usb: xhci: Fix build warning seen with CONFIG_PM=n
[linux/fpc-iii.git] / drivers / md / dm-crypt.c
blobeb9782fc93fe99745ab22ac408cf623648094605
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
8 */
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
39 #include <linux/device-mapper.h>
41 #define DM_MSG_PREFIX "crypt"
44 * context holding the current state of a multi-part conversion
46 struct convert_context {
47 struct completion restart;
48 struct bio *bio_in;
49 struct bio *bio_out;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
52 u64 cc_sector;
53 atomic_t cc_pending;
54 union {
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
57 } r;
62 * per bio private data
64 struct dm_crypt_io {
65 struct crypt_config *cc;
66 struct bio *base_bio;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
71 struct convert_context ctx;
73 atomic_t io_pending;
74 blk_status_t error;
75 sector_t sector;
77 struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
80 struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
84 u64 iv_sector;
87 struct crypt_config;
89 struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 const char *opts);
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
101 struct iv_benbi_private {
102 int shift;
105 #define LMK_SEED_SIZE 64 /* hash + 0 */
106 struct iv_lmk_private {
107 struct crypto_shash *hash_tfm;
108 u8 *seed;
111 #define TCW_WHITENING_SIZE 16
112 struct iv_tcw_private {
113 struct crypto_shash *crc32_tfm;
114 u8 *iv_seed;
115 u8 *whitening;
119 * Crypt: maps a linear range of a block device
120 * and encrypts / decrypts at the same time.
122 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
123 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
125 enum cipher_flags {
126 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
127 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
131 * The fields in here must be read only after initialization.
133 struct crypt_config {
134 struct dm_dev *dev;
135 sector_t start;
137 struct percpu_counter n_allocated_pages;
139 struct workqueue_struct *io_queue;
140 struct workqueue_struct *crypt_queue;
142 spinlock_t write_thread_lock;
143 struct task_struct *write_thread;
144 struct rb_root write_tree;
146 char *cipher_string;
147 char *cipher_auth;
148 char *key_string;
150 const struct crypt_iv_operations *iv_gen_ops;
151 union {
152 struct iv_benbi_private benbi;
153 struct iv_lmk_private lmk;
154 struct iv_tcw_private tcw;
155 } iv_gen_private;
156 u64 iv_offset;
157 unsigned int iv_size;
158 unsigned short int sector_size;
159 unsigned char sector_shift;
161 union {
162 struct crypto_skcipher **tfms;
163 struct crypto_aead **tfms_aead;
164 } cipher_tfm;
165 unsigned tfms_count;
166 unsigned long cipher_flags;
169 * Layout of each crypto request:
171 * struct skcipher_request
172 * context
173 * padding
174 * struct dm_crypt_request
175 * padding
176 * IV
178 * The padding is added so that dm_crypt_request and the IV are
179 * correctly aligned.
181 unsigned int dmreq_start;
183 unsigned int per_bio_data_size;
185 unsigned long flags;
186 unsigned int key_size;
187 unsigned int key_parts; /* independent parts in key buffer */
188 unsigned int key_extra_size; /* additional keys length */
189 unsigned int key_mac_size; /* MAC key size for authenc(...) */
191 unsigned int integrity_tag_size;
192 unsigned int integrity_iv_size;
193 unsigned int on_disk_tag_size;
196 * pool for per bio private data, crypto requests,
197 * encryption requeusts/buffer pages and integrity tags
199 unsigned tag_pool_max_sectors;
200 mempool_t tag_pool;
201 mempool_t req_pool;
202 mempool_t page_pool;
204 struct bio_set bs;
205 struct mutex bio_alloc_lock;
207 u8 *authenc_key; /* space for keys in authenc() format (if used) */
208 u8 key[0];
211 #define MIN_IOS 64
212 #define MAX_TAG_SIZE 480
213 #define POOL_ENTRY_SIZE 512
215 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
216 static unsigned dm_crypt_clients_n = 0;
217 static volatile unsigned long dm_crypt_pages_per_client;
218 #define DM_CRYPT_MEMORY_PERCENT 2
219 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
221 static void clone_init(struct dm_crypt_io *, struct bio *);
222 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
223 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
224 struct scatterlist *sg);
227 * Use this to access cipher attributes that are independent of the key.
229 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
231 return cc->cipher_tfm.tfms[0];
234 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
236 return cc->cipher_tfm.tfms_aead[0];
240 * Different IV generation algorithms:
242 * plain: the initial vector is the 32-bit little-endian version of the sector
243 * number, padded with zeros if necessary.
245 * plain64: the initial vector is the 64-bit little-endian version of the sector
246 * number, padded with zeros if necessary.
248 * plain64be: the initial vector is the 64-bit big-endian version of the sector
249 * number, padded with zeros if necessary.
251 * essiv: "encrypted sector|salt initial vector", the sector number is
252 * encrypted with the bulk cipher using a salt as key. The salt
253 * should be derived from the bulk cipher's key via hashing.
255 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
256 * (needed for LRW-32-AES and possible other narrow block modes)
258 * null: the initial vector is always zero. Provides compatibility with
259 * obsolete loop_fish2 devices. Do not use for new devices.
261 * lmk: Compatible implementation of the block chaining mode used
262 * by the Loop-AES block device encryption system
263 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
264 * It operates on full 512 byte sectors and uses CBC
265 * with an IV derived from the sector number, the data and
266 * optionally extra IV seed.
267 * This means that after decryption the first block
268 * of sector must be tweaked according to decrypted data.
269 * Loop-AES can use three encryption schemes:
270 * version 1: is plain aes-cbc mode
271 * version 2: uses 64 multikey scheme with lmk IV generator
272 * version 3: the same as version 2 with additional IV seed
273 * (it uses 65 keys, last key is used as IV seed)
275 * tcw: Compatible implementation of the block chaining mode used
276 * by the TrueCrypt device encryption system (prior to version 4.1).
277 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
278 * It operates on full 512 byte sectors and uses CBC
279 * with an IV derived from initial key and the sector number.
280 * In addition, whitening value is applied on every sector, whitening
281 * is calculated from initial key, sector number and mixed using CRC32.
282 * Note that this encryption scheme is vulnerable to watermarking attacks
283 * and should be used for old compatible containers access only.
285 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
286 * The IV is encrypted little-endian byte-offset (with the same key
287 * and cipher as the volume).
290 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
291 struct dm_crypt_request *dmreq)
293 memset(iv, 0, cc->iv_size);
294 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
296 return 0;
299 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
300 struct dm_crypt_request *dmreq)
302 memset(iv, 0, cc->iv_size);
303 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
305 return 0;
308 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
309 struct dm_crypt_request *dmreq)
311 memset(iv, 0, cc->iv_size);
312 /* iv_size is at least of size u64; usually it is 16 bytes */
313 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
315 return 0;
318 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
319 struct dm_crypt_request *dmreq)
322 * ESSIV encryption of the IV is now handled by the crypto API,
323 * so just pass the plain sector number here.
325 memset(iv, 0, cc->iv_size);
326 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
328 return 0;
331 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
332 const char *opts)
334 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
335 int log = ilog2(bs);
337 /* we need to calculate how far we must shift the sector count
338 * to get the cipher block count, we use this shift in _gen */
340 if (1 << log != bs) {
341 ti->error = "cypher blocksize is not a power of 2";
342 return -EINVAL;
345 if (log > 9) {
346 ti->error = "cypher blocksize is > 512";
347 return -EINVAL;
350 cc->iv_gen_private.benbi.shift = 9 - log;
352 return 0;
355 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
359 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
360 struct dm_crypt_request *dmreq)
362 __be64 val;
364 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
366 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
367 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
369 return 0;
372 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
373 struct dm_crypt_request *dmreq)
375 memset(iv, 0, cc->iv_size);
377 return 0;
380 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
382 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
384 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
385 crypto_free_shash(lmk->hash_tfm);
386 lmk->hash_tfm = NULL;
388 kzfree(lmk->seed);
389 lmk->seed = NULL;
392 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
393 const char *opts)
395 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
397 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
398 ti->error = "Unsupported sector size for LMK";
399 return -EINVAL;
402 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
403 if (IS_ERR(lmk->hash_tfm)) {
404 ti->error = "Error initializing LMK hash";
405 return PTR_ERR(lmk->hash_tfm);
408 /* No seed in LMK version 2 */
409 if (cc->key_parts == cc->tfms_count) {
410 lmk->seed = NULL;
411 return 0;
414 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
415 if (!lmk->seed) {
416 crypt_iv_lmk_dtr(cc);
417 ti->error = "Error kmallocing seed storage in LMK";
418 return -ENOMEM;
421 return 0;
424 static int crypt_iv_lmk_init(struct crypt_config *cc)
426 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
427 int subkey_size = cc->key_size / cc->key_parts;
429 /* LMK seed is on the position of LMK_KEYS + 1 key */
430 if (lmk->seed)
431 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
432 crypto_shash_digestsize(lmk->hash_tfm));
434 return 0;
437 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
439 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
441 if (lmk->seed)
442 memset(lmk->seed, 0, LMK_SEED_SIZE);
444 return 0;
447 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
448 struct dm_crypt_request *dmreq,
449 u8 *data)
451 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
452 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
453 struct md5_state md5state;
454 __le32 buf[4];
455 int i, r;
457 desc->tfm = lmk->hash_tfm;
459 r = crypto_shash_init(desc);
460 if (r)
461 return r;
463 if (lmk->seed) {
464 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
465 if (r)
466 return r;
469 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
470 r = crypto_shash_update(desc, data + 16, 16 * 31);
471 if (r)
472 return r;
474 /* Sector is cropped to 56 bits here */
475 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
476 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
477 buf[2] = cpu_to_le32(4024);
478 buf[3] = 0;
479 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
480 if (r)
481 return r;
483 /* No MD5 padding here */
484 r = crypto_shash_export(desc, &md5state);
485 if (r)
486 return r;
488 for (i = 0; i < MD5_HASH_WORDS; i++)
489 __cpu_to_le32s(&md5state.hash[i]);
490 memcpy(iv, &md5state.hash, cc->iv_size);
492 return 0;
495 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
496 struct dm_crypt_request *dmreq)
498 struct scatterlist *sg;
499 u8 *src;
500 int r = 0;
502 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
503 sg = crypt_get_sg_data(cc, dmreq->sg_in);
504 src = kmap_atomic(sg_page(sg));
505 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
506 kunmap_atomic(src);
507 } else
508 memset(iv, 0, cc->iv_size);
510 return r;
513 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
514 struct dm_crypt_request *dmreq)
516 struct scatterlist *sg;
517 u8 *dst;
518 int r;
520 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
521 return 0;
523 sg = crypt_get_sg_data(cc, dmreq->sg_out);
524 dst = kmap_atomic(sg_page(sg));
525 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
527 /* Tweak the first block of plaintext sector */
528 if (!r)
529 crypto_xor(dst + sg->offset, iv, cc->iv_size);
531 kunmap_atomic(dst);
532 return r;
535 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
537 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
539 kzfree(tcw->iv_seed);
540 tcw->iv_seed = NULL;
541 kzfree(tcw->whitening);
542 tcw->whitening = NULL;
544 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
545 crypto_free_shash(tcw->crc32_tfm);
546 tcw->crc32_tfm = NULL;
549 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
550 const char *opts)
552 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
554 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
555 ti->error = "Unsupported sector size for TCW";
556 return -EINVAL;
559 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
560 ti->error = "Wrong key size for TCW";
561 return -EINVAL;
564 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
565 if (IS_ERR(tcw->crc32_tfm)) {
566 ti->error = "Error initializing CRC32 in TCW";
567 return PTR_ERR(tcw->crc32_tfm);
570 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
571 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
572 if (!tcw->iv_seed || !tcw->whitening) {
573 crypt_iv_tcw_dtr(cc);
574 ti->error = "Error allocating seed storage in TCW";
575 return -ENOMEM;
578 return 0;
581 static int crypt_iv_tcw_init(struct crypt_config *cc)
583 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
584 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
586 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
587 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
588 TCW_WHITENING_SIZE);
590 return 0;
593 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
595 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
597 memset(tcw->iv_seed, 0, cc->iv_size);
598 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
600 return 0;
603 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
604 struct dm_crypt_request *dmreq,
605 u8 *data)
607 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
608 __le64 sector = cpu_to_le64(dmreq->iv_sector);
609 u8 buf[TCW_WHITENING_SIZE];
610 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
611 int i, r;
613 /* xor whitening with sector number */
614 crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
615 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
617 /* calculate crc32 for every 32bit part and xor it */
618 desc->tfm = tcw->crc32_tfm;
619 for (i = 0; i < 4; i++) {
620 r = crypto_shash_init(desc);
621 if (r)
622 goto out;
623 r = crypto_shash_update(desc, &buf[i * 4], 4);
624 if (r)
625 goto out;
626 r = crypto_shash_final(desc, &buf[i * 4]);
627 if (r)
628 goto out;
630 crypto_xor(&buf[0], &buf[12], 4);
631 crypto_xor(&buf[4], &buf[8], 4);
633 /* apply whitening (8 bytes) to whole sector */
634 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
635 crypto_xor(data + i * 8, buf, 8);
636 out:
637 memzero_explicit(buf, sizeof(buf));
638 return r;
641 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
642 struct dm_crypt_request *dmreq)
644 struct scatterlist *sg;
645 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
646 __le64 sector = cpu_to_le64(dmreq->iv_sector);
647 u8 *src;
648 int r = 0;
650 /* Remove whitening from ciphertext */
651 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
652 sg = crypt_get_sg_data(cc, dmreq->sg_in);
653 src = kmap_atomic(sg_page(sg));
654 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
655 kunmap_atomic(src);
658 /* Calculate IV */
659 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
660 if (cc->iv_size > 8)
661 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
662 cc->iv_size - 8);
664 return r;
667 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
668 struct dm_crypt_request *dmreq)
670 struct scatterlist *sg;
671 u8 *dst;
672 int r;
674 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
675 return 0;
677 /* Apply whitening on ciphertext */
678 sg = crypt_get_sg_data(cc, dmreq->sg_out);
679 dst = kmap_atomic(sg_page(sg));
680 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
681 kunmap_atomic(dst);
683 return r;
686 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
687 struct dm_crypt_request *dmreq)
689 /* Used only for writes, there must be an additional space to store IV */
690 get_random_bytes(iv, cc->iv_size);
691 return 0;
694 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
695 const char *opts)
697 if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags)) {
698 ti->error = "AEAD transforms not supported for EBOIV";
699 return -EINVAL;
702 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
703 ti->error = "Block size of EBOIV cipher does "
704 "not match IV size of block cipher";
705 return -EINVAL;
708 return 0;
711 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
712 struct dm_crypt_request *dmreq)
714 u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
715 struct skcipher_request *req;
716 struct scatterlist src, dst;
717 struct crypto_wait wait;
718 int err;
720 req = skcipher_request_alloc(any_tfm(cc), GFP_KERNEL | GFP_NOFS);
721 if (!req)
722 return -ENOMEM;
724 memset(buf, 0, cc->iv_size);
725 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
727 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
728 sg_init_one(&dst, iv, cc->iv_size);
729 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
730 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
731 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
732 skcipher_request_free(req);
734 return err;
737 static const struct crypt_iv_operations crypt_iv_plain_ops = {
738 .generator = crypt_iv_plain_gen
741 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
742 .generator = crypt_iv_plain64_gen
745 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
746 .generator = crypt_iv_plain64be_gen
749 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
750 .generator = crypt_iv_essiv_gen
753 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
754 .ctr = crypt_iv_benbi_ctr,
755 .dtr = crypt_iv_benbi_dtr,
756 .generator = crypt_iv_benbi_gen
759 static const struct crypt_iv_operations crypt_iv_null_ops = {
760 .generator = crypt_iv_null_gen
763 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
764 .ctr = crypt_iv_lmk_ctr,
765 .dtr = crypt_iv_lmk_dtr,
766 .init = crypt_iv_lmk_init,
767 .wipe = crypt_iv_lmk_wipe,
768 .generator = crypt_iv_lmk_gen,
769 .post = crypt_iv_lmk_post
772 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
773 .ctr = crypt_iv_tcw_ctr,
774 .dtr = crypt_iv_tcw_dtr,
775 .init = crypt_iv_tcw_init,
776 .wipe = crypt_iv_tcw_wipe,
777 .generator = crypt_iv_tcw_gen,
778 .post = crypt_iv_tcw_post
781 static struct crypt_iv_operations crypt_iv_random_ops = {
782 .generator = crypt_iv_random_gen
785 static struct crypt_iv_operations crypt_iv_eboiv_ops = {
786 .ctr = crypt_iv_eboiv_ctr,
787 .generator = crypt_iv_eboiv_gen
791 * Integrity extensions
793 static bool crypt_integrity_aead(struct crypt_config *cc)
795 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
798 static bool crypt_integrity_hmac(struct crypt_config *cc)
800 return crypt_integrity_aead(cc) && cc->key_mac_size;
803 /* Get sg containing data */
804 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
805 struct scatterlist *sg)
807 if (unlikely(crypt_integrity_aead(cc)))
808 return &sg[2];
810 return sg;
813 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
815 struct bio_integrity_payload *bip;
816 unsigned int tag_len;
817 int ret;
819 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
820 return 0;
822 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
823 if (IS_ERR(bip))
824 return PTR_ERR(bip);
826 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
828 bip->bip_iter.bi_size = tag_len;
829 bip->bip_iter.bi_sector = io->cc->start + io->sector;
831 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
832 tag_len, offset_in_page(io->integrity_metadata));
833 if (unlikely(ret != tag_len))
834 return -ENOMEM;
836 return 0;
839 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
841 #ifdef CONFIG_BLK_DEV_INTEGRITY
842 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
843 struct mapped_device *md = dm_table_get_md(ti->table);
845 /* From now we require underlying device with our integrity profile */
846 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
847 ti->error = "Integrity profile not supported.";
848 return -EINVAL;
851 if (bi->tag_size != cc->on_disk_tag_size ||
852 bi->tuple_size != cc->on_disk_tag_size) {
853 ti->error = "Integrity profile tag size mismatch.";
854 return -EINVAL;
856 if (1 << bi->interval_exp != cc->sector_size) {
857 ti->error = "Integrity profile sector size mismatch.";
858 return -EINVAL;
861 if (crypt_integrity_aead(cc)) {
862 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
863 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
864 cc->integrity_tag_size, cc->integrity_iv_size);
866 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
867 ti->error = "Integrity AEAD auth tag size is not supported.";
868 return -EINVAL;
870 } else if (cc->integrity_iv_size)
871 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
872 cc->integrity_iv_size);
874 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
875 ti->error = "Not enough space for integrity tag in the profile.";
876 return -EINVAL;
879 return 0;
880 #else
881 ti->error = "Integrity profile not supported.";
882 return -EINVAL;
883 #endif
886 static void crypt_convert_init(struct crypt_config *cc,
887 struct convert_context *ctx,
888 struct bio *bio_out, struct bio *bio_in,
889 sector_t sector)
891 ctx->bio_in = bio_in;
892 ctx->bio_out = bio_out;
893 if (bio_in)
894 ctx->iter_in = bio_in->bi_iter;
895 if (bio_out)
896 ctx->iter_out = bio_out->bi_iter;
897 ctx->cc_sector = sector + cc->iv_offset;
898 init_completion(&ctx->restart);
901 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
902 void *req)
904 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
907 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
909 return (void *)((char *)dmreq - cc->dmreq_start);
912 static u8 *iv_of_dmreq(struct crypt_config *cc,
913 struct dm_crypt_request *dmreq)
915 if (crypt_integrity_aead(cc))
916 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
917 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
918 else
919 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
920 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
923 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
924 struct dm_crypt_request *dmreq)
926 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
929 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
930 struct dm_crypt_request *dmreq)
932 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
933 return (__le64 *) ptr;
936 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
937 struct dm_crypt_request *dmreq)
939 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
940 cc->iv_size + sizeof(uint64_t);
941 return (unsigned int*)ptr;
944 static void *tag_from_dmreq(struct crypt_config *cc,
945 struct dm_crypt_request *dmreq)
947 struct convert_context *ctx = dmreq->ctx;
948 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
950 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
951 cc->on_disk_tag_size];
954 static void *iv_tag_from_dmreq(struct crypt_config *cc,
955 struct dm_crypt_request *dmreq)
957 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
960 static int crypt_convert_block_aead(struct crypt_config *cc,
961 struct convert_context *ctx,
962 struct aead_request *req,
963 unsigned int tag_offset)
965 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
966 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
967 struct dm_crypt_request *dmreq;
968 u8 *iv, *org_iv, *tag_iv, *tag;
969 __le64 *sector;
970 int r = 0;
972 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
974 /* Reject unexpected unaligned bio. */
975 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
976 return -EIO;
978 dmreq = dmreq_of_req(cc, req);
979 dmreq->iv_sector = ctx->cc_sector;
980 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
981 dmreq->iv_sector >>= cc->sector_shift;
982 dmreq->ctx = ctx;
984 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
986 sector = org_sector_of_dmreq(cc, dmreq);
987 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
989 iv = iv_of_dmreq(cc, dmreq);
990 org_iv = org_iv_of_dmreq(cc, dmreq);
991 tag = tag_from_dmreq(cc, dmreq);
992 tag_iv = iv_tag_from_dmreq(cc, dmreq);
994 /* AEAD request:
995 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
996 * | (authenticated) | (auth+encryption) | |
997 * | sector_LE | IV | sector in/out | tag in/out |
999 sg_init_table(dmreq->sg_in, 4);
1000 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1001 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1002 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1003 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1005 sg_init_table(dmreq->sg_out, 4);
1006 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1007 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1008 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1009 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1011 if (cc->iv_gen_ops) {
1012 /* For READs use IV stored in integrity metadata */
1013 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1014 memcpy(org_iv, tag_iv, cc->iv_size);
1015 } else {
1016 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1017 if (r < 0)
1018 return r;
1019 /* Store generated IV in integrity metadata */
1020 if (cc->integrity_iv_size)
1021 memcpy(tag_iv, org_iv, cc->iv_size);
1023 /* Working copy of IV, to be modified in crypto API */
1024 memcpy(iv, org_iv, cc->iv_size);
1027 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1028 if (bio_data_dir(ctx->bio_in) == WRITE) {
1029 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1030 cc->sector_size, iv);
1031 r = crypto_aead_encrypt(req);
1032 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1033 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1034 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1035 } else {
1036 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1037 cc->sector_size + cc->integrity_tag_size, iv);
1038 r = crypto_aead_decrypt(req);
1041 if (r == -EBADMSG) {
1042 char b[BDEVNAME_SIZE];
1043 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1044 (unsigned long long)le64_to_cpu(*sector));
1047 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1048 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1050 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1051 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1053 return r;
1056 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1057 struct convert_context *ctx,
1058 struct skcipher_request *req,
1059 unsigned int tag_offset)
1061 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1062 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1063 struct scatterlist *sg_in, *sg_out;
1064 struct dm_crypt_request *dmreq;
1065 u8 *iv, *org_iv, *tag_iv;
1066 __le64 *sector;
1067 int r = 0;
1069 /* Reject unexpected unaligned bio. */
1070 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1071 return -EIO;
1073 dmreq = dmreq_of_req(cc, req);
1074 dmreq->iv_sector = ctx->cc_sector;
1075 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1076 dmreq->iv_sector >>= cc->sector_shift;
1077 dmreq->ctx = ctx;
1079 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1081 iv = iv_of_dmreq(cc, dmreq);
1082 org_iv = org_iv_of_dmreq(cc, dmreq);
1083 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1085 sector = org_sector_of_dmreq(cc, dmreq);
1086 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1088 /* For skcipher we use only the first sg item */
1089 sg_in = &dmreq->sg_in[0];
1090 sg_out = &dmreq->sg_out[0];
1092 sg_init_table(sg_in, 1);
1093 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1095 sg_init_table(sg_out, 1);
1096 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1098 if (cc->iv_gen_ops) {
1099 /* For READs use IV stored in integrity metadata */
1100 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1101 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1102 } else {
1103 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1104 if (r < 0)
1105 return r;
1106 /* Store generated IV in integrity metadata */
1107 if (cc->integrity_iv_size)
1108 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1110 /* Working copy of IV, to be modified in crypto API */
1111 memcpy(iv, org_iv, cc->iv_size);
1114 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1116 if (bio_data_dir(ctx->bio_in) == WRITE)
1117 r = crypto_skcipher_encrypt(req);
1118 else
1119 r = crypto_skcipher_decrypt(req);
1121 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1122 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1124 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1125 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1127 return r;
1130 static void kcryptd_async_done(struct crypto_async_request *async_req,
1131 int error);
1133 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1134 struct convert_context *ctx)
1136 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1138 if (!ctx->r.req)
1139 ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1141 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1144 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1145 * requests if driver request queue is full.
1147 skcipher_request_set_callback(ctx->r.req,
1148 CRYPTO_TFM_REQ_MAY_BACKLOG,
1149 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1152 static void crypt_alloc_req_aead(struct crypt_config *cc,
1153 struct convert_context *ctx)
1155 if (!ctx->r.req_aead)
1156 ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1158 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1161 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1162 * requests if driver request queue is full.
1164 aead_request_set_callback(ctx->r.req_aead,
1165 CRYPTO_TFM_REQ_MAY_BACKLOG,
1166 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1169 static void crypt_alloc_req(struct crypt_config *cc,
1170 struct convert_context *ctx)
1172 if (crypt_integrity_aead(cc))
1173 crypt_alloc_req_aead(cc, ctx);
1174 else
1175 crypt_alloc_req_skcipher(cc, ctx);
1178 static void crypt_free_req_skcipher(struct crypt_config *cc,
1179 struct skcipher_request *req, struct bio *base_bio)
1181 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1183 if ((struct skcipher_request *)(io + 1) != req)
1184 mempool_free(req, &cc->req_pool);
1187 static void crypt_free_req_aead(struct crypt_config *cc,
1188 struct aead_request *req, struct bio *base_bio)
1190 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1192 if ((struct aead_request *)(io + 1) != req)
1193 mempool_free(req, &cc->req_pool);
1196 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1198 if (crypt_integrity_aead(cc))
1199 crypt_free_req_aead(cc, req, base_bio);
1200 else
1201 crypt_free_req_skcipher(cc, req, base_bio);
1205 * Encrypt / decrypt data from one bio to another one (can be the same one)
1207 static blk_status_t crypt_convert(struct crypt_config *cc,
1208 struct convert_context *ctx)
1210 unsigned int tag_offset = 0;
1211 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1212 int r;
1214 atomic_set(&ctx->cc_pending, 1);
1216 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1218 crypt_alloc_req(cc, ctx);
1219 atomic_inc(&ctx->cc_pending);
1221 if (crypt_integrity_aead(cc))
1222 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1223 else
1224 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1226 switch (r) {
1228 * The request was queued by a crypto driver
1229 * but the driver request queue is full, let's wait.
1231 case -EBUSY:
1232 wait_for_completion(&ctx->restart);
1233 reinit_completion(&ctx->restart);
1234 /* fall through */
1236 * The request is queued and processed asynchronously,
1237 * completion function kcryptd_async_done() will be called.
1239 case -EINPROGRESS:
1240 ctx->r.req = NULL;
1241 ctx->cc_sector += sector_step;
1242 tag_offset++;
1243 continue;
1245 * The request was already processed (synchronously).
1247 case 0:
1248 atomic_dec(&ctx->cc_pending);
1249 ctx->cc_sector += sector_step;
1250 tag_offset++;
1251 cond_resched();
1252 continue;
1254 * There was a data integrity error.
1256 case -EBADMSG:
1257 atomic_dec(&ctx->cc_pending);
1258 return BLK_STS_PROTECTION;
1260 * There was an error while processing the request.
1262 default:
1263 atomic_dec(&ctx->cc_pending);
1264 return BLK_STS_IOERR;
1268 return 0;
1271 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1274 * Generate a new unfragmented bio with the given size
1275 * This should never violate the device limitations (but only because
1276 * max_segment_size is being constrained to PAGE_SIZE).
1278 * This function may be called concurrently. If we allocate from the mempool
1279 * concurrently, there is a possibility of deadlock. For example, if we have
1280 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1281 * the mempool concurrently, it may deadlock in a situation where both processes
1282 * have allocated 128 pages and the mempool is exhausted.
1284 * In order to avoid this scenario we allocate the pages under a mutex.
1286 * In order to not degrade performance with excessive locking, we try
1287 * non-blocking allocations without a mutex first but on failure we fallback
1288 * to blocking allocations with a mutex.
1290 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1292 struct crypt_config *cc = io->cc;
1293 struct bio *clone;
1294 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1296 unsigned i, len, remaining_size;
1297 struct page *page;
1299 retry:
1300 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1301 mutex_lock(&cc->bio_alloc_lock);
1303 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1304 if (!clone)
1305 goto out;
1307 clone_init(io, clone);
1309 remaining_size = size;
1311 for (i = 0; i < nr_iovecs; i++) {
1312 page = mempool_alloc(&cc->page_pool, gfp_mask);
1313 if (!page) {
1314 crypt_free_buffer_pages(cc, clone);
1315 bio_put(clone);
1316 gfp_mask |= __GFP_DIRECT_RECLAIM;
1317 goto retry;
1320 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1322 bio_add_page(clone, page, len, 0);
1324 remaining_size -= len;
1327 /* Allocate space for integrity tags */
1328 if (dm_crypt_integrity_io_alloc(io, clone)) {
1329 crypt_free_buffer_pages(cc, clone);
1330 bio_put(clone);
1331 clone = NULL;
1333 out:
1334 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1335 mutex_unlock(&cc->bio_alloc_lock);
1337 return clone;
1340 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1342 struct bio_vec *bv;
1343 struct bvec_iter_all iter_all;
1345 bio_for_each_segment_all(bv, clone, iter_all) {
1346 BUG_ON(!bv->bv_page);
1347 mempool_free(bv->bv_page, &cc->page_pool);
1351 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1352 struct bio *bio, sector_t sector)
1354 io->cc = cc;
1355 io->base_bio = bio;
1356 io->sector = sector;
1357 io->error = 0;
1358 io->ctx.r.req = NULL;
1359 io->integrity_metadata = NULL;
1360 io->integrity_metadata_from_pool = false;
1361 atomic_set(&io->io_pending, 0);
1364 static void crypt_inc_pending(struct dm_crypt_io *io)
1366 atomic_inc(&io->io_pending);
1370 * One of the bios was finished. Check for completion of
1371 * the whole request and correctly clean up the buffer.
1373 static void crypt_dec_pending(struct dm_crypt_io *io)
1375 struct crypt_config *cc = io->cc;
1376 struct bio *base_bio = io->base_bio;
1377 blk_status_t error = io->error;
1379 if (!atomic_dec_and_test(&io->io_pending))
1380 return;
1382 if (io->ctx.r.req)
1383 crypt_free_req(cc, io->ctx.r.req, base_bio);
1385 if (unlikely(io->integrity_metadata_from_pool))
1386 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1387 else
1388 kfree(io->integrity_metadata);
1390 base_bio->bi_status = error;
1391 bio_endio(base_bio);
1395 * kcryptd/kcryptd_io:
1397 * Needed because it would be very unwise to do decryption in an
1398 * interrupt context.
1400 * kcryptd performs the actual encryption or decryption.
1402 * kcryptd_io performs the IO submission.
1404 * They must be separated as otherwise the final stages could be
1405 * starved by new requests which can block in the first stages due
1406 * to memory allocation.
1408 * The work is done per CPU global for all dm-crypt instances.
1409 * They should not depend on each other and do not block.
1411 static void crypt_endio(struct bio *clone)
1413 struct dm_crypt_io *io = clone->bi_private;
1414 struct crypt_config *cc = io->cc;
1415 unsigned rw = bio_data_dir(clone);
1416 blk_status_t error;
1419 * free the processed pages
1421 if (rw == WRITE)
1422 crypt_free_buffer_pages(cc, clone);
1424 error = clone->bi_status;
1425 bio_put(clone);
1427 if (rw == READ && !error) {
1428 kcryptd_queue_crypt(io);
1429 return;
1432 if (unlikely(error))
1433 io->error = error;
1435 crypt_dec_pending(io);
1438 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1440 struct crypt_config *cc = io->cc;
1442 clone->bi_private = io;
1443 clone->bi_end_io = crypt_endio;
1444 bio_set_dev(clone, cc->dev->bdev);
1445 clone->bi_opf = io->base_bio->bi_opf;
1448 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1450 struct crypt_config *cc = io->cc;
1451 struct bio *clone;
1454 * We need the original biovec array in order to decrypt
1455 * the whole bio data *afterwards* -- thanks to immutable
1456 * biovecs we don't need to worry about the block layer
1457 * modifying the biovec array; so leverage bio_clone_fast().
1459 clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1460 if (!clone)
1461 return 1;
1463 crypt_inc_pending(io);
1465 clone_init(io, clone);
1466 clone->bi_iter.bi_sector = cc->start + io->sector;
1468 if (dm_crypt_integrity_io_alloc(io, clone)) {
1469 crypt_dec_pending(io);
1470 bio_put(clone);
1471 return 1;
1474 generic_make_request(clone);
1475 return 0;
1478 static void kcryptd_io_read_work(struct work_struct *work)
1480 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1482 crypt_inc_pending(io);
1483 if (kcryptd_io_read(io, GFP_NOIO))
1484 io->error = BLK_STS_RESOURCE;
1485 crypt_dec_pending(io);
1488 static void kcryptd_queue_read(struct dm_crypt_io *io)
1490 struct crypt_config *cc = io->cc;
1492 INIT_WORK(&io->work, kcryptd_io_read_work);
1493 queue_work(cc->io_queue, &io->work);
1496 static void kcryptd_io_write(struct dm_crypt_io *io)
1498 struct bio *clone = io->ctx.bio_out;
1500 generic_make_request(clone);
1503 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1505 static int dmcrypt_write(void *data)
1507 struct crypt_config *cc = data;
1508 struct dm_crypt_io *io;
1510 while (1) {
1511 struct rb_root write_tree;
1512 struct blk_plug plug;
1514 spin_lock_irq(&cc->write_thread_lock);
1515 continue_locked:
1517 if (!RB_EMPTY_ROOT(&cc->write_tree))
1518 goto pop_from_list;
1520 set_current_state(TASK_INTERRUPTIBLE);
1522 spin_unlock_irq(&cc->write_thread_lock);
1524 if (unlikely(kthread_should_stop())) {
1525 set_current_state(TASK_RUNNING);
1526 break;
1529 schedule();
1531 set_current_state(TASK_RUNNING);
1532 spin_lock_irq(&cc->write_thread_lock);
1533 goto continue_locked;
1535 pop_from_list:
1536 write_tree = cc->write_tree;
1537 cc->write_tree = RB_ROOT;
1538 spin_unlock_irq(&cc->write_thread_lock);
1540 BUG_ON(rb_parent(write_tree.rb_node));
1543 * Note: we cannot walk the tree here with rb_next because
1544 * the structures may be freed when kcryptd_io_write is called.
1546 blk_start_plug(&plug);
1547 do {
1548 io = crypt_io_from_node(rb_first(&write_tree));
1549 rb_erase(&io->rb_node, &write_tree);
1550 kcryptd_io_write(io);
1551 } while (!RB_EMPTY_ROOT(&write_tree));
1552 blk_finish_plug(&plug);
1554 return 0;
1557 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1559 struct bio *clone = io->ctx.bio_out;
1560 struct crypt_config *cc = io->cc;
1561 unsigned long flags;
1562 sector_t sector;
1563 struct rb_node **rbp, *parent;
1565 if (unlikely(io->error)) {
1566 crypt_free_buffer_pages(cc, clone);
1567 bio_put(clone);
1568 crypt_dec_pending(io);
1569 return;
1572 /* crypt_convert should have filled the clone bio */
1573 BUG_ON(io->ctx.iter_out.bi_size);
1575 clone->bi_iter.bi_sector = cc->start + io->sector;
1577 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1578 generic_make_request(clone);
1579 return;
1582 spin_lock_irqsave(&cc->write_thread_lock, flags);
1583 if (RB_EMPTY_ROOT(&cc->write_tree))
1584 wake_up_process(cc->write_thread);
1585 rbp = &cc->write_tree.rb_node;
1586 parent = NULL;
1587 sector = io->sector;
1588 while (*rbp) {
1589 parent = *rbp;
1590 if (sector < crypt_io_from_node(parent)->sector)
1591 rbp = &(*rbp)->rb_left;
1592 else
1593 rbp = &(*rbp)->rb_right;
1595 rb_link_node(&io->rb_node, parent, rbp);
1596 rb_insert_color(&io->rb_node, &cc->write_tree);
1597 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1600 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1602 struct crypt_config *cc = io->cc;
1603 struct bio *clone;
1604 int crypt_finished;
1605 sector_t sector = io->sector;
1606 blk_status_t r;
1609 * Prevent io from disappearing until this function completes.
1611 crypt_inc_pending(io);
1612 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1614 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1615 if (unlikely(!clone)) {
1616 io->error = BLK_STS_IOERR;
1617 goto dec;
1620 io->ctx.bio_out = clone;
1621 io->ctx.iter_out = clone->bi_iter;
1623 sector += bio_sectors(clone);
1625 crypt_inc_pending(io);
1626 r = crypt_convert(cc, &io->ctx);
1627 if (r)
1628 io->error = r;
1629 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1631 /* Encryption was already finished, submit io now */
1632 if (crypt_finished) {
1633 kcryptd_crypt_write_io_submit(io, 0);
1634 io->sector = sector;
1637 dec:
1638 crypt_dec_pending(io);
1641 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1643 crypt_dec_pending(io);
1646 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1648 struct crypt_config *cc = io->cc;
1649 blk_status_t r;
1651 crypt_inc_pending(io);
1653 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1654 io->sector);
1656 r = crypt_convert(cc, &io->ctx);
1657 if (r)
1658 io->error = r;
1660 if (atomic_dec_and_test(&io->ctx.cc_pending))
1661 kcryptd_crypt_read_done(io);
1663 crypt_dec_pending(io);
1666 static void kcryptd_async_done(struct crypto_async_request *async_req,
1667 int error)
1669 struct dm_crypt_request *dmreq = async_req->data;
1670 struct convert_context *ctx = dmreq->ctx;
1671 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1672 struct crypt_config *cc = io->cc;
1675 * A request from crypto driver backlog is going to be processed now,
1676 * finish the completion and continue in crypt_convert().
1677 * (Callback will be called for the second time for this request.)
1679 if (error == -EINPROGRESS) {
1680 complete(&ctx->restart);
1681 return;
1684 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1685 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1687 if (error == -EBADMSG) {
1688 char b[BDEVNAME_SIZE];
1689 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1690 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1691 io->error = BLK_STS_PROTECTION;
1692 } else if (error < 0)
1693 io->error = BLK_STS_IOERR;
1695 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1697 if (!atomic_dec_and_test(&ctx->cc_pending))
1698 return;
1700 if (bio_data_dir(io->base_bio) == READ)
1701 kcryptd_crypt_read_done(io);
1702 else
1703 kcryptd_crypt_write_io_submit(io, 1);
1706 static void kcryptd_crypt(struct work_struct *work)
1708 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1710 if (bio_data_dir(io->base_bio) == READ)
1711 kcryptd_crypt_read_convert(io);
1712 else
1713 kcryptd_crypt_write_convert(io);
1716 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1718 struct crypt_config *cc = io->cc;
1720 INIT_WORK(&io->work, kcryptd_crypt);
1721 queue_work(cc->crypt_queue, &io->work);
1724 static void crypt_free_tfms_aead(struct crypt_config *cc)
1726 if (!cc->cipher_tfm.tfms_aead)
1727 return;
1729 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1730 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1731 cc->cipher_tfm.tfms_aead[0] = NULL;
1734 kfree(cc->cipher_tfm.tfms_aead);
1735 cc->cipher_tfm.tfms_aead = NULL;
1738 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1740 unsigned i;
1742 if (!cc->cipher_tfm.tfms)
1743 return;
1745 for (i = 0; i < cc->tfms_count; i++)
1746 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1747 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1748 cc->cipher_tfm.tfms[i] = NULL;
1751 kfree(cc->cipher_tfm.tfms);
1752 cc->cipher_tfm.tfms = NULL;
1755 static void crypt_free_tfms(struct crypt_config *cc)
1757 if (crypt_integrity_aead(cc))
1758 crypt_free_tfms_aead(cc);
1759 else
1760 crypt_free_tfms_skcipher(cc);
1763 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1765 unsigned i;
1766 int err;
1768 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
1769 sizeof(struct crypto_skcipher *),
1770 GFP_KERNEL);
1771 if (!cc->cipher_tfm.tfms)
1772 return -ENOMEM;
1774 for (i = 0; i < cc->tfms_count; i++) {
1775 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1776 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1777 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1778 crypt_free_tfms(cc);
1779 return err;
1784 * dm-crypt performance can vary greatly depending on which crypto
1785 * algorithm implementation is used. Help people debug performance
1786 * problems by logging the ->cra_driver_name.
1788 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1789 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
1790 return 0;
1793 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1795 int err;
1797 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1798 if (!cc->cipher_tfm.tfms)
1799 return -ENOMEM;
1801 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1802 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1803 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1804 crypt_free_tfms(cc);
1805 return err;
1808 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1809 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
1810 return 0;
1813 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1815 if (crypt_integrity_aead(cc))
1816 return crypt_alloc_tfms_aead(cc, ciphermode);
1817 else
1818 return crypt_alloc_tfms_skcipher(cc, ciphermode);
1821 static unsigned crypt_subkey_size(struct crypt_config *cc)
1823 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1826 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1828 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1832 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1833 * the key must be for some reason in special format.
1834 * This funcion converts cc->key to this special format.
1836 static void crypt_copy_authenckey(char *p, const void *key,
1837 unsigned enckeylen, unsigned authkeylen)
1839 struct crypto_authenc_key_param *param;
1840 struct rtattr *rta;
1842 rta = (struct rtattr *)p;
1843 param = RTA_DATA(rta);
1844 param->enckeylen = cpu_to_be32(enckeylen);
1845 rta->rta_len = RTA_LENGTH(sizeof(*param));
1846 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1847 p += RTA_SPACE(sizeof(*param));
1848 memcpy(p, key + enckeylen, authkeylen);
1849 p += authkeylen;
1850 memcpy(p, key, enckeylen);
1853 static int crypt_setkey(struct crypt_config *cc)
1855 unsigned subkey_size;
1856 int err = 0, i, r;
1858 /* Ignore extra keys (which are used for IV etc) */
1859 subkey_size = crypt_subkey_size(cc);
1861 if (crypt_integrity_hmac(cc)) {
1862 if (subkey_size < cc->key_mac_size)
1863 return -EINVAL;
1865 crypt_copy_authenckey(cc->authenc_key, cc->key,
1866 subkey_size - cc->key_mac_size,
1867 cc->key_mac_size);
1870 for (i = 0; i < cc->tfms_count; i++) {
1871 if (crypt_integrity_hmac(cc))
1872 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1873 cc->authenc_key, crypt_authenckey_size(cc));
1874 else if (crypt_integrity_aead(cc))
1875 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1876 cc->key + (i * subkey_size),
1877 subkey_size);
1878 else
1879 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1880 cc->key + (i * subkey_size),
1881 subkey_size);
1882 if (r)
1883 err = r;
1886 if (crypt_integrity_hmac(cc))
1887 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1889 return err;
1892 #ifdef CONFIG_KEYS
1894 static bool contains_whitespace(const char *str)
1896 while (*str)
1897 if (isspace(*str++))
1898 return true;
1899 return false;
1902 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1904 char *new_key_string, *key_desc;
1905 int ret;
1906 struct key *key;
1907 const struct user_key_payload *ukp;
1910 * Reject key_string with whitespace. dm core currently lacks code for
1911 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1913 if (contains_whitespace(key_string)) {
1914 DMERR("whitespace chars not allowed in key string");
1915 return -EINVAL;
1918 /* look for next ':' separating key_type from key_description */
1919 key_desc = strpbrk(key_string, ":");
1920 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1921 return -EINVAL;
1923 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1924 strncmp(key_string, "user:", key_desc - key_string + 1))
1925 return -EINVAL;
1927 new_key_string = kstrdup(key_string, GFP_KERNEL);
1928 if (!new_key_string)
1929 return -ENOMEM;
1931 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1932 key_desc + 1, NULL);
1933 if (IS_ERR(key)) {
1934 kzfree(new_key_string);
1935 return PTR_ERR(key);
1938 down_read(&key->sem);
1940 ukp = user_key_payload_locked(key);
1941 if (!ukp) {
1942 up_read(&key->sem);
1943 key_put(key);
1944 kzfree(new_key_string);
1945 return -EKEYREVOKED;
1948 if (cc->key_size != ukp->datalen) {
1949 up_read(&key->sem);
1950 key_put(key);
1951 kzfree(new_key_string);
1952 return -EINVAL;
1955 memcpy(cc->key, ukp->data, cc->key_size);
1957 up_read(&key->sem);
1958 key_put(key);
1960 /* clear the flag since following operations may invalidate previously valid key */
1961 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1963 ret = crypt_setkey(cc);
1965 if (!ret) {
1966 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1967 kzfree(cc->key_string);
1968 cc->key_string = new_key_string;
1969 } else
1970 kzfree(new_key_string);
1972 return ret;
1975 static int get_key_size(char **key_string)
1977 char *colon, dummy;
1978 int ret;
1980 if (*key_string[0] != ':')
1981 return strlen(*key_string) >> 1;
1983 /* look for next ':' in key string */
1984 colon = strpbrk(*key_string + 1, ":");
1985 if (!colon)
1986 return -EINVAL;
1988 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1989 return -EINVAL;
1991 *key_string = colon;
1993 /* remaining key string should be :<logon|user>:<key_desc> */
1995 return ret;
1998 #else
2000 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2002 return -EINVAL;
2005 static int get_key_size(char **key_string)
2007 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2010 #endif
2012 static int crypt_set_key(struct crypt_config *cc, char *key)
2014 int r = -EINVAL;
2015 int key_string_len = strlen(key);
2017 /* Hyphen (which gives a key_size of zero) means there is no key. */
2018 if (!cc->key_size && strcmp(key, "-"))
2019 goto out;
2021 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2022 if (key[0] == ':') {
2023 r = crypt_set_keyring_key(cc, key + 1);
2024 goto out;
2027 /* clear the flag since following operations may invalidate previously valid key */
2028 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2030 /* wipe references to any kernel keyring key */
2031 kzfree(cc->key_string);
2032 cc->key_string = NULL;
2034 /* Decode key from its hex representation. */
2035 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2036 goto out;
2038 r = crypt_setkey(cc);
2039 if (!r)
2040 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2042 out:
2043 /* Hex key string not needed after here, so wipe it. */
2044 memset(key, '0', key_string_len);
2046 return r;
2049 static int crypt_wipe_key(struct crypt_config *cc)
2051 int r;
2053 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2054 get_random_bytes(&cc->key, cc->key_size);
2056 /* Wipe IV private keys */
2057 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2058 r = cc->iv_gen_ops->wipe(cc);
2059 if (r)
2060 return r;
2063 kzfree(cc->key_string);
2064 cc->key_string = NULL;
2065 r = crypt_setkey(cc);
2066 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2068 return r;
2071 static void crypt_calculate_pages_per_client(void)
2073 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2075 if (!dm_crypt_clients_n)
2076 return;
2078 pages /= dm_crypt_clients_n;
2079 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2080 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2081 dm_crypt_pages_per_client = pages;
2084 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2086 struct crypt_config *cc = pool_data;
2087 struct page *page;
2089 if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2090 likely(gfp_mask & __GFP_NORETRY))
2091 return NULL;
2093 page = alloc_page(gfp_mask);
2094 if (likely(page != NULL))
2095 percpu_counter_add(&cc->n_allocated_pages, 1);
2097 return page;
2100 static void crypt_page_free(void *page, void *pool_data)
2102 struct crypt_config *cc = pool_data;
2104 __free_page(page);
2105 percpu_counter_sub(&cc->n_allocated_pages, 1);
2108 static void crypt_dtr(struct dm_target *ti)
2110 struct crypt_config *cc = ti->private;
2112 ti->private = NULL;
2114 if (!cc)
2115 return;
2117 if (cc->write_thread)
2118 kthread_stop(cc->write_thread);
2120 if (cc->io_queue)
2121 destroy_workqueue(cc->io_queue);
2122 if (cc->crypt_queue)
2123 destroy_workqueue(cc->crypt_queue);
2125 crypt_free_tfms(cc);
2127 bioset_exit(&cc->bs);
2129 mempool_exit(&cc->page_pool);
2130 mempool_exit(&cc->req_pool);
2131 mempool_exit(&cc->tag_pool);
2133 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2134 percpu_counter_destroy(&cc->n_allocated_pages);
2136 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2137 cc->iv_gen_ops->dtr(cc);
2139 if (cc->dev)
2140 dm_put_device(ti, cc->dev);
2142 kzfree(cc->cipher_string);
2143 kzfree(cc->key_string);
2144 kzfree(cc->cipher_auth);
2145 kzfree(cc->authenc_key);
2147 mutex_destroy(&cc->bio_alloc_lock);
2149 /* Must zero key material before freeing */
2150 kzfree(cc);
2152 spin_lock(&dm_crypt_clients_lock);
2153 WARN_ON(!dm_crypt_clients_n);
2154 dm_crypt_clients_n--;
2155 crypt_calculate_pages_per_client();
2156 spin_unlock(&dm_crypt_clients_lock);
2159 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2161 struct crypt_config *cc = ti->private;
2163 if (crypt_integrity_aead(cc))
2164 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2165 else
2166 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2168 if (cc->iv_size)
2169 /* at least a 64 bit sector number should fit in our buffer */
2170 cc->iv_size = max(cc->iv_size,
2171 (unsigned int)(sizeof(u64) / sizeof(u8)));
2172 else if (ivmode) {
2173 DMWARN("Selected cipher does not support IVs");
2174 ivmode = NULL;
2177 /* Choose ivmode, see comments at iv code. */
2178 if (ivmode == NULL)
2179 cc->iv_gen_ops = NULL;
2180 else if (strcmp(ivmode, "plain") == 0)
2181 cc->iv_gen_ops = &crypt_iv_plain_ops;
2182 else if (strcmp(ivmode, "plain64") == 0)
2183 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2184 else if (strcmp(ivmode, "plain64be") == 0)
2185 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2186 else if (strcmp(ivmode, "essiv") == 0)
2187 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2188 else if (strcmp(ivmode, "benbi") == 0)
2189 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2190 else if (strcmp(ivmode, "null") == 0)
2191 cc->iv_gen_ops = &crypt_iv_null_ops;
2192 else if (strcmp(ivmode, "eboiv") == 0)
2193 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2194 else if (strcmp(ivmode, "lmk") == 0) {
2195 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2197 * Version 2 and 3 is recognised according
2198 * to length of provided multi-key string.
2199 * If present (version 3), last key is used as IV seed.
2200 * All keys (including IV seed) are always the same size.
2202 if (cc->key_size % cc->key_parts) {
2203 cc->key_parts++;
2204 cc->key_extra_size = cc->key_size / cc->key_parts;
2206 } else if (strcmp(ivmode, "tcw") == 0) {
2207 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2208 cc->key_parts += 2; /* IV + whitening */
2209 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2210 } else if (strcmp(ivmode, "random") == 0) {
2211 cc->iv_gen_ops = &crypt_iv_random_ops;
2212 /* Need storage space in integrity fields. */
2213 cc->integrity_iv_size = cc->iv_size;
2214 } else {
2215 ti->error = "Invalid IV mode";
2216 return -EINVAL;
2219 return 0;
2223 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2224 * The HMAC is needed to calculate tag size (HMAC digest size).
2225 * This should be probably done by crypto-api calls (once available...)
2227 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2229 char *start, *end, *mac_alg = NULL;
2230 struct crypto_ahash *mac;
2232 if (!strstarts(cipher_api, "authenc("))
2233 return 0;
2235 start = strchr(cipher_api, '(');
2236 end = strchr(cipher_api, ',');
2237 if (!start || !end || ++start > end)
2238 return -EINVAL;
2240 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2241 if (!mac_alg)
2242 return -ENOMEM;
2243 strncpy(mac_alg, start, end - start);
2245 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2246 kfree(mac_alg);
2248 if (IS_ERR(mac))
2249 return PTR_ERR(mac);
2251 cc->key_mac_size = crypto_ahash_digestsize(mac);
2252 crypto_free_ahash(mac);
2254 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2255 if (!cc->authenc_key)
2256 return -ENOMEM;
2258 return 0;
2261 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2262 char **ivmode, char **ivopts)
2264 struct crypt_config *cc = ti->private;
2265 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2266 int ret = -EINVAL;
2268 cc->tfms_count = 1;
2271 * New format (capi: prefix)
2272 * capi:cipher_api_spec-iv:ivopts
2274 tmp = &cipher_in[strlen("capi:")];
2276 /* Separate IV options if present, it can contain another '-' in hash name */
2277 *ivopts = strrchr(tmp, ':');
2278 if (*ivopts) {
2279 **ivopts = '\0';
2280 (*ivopts)++;
2282 /* Parse IV mode */
2283 *ivmode = strrchr(tmp, '-');
2284 if (*ivmode) {
2285 **ivmode = '\0';
2286 (*ivmode)++;
2288 /* The rest is crypto API spec */
2289 cipher_api = tmp;
2291 /* Alloc AEAD, can be used only in new format. */
2292 if (crypt_integrity_aead(cc)) {
2293 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2294 if (ret < 0) {
2295 ti->error = "Invalid AEAD cipher spec";
2296 return -ENOMEM;
2300 if (*ivmode && !strcmp(*ivmode, "lmk"))
2301 cc->tfms_count = 64;
2303 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2304 if (!*ivopts) {
2305 ti->error = "Digest algorithm missing for ESSIV mode";
2306 return -EINVAL;
2308 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2309 cipher_api, *ivopts);
2310 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2311 ti->error = "Cannot allocate cipher string";
2312 return -ENOMEM;
2314 cipher_api = buf;
2317 cc->key_parts = cc->tfms_count;
2319 /* Allocate cipher */
2320 ret = crypt_alloc_tfms(cc, cipher_api);
2321 if (ret < 0) {
2322 ti->error = "Error allocating crypto tfm";
2323 return ret;
2326 if (crypt_integrity_aead(cc))
2327 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2328 else
2329 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2331 return 0;
2334 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2335 char **ivmode, char **ivopts)
2337 struct crypt_config *cc = ti->private;
2338 char *tmp, *cipher, *chainmode, *keycount;
2339 char *cipher_api = NULL;
2340 int ret = -EINVAL;
2341 char dummy;
2343 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2344 ti->error = "Bad cipher specification";
2345 return -EINVAL;
2349 * Legacy dm-crypt cipher specification
2350 * cipher[:keycount]-mode-iv:ivopts
2352 tmp = cipher_in;
2353 keycount = strsep(&tmp, "-");
2354 cipher = strsep(&keycount, ":");
2356 if (!keycount)
2357 cc->tfms_count = 1;
2358 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2359 !is_power_of_2(cc->tfms_count)) {
2360 ti->error = "Bad cipher key count specification";
2361 return -EINVAL;
2363 cc->key_parts = cc->tfms_count;
2365 chainmode = strsep(&tmp, "-");
2366 *ivmode = strsep(&tmp, ":");
2367 *ivopts = tmp;
2370 * For compatibility with the original dm-crypt mapping format, if
2371 * only the cipher name is supplied, use cbc-plain.
2373 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2374 chainmode = "cbc";
2375 *ivmode = "plain";
2378 if (strcmp(chainmode, "ecb") && !*ivmode) {
2379 ti->error = "IV mechanism required";
2380 return -EINVAL;
2383 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2384 if (!cipher_api)
2385 goto bad_mem;
2387 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2388 if (!*ivopts) {
2389 ti->error = "Digest algorithm missing for ESSIV mode";
2390 kfree(cipher_api);
2391 return -EINVAL;
2393 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2394 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2395 } else {
2396 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2397 "%s(%s)", chainmode, cipher);
2399 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2400 kfree(cipher_api);
2401 goto bad_mem;
2404 /* Allocate cipher */
2405 ret = crypt_alloc_tfms(cc, cipher_api);
2406 if (ret < 0) {
2407 ti->error = "Error allocating crypto tfm";
2408 kfree(cipher_api);
2409 return ret;
2411 kfree(cipher_api);
2413 return 0;
2414 bad_mem:
2415 ti->error = "Cannot allocate cipher strings";
2416 return -ENOMEM;
2419 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2421 struct crypt_config *cc = ti->private;
2422 char *ivmode = NULL, *ivopts = NULL;
2423 int ret;
2425 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2426 if (!cc->cipher_string) {
2427 ti->error = "Cannot allocate cipher strings";
2428 return -ENOMEM;
2431 if (strstarts(cipher_in, "capi:"))
2432 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2433 else
2434 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2435 if (ret)
2436 return ret;
2438 /* Initialize IV */
2439 ret = crypt_ctr_ivmode(ti, ivmode);
2440 if (ret < 0)
2441 return ret;
2443 /* Initialize and set key */
2444 ret = crypt_set_key(cc, key);
2445 if (ret < 0) {
2446 ti->error = "Error decoding and setting key";
2447 return ret;
2450 /* Allocate IV */
2451 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2452 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2453 if (ret < 0) {
2454 ti->error = "Error creating IV";
2455 return ret;
2459 /* Initialize IV (set keys for ESSIV etc) */
2460 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2461 ret = cc->iv_gen_ops->init(cc);
2462 if (ret < 0) {
2463 ti->error = "Error initialising IV";
2464 return ret;
2468 /* wipe the kernel key payload copy */
2469 if (cc->key_string)
2470 memset(cc->key, 0, cc->key_size * sizeof(u8));
2472 return ret;
2475 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2477 struct crypt_config *cc = ti->private;
2478 struct dm_arg_set as;
2479 static const struct dm_arg _args[] = {
2480 {0, 6, "Invalid number of feature args"},
2482 unsigned int opt_params, val;
2483 const char *opt_string, *sval;
2484 char dummy;
2485 int ret;
2487 /* Optional parameters */
2488 as.argc = argc;
2489 as.argv = argv;
2491 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2492 if (ret)
2493 return ret;
2495 while (opt_params--) {
2496 opt_string = dm_shift_arg(&as);
2497 if (!opt_string) {
2498 ti->error = "Not enough feature arguments";
2499 return -EINVAL;
2502 if (!strcasecmp(opt_string, "allow_discards"))
2503 ti->num_discard_bios = 1;
2505 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2506 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2508 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2509 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2510 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2511 if (val == 0 || val > MAX_TAG_SIZE) {
2512 ti->error = "Invalid integrity arguments";
2513 return -EINVAL;
2515 cc->on_disk_tag_size = val;
2516 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2517 if (!strcasecmp(sval, "aead")) {
2518 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2519 } else if (strcasecmp(sval, "none")) {
2520 ti->error = "Unknown integrity profile";
2521 return -EINVAL;
2524 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2525 if (!cc->cipher_auth)
2526 return -ENOMEM;
2527 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2528 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2529 cc->sector_size > 4096 ||
2530 (cc->sector_size & (cc->sector_size - 1))) {
2531 ti->error = "Invalid feature value for sector_size";
2532 return -EINVAL;
2534 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2535 ti->error = "Device size is not multiple of sector_size feature";
2536 return -EINVAL;
2538 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2539 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2540 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2541 else {
2542 ti->error = "Invalid feature arguments";
2543 return -EINVAL;
2547 return 0;
2551 * Construct an encryption mapping:
2552 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2554 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2556 struct crypt_config *cc;
2557 const char *devname = dm_table_device_name(ti->table);
2558 int key_size;
2559 unsigned int align_mask;
2560 unsigned long long tmpll;
2561 int ret;
2562 size_t iv_size_padding, additional_req_size;
2563 char dummy;
2565 if (argc < 5) {
2566 ti->error = "Not enough arguments";
2567 return -EINVAL;
2570 key_size = get_key_size(&argv[1]);
2571 if (key_size < 0) {
2572 ti->error = "Cannot parse key size";
2573 return -EINVAL;
2576 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
2577 if (!cc) {
2578 ti->error = "Cannot allocate encryption context";
2579 return -ENOMEM;
2581 cc->key_size = key_size;
2582 cc->sector_size = (1 << SECTOR_SHIFT);
2583 cc->sector_shift = 0;
2585 ti->private = cc;
2587 spin_lock(&dm_crypt_clients_lock);
2588 dm_crypt_clients_n++;
2589 crypt_calculate_pages_per_client();
2590 spin_unlock(&dm_crypt_clients_lock);
2592 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2593 if (ret < 0)
2594 goto bad;
2596 /* Optional parameters need to be read before cipher constructor */
2597 if (argc > 5) {
2598 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2599 if (ret)
2600 goto bad;
2603 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2604 if (ret < 0)
2605 goto bad;
2607 if (crypt_integrity_aead(cc)) {
2608 cc->dmreq_start = sizeof(struct aead_request);
2609 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2610 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2611 } else {
2612 cc->dmreq_start = sizeof(struct skcipher_request);
2613 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2614 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2616 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2618 if (align_mask < CRYPTO_MINALIGN) {
2619 /* Allocate the padding exactly */
2620 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2621 & align_mask;
2622 } else {
2624 * If the cipher requires greater alignment than kmalloc
2625 * alignment, we don't know the exact position of the
2626 * initialization vector. We must assume worst case.
2628 iv_size_padding = align_mask;
2631 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2632 additional_req_size = sizeof(struct dm_crypt_request) +
2633 iv_size_padding + cc->iv_size +
2634 cc->iv_size +
2635 sizeof(uint64_t) +
2636 sizeof(unsigned int);
2638 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2639 if (ret) {
2640 ti->error = "Cannot allocate crypt request mempool";
2641 goto bad;
2644 cc->per_bio_data_size = ti->per_io_data_size =
2645 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2646 ARCH_KMALLOC_MINALIGN);
2648 ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2649 if (ret) {
2650 ti->error = "Cannot allocate page mempool";
2651 goto bad;
2654 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2655 if (ret) {
2656 ti->error = "Cannot allocate crypt bioset";
2657 goto bad;
2660 mutex_init(&cc->bio_alloc_lock);
2662 ret = -EINVAL;
2663 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2664 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2665 ti->error = "Invalid iv_offset sector";
2666 goto bad;
2668 cc->iv_offset = tmpll;
2670 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2671 if (ret) {
2672 ti->error = "Device lookup failed";
2673 goto bad;
2676 ret = -EINVAL;
2677 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
2678 ti->error = "Invalid device sector";
2679 goto bad;
2681 cc->start = tmpll;
2683 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2684 ret = crypt_integrity_ctr(cc, ti);
2685 if (ret)
2686 goto bad;
2688 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2689 if (!cc->tag_pool_max_sectors)
2690 cc->tag_pool_max_sectors = 1;
2692 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
2693 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2694 if (ret) {
2695 ti->error = "Cannot allocate integrity tags mempool";
2696 goto bad;
2699 cc->tag_pool_max_sectors <<= cc->sector_shift;
2702 ret = -ENOMEM;
2703 cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
2704 if (!cc->io_queue) {
2705 ti->error = "Couldn't create kcryptd io queue";
2706 goto bad;
2709 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2710 cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2711 1, devname);
2712 else
2713 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2714 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2715 num_online_cpus(), devname);
2716 if (!cc->crypt_queue) {
2717 ti->error = "Couldn't create kcryptd queue";
2718 goto bad;
2721 spin_lock_init(&cc->write_thread_lock);
2722 cc->write_tree = RB_ROOT;
2724 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
2725 if (IS_ERR(cc->write_thread)) {
2726 ret = PTR_ERR(cc->write_thread);
2727 cc->write_thread = NULL;
2728 ti->error = "Couldn't spawn write thread";
2729 goto bad;
2731 wake_up_process(cc->write_thread);
2733 ti->num_flush_bios = 1;
2735 return 0;
2737 bad:
2738 crypt_dtr(ti);
2739 return ret;
2742 static int crypt_map(struct dm_target *ti, struct bio *bio)
2744 struct dm_crypt_io *io;
2745 struct crypt_config *cc = ti->private;
2748 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2749 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2750 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2752 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2753 bio_op(bio) == REQ_OP_DISCARD)) {
2754 bio_set_dev(bio, cc->dev->bdev);
2755 if (bio_sectors(bio))
2756 bio->bi_iter.bi_sector = cc->start +
2757 dm_target_offset(ti, bio->bi_iter.bi_sector);
2758 return DM_MAPIO_REMAPPED;
2762 * Check if bio is too large, split as needed.
2764 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2765 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2766 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2769 * Ensure that bio is a multiple of internal sector encryption size
2770 * and is aligned to this size as defined in IO hints.
2772 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2773 return DM_MAPIO_KILL;
2775 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2776 return DM_MAPIO_KILL;
2778 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2779 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2781 if (cc->on_disk_tag_size) {
2782 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2784 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2785 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2786 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2787 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2788 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2789 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
2790 io->integrity_metadata_from_pool = true;
2794 if (crypt_integrity_aead(cc))
2795 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2796 else
2797 io->ctx.r.req = (struct skcipher_request *)(io + 1);
2799 if (bio_data_dir(io->base_bio) == READ) {
2800 if (kcryptd_io_read(io, GFP_NOWAIT))
2801 kcryptd_queue_read(io);
2802 } else
2803 kcryptd_queue_crypt(io);
2805 return DM_MAPIO_SUBMITTED;
2808 static void crypt_status(struct dm_target *ti, status_type_t type,
2809 unsigned status_flags, char *result, unsigned maxlen)
2811 struct crypt_config *cc = ti->private;
2812 unsigned i, sz = 0;
2813 int num_feature_args = 0;
2815 switch (type) {
2816 case STATUSTYPE_INFO:
2817 result[0] = '\0';
2818 break;
2820 case STATUSTYPE_TABLE:
2821 DMEMIT("%s ", cc->cipher_string);
2823 if (cc->key_size > 0) {
2824 if (cc->key_string)
2825 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2826 else
2827 for (i = 0; i < cc->key_size; i++)
2828 DMEMIT("%02x", cc->key[i]);
2829 } else
2830 DMEMIT("-");
2832 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2833 cc->dev->name, (unsigned long long)cc->start);
2835 num_feature_args += !!ti->num_discard_bios;
2836 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2837 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2838 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2839 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2840 if (cc->on_disk_tag_size)
2841 num_feature_args++;
2842 if (num_feature_args) {
2843 DMEMIT(" %d", num_feature_args);
2844 if (ti->num_discard_bios)
2845 DMEMIT(" allow_discards");
2846 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2847 DMEMIT(" same_cpu_crypt");
2848 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2849 DMEMIT(" submit_from_crypt_cpus");
2850 if (cc->on_disk_tag_size)
2851 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2852 if (cc->sector_size != (1 << SECTOR_SHIFT))
2853 DMEMIT(" sector_size:%d", cc->sector_size);
2854 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2855 DMEMIT(" iv_large_sectors");
2858 break;
2862 static void crypt_postsuspend(struct dm_target *ti)
2864 struct crypt_config *cc = ti->private;
2866 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2869 static int crypt_preresume(struct dm_target *ti)
2871 struct crypt_config *cc = ti->private;
2873 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2874 DMERR("aborting resume - crypt key is not set.");
2875 return -EAGAIN;
2878 return 0;
2881 static void crypt_resume(struct dm_target *ti)
2883 struct crypt_config *cc = ti->private;
2885 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2888 /* Message interface
2889 * key set <key>
2890 * key wipe
2892 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
2893 char *result, unsigned maxlen)
2895 struct crypt_config *cc = ti->private;
2896 int key_size, ret = -EINVAL;
2898 if (argc < 2)
2899 goto error;
2901 if (!strcasecmp(argv[0], "key")) {
2902 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2903 DMWARN("not suspended during key manipulation.");
2904 return -EINVAL;
2906 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2907 /* The key size may not be changed. */
2908 key_size = get_key_size(&argv[2]);
2909 if (key_size < 0 || cc->key_size != key_size) {
2910 memset(argv[2], '0', strlen(argv[2]));
2911 return -EINVAL;
2914 ret = crypt_set_key(cc, argv[2]);
2915 if (ret)
2916 return ret;
2917 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2918 ret = cc->iv_gen_ops->init(cc);
2919 /* wipe the kernel key payload copy */
2920 if (cc->key_string)
2921 memset(cc->key, 0, cc->key_size * sizeof(u8));
2922 return ret;
2924 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
2925 return crypt_wipe_key(cc);
2928 error:
2929 DMWARN("unrecognised message received.");
2930 return -EINVAL;
2933 static int crypt_iterate_devices(struct dm_target *ti,
2934 iterate_devices_callout_fn fn, void *data)
2936 struct crypt_config *cc = ti->private;
2938 return fn(ti, cc->dev, cc->start, ti->len, data);
2941 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2943 struct crypt_config *cc = ti->private;
2946 * Unfortunate constraint that is required to avoid the potential
2947 * for exceeding underlying device's max_segments limits -- due to
2948 * crypt_alloc_buffer() possibly allocating pages for the encryption
2949 * bio that are not as physically contiguous as the original bio.
2951 limits->max_segment_size = PAGE_SIZE;
2953 limits->logical_block_size =
2954 max_t(unsigned short, limits->logical_block_size, cc->sector_size);
2955 limits->physical_block_size =
2956 max_t(unsigned, limits->physical_block_size, cc->sector_size);
2957 limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
2960 static struct target_type crypt_target = {
2961 .name = "crypt",
2962 .version = {1, 19, 0},
2963 .module = THIS_MODULE,
2964 .ctr = crypt_ctr,
2965 .dtr = crypt_dtr,
2966 .map = crypt_map,
2967 .status = crypt_status,
2968 .postsuspend = crypt_postsuspend,
2969 .preresume = crypt_preresume,
2970 .resume = crypt_resume,
2971 .message = crypt_message,
2972 .iterate_devices = crypt_iterate_devices,
2973 .io_hints = crypt_io_hints,
2976 static int __init dm_crypt_init(void)
2978 int r;
2980 r = dm_register_target(&crypt_target);
2981 if (r < 0)
2982 DMERR("register failed %d", r);
2984 return r;
2987 static void __exit dm_crypt_exit(void)
2989 dm_unregister_target(&crypt_target);
2992 module_init(dm_crypt_init);
2993 module_exit(dm_crypt_exit);
2995 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2996 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2997 MODULE_LICENSE("GPL");