cb_excl
.active
);
101 dmabuf
->ops
->release(dmabuf
);
103 mutex_lock(&db_list
.lock
);
104 list_del(&dmabuf
->list_node
);
105 mutex_unlock(&db_list
.lock
);
107 if (dmabuf
->resv
== (struct dma_resv
*)&dmabuf
[1])
108 dma_resv_fini(dmabuf
->resv
);
110 module_put(dmabuf
->owner
);
115 static int dma_buf_mmap_internal(struct file
*file
, struct vm_area_struct
*vma
)
117 struct dma_buf
*dmabuf
;
119 if (!is_dma_buf_file(file
))
122 dmabuf
= file
->private_data
;
124 /* check if buffer supports mmap */
125 if (!dmabuf
->ops
->mmap
)
128 /* check for overflowing the buffer's size */
129 if (vma
->vm_pgoff
+ vma_pages(vma
) >
130 dmabuf
->size
>> PAGE_SHIFT
)
133 return dmabuf
->ops
->mmap(dmabuf
, vma
);
136 static loff_t
dma_buf_llseek(struct file
*file
, loff_t offset
, int whence
)
138 struct dma_buf
*dmabuf
;
141 if (!is_dma_buf_file(file
))
144 dmabuf
= file
->private_data
;
146 /* only support discovering the end of the buffer,
147 but also allow SEEK_SET to maintain the idiomatic
148 SEEK_END(0), SEEK_CUR(0) pattern */
149 if (whence
== SEEK_END
)
151 else if (whence
== SEEK_SET
)
159 return base
+ offset
;
165 * To support cross-device and cross-driver synchronization of buffer access
166 * implicit fences (represented internally in the kernel with &struct fence) can
167 * be attached to a &dma_buf. The glue for that and a few related things are
168 * provided in the &dma_resv structure.
170 * Userspace can query the state of these implicitly tracked fences using poll()
171 * and related system calls:
173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
174 * most recent write or exclusive fence.
176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
177 * all attached fences, shared and exclusive ones.
179 * Note that this only signals the completion of the respective fences, i.e. the
180 * DMA transfers are complete. Cache flushing and any other necessary
181 * preparations before CPU access can begin still need to happen.
184 static void dma_buf_poll_cb(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
186 struct dma_buf_poll_cb_t
*dcb
= (struct dma_buf_poll_cb_t
*)cb
;
189 spin_lock_irqsave(&dcb
->poll
->lock
, flags
);
190 wake_up_locked_poll(dcb
->poll
, dcb
->active
);
192 spin_unlock_irqrestore(&dcb
->poll
->lock
, flags
);
195 static __poll_t
dma_buf_poll(struct file
*file
, poll_table
*poll
)
197 struct dma_buf
*dmabuf
;
198 struct dma_resv
*resv
;
199 struct dma_resv_list
*fobj
;
200 struct dma_fence
*fence_excl
;
202 unsigned shared_count
, seq
;
204 dmabuf
= file
->private_data
;
205 if (!dmabuf
|| !dmabuf
->resv
)
210 poll_wait(file
, &dmabuf
->poll
, poll
);
212 events
= poll_requested_events(poll
) & (EPOLLIN
| EPOLLOUT
);
217 seq
= read_seqcount_begin(&resv
->seq
);
220 fobj
= rcu_dereference(resv
->fence
);
222 shared_count
= fobj
->shared_count
;
225 fence_excl
= rcu_dereference(resv
->fence_excl
);
226 if (read_seqcount_retry(&resv
->seq
, seq
)) {
231 if (fence_excl
&& (!(events
& EPOLLOUT
) || shared_count
== 0)) {
232 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_excl
;
233 __poll_t pevents
= EPOLLIN
;
235 if (shared_count
== 0)
238 spin_lock_irq(&dmabuf
->poll
.lock
);
240 dcb
->active
|= pevents
;
243 dcb
->active
= pevents
;
244 spin_unlock_irq(&dmabuf
->poll
.lock
);
246 if (events
& pevents
) {
247 if (!dma_fence_get_rcu(fence_excl
)) {
248 /* force a recheck */
250 dma_buf_poll_cb(NULL
, &dcb
->cb
);
251 } else if (!dma_fence_add_callback(fence_excl
, &dcb
->cb
,
254 dma_fence_put(fence_excl
);
257 * No callback queued, wake up any additional
260 dma_fence_put(fence_excl
);
261 dma_buf_poll_cb(NULL
, &dcb
->cb
);
266 if ((events
& EPOLLOUT
) && shared_count
> 0) {
267 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_shared
;
270 /* Only queue a new callback if no event has fired yet */
271 spin_lock_irq(&dmabuf
->poll
.lock
);
275 dcb
->active
= EPOLLOUT
;
276 spin_unlock_irq(&dmabuf
->poll
.lock
);
278 if (!(events
& EPOLLOUT
))
281 for (i
= 0; i
< shared_count
; ++i
) {
282 struct dma_fence
*fence
= rcu_dereference(fobj
->shared
[i
]);
284 if (!dma_fence_get_rcu(fence
)) {
286 * fence refcount dropped to zero, this means
287 * that fobj has been freed
289 * call dma_buf_poll_cb and force a recheck!
292 dma_buf_poll_cb(NULL
, &dcb
->cb
);
295 if (!dma_fence_add_callback(fence
, &dcb
->cb
,
297 dma_fence_put(fence
);
301 dma_fence_put(fence
);
304 /* No callback queued, wake up any additional waiters. */
305 if (i
== shared_count
)
306 dma_buf_poll_cb(NULL
, &dcb
->cb
);
315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
316 * The name of the dma-buf buffer can only be set when the dma-buf is not
317 * attached to any devices. It could theoritically support changing the
318 * name of the dma-buf if the same piece of memory is used for multiple
319 * purpose between different devices.
321 * @dmabuf [in] dmabuf buffer that will be renamed.
322 * @buf: [in] A piece of userspace memory that contains the name of
325 * Returns 0 on success. If the dma-buf buffer is already attached to
326 * devices, return -EBUSY.
329 static long dma_buf_set_name(struct dma_buf
*dmabuf
, const char __user
*buf
)
331 char *name
= strndup_user(buf
, DMA_BUF_NAME_LEN
);
335 return PTR_ERR(name
);
337 dma_resv_lock(dmabuf
->resv
, NULL
);
338 if (!list_empty(&dmabuf
->attachments
)) {
347 dma_resv_unlock(dmabuf
->resv
);
351 static long dma_buf_ioctl(struct file
*file
,
352 unsigned int cmd
, unsigned long arg
)
354 struct dma_buf
*dmabuf
;
355 struct dma_buf_sync sync
;
356 enum dma_data_direction direction
;
359 dmabuf
= file
->private_data
;
362 case DMA_BUF_IOCTL_SYNC
:
363 if (copy_from_user(&sync
, (void __user
*) arg
, sizeof(sync
)))
366 if (sync
.flags
& ~DMA_BUF_SYNC_VALID_FLAGS_MASK
)
369 switch (sync
.flags
& DMA_BUF_SYNC_RW
) {
370 case DMA_BUF_SYNC_READ
:
371 direction
= DMA_FROM_DEVICE
;
373 case DMA_BUF_SYNC_WRITE
:
374 direction
= DMA_TO_DEVICE
;
376 case DMA_BUF_SYNC_RW
:
377 direction
= DMA_BIDIRECTIONAL
;
383 if (sync
.flags
& DMA_BUF_SYNC_END
)
384 ret
= dma_buf_end_cpu_access(dmabuf
, direction
);
386 ret
= dma_buf_begin_cpu_access(dmabuf
, direction
);
390 case DMA_BUF_SET_NAME
:
391 return dma_buf_set_name(dmabuf
, (const char __user
*)arg
);
398 static void dma_buf_show_fdinfo(struct seq_file
*m
, struct file
*file
)
400 struct dma_buf
*dmabuf
= file
->private_data
;
402 seq_printf(m
, "size:\t%zu\n", dmabuf
->size
);
403 /* Don't count the temporary reference taken inside procfs seq_show */
404 seq_printf(m
, "count:\t%ld\n", file_count(dmabuf
->file
) - 1);
405 seq_printf(m
, "exp_name:\t%s\n", dmabuf
->exp_name
);
406 dma_resv_lock(dmabuf
->resv
, NULL
);
408 seq_printf(m
, "name:\t%s\n", dmabuf
->name
);
409 dma_resv_unlock(dmabuf
->resv
);
412 static const struct file_operations dma_buf_fops
= {
413 .release
= dma_buf_release
,
414 .mmap
= dma_buf_mmap_internal
,
415 .llseek
= dma_buf_llseek
,
416 .poll
= dma_buf_poll
,
417 .unlocked_ioctl
= dma_buf_ioctl
,
418 .compat_ioctl
= compat_ptr_ioctl
,
419 .show_fdinfo
= dma_buf_show_fdinfo
,
423 * is_dma_buf_file - Check if struct file* is associated with dma_buf
425 static inline int is_dma_buf_file(struct file
*file
)
427 return file
->f_op
== &dma_buf_fops
;
430 static struct file
*dma_buf_getfile(struct dma_buf
*dmabuf
, int flags
)
433 struct inode
*inode
= alloc_anon_inode(dma_buf_mnt
->mnt_sb
);
436 return ERR_CAST(inode
);
438 inode
->i_size
= dmabuf
->size
;
439 inode_set_bytes(inode
, dmabuf
->size
);
441 file
= alloc_file_pseudo(inode
, dma_buf_mnt
, "dmabuf",
442 flags
, &dma_buf_fops
);
445 file
->f_flags
= flags
& (O_ACCMODE
| O_NONBLOCK
);
446 file
->private_data
= dmabuf
;
447 file
->f_path
.dentry
->d_fsdata
= dmabuf
;
457 * DOC: dma buf device access
459 * For device DMA access to a shared DMA buffer the usual sequence of operations
462 * 1. The exporter defines his exporter instance using
463 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
464 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
465 * as a file descriptor by calling dma_buf_fd().
467 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
468 * to share with: First the filedescriptor is converted to a &dma_buf using
469 * dma_buf_get(). Then the buffer is attached to the device using
472 * Up to this stage the exporter is still free to migrate or reallocate the
475 * 3. Once the buffer is attached to all devices userspace can initiate DMA
476 * access to the shared buffer. In the kernel this is done by calling
477 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
479 * 4. Once a driver is done with a shared buffer it needs to call
480 * dma_buf_detach() (after cleaning up any mappings) and then release the
481 * reference acquired with dma_buf_get by calling dma_buf_put().
483 * For the detailed semantics exporters are expected to implement see
488 * dma_buf_export - Creates a new dma_buf, and associates an anon file
489 * with this buffer, so it can be exported.
490 * Also connect the allocator specific data and ops to the buffer.
491 * Additionally, provide a name string for exporter; useful in debugging.
493 * @exp_info: [in] holds all the export related information provided
494 * by the exporter. see &struct dma_buf_export_info
495 * for further details.
497 * Returns, on success, a newly created dma_buf object, which wraps the
498 * supplied private data and operations for dma_buf_ops. On either missing
499 * ops, or error in allocating struct dma_buf, will return negative error.
501 * For most cases the easiest way to create @exp_info is through the
502 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
504 struct dma_buf
*dma_buf_export(const struct dma_buf_export_info
*exp_info
)
506 struct dma_buf
*dmabuf
;
507 struct dma_resv
*resv
= exp_info
->resv
;
509 size_t alloc_size
= sizeof(struct dma_buf
);
513 alloc_size
+= sizeof(struct dma_resv
);
515 /* prevent &dma_buf[1] == dma_buf->resv */
518 if (WARN_ON(!exp_info
->priv
520 || !exp_info
->ops
->map_dma_buf
521 || !exp_info
->ops
->unmap_dma_buf
522 || !exp_info
->ops
->release
)) {
523 return ERR_PTR(-EINVAL
);
526 if (WARN_ON(exp_info
->ops
->cache_sgt_mapping
&&
527 exp_info
->ops
->dynamic_mapping
))
528 return ERR_PTR(-EINVAL
);
530 if (!try_module_get(exp_info
->owner
))
531 return ERR_PTR(-ENOENT
);
533 dmabuf
= kzalloc(alloc_size
, GFP_KERNEL
);
539 dmabuf
->priv
= exp_info
->priv
;
540 dmabuf
->ops
= exp_info
->ops
;
541 dmabuf
->size
= exp_info
->size
;
542 dmabuf
->exp_name
= exp_info
->exp_name
;
543 dmabuf
->owner
= exp_info
->owner
;
544 init_waitqueue_head(&dmabuf
->poll
);
545 dmabuf
->cb_excl
.poll
= dmabuf
->cb_shared
.poll
= &dmabuf
->poll
;
546 dmabuf
->cb_excl
.active
= dmabuf
->cb_shared
.active
= 0;
549 resv
= (struct dma_resv
*)&dmabuf
[1];
554 file
= dma_buf_getfile(dmabuf
, exp_info
->flags
);
560 file
->f_mode
|= FMODE_LSEEK
;
563 mutex_init(&dmabuf
->lock
);
564 INIT_LIST_HEAD(&dmabuf
->attachments
);
566 mutex_lock(&db_list
.lock
);
567 list_add(&dmabuf
->list_node
, &db_list
.head
);
568 mutex_unlock(&db_list
.lock
);
575 module_put(exp_info
->owner
);
578 EXPORT_SYMBOL_GPL(dma_buf_export
);
581 * dma_buf_fd - returns a file descriptor for the given dma_buf
582 * @dmabuf: [in] pointer to dma_buf for which fd is required.
583 * @flags: [in] flags to give to fd
585 * On success, returns an associated 'fd'. Else, returns error.
587 int dma_buf_fd(struct dma_buf
*dmabuf
, int flags
)
591 if (!dmabuf
|| !dmabuf
->file
)
594 fd
= get_unused_fd_flags(flags
);
598 fd_install(fd
, dmabuf
->file
);
602 EXPORT_SYMBOL_GPL(dma_buf_fd
);
605 * dma_buf_get - returns the dma_buf structure related to an fd
606 * @fd: [in] fd associated with the dma_buf to be returned
608 * On success, returns the dma_buf structure associated with an fd; uses
609 * file's refcounting done by fget to increase refcount. returns ERR_PTR
612 struct dma_buf
*dma_buf_get(int fd
)
619 return ERR_PTR(-EBADF
);
621 if (!is_dma_buf_file(file
)) {
623 return ERR_PTR(-EINVAL
);
626 return file
->private_data
;
628 EXPORT_SYMBOL_GPL(dma_buf_get
);
631 * dma_buf_put - decreases refcount of the buffer
632 * @dmabuf: [in] buffer to reduce refcount of
634 * Uses file's refcounting done implicitly by fput().
636 * If, as a result of this call, the refcount becomes 0, the 'release' file
637 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
638 * in turn, and frees the memory allocated for dmabuf when exported.
640 void dma_buf_put(struct dma_buf
*dmabuf
)
642 if (WARN_ON(!dmabuf
|| !dmabuf
->file
))
647 EXPORT_SYMBOL_GPL(dma_buf_put
);
650 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
651 * calls attach() of dma_buf_ops to allow device-specific attach functionality
652 * @dmabuf: [in] buffer to attach device to.
653 * @dev: [in] device to be attached.
654 * @dynamic_mapping: [in] calling convention for map/unmap
656 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
657 * must be cleaned up by calling dma_buf_detach().
661 * A pointer to newly created &dma_buf_attachment on success, or a negative
662 * error code wrapped into a pointer on failure.
664 * Note that this can fail if the backing storage of @dmabuf is in a place not
665 * accessible to @dev, and cannot be moved to a more suitable place. This is
666 * indicated with the error code -EBUSY.
668 struct dma_buf_attachment
*
669 dma_buf_dynamic_attach(struct dma_buf
*dmabuf
, struct device
*dev
,
670 bool dynamic_mapping
)
672 struct dma_buf_attachment
*attach
;
675 if (WARN_ON(!dmabuf
|| !dev
))
676 return ERR_PTR(-EINVAL
);
678 attach
= kzalloc(sizeof(*attach
), GFP_KERNEL
);
680 return ERR_PTR(-ENOMEM
);
683 attach
->dmabuf
= dmabuf
;
684 attach
->dynamic_mapping
= dynamic_mapping
;
686 if (dmabuf
->ops
->attach
) {
687 ret
= dmabuf
->ops
->attach(dmabuf
, attach
);
691 dma_resv_lock(dmabuf
->resv
, NULL
);
692 list_add(&attach
->node
, &dmabuf
->attachments
);
693 dma_resv_unlock(dmabuf
->resv
);
695 /* When either the importer or the exporter can't handle dynamic
696 * mappings we cache the mapping here to avoid issues with the
697 * reservation object lock.
699 if (dma_buf_attachment_is_dynamic(attach
) !=
700 dma_buf_is_dynamic(dmabuf
)) {
701 struct sg_table
*sgt
;
703 if (dma_buf_is_dynamic(attach
->dmabuf
))
704 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
706 sgt
= dmabuf
->ops
->map_dma_buf(attach
, DMA_BIDIRECTIONAL
);
708 sgt
= ERR_PTR(-ENOMEM
);
713 if (dma_buf_is_dynamic(attach
->dmabuf
))
714 dma_resv_unlock(attach
->dmabuf
->resv
);
716 attach
->dir
= DMA_BIDIRECTIONAL
;
726 if (dma_buf_is_dynamic(attach
->dmabuf
))
727 dma_resv_unlock(attach
->dmabuf
->resv
);
729 dma_buf_detach(dmabuf
, attach
);
732 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach
);
735 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
736 * @dmabuf: [in] buffer to attach device to.
737 * @dev: [in] device to be attached.
739 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
742 struct dma_buf_attachment
*dma_buf_attach(struct dma_buf
*dmabuf
,
745 return dma_buf_dynamic_attach(dmabuf
, dev
, false);
747 EXPORT_SYMBOL_GPL(dma_buf_attach
);
750 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
751 * optionally calls detach() of dma_buf_ops for device-specific detach
752 * @dmabuf: [in] buffer to detach from.
753 * @attach: [in] attachment to be detached; is free'd after this call.
755 * Clean up a device attachment obtained by calling dma_buf_attach().
757 void dma_buf_detach(struct dma_buf
*dmabuf
, struct dma_buf_attachment
*attach
)
759 if (WARN_ON(!dmabuf
|| !attach
))
763 if (dma_buf_is_dynamic(attach
->dmabuf
))
764 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
766 dmabuf
->ops
->unmap_dma_buf(attach
, attach
->sgt
, attach
->dir
);
768 if (dma_buf_is_dynamic(attach
->dmabuf
))
769 dma_resv_unlock(attach
->dmabuf
->resv
);
772 dma_resv_lock(dmabuf
->resv
, NULL
);
773 list_del(&attach
->node
);
774 dma_resv_unlock(dmabuf
->resv
);
775 if (dmabuf
->ops
->detach
)
776 dmabuf
->ops
->detach(dmabuf
, attach
);
780 EXPORT_SYMBOL_GPL(dma_buf_detach
);
783 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
784 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
786 * @attach: [in] attachment whose scatterlist is to be returned
787 * @direction: [in] direction of DMA transfer
789 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
790 * on error. May return -EINTR if it is interrupted by a signal.
792 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
793 * the underlying backing storage is pinned for as long as a mapping exists,
794 * therefore users/importers should not hold onto a mapping for undue amounts of
797 struct sg_table
*dma_buf_map_attachment(struct dma_buf_attachment
*attach
,
798 enum dma_data_direction direction
)
800 struct sg_table
*sg_table
;
804 if (WARN_ON(!attach
|| !attach
->dmabuf
))
805 return ERR_PTR(-EINVAL
);
807 if (dma_buf_attachment_is_dynamic(attach
))
808 dma_resv_assert_held(attach
->dmabuf
->resv
);
812 * Two mappings with different directions for the same
813 * attachment are not allowed.
815 if (attach
->dir
!= direction
&&
816 attach
->dir
!= DMA_BIDIRECTIONAL
)
817 return ERR_PTR(-EBUSY
);
822 if (dma_buf_is_dynamic(attach
->dmabuf
))
823 dma_resv_assert_held(attach
->dmabuf
->resv
);
825 sg_table
= attach
->dmabuf
->ops
->map_dma_buf(attach
, direction
);
827 sg_table
= ERR_PTR(-ENOMEM
);
829 if (!IS_ERR(sg_table
) && attach
->dmabuf
->ops
->cache_sgt_mapping
) {
830 attach
->sgt
= sg_table
;
831 attach
->dir
= direction
;
836 EXPORT_SYMBOL_GPL(dma_buf_map_attachment
);
839 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
840 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
842 * @attach: [in] attachment to unmap buffer from
843 * @sg_table: [in] scatterlist info of the buffer to unmap
844 * @direction: [in] direction of DMA transfer
846 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
848 void dma_buf_unmap_attachment(struct dma_buf_attachment
*attach
,
849 struct sg_table
*sg_table
,
850 enum dma_data_direction direction
)
854 if (WARN_ON(!attach
|| !attach
->dmabuf
|| !sg_table
))
857 if (dma_buf_attachment_is_dynamic(attach
))
858 dma_resv_assert_held(attach
->dmabuf
->resv
);
860 if (attach
->sgt
== sg_table
)
863 if (dma_buf_is_dynamic(attach
->dmabuf
))
864 dma_resv_assert_held(attach
->dmabuf
->resv
);
866 attach
->dmabuf
->ops
->unmap_dma_buf(attach
, sg_table
, direction
);
868 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment
);
873 * There are mutliple reasons for supporting CPU access to a dma buffer object:
875 * - Fallback operations in the kernel, for example when a device is connected
876 * over USB and the kernel needs to shuffle the data around first before
877 * sending it away. Cache coherency is handled by braketing any transactions
878 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
881 * To support dma_buf objects residing in highmem cpu access is page-based
882 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
883 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
884 * returns a pointer in kernel virtual address space. Afterwards the chunk
885 * needs to be unmapped again. There is no limit on how often a given chunk
886 * can be mapped and unmapped, i.e. the importer does not need to call
887 * begin_cpu_access again before mapping the same chunk again.
890 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
891 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
893 * Implementing the functions is optional for exporters and for importers all
894 * the restrictions of using kmap apply.
896 * dma_buf kmap calls outside of the range specified in begin_cpu_access are
897 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
898 * the partial chunks at the beginning and end but may return stale or bogus
899 * data outside of the range (in these partial chunks).
901 * For some cases the overhead of kmap can be too high, a vmap interface
902 * is introduced. This interface should be used very carefully, as vmalloc
903 * space is a limited resources on many architectures.
906 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
907 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
909 * The vmap call can fail if there is no vmap support in the exporter, or if
910 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
911 * that the dma-buf layer keeps a reference count for all vmap access and
912 * calls down into the exporter's vmap function only when no vmapping exists,
913 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
914 * provided by taking the dma_buf->lock mutex.
916 * - For full compatibility on the importer side with existing userspace
917 * interfaces, which might already support mmap'ing buffers. This is needed in
918 * many processing pipelines (e.g. feeding a software rendered image into a
919 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
920 * framework already supported this and for DMA buffer file descriptors to
921 * replace ION buffers mmap support was needed.
923 * There is no special interfaces, userspace simply calls mmap on the dma-buf
924 * fd. But like for CPU access there's a need to braket the actual access,
925 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
926 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
929 * Some systems might need some sort of cache coherency management e.g. when
930 * CPU and GPU domains are being accessed through dma-buf at the same time.
931 * To circumvent this problem there are begin/end coherency markers, that
932 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
933 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
934 * sequence would be used like following:
937 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
938 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
939 * want (with the new data being consumed by say the GPU or the scanout
941 * - munmap once you don't need the buffer any more
943 * For correctness and optimal performance, it is always required to use
944 * SYNC_START and SYNC_END before and after, respectively, when accessing the
945 * mapped address. Userspace cannot rely on coherent access, even when there
946 * are systems where it just works without calling these ioctls.
948 * - And as a CPU fallback in userspace processing pipelines.
950 * Similar to the motivation for kernel cpu access it is again important that
951 * the userspace code of a given importing subsystem can use the same
952 * interfaces with a imported dma-buf buffer object as with a native buffer
953 * object. This is especially important for drm where the userspace part of
954 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
955 * use a different way to mmap a buffer rather invasive.
957 * The assumption in the current dma-buf interfaces is that redirecting the
958 * initial mmap is all that's needed. A survey of some of the existing
959 * subsystems shows that no driver seems to do any nefarious thing like
960 * syncing up with outstanding asynchronous processing on the device or
961 * allocating special resources at fault time. So hopefully this is good
962 * enough, since adding interfaces to intercept pagefaults and allow pte
963 * shootdowns would increase the complexity quite a bit.
966 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
969 * If the importing subsystem simply provides a special-purpose mmap call to
970 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
971 * equally achieve that for a dma-buf object.
974 static int __dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
975 enum dma_data_direction direction
)
977 bool write
= (direction
== DMA_BIDIRECTIONAL
||
978 direction
== DMA_TO_DEVICE
);
979 struct dma_resv
*resv
= dmabuf
->resv
;
982 /* Wait on any implicit rendering fences */
983 ret
= dma_resv_wait_timeout_rcu(resv
, write
, true,
984 MAX_SCHEDULE_TIMEOUT
);
992 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
993 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
994 * preparations. Coherency is only guaranteed in the specified range for the
995 * specified access direction.
996 * @dmabuf: [in] buffer to prepare cpu access for.
997 * @direction: [in] length of range for cpu access.
999 * After the cpu access is complete the caller should call
1000 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1001 * it guaranteed to be coherent with other DMA access.
1003 * Can return negative error values, returns 0 on success.
1005 int dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
1006 enum dma_data_direction direction
)
1010 if (WARN_ON(!dmabuf
))
1013 if (dmabuf
->ops
->begin_cpu_access
)
1014 ret
= dmabuf
->ops
->begin_cpu_access(dmabuf
, direction
);
1016 /* Ensure that all fences are waited upon - but we first allow
1017 * the native handler the chance to do so more efficiently if it
1018 * chooses. A double invocation here will be reasonably cheap no-op.
1021 ret
= __dma_buf_begin_cpu_access(dmabuf
, direction
);
1025 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access
);
1028 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1029 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1030 * actions. Coherency is only guaranteed in the specified range for the
1031 * specified access direction.
1032 * @dmabuf: [in] buffer to complete cpu access for.
1033 * @direction: [in] length of range for cpu access.
1035 * This terminates CPU access started with dma_buf_begin_cpu_access().
1037 * Can return negative error values, returns 0 on success.
1039 int dma_buf_end_cpu_access(struct dma_buf
*dmabuf
,
1040 enum dma_data_direction direction
)
1046 if (dmabuf
->ops
->end_cpu_access
)
1047 ret
= dmabuf
->ops
->end_cpu_access(dmabuf
, direction
);
1051 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access
);
1054 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
1055 * same restrictions as for kmap and friends apply.
1056 * @dmabuf: [in] buffer to map page from.
1057 * @page_num: [in] page in PAGE_SIZE units to map.
1059 * This call must always succeed, any necessary preparations that might fail
1060 * need to be done in begin_cpu_access.
1062 void *dma_buf_kmap(struct dma_buf
*dmabuf
, unsigned long page_num
)
1066 if (!dmabuf
->ops
->map
)
1068 return dmabuf
->ops
->map(dmabuf
, page_num
);
1070 EXPORT_SYMBOL_GPL(dma_buf_kmap
);
1073 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1074 * @dmabuf: [in] buffer to unmap page from.
1075 * @page_num: [in] page in PAGE_SIZE units to unmap.
1076 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap.
1078 * This call must always succeed.
1080 void dma_buf_kunmap(struct dma_buf
*dmabuf
, unsigned long page_num
,
1085 if (dmabuf
->ops
->unmap
)
1086 dmabuf
->ops
->unmap(dmabuf
, page_num
, vaddr
);
1088 EXPORT_SYMBOL_GPL(dma_buf_kunmap
);
1092 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1093 * @dmabuf: [in] buffer that should back the vma
1094 * @vma: [in] vma for the mmap
1095 * @pgoff: [in] offset in pages where this mmap should start within the
1098 * This function adjusts the passed in vma so that it points at the file of the
1099 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1100 * checking on the size of the vma. Then it calls the exporters mmap function to
1101 * set up the mapping.
1103 * Can return negative error values, returns 0 on success.
1105 int dma_buf_mmap(struct dma_buf
*dmabuf
, struct vm_area_struct
*vma
,
1106 unsigned long pgoff
)
1108 struct file
*oldfile
;
1111 if (WARN_ON(!dmabuf
|| !vma
))
1114 /* check if buffer supports mmap */
1115 if (!dmabuf
->ops
->mmap
)
1118 /* check for offset overflow */
1119 if (pgoff
+ vma_pages(vma
) < pgoff
)
1122 /* check for overflowing the buffer's size */
1123 if (pgoff
+ vma_pages(vma
) >
1124 dmabuf
->size
>> PAGE_SHIFT
)
1127 /* readjust the vma */
1128 get_file(dmabuf
->file
);
1129 oldfile
= vma
->vm_file
;
1130 vma
->vm_file
= dmabuf
->file
;
1131 vma
->vm_pgoff
= pgoff
;
1133 ret
= dmabuf
->ops
->mmap(dmabuf
, vma
);
1135 /* restore old parameters on failure */
1136 vma
->vm_file
= oldfile
;
1145 EXPORT_SYMBOL_GPL(dma_buf_mmap
);
1148 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1149 * address space. Same restrictions as for vmap and friends apply.
1150 * @dmabuf: [in] buffer to vmap
1152 * This call may fail due to lack of virtual mapping address space.
1153 * These calls are optional in drivers. The intended use for them
1154 * is for mapping objects linear in kernel space for high use objects.
1155 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1157 * Returns NULL on error.
1159 void *dma_buf_vmap(struct dma_buf
*dmabuf
)
1163 if (WARN_ON(!dmabuf
))
1166 if (!dmabuf
->ops
->vmap
)
1169 mutex_lock(&dmabuf
->lock
);
1170 if (dmabuf
->vmapping_counter
) {
1171 dmabuf
->vmapping_counter
++;
1172 BUG_ON(!dmabuf
->vmap_ptr
);
1173 ptr
= dmabuf
->vmap_ptr
;
1177 BUG_ON(dmabuf
->vmap_ptr
);
1179 ptr
= dmabuf
->ops
->vmap(dmabuf
);
1180 if (WARN_ON_ONCE(IS_ERR(ptr
)))
1185 dmabuf
->vmap_ptr
= ptr
;
1186 dmabuf
->vmapping_counter
= 1;
1189 mutex_unlock(&dmabuf
->lock
);
1192 EXPORT_SYMBOL_GPL(dma_buf_vmap
);
1195 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1196 * @dmabuf: [in] buffer to vunmap
1197 * @vaddr: [in] vmap to vunmap
1199 void dma_buf_vunmap(struct dma_buf
*dmabuf
, void *vaddr
)
1201 if (WARN_ON(!dmabuf
))
1204 BUG_ON(!dmabuf
->vmap_ptr
);
1205 BUG_ON(dmabuf
->vmapping_counter
== 0);
1206 BUG_ON(dmabuf
->vmap_ptr
!= vaddr
);
1208 mutex_lock(&dmabuf
->lock
);
1209 if (--dmabuf
->vmapping_counter
== 0) {
1210 if (dmabuf
->ops
->vunmap
)
1211 dmabuf
->ops
->vunmap(dmabuf
, vaddr
);
1212 dmabuf
->vmap_ptr
= NULL
;
1214 mutex_unlock(&dmabuf
->lock
);
1216 EXPORT_SYMBOL_GPL(dma_buf_vunmap
);
1218 #ifdef CONFIG_DEBUG_FS
1219 static int dma_buf_debug_show(struct seq_file
*s
, void *unused
)
1222 struct dma_buf
*buf_obj
;
1223 struct dma_buf_attachment
*attach_obj
;
1224 struct dma_resv
*robj
;
1225 struct dma_resv_list
*fobj
;
1226 struct dma_fence
*fence
;
1228 int count
= 0, attach_count
, shared_count
, i
;
1231 ret
= mutex_lock_interruptible(&db_list
.lock
);
1236 seq_puts(s
, "\nDma-buf Objects:\n");
1237 seq_printf(s
, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1238 "size", "flags", "mode", "count", "ino");
1240 list_for_each_entry(buf_obj
, &db_list
.head
, list_node
) {
1242 ret
= dma_resv_lock_interruptible(buf_obj
->resv
, NULL
);
1246 seq_printf(s
, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1248 buf_obj
->file
->f_flags
, buf_obj
->file
->f_mode
,
1249 file_count(buf_obj
->file
),
1251 file_inode(buf_obj
->file
)->i_ino
,
1252 buf_obj
->name
?: "");
1254 robj
= buf_obj
->resv
;
1256 seq
= read_seqcount_begin(&robj
->seq
);
1258 fobj
= rcu_dereference(robj
->fence
);
1259 shared_count
= fobj
? fobj
->shared_count
: 0;
1260 fence
= rcu_dereference(robj
->fence_excl
);
1261 if (!read_seqcount_retry(&robj
->seq
, seq
))
1267 seq_printf(s
, "\tExclusive fence: %s %s %ssignalled\n",
1268 fence
->ops
->get_driver_name(fence
),
1269 fence
->ops
->get_timeline_name(fence
),
1270 dma_fence_is_signaled(fence
) ? "" : "un");
1271 for (i
= 0; i
< shared_count
; i
++) {
1272 fence
= rcu_dereference(fobj
->shared
[i
]);
1273 if (!dma_fence_get_rcu(fence
))
1275 seq_printf(s
, "\tShared fence: %s %s %ssignalled\n",
1276 fence
->ops
->get_driver_name(fence
),
1277 fence
->ops
->get_timeline_name(fence
),
1278 dma_fence_is_signaled(fence
) ? "" : "un");
1279 dma_fence_put(fence
);
1283 seq_puts(s
, "\tAttached Devices:\n");
1286 list_for_each_entry(attach_obj
, &buf_obj
->attachments
, node
) {
1287 seq_printf(s
, "\t%s\n", dev_name(attach_obj
->dev
));
1290 dma_resv_unlock(buf_obj
->resv
);
1292 seq_printf(s
, "Total %d devices attached\n\n",
1296 size
+= buf_obj
->size
;
1299 seq_printf(s
, "\nTotal %d objects, %zu bytes\n", count
, size
);
1301 mutex_unlock(&db_list
.lock
);
1305 mutex_unlock(&db_list
.lock
);
1309 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug
);
1311 static struct dentry
*dma_buf_debugfs_dir
;
1313 static int dma_buf_init_debugfs(void)
1318 d
= debugfs_create_dir("dma_buf", NULL
);
1322 dma_buf_debugfs_dir
= d
;
1324 d
= debugfs_create_file("bufinfo", S_IRUGO
, dma_buf_debugfs_dir
,
1325 NULL
, &dma_buf_debug_fops
);
1327 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1328 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1329 dma_buf_debugfs_dir
= NULL
;
1336 static void dma_buf_uninit_debugfs(void)
1338 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1341 static inline int dma_buf_init_debugfs(void)
1345 static inline void dma_buf_uninit_debugfs(void)
1350 static int __init
dma_buf_init(void)
1352 dma_buf_mnt
= kern_mount(&dma_buf_fs_type
);
1353 if (IS_ERR(dma_buf_mnt
))
1354 return PTR_ERR(dma_buf_mnt
);
1356 mutex_init(&db_list
.lock
);
1357 INIT_LIST_HEAD(&db_list
.head
);
1358 dma_buf_init_debugfs();
1361 subsys_initcall(dma_buf_init
);
1363 static void __exit
dma_buf_deinit(void)
1365 dma_buf_uninit_debugfs();
1366 kern_unmount(dma_buf_mnt
);
1368 __exitcall(dma_buf_deinit
);