usb: xhci: Fix build warning seen with CONFIG_PM=n
[linux/fpc-iii.git] / drivers / dma-buf / dma-buf.c
blobce41cd9b758ac8fbaf22bc5c145ad9d93aac58f4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
32 static inline int is_dma_buf_file(struct file *);
34 struct dma_buf_list {
35 struct list_head head;
36 struct mutex lock;
39 static struct dma_buf_list db_list;
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
43 struct dma_buf *dmabuf;
44 char name[DMA_BUF_NAME_LEN];
45 size_t ret = 0;
47 dmabuf = dentry->d_fsdata;
48 dma_resv_lock(dmabuf->resv, NULL);
49 if (dmabuf->name)
50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 dma_resv_unlock(dmabuf->resv);
53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 dentry->d_name.name, ret > 0 ? name : "");
57 static const struct dentry_operations dma_buf_dentry_ops = {
58 .d_dname = dmabuffs_dname,
61 static struct vfsmount *dma_buf_mnt;
63 static int dma_buf_fs_init_context(struct fs_context *fc)
65 struct pseudo_fs_context *ctx;
67 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
68 if (!ctx)
69 return -ENOMEM;
70 ctx->dops = &dma_buf_dentry_ops;
71 return 0;
74 static struct file_system_type dma_buf_fs_type = {
75 .name = "dmabuf",
76 .init_fs_context = dma_buf_fs_init_context,
77 .kill_sb = kill_anon_super,
80 static int dma_buf_release(struct inode *inode, struct file *file)
82 struct dma_buf *dmabuf;
84 if (!is_dma_buf_file(file))
85 return -EINVAL;
87 dmabuf = file->private_data;
89 BUG_ON(dmabuf->vmapping_counter);
92 * Any fences that a dma-buf poll can wait on should be signaled
93 * before releasing dma-buf. This is the responsibility of each
94 * driver that uses the reservation objects.
96 * If you hit this BUG() it means someone dropped their ref to the
97 * dma-buf while still having pending operation to the buffer.
99 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
101 dmabuf->ops->release(dmabuf);
103 mutex_lock(&db_list.lock);
104 list_del(&dmabuf->list_node);
105 mutex_unlock(&db_list.lock);
107 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
108 dma_resv_fini(dmabuf->resv);
110 module_put(dmabuf->owner);
111 kfree(dmabuf);
112 return 0;
115 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
117 struct dma_buf *dmabuf;
119 if (!is_dma_buf_file(file))
120 return -EINVAL;
122 dmabuf = file->private_data;
124 /* check if buffer supports mmap */
125 if (!dmabuf->ops->mmap)
126 return -EINVAL;
128 /* check for overflowing the buffer's size */
129 if (vma->vm_pgoff + vma_pages(vma) >
130 dmabuf->size >> PAGE_SHIFT)
131 return -EINVAL;
133 return dmabuf->ops->mmap(dmabuf, vma);
136 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
138 struct dma_buf *dmabuf;
139 loff_t base;
141 if (!is_dma_buf_file(file))
142 return -EBADF;
144 dmabuf = file->private_data;
146 /* only support discovering the end of the buffer,
147 but also allow SEEK_SET to maintain the idiomatic
148 SEEK_END(0), SEEK_CUR(0) pattern */
149 if (whence == SEEK_END)
150 base = dmabuf->size;
151 else if (whence == SEEK_SET)
152 base = 0;
153 else
154 return -EINVAL;
156 if (offset != 0)
157 return -EINVAL;
159 return base + offset;
163 * DOC: fence polling
165 * To support cross-device and cross-driver synchronization of buffer access
166 * implicit fences (represented internally in the kernel with &struct fence) can
167 * be attached to a &dma_buf. The glue for that and a few related things are
168 * provided in the &dma_resv structure.
170 * Userspace can query the state of these implicitly tracked fences using poll()
171 * and related system calls:
173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
174 * most recent write or exclusive fence.
176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
177 * all attached fences, shared and exclusive ones.
179 * Note that this only signals the completion of the respective fences, i.e. the
180 * DMA transfers are complete. Cache flushing and any other necessary
181 * preparations before CPU access can begin still need to happen.
184 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
186 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
187 unsigned long flags;
189 spin_lock_irqsave(&dcb->poll->lock, flags);
190 wake_up_locked_poll(dcb->poll, dcb->active);
191 dcb->active = 0;
192 spin_unlock_irqrestore(&dcb->poll->lock, flags);
195 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
197 struct dma_buf *dmabuf;
198 struct dma_resv *resv;
199 struct dma_resv_list *fobj;
200 struct dma_fence *fence_excl;
201 __poll_t events;
202 unsigned shared_count, seq;
204 dmabuf = file->private_data;
205 if (!dmabuf || !dmabuf->resv)
206 return EPOLLERR;
208 resv = dmabuf->resv;
210 poll_wait(file, &dmabuf->poll, poll);
212 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
213 if (!events)
214 return 0;
216 retry:
217 seq = read_seqcount_begin(&resv->seq);
218 rcu_read_lock();
220 fobj = rcu_dereference(resv->fence);
221 if (fobj)
222 shared_count = fobj->shared_count;
223 else
224 shared_count = 0;
225 fence_excl = rcu_dereference(resv->fence_excl);
226 if (read_seqcount_retry(&resv->seq, seq)) {
227 rcu_read_unlock();
228 goto retry;
231 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
233 __poll_t pevents = EPOLLIN;
235 if (shared_count == 0)
236 pevents |= EPOLLOUT;
238 spin_lock_irq(&dmabuf->poll.lock);
239 if (dcb->active) {
240 dcb->active |= pevents;
241 events &= ~pevents;
242 } else
243 dcb->active = pevents;
244 spin_unlock_irq(&dmabuf->poll.lock);
246 if (events & pevents) {
247 if (!dma_fence_get_rcu(fence_excl)) {
248 /* force a recheck */
249 events &= ~pevents;
250 dma_buf_poll_cb(NULL, &dcb->cb);
251 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
252 dma_buf_poll_cb)) {
253 events &= ~pevents;
254 dma_fence_put(fence_excl);
255 } else {
257 * No callback queued, wake up any additional
258 * waiters.
260 dma_fence_put(fence_excl);
261 dma_buf_poll_cb(NULL, &dcb->cb);
266 if ((events & EPOLLOUT) && shared_count > 0) {
267 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
268 int i;
270 /* Only queue a new callback if no event has fired yet */
271 spin_lock_irq(&dmabuf->poll.lock);
272 if (dcb->active)
273 events &= ~EPOLLOUT;
274 else
275 dcb->active = EPOLLOUT;
276 spin_unlock_irq(&dmabuf->poll.lock);
278 if (!(events & EPOLLOUT))
279 goto out;
281 for (i = 0; i < shared_count; ++i) {
282 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
284 if (!dma_fence_get_rcu(fence)) {
286 * fence refcount dropped to zero, this means
287 * that fobj has been freed
289 * call dma_buf_poll_cb and force a recheck!
291 events &= ~EPOLLOUT;
292 dma_buf_poll_cb(NULL, &dcb->cb);
293 break;
295 if (!dma_fence_add_callback(fence, &dcb->cb,
296 dma_buf_poll_cb)) {
297 dma_fence_put(fence);
298 events &= ~EPOLLOUT;
299 break;
301 dma_fence_put(fence);
304 /* No callback queued, wake up any additional waiters. */
305 if (i == shared_count)
306 dma_buf_poll_cb(NULL, &dcb->cb);
309 out:
310 rcu_read_unlock();
311 return events;
315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
316 * The name of the dma-buf buffer can only be set when the dma-buf is not
317 * attached to any devices. It could theoritically support changing the
318 * name of the dma-buf if the same piece of memory is used for multiple
319 * purpose between different devices.
321 * @dmabuf [in] dmabuf buffer that will be renamed.
322 * @buf: [in] A piece of userspace memory that contains the name of
323 * the dma-buf.
325 * Returns 0 on success. If the dma-buf buffer is already attached to
326 * devices, return -EBUSY.
329 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
331 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
332 long ret = 0;
334 if (IS_ERR(name))
335 return PTR_ERR(name);
337 dma_resv_lock(dmabuf->resv, NULL);
338 if (!list_empty(&dmabuf->attachments)) {
339 ret = -EBUSY;
340 kfree(name);
341 goto out_unlock;
343 kfree(dmabuf->name);
344 dmabuf->name = name;
346 out_unlock:
347 dma_resv_unlock(dmabuf->resv);
348 return ret;
351 static long dma_buf_ioctl(struct file *file,
352 unsigned int cmd, unsigned long arg)
354 struct dma_buf *dmabuf;
355 struct dma_buf_sync sync;
356 enum dma_data_direction direction;
357 int ret;
359 dmabuf = file->private_data;
361 switch (cmd) {
362 case DMA_BUF_IOCTL_SYNC:
363 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
364 return -EFAULT;
366 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
367 return -EINVAL;
369 switch (sync.flags & DMA_BUF_SYNC_RW) {
370 case DMA_BUF_SYNC_READ:
371 direction = DMA_FROM_DEVICE;
372 break;
373 case DMA_BUF_SYNC_WRITE:
374 direction = DMA_TO_DEVICE;
375 break;
376 case DMA_BUF_SYNC_RW:
377 direction = DMA_BIDIRECTIONAL;
378 break;
379 default:
380 return -EINVAL;
383 if (sync.flags & DMA_BUF_SYNC_END)
384 ret = dma_buf_end_cpu_access(dmabuf, direction);
385 else
386 ret = dma_buf_begin_cpu_access(dmabuf, direction);
388 return ret;
390 case DMA_BUF_SET_NAME:
391 return dma_buf_set_name(dmabuf, (const char __user *)arg);
393 default:
394 return -ENOTTY;
398 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
400 struct dma_buf *dmabuf = file->private_data;
402 seq_printf(m, "size:\t%zu\n", dmabuf->size);
403 /* Don't count the temporary reference taken inside procfs seq_show */
404 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
405 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
406 dma_resv_lock(dmabuf->resv, NULL);
407 if (dmabuf->name)
408 seq_printf(m, "name:\t%s\n", dmabuf->name);
409 dma_resv_unlock(dmabuf->resv);
412 static const struct file_operations dma_buf_fops = {
413 .release = dma_buf_release,
414 .mmap = dma_buf_mmap_internal,
415 .llseek = dma_buf_llseek,
416 .poll = dma_buf_poll,
417 .unlocked_ioctl = dma_buf_ioctl,
418 .compat_ioctl = compat_ptr_ioctl,
419 .show_fdinfo = dma_buf_show_fdinfo,
423 * is_dma_buf_file - Check if struct file* is associated with dma_buf
425 static inline int is_dma_buf_file(struct file *file)
427 return file->f_op == &dma_buf_fops;
430 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
432 struct file *file;
433 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
435 if (IS_ERR(inode))
436 return ERR_CAST(inode);
438 inode->i_size = dmabuf->size;
439 inode_set_bytes(inode, dmabuf->size);
441 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
442 flags, &dma_buf_fops);
443 if (IS_ERR(file))
444 goto err_alloc_file;
445 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
446 file->private_data = dmabuf;
447 file->f_path.dentry->d_fsdata = dmabuf;
449 return file;
451 err_alloc_file:
452 iput(inode);
453 return file;
457 * DOC: dma buf device access
459 * For device DMA access to a shared DMA buffer the usual sequence of operations
460 * is fairly simple:
462 * 1. The exporter defines his exporter instance using
463 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
464 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
465 * as a file descriptor by calling dma_buf_fd().
467 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
468 * to share with: First the filedescriptor is converted to a &dma_buf using
469 * dma_buf_get(). Then the buffer is attached to the device using
470 * dma_buf_attach().
472 * Up to this stage the exporter is still free to migrate or reallocate the
473 * backing storage.
475 * 3. Once the buffer is attached to all devices userspace can initiate DMA
476 * access to the shared buffer. In the kernel this is done by calling
477 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
479 * 4. Once a driver is done with a shared buffer it needs to call
480 * dma_buf_detach() (after cleaning up any mappings) and then release the
481 * reference acquired with dma_buf_get by calling dma_buf_put().
483 * For the detailed semantics exporters are expected to implement see
484 * &dma_buf_ops.
488 * dma_buf_export - Creates a new dma_buf, and associates an anon file
489 * with this buffer, so it can be exported.
490 * Also connect the allocator specific data and ops to the buffer.
491 * Additionally, provide a name string for exporter; useful in debugging.
493 * @exp_info: [in] holds all the export related information provided
494 * by the exporter. see &struct dma_buf_export_info
495 * for further details.
497 * Returns, on success, a newly created dma_buf object, which wraps the
498 * supplied private data and operations for dma_buf_ops. On either missing
499 * ops, or error in allocating struct dma_buf, will return negative error.
501 * For most cases the easiest way to create @exp_info is through the
502 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
504 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
506 struct dma_buf *dmabuf;
507 struct dma_resv *resv = exp_info->resv;
508 struct file *file;
509 size_t alloc_size = sizeof(struct dma_buf);
510 int ret;
512 if (!exp_info->resv)
513 alloc_size += sizeof(struct dma_resv);
514 else
515 /* prevent &dma_buf[1] == dma_buf->resv */
516 alloc_size += 1;
518 if (WARN_ON(!exp_info->priv
519 || !exp_info->ops
520 || !exp_info->ops->map_dma_buf
521 || !exp_info->ops->unmap_dma_buf
522 || !exp_info->ops->release)) {
523 return ERR_PTR(-EINVAL);
526 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
527 exp_info->ops->dynamic_mapping))
528 return ERR_PTR(-EINVAL);
530 if (!try_module_get(exp_info->owner))
531 return ERR_PTR(-ENOENT);
533 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
534 if (!dmabuf) {
535 ret = -ENOMEM;
536 goto err_module;
539 dmabuf->priv = exp_info->priv;
540 dmabuf->ops = exp_info->ops;
541 dmabuf->size = exp_info->size;
542 dmabuf->exp_name = exp_info->exp_name;
543 dmabuf->owner = exp_info->owner;
544 init_waitqueue_head(&dmabuf->poll);
545 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
546 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
548 if (!resv) {
549 resv = (struct dma_resv *)&dmabuf[1];
550 dma_resv_init(resv);
552 dmabuf->resv = resv;
554 file = dma_buf_getfile(dmabuf, exp_info->flags);
555 if (IS_ERR(file)) {
556 ret = PTR_ERR(file);
557 goto err_dmabuf;
560 file->f_mode |= FMODE_LSEEK;
561 dmabuf->file = file;
563 mutex_init(&dmabuf->lock);
564 INIT_LIST_HEAD(&dmabuf->attachments);
566 mutex_lock(&db_list.lock);
567 list_add(&dmabuf->list_node, &db_list.head);
568 mutex_unlock(&db_list.lock);
570 return dmabuf;
572 err_dmabuf:
573 kfree(dmabuf);
574 err_module:
575 module_put(exp_info->owner);
576 return ERR_PTR(ret);
578 EXPORT_SYMBOL_GPL(dma_buf_export);
581 * dma_buf_fd - returns a file descriptor for the given dma_buf
582 * @dmabuf: [in] pointer to dma_buf for which fd is required.
583 * @flags: [in] flags to give to fd
585 * On success, returns an associated 'fd'. Else, returns error.
587 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
589 int fd;
591 if (!dmabuf || !dmabuf->file)
592 return -EINVAL;
594 fd = get_unused_fd_flags(flags);
595 if (fd < 0)
596 return fd;
598 fd_install(fd, dmabuf->file);
600 return fd;
602 EXPORT_SYMBOL_GPL(dma_buf_fd);
605 * dma_buf_get - returns the dma_buf structure related to an fd
606 * @fd: [in] fd associated with the dma_buf to be returned
608 * On success, returns the dma_buf structure associated with an fd; uses
609 * file's refcounting done by fget to increase refcount. returns ERR_PTR
610 * otherwise.
612 struct dma_buf *dma_buf_get(int fd)
614 struct file *file;
616 file = fget(fd);
618 if (!file)
619 return ERR_PTR(-EBADF);
621 if (!is_dma_buf_file(file)) {
622 fput(file);
623 return ERR_PTR(-EINVAL);
626 return file->private_data;
628 EXPORT_SYMBOL_GPL(dma_buf_get);
631 * dma_buf_put - decreases refcount of the buffer
632 * @dmabuf: [in] buffer to reduce refcount of
634 * Uses file's refcounting done implicitly by fput().
636 * If, as a result of this call, the refcount becomes 0, the 'release' file
637 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
638 * in turn, and frees the memory allocated for dmabuf when exported.
640 void dma_buf_put(struct dma_buf *dmabuf)
642 if (WARN_ON(!dmabuf || !dmabuf->file))
643 return;
645 fput(dmabuf->file);
647 EXPORT_SYMBOL_GPL(dma_buf_put);
650 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
651 * calls attach() of dma_buf_ops to allow device-specific attach functionality
652 * @dmabuf: [in] buffer to attach device to.
653 * @dev: [in] device to be attached.
654 * @dynamic_mapping: [in] calling convention for map/unmap
656 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
657 * must be cleaned up by calling dma_buf_detach().
659 * Returns:
661 * A pointer to newly created &dma_buf_attachment on success, or a negative
662 * error code wrapped into a pointer on failure.
664 * Note that this can fail if the backing storage of @dmabuf is in a place not
665 * accessible to @dev, and cannot be moved to a more suitable place. This is
666 * indicated with the error code -EBUSY.
668 struct dma_buf_attachment *
669 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
670 bool dynamic_mapping)
672 struct dma_buf_attachment *attach;
673 int ret;
675 if (WARN_ON(!dmabuf || !dev))
676 return ERR_PTR(-EINVAL);
678 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
679 if (!attach)
680 return ERR_PTR(-ENOMEM);
682 attach->dev = dev;
683 attach->dmabuf = dmabuf;
684 attach->dynamic_mapping = dynamic_mapping;
686 if (dmabuf->ops->attach) {
687 ret = dmabuf->ops->attach(dmabuf, attach);
688 if (ret)
689 goto err_attach;
691 dma_resv_lock(dmabuf->resv, NULL);
692 list_add(&attach->node, &dmabuf->attachments);
693 dma_resv_unlock(dmabuf->resv);
695 /* When either the importer or the exporter can't handle dynamic
696 * mappings we cache the mapping here to avoid issues with the
697 * reservation object lock.
699 if (dma_buf_attachment_is_dynamic(attach) !=
700 dma_buf_is_dynamic(dmabuf)) {
701 struct sg_table *sgt;
703 if (dma_buf_is_dynamic(attach->dmabuf))
704 dma_resv_lock(attach->dmabuf->resv, NULL);
706 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
707 if (!sgt)
708 sgt = ERR_PTR(-ENOMEM);
709 if (IS_ERR(sgt)) {
710 ret = PTR_ERR(sgt);
711 goto err_unlock;
713 if (dma_buf_is_dynamic(attach->dmabuf))
714 dma_resv_unlock(attach->dmabuf->resv);
715 attach->sgt = sgt;
716 attach->dir = DMA_BIDIRECTIONAL;
719 return attach;
721 err_attach:
722 kfree(attach);
723 return ERR_PTR(ret);
725 err_unlock:
726 if (dma_buf_is_dynamic(attach->dmabuf))
727 dma_resv_unlock(attach->dmabuf->resv);
729 dma_buf_detach(dmabuf, attach);
730 return ERR_PTR(ret);
732 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
735 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
736 * @dmabuf: [in] buffer to attach device to.
737 * @dev: [in] device to be attached.
739 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
740 * mapping.
742 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
743 struct device *dev)
745 return dma_buf_dynamic_attach(dmabuf, dev, false);
747 EXPORT_SYMBOL_GPL(dma_buf_attach);
750 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
751 * optionally calls detach() of dma_buf_ops for device-specific detach
752 * @dmabuf: [in] buffer to detach from.
753 * @attach: [in] attachment to be detached; is free'd after this call.
755 * Clean up a device attachment obtained by calling dma_buf_attach().
757 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
759 if (WARN_ON(!dmabuf || !attach))
760 return;
762 if (attach->sgt) {
763 if (dma_buf_is_dynamic(attach->dmabuf))
764 dma_resv_lock(attach->dmabuf->resv, NULL);
766 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
768 if (dma_buf_is_dynamic(attach->dmabuf))
769 dma_resv_unlock(attach->dmabuf->resv);
772 dma_resv_lock(dmabuf->resv, NULL);
773 list_del(&attach->node);
774 dma_resv_unlock(dmabuf->resv);
775 if (dmabuf->ops->detach)
776 dmabuf->ops->detach(dmabuf, attach);
778 kfree(attach);
780 EXPORT_SYMBOL_GPL(dma_buf_detach);
783 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
784 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
785 * dma_buf_ops.
786 * @attach: [in] attachment whose scatterlist is to be returned
787 * @direction: [in] direction of DMA transfer
789 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
790 * on error. May return -EINTR if it is interrupted by a signal.
792 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
793 * the underlying backing storage is pinned for as long as a mapping exists,
794 * therefore users/importers should not hold onto a mapping for undue amounts of
795 * time.
797 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
798 enum dma_data_direction direction)
800 struct sg_table *sg_table;
802 might_sleep();
804 if (WARN_ON(!attach || !attach->dmabuf))
805 return ERR_PTR(-EINVAL);
807 if (dma_buf_attachment_is_dynamic(attach))
808 dma_resv_assert_held(attach->dmabuf->resv);
810 if (attach->sgt) {
812 * Two mappings with different directions for the same
813 * attachment are not allowed.
815 if (attach->dir != direction &&
816 attach->dir != DMA_BIDIRECTIONAL)
817 return ERR_PTR(-EBUSY);
819 return attach->sgt;
822 if (dma_buf_is_dynamic(attach->dmabuf))
823 dma_resv_assert_held(attach->dmabuf->resv);
825 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
826 if (!sg_table)
827 sg_table = ERR_PTR(-ENOMEM);
829 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
830 attach->sgt = sg_table;
831 attach->dir = direction;
834 return sg_table;
836 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
839 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
840 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
841 * dma_buf_ops.
842 * @attach: [in] attachment to unmap buffer from
843 * @sg_table: [in] scatterlist info of the buffer to unmap
844 * @direction: [in] direction of DMA transfer
846 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
848 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
849 struct sg_table *sg_table,
850 enum dma_data_direction direction)
852 might_sleep();
854 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
855 return;
857 if (dma_buf_attachment_is_dynamic(attach))
858 dma_resv_assert_held(attach->dmabuf->resv);
860 if (attach->sgt == sg_table)
861 return;
863 if (dma_buf_is_dynamic(attach->dmabuf))
864 dma_resv_assert_held(attach->dmabuf->resv);
866 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
868 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
871 * DOC: cpu access
873 * There are mutliple reasons for supporting CPU access to a dma buffer object:
875 * - Fallback operations in the kernel, for example when a device is connected
876 * over USB and the kernel needs to shuffle the data around first before
877 * sending it away. Cache coherency is handled by braketing any transactions
878 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
879 * access.
881 * To support dma_buf objects residing in highmem cpu access is page-based
882 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
883 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
884 * returns a pointer in kernel virtual address space. Afterwards the chunk
885 * needs to be unmapped again. There is no limit on how often a given chunk
886 * can be mapped and unmapped, i.e. the importer does not need to call
887 * begin_cpu_access again before mapping the same chunk again.
889 * Interfaces::
890 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
891 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
893 * Implementing the functions is optional for exporters and for importers all
894 * the restrictions of using kmap apply.
896 * dma_buf kmap calls outside of the range specified in begin_cpu_access are
897 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
898 * the partial chunks at the beginning and end but may return stale or bogus
899 * data outside of the range (in these partial chunks).
901 * For some cases the overhead of kmap can be too high, a vmap interface
902 * is introduced. This interface should be used very carefully, as vmalloc
903 * space is a limited resources on many architectures.
905 * Interfaces::
906 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
907 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
909 * The vmap call can fail if there is no vmap support in the exporter, or if
910 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
911 * that the dma-buf layer keeps a reference count for all vmap access and
912 * calls down into the exporter's vmap function only when no vmapping exists,
913 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
914 * provided by taking the dma_buf->lock mutex.
916 * - For full compatibility on the importer side with existing userspace
917 * interfaces, which might already support mmap'ing buffers. This is needed in
918 * many processing pipelines (e.g. feeding a software rendered image into a
919 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
920 * framework already supported this and for DMA buffer file descriptors to
921 * replace ION buffers mmap support was needed.
923 * There is no special interfaces, userspace simply calls mmap on the dma-buf
924 * fd. But like for CPU access there's a need to braket the actual access,
925 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
926 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
927 * be restarted.
929 * Some systems might need some sort of cache coherency management e.g. when
930 * CPU and GPU domains are being accessed through dma-buf at the same time.
931 * To circumvent this problem there are begin/end coherency markers, that
932 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
933 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
934 * sequence would be used like following:
936 * - mmap dma-buf fd
937 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
938 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
939 * want (with the new data being consumed by say the GPU or the scanout
940 * device)
941 * - munmap once you don't need the buffer any more
943 * For correctness and optimal performance, it is always required to use
944 * SYNC_START and SYNC_END before and after, respectively, when accessing the
945 * mapped address. Userspace cannot rely on coherent access, even when there
946 * are systems where it just works without calling these ioctls.
948 * - And as a CPU fallback in userspace processing pipelines.
950 * Similar to the motivation for kernel cpu access it is again important that
951 * the userspace code of a given importing subsystem can use the same
952 * interfaces with a imported dma-buf buffer object as with a native buffer
953 * object. This is especially important for drm where the userspace part of
954 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
955 * use a different way to mmap a buffer rather invasive.
957 * The assumption in the current dma-buf interfaces is that redirecting the
958 * initial mmap is all that's needed. A survey of some of the existing
959 * subsystems shows that no driver seems to do any nefarious thing like
960 * syncing up with outstanding asynchronous processing on the device or
961 * allocating special resources at fault time. So hopefully this is good
962 * enough, since adding interfaces to intercept pagefaults and allow pte
963 * shootdowns would increase the complexity quite a bit.
965 * Interface::
966 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
967 * unsigned long);
969 * If the importing subsystem simply provides a special-purpose mmap call to
970 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
971 * equally achieve that for a dma-buf object.
974 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
975 enum dma_data_direction direction)
977 bool write = (direction == DMA_BIDIRECTIONAL ||
978 direction == DMA_TO_DEVICE);
979 struct dma_resv *resv = dmabuf->resv;
980 long ret;
982 /* Wait on any implicit rendering fences */
983 ret = dma_resv_wait_timeout_rcu(resv, write, true,
984 MAX_SCHEDULE_TIMEOUT);
985 if (ret < 0)
986 return ret;
988 return 0;
992 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
993 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
994 * preparations. Coherency is only guaranteed in the specified range for the
995 * specified access direction.
996 * @dmabuf: [in] buffer to prepare cpu access for.
997 * @direction: [in] length of range for cpu access.
999 * After the cpu access is complete the caller should call
1000 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1001 * it guaranteed to be coherent with other DMA access.
1003 * Can return negative error values, returns 0 on success.
1005 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1006 enum dma_data_direction direction)
1008 int ret = 0;
1010 if (WARN_ON(!dmabuf))
1011 return -EINVAL;
1013 if (dmabuf->ops->begin_cpu_access)
1014 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1016 /* Ensure that all fences are waited upon - but we first allow
1017 * the native handler the chance to do so more efficiently if it
1018 * chooses. A double invocation here will be reasonably cheap no-op.
1020 if (ret == 0)
1021 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1023 return ret;
1025 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1028 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1029 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1030 * actions. Coherency is only guaranteed in the specified range for the
1031 * specified access direction.
1032 * @dmabuf: [in] buffer to complete cpu access for.
1033 * @direction: [in] length of range for cpu access.
1035 * This terminates CPU access started with dma_buf_begin_cpu_access().
1037 * Can return negative error values, returns 0 on success.
1039 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1040 enum dma_data_direction direction)
1042 int ret = 0;
1044 WARN_ON(!dmabuf);
1046 if (dmabuf->ops->end_cpu_access)
1047 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1049 return ret;
1051 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1054 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
1055 * same restrictions as for kmap and friends apply.
1056 * @dmabuf: [in] buffer to map page from.
1057 * @page_num: [in] page in PAGE_SIZE units to map.
1059 * This call must always succeed, any necessary preparations that might fail
1060 * need to be done in begin_cpu_access.
1062 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
1064 WARN_ON(!dmabuf);
1066 if (!dmabuf->ops->map)
1067 return NULL;
1068 return dmabuf->ops->map(dmabuf, page_num);
1070 EXPORT_SYMBOL_GPL(dma_buf_kmap);
1073 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1074 * @dmabuf: [in] buffer to unmap page from.
1075 * @page_num: [in] page in PAGE_SIZE units to unmap.
1076 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap.
1078 * This call must always succeed.
1080 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1081 void *vaddr)
1083 WARN_ON(!dmabuf);
1085 if (dmabuf->ops->unmap)
1086 dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1088 EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1092 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1093 * @dmabuf: [in] buffer that should back the vma
1094 * @vma: [in] vma for the mmap
1095 * @pgoff: [in] offset in pages where this mmap should start within the
1096 * dma-buf buffer.
1098 * This function adjusts the passed in vma so that it points at the file of the
1099 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1100 * checking on the size of the vma. Then it calls the exporters mmap function to
1101 * set up the mapping.
1103 * Can return negative error values, returns 0 on success.
1105 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1106 unsigned long pgoff)
1108 struct file *oldfile;
1109 int ret;
1111 if (WARN_ON(!dmabuf || !vma))
1112 return -EINVAL;
1114 /* check if buffer supports mmap */
1115 if (!dmabuf->ops->mmap)
1116 return -EINVAL;
1118 /* check for offset overflow */
1119 if (pgoff + vma_pages(vma) < pgoff)
1120 return -EOVERFLOW;
1122 /* check for overflowing the buffer's size */
1123 if (pgoff + vma_pages(vma) >
1124 dmabuf->size >> PAGE_SHIFT)
1125 return -EINVAL;
1127 /* readjust the vma */
1128 get_file(dmabuf->file);
1129 oldfile = vma->vm_file;
1130 vma->vm_file = dmabuf->file;
1131 vma->vm_pgoff = pgoff;
1133 ret = dmabuf->ops->mmap(dmabuf, vma);
1134 if (ret) {
1135 /* restore old parameters on failure */
1136 vma->vm_file = oldfile;
1137 fput(dmabuf->file);
1138 } else {
1139 if (oldfile)
1140 fput(oldfile);
1142 return ret;
1145 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1148 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1149 * address space. Same restrictions as for vmap and friends apply.
1150 * @dmabuf: [in] buffer to vmap
1152 * This call may fail due to lack of virtual mapping address space.
1153 * These calls are optional in drivers. The intended use for them
1154 * is for mapping objects linear in kernel space for high use objects.
1155 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1157 * Returns NULL on error.
1159 void *dma_buf_vmap(struct dma_buf *dmabuf)
1161 void *ptr;
1163 if (WARN_ON(!dmabuf))
1164 return NULL;
1166 if (!dmabuf->ops->vmap)
1167 return NULL;
1169 mutex_lock(&dmabuf->lock);
1170 if (dmabuf->vmapping_counter) {
1171 dmabuf->vmapping_counter++;
1172 BUG_ON(!dmabuf->vmap_ptr);
1173 ptr = dmabuf->vmap_ptr;
1174 goto out_unlock;
1177 BUG_ON(dmabuf->vmap_ptr);
1179 ptr = dmabuf->ops->vmap(dmabuf);
1180 if (WARN_ON_ONCE(IS_ERR(ptr)))
1181 ptr = NULL;
1182 if (!ptr)
1183 goto out_unlock;
1185 dmabuf->vmap_ptr = ptr;
1186 dmabuf->vmapping_counter = 1;
1188 out_unlock:
1189 mutex_unlock(&dmabuf->lock);
1190 return ptr;
1192 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1195 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1196 * @dmabuf: [in] buffer to vunmap
1197 * @vaddr: [in] vmap to vunmap
1199 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1201 if (WARN_ON(!dmabuf))
1202 return;
1204 BUG_ON(!dmabuf->vmap_ptr);
1205 BUG_ON(dmabuf->vmapping_counter == 0);
1206 BUG_ON(dmabuf->vmap_ptr != vaddr);
1208 mutex_lock(&dmabuf->lock);
1209 if (--dmabuf->vmapping_counter == 0) {
1210 if (dmabuf->ops->vunmap)
1211 dmabuf->ops->vunmap(dmabuf, vaddr);
1212 dmabuf->vmap_ptr = NULL;
1214 mutex_unlock(&dmabuf->lock);
1216 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1218 #ifdef CONFIG_DEBUG_FS
1219 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1221 int ret;
1222 struct dma_buf *buf_obj;
1223 struct dma_buf_attachment *attach_obj;
1224 struct dma_resv *robj;
1225 struct dma_resv_list *fobj;
1226 struct dma_fence *fence;
1227 unsigned seq;
1228 int count = 0, attach_count, shared_count, i;
1229 size_t size = 0;
1231 ret = mutex_lock_interruptible(&db_list.lock);
1233 if (ret)
1234 return ret;
1236 seq_puts(s, "\nDma-buf Objects:\n");
1237 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1238 "size", "flags", "mode", "count", "ino");
1240 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1242 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1243 if (ret)
1244 goto error_unlock;
1246 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1247 buf_obj->size,
1248 buf_obj->file->f_flags, buf_obj->file->f_mode,
1249 file_count(buf_obj->file),
1250 buf_obj->exp_name,
1251 file_inode(buf_obj->file)->i_ino,
1252 buf_obj->name ?: "");
1254 robj = buf_obj->resv;
1255 while (true) {
1256 seq = read_seqcount_begin(&robj->seq);
1257 rcu_read_lock();
1258 fobj = rcu_dereference(robj->fence);
1259 shared_count = fobj ? fobj->shared_count : 0;
1260 fence = rcu_dereference(robj->fence_excl);
1261 if (!read_seqcount_retry(&robj->seq, seq))
1262 break;
1263 rcu_read_unlock();
1266 if (fence)
1267 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1268 fence->ops->get_driver_name(fence),
1269 fence->ops->get_timeline_name(fence),
1270 dma_fence_is_signaled(fence) ? "" : "un");
1271 for (i = 0; i < shared_count; i++) {
1272 fence = rcu_dereference(fobj->shared[i]);
1273 if (!dma_fence_get_rcu(fence))
1274 continue;
1275 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1276 fence->ops->get_driver_name(fence),
1277 fence->ops->get_timeline_name(fence),
1278 dma_fence_is_signaled(fence) ? "" : "un");
1279 dma_fence_put(fence);
1281 rcu_read_unlock();
1283 seq_puts(s, "\tAttached Devices:\n");
1284 attach_count = 0;
1286 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1287 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1288 attach_count++;
1290 dma_resv_unlock(buf_obj->resv);
1292 seq_printf(s, "Total %d devices attached\n\n",
1293 attach_count);
1295 count++;
1296 size += buf_obj->size;
1299 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1301 mutex_unlock(&db_list.lock);
1302 return 0;
1304 error_unlock:
1305 mutex_unlock(&db_list.lock);
1306 return ret;
1309 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1311 static struct dentry *dma_buf_debugfs_dir;
1313 static int dma_buf_init_debugfs(void)
1315 struct dentry *d;
1316 int err = 0;
1318 d = debugfs_create_dir("dma_buf", NULL);
1319 if (IS_ERR(d))
1320 return PTR_ERR(d);
1322 dma_buf_debugfs_dir = d;
1324 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1325 NULL, &dma_buf_debug_fops);
1326 if (IS_ERR(d)) {
1327 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1328 debugfs_remove_recursive(dma_buf_debugfs_dir);
1329 dma_buf_debugfs_dir = NULL;
1330 err = PTR_ERR(d);
1333 return err;
1336 static void dma_buf_uninit_debugfs(void)
1338 debugfs_remove_recursive(dma_buf_debugfs_dir);
1340 #else
1341 static inline int dma_buf_init_debugfs(void)
1343 return 0;
1345 static inline void dma_buf_uninit_debugfs(void)
1348 #endif
1350 static int __init dma_buf_init(void)
1352 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1353 if (IS_ERR(dma_buf_mnt))
1354 return PTR_ERR(dma_buf_mnt);
1356 mutex_init(&db_list.lock);
1357 INIT_LIST_HEAD(&db_list.head);
1358 dma_buf_init_debugfs();
1359 return 0;
1361 subsys_initcall(dma_buf_init);
1363 static void __exit dma_buf_deinit(void)
1365 dma_buf_uninit_debugfs();
1366 kern_unmount(dma_buf_mnt);
1368 __exitcall(dma_buf_deinit);