2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
6 * This file is released under the GPL.
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <linux/reboot.h>
19 #include <crypto/hash.h>
20 #include <crypto/skcipher.h>
21 #include <linux/async_tx.h>
22 #include <linux/dm-bufio.h>
24 #define DM_MSG_PREFIX "integrity"
26 #define DEFAULT_INTERLEAVE_SECTORS 32768
27 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
28 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
29 #define DEFAULT_BUFFER_SECTORS 128
30 #define DEFAULT_JOURNAL_WATERMARK 50
31 #define DEFAULT_SYNC_MSEC 10000
32 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
33 #define MIN_LOG2_INTERLEAVE_SECTORS 3
34 #define MAX_LOG2_INTERLEAVE_SECTORS 31
35 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
36 #define RECALC_SECTORS 8192
37 #define RECALC_WRITE_SUPER 16
38 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
39 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
42 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
43 * so it should not be enabled in the official kernel
46 //#define INTERNAL_VERIFY
52 #define SB_MAGIC "integrt"
53 #define SB_VERSION_1 1
54 #define SB_VERSION_2 2
55 #define SB_VERSION_3 3
56 #define SB_VERSION_4 4
58 #define MAX_SECTORS_PER_BLOCK 8
63 __u8 log2_interleave_sectors
;
64 __u16 integrity_tag_size
;
65 __u32 journal_sections
;
66 __u64 provided_data_sectors
; /* userspace uses this value */
68 __u8 log2_sectors_per_block
;
69 __u8 log2_blocks_per_bitmap_bit
;
74 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
75 #define SB_FLAG_RECALCULATING 0x2
76 #define SB_FLAG_DIRTY_BITMAP 0x4
77 #define SB_FLAG_FIXED_PADDING 0x8
79 #define JOURNAL_ENTRY_ROUNDUP 8
81 typedef __u64 commit_id_t
;
82 #define JOURNAL_MAC_PER_SECTOR 8
84 struct journal_entry
{
92 commit_id_t last_bytes
[0];
96 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
98 #if BITS_PER_LONG == 64
99 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
101 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
103 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
104 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
105 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
106 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
107 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
109 #define JOURNAL_BLOCK_SECTORS 8
110 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
111 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
113 struct journal_sector
{
114 __u8 entries
[JOURNAL_SECTOR_DATA
- JOURNAL_MAC_PER_SECTOR
];
115 __u8 mac
[JOURNAL_MAC_PER_SECTOR
];
116 commit_id_t commit_id
;
119 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
121 #define METADATA_PADDING_SECTORS 8
123 #define N_COMMIT_IDS 4
125 static unsigned char prev_commit_seq(unsigned char seq
)
127 return (seq
+ N_COMMIT_IDS
- 1) % N_COMMIT_IDS
;
130 static unsigned char next_commit_seq(unsigned char seq
)
132 return (seq
+ 1) % N_COMMIT_IDS
;
136 * In-memory structures
139 struct journal_node
{
151 struct dm_integrity_c
{
153 struct dm_dev
*meta_dev
;
157 mempool_t journal_io_mempool
;
158 struct dm_io_client
*io
;
159 struct dm_bufio_client
*bufio
;
160 struct workqueue_struct
*metadata_wq
;
161 struct superblock
*sb
;
162 unsigned journal_pages
;
163 unsigned n_bitmap_blocks
;
165 struct page_list
*journal
;
166 struct page_list
*journal_io
;
167 struct page_list
*journal_xor
;
168 struct page_list
*recalc_bitmap
;
169 struct page_list
*may_write_bitmap
;
170 struct bitmap_block_status
*bbs
;
171 unsigned bitmap_flush_interval
;
172 int synchronous_mode
;
173 struct bio_list synchronous_bios
;
174 struct delayed_work bitmap_flush_work
;
176 struct crypto_skcipher
*journal_crypt
;
177 struct scatterlist
**journal_scatterlist
;
178 struct scatterlist
**journal_io_scatterlist
;
179 struct skcipher_request
**sk_requests
;
181 struct crypto_shash
*journal_mac
;
183 struct journal_node
*journal_tree
;
184 struct rb_root journal_tree_root
;
186 sector_t provided_data_sectors
;
188 unsigned short journal_entry_size
;
189 unsigned char journal_entries_per_sector
;
190 unsigned char journal_section_entries
;
191 unsigned short journal_section_sectors
;
192 unsigned journal_sections
;
193 unsigned journal_entries
;
194 sector_t data_device_sectors
;
195 sector_t meta_device_sectors
;
196 unsigned initial_sectors
;
197 unsigned metadata_run
;
198 __s8 log2_metadata_run
;
199 __u8 log2_buffer_sectors
;
200 __u8 sectors_per_block
;
201 __u8 log2_blocks_per_bitmap_bit
;
208 struct crypto_shash
*internal_hash
;
210 /* these variables are locked with endio_wait.lock */
211 struct rb_root in_progress
;
212 struct list_head wait_list
;
213 wait_queue_head_t endio_wait
;
214 struct workqueue_struct
*wait_wq
;
216 unsigned char commit_seq
;
217 commit_id_t commit_ids
[N_COMMIT_IDS
];
219 unsigned committed_section
;
220 unsigned n_committed_sections
;
222 unsigned uncommitted_section
;
223 unsigned n_uncommitted_sections
;
225 unsigned free_section
;
226 unsigned char free_section_entry
;
227 unsigned free_sectors
;
229 unsigned free_sectors_threshold
;
231 struct workqueue_struct
*commit_wq
;
232 struct work_struct commit_work
;
234 struct workqueue_struct
*writer_wq
;
235 struct work_struct writer_work
;
237 struct workqueue_struct
*recalc_wq
;
238 struct work_struct recalc_work
;
242 struct bio_list flush_bio_list
;
244 unsigned long autocommit_jiffies
;
245 struct timer_list autocommit_timer
;
246 unsigned autocommit_msec
;
248 wait_queue_head_t copy_to_journal_wait
;
250 struct completion crypto_backoff
;
252 bool journal_uptodate
;
254 bool recalculate_flag
;
257 struct alg_spec internal_hash_alg
;
258 struct alg_spec journal_crypt_alg
;
259 struct alg_spec journal_mac_alg
;
261 atomic64_t number_of_mismatches
;
263 struct notifier_block reboot_notifier
;
266 struct dm_integrity_range
{
267 sector_t logical_sector
;
273 struct task_struct
*task
;
274 struct list_head wait_entry
;
279 struct dm_integrity_io
{
280 struct work_struct work
;
282 struct dm_integrity_c
*ic
;
286 struct dm_integrity_range range
;
288 sector_t metadata_block
;
289 unsigned metadata_offset
;
292 blk_status_t bi_status
;
294 struct completion
*completion
;
296 struct gendisk
*orig_bi_disk
;
298 bio_end_io_t
*orig_bi_end_io
;
299 struct bio_integrity_payload
*orig_bi_integrity
;
300 struct bvec_iter orig_bi_iter
;
303 struct journal_completion
{
304 struct dm_integrity_c
*ic
;
306 struct completion comp
;
310 struct dm_integrity_range range
;
311 struct journal_completion
*comp
;
314 struct bitmap_block_status
{
315 struct work_struct work
;
316 struct dm_integrity_c
*ic
;
318 unsigned long *bitmap
;
319 struct bio_list bio_queue
;
320 spinlock_t bio_queue_lock
;
324 static struct kmem_cache
*journal_io_cache
;
326 #define JOURNAL_IO_MEMPOOL 32
329 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
330 static void __DEBUG_bytes(__u8
*bytes
, size_t len
, const char *msg
, ...)
339 pr_cont(" %02x", *bytes
);
345 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
347 #define DEBUG_print(x, ...) do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
351 static void dm_integrity_prepare(struct request
*rq
)
355 static void dm_integrity_complete(struct request
*rq
, unsigned int nr_bytes
)
360 * DM Integrity profile, protection is performed layer above (dm-crypt)
362 static const struct blk_integrity_profile dm_integrity_profile
= {
363 .name
= "DM-DIF-EXT-TAG",
366 .prepare_fn
= dm_integrity_prepare
,
367 .complete_fn
= dm_integrity_complete
,
370 static void dm_integrity_map_continue(struct dm_integrity_io
*dio
, bool from_map
);
371 static void integrity_bio_wait(struct work_struct
*w
);
372 static void dm_integrity_dtr(struct dm_target
*ti
);
374 static void dm_integrity_io_error(struct dm_integrity_c
*ic
, const char *msg
, int err
)
377 atomic64_inc(&ic
->number_of_mismatches
);
378 if (!cmpxchg(&ic
->failed
, 0, err
))
379 DMERR("Error on %s: %d", msg
, err
);
382 static int dm_integrity_failed(struct dm_integrity_c
*ic
)
384 return READ_ONCE(ic
->failed
);
387 static commit_id_t
dm_integrity_commit_id(struct dm_integrity_c
*ic
, unsigned i
,
388 unsigned j
, unsigned char seq
)
391 * Xor the number with section and sector, so that if a piece of
392 * journal is written at wrong place, it is detected.
394 return ic
->commit_ids
[seq
] ^ cpu_to_le64(((__u64
)i
<< 32) ^ j
);
397 static void get_area_and_offset(struct dm_integrity_c
*ic
, sector_t data_sector
,
398 sector_t
*area
, sector_t
*offset
)
401 __u8 log2_interleave_sectors
= ic
->sb
->log2_interleave_sectors
;
402 *area
= data_sector
>> log2_interleave_sectors
;
403 *offset
= (unsigned)data_sector
& ((1U << log2_interleave_sectors
) - 1);
406 *offset
= data_sector
;
410 #define sector_to_block(ic, n) \
412 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
413 (n) >>= (ic)->sb->log2_sectors_per_block; \
416 static __u64
get_metadata_sector_and_offset(struct dm_integrity_c
*ic
, sector_t area
,
417 sector_t offset
, unsigned *metadata_offset
)
422 ms
= area
<< ic
->sb
->log2_interleave_sectors
;
423 if (likely(ic
->log2_metadata_run
>= 0))
424 ms
+= area
<< ic
->log2_metadata_run
;
426 ms
+= area
* ic
->metadata_run
;
427 ms
>>= ic
->log2_buffer_sectors
;
429 sector_to_block(ic
, offset
);
431 if (likely(ic
->log2_tag_size
>= 0)) {
432 ms
+= offset
>> (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
- ic
->log2_tag_size
);
433 mo
= (offset
<< ic
->log2_tag_size
) & ((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - 1);
435 ms
+= (__u64
)offset
* ic
->tag_size
>> (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
);
436 mo
= (offset
* ic
->tag_size
) & ((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - 1);
438 *metadata_offset
= mo
;
442 static sector_t
get_data_sector(struct dm_integrity_c
*ic
, sector_t area
, sector_t offset
)
449 result
= area
<< ic
->sb
->log2_interleave_sectors
;
450 if (likely(ic
->log2_metadata_run
>= 0))
451 result
+= (area
+ 1) << ic
->log2_metadata_run
;
453 result
+= (area
+ 1) * ic
->metadata_run
;
455 result
+= (sector_t
)ic
->initial_sectors
+ offset
;
461 static void wraparound_section(struct dm_integrity_c
*ic
, unsigned *sec_ptr
)
463 if (unlikely(*sec_ptr
>= ic
->journal_sections
))
464 *sec_ptr
-= ic
->journal_sections
;
467 static void sb_set_version(struct dm_integrity_c
*ic
)
469 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
))
470 ic
->sb
->version
= SB_VERSION_4
;
471 else if (ic
->mode
== 'B' || ic
->sb
->flags
& cpu_to_le32(SB_FLAG_DIRTY_BITMAP
))
472 ic
->sb
->version
= SB_VERSION_3
;
473 else if (ic
->meta_dev
|| ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))
474 ic
->sb
->version
= SB_VERSION_2
;
476 ic
->sb
->version
= SB_VERSION_1
;
479 static int sync_rw_sb(struct dm_integrity_c
*ic
, int op
, int op_flags
)
481 struct dm_io_request io_req
;
482 struct dm_io_region io_loc
;
485 io_req
.bi_op_flags
= op_flags
;
486 io_req
.mem
.type
= DM_IO_KMEM
;
487 io_req
.mem
.ptr
.addr
= ic
->sb
;
488 io_req
.notify
.fn
= NULL
;
489 io_req
.client
= ic
->io
;
490 io_loc
.bdev
= ic
->meta_dev
? ic
->meta_dev
->bdev
: ic
->dev
->bdev
;
491 io_loc
.sector
= ic
->start
;
492 io_loc
.count
= SB_SECTORS
;
494 if (op
== REQ_OP_WRITE
)
497 return dm_io(&io_req
, 1, &io_loc
, NULL
);
500 #define BITMAP_OP_TEST_ALL_SET 0
501 #define BITMAP_OP_TEST_ALL_CLEAR 1
502 #define BITMAP_OP_SET 2
503 #define BITMAP_OP_CLEAR 3
505 static bool block_bitmap_op(struct dm_integrity_c
*ic
, struct page_list
*bitmap
,
506 sector_t sector
, sector_t n_sectors
, int mode
)
508 unsigned long bit
, end_bit
, this_end_bit
, page
, end_page
;
511 if (unlikely(((sector
| n_sectors
) & ((1 << ic
->sb
->log2_sectors_per_block
) - 1)) != 0)) {
512 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
513 (unsigned long long)sector
,
514 (unsigned long long)n_sectors
,
515 ic
->sb
->log2_sectors_per_block
,
516 ic
->log2_blocks_per_bitmap_bit
,
521 if (unlikely(!n_sectors
))
524 bit
= sector
>> (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
525 end_bit
= (sector
+ n_sectors
- 1) >>
526 (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
528 page
= bit
/ (PAGE_SIZE
* 8);
529 bit
%= PAGE_SIZE
* 8;
531 end_page
= end_bit
/ (PAGE_SIZE
* 8);
532 end_bit
%= PAGE_SIZE
* 8;
535 if (page
< end_page
) {
536 this_end_bit
= PAGE_SIZE
* 8 - 1;
538 this_end_bit
= end_bit
;
541 data
= lowmem_page_address(bitmap
[page
].page
);
543 if (mode
== BITMAP_OP_TEST_ALL_SET
) {
544 while (bit
<= this_end_bit
) {
545 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
547 if (data
[bit
/ BITS_PER_LONG
] != -1)
549 bit
+= BITS_PER_LONG
;
550 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
553 if (!test_bit(bit
, data
))
557 } else if (mode
== BITMAP_OP_TEST_ALL_CLEAR
) {
558 while (bit
<= this_end_bit
) {
559 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
561 if (data
[bit
/ BITS_PER_LONG
] != 0)
563 bit
+= BITS_PER_LONG
;
564 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
567 if (test_bit(bit
, data
))
571 } else if (mode
== BITMAP_OP_SET
) {
572 while (bit
<= this_end_bit
) {
573 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
575 data
[bit
/ BITS_PER_LONG
] = -1;
576 bit
+= BITS_PER_LONG
;
577 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
580 __set_bit(bit
, data
);
583 } else if (mode
== BITMAP_OP_CLEAR
) {
584 if (!bit
&& this_end_bit
== PAGE_SIZE
* 8 - 1)
586 else while (bit
<= this_end_bit
) {
587 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
589 data
[bit
/ BITS_PER_LONG
] = 0;
590 bit
+= BITS_PER_LONG
;
591 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
594 __clear_bit(bit
, data
);
601 if (unlikely(page
< end_page
)) {
610 static void block_bitmap_copy(struct dm_integrity_c
*ic
, struct page_list
*dst
, struct page_list
*src
)
612 unsigned n_bitmap_pages
= DIV_ROUND_UP(ic
->n_bitmap_blocks
, PAGE_SIZE
/ BITMAP_BLOCK_SIZE
);
615 for (i
= 0; i
< n_bitmap_pages
; i
++) {
616 unsigned long *dst_data
= lowmem_page_address(dst
[i
].page
);
617 unsigned long *src_data
= lowmem_page_address(src
[i
].page
);
618 copy_page(dst_data
, src_data
);
622 static struct bitmap_block_status
*sector_to_bitmap_block(struct dm_integrity_c
*ic
, sector_t sector
)
624 unsigned bit
= sector
>> (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
625 unsigned bitmap_block
= bit
/ (BITMAP_BLOCK_SIZE
* 8);
627 BUG_ON(bitmap_block
>= ic
->n_bitmap_blocks
);
628 return &ic
->bbs
[bitmap_block
];
631 static void access_journal_check(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
,
632 bool e
, const char *function
)
634 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
635 unsigned limit
= e
? ic
->journal_section_entries
: ic
->journal_section_sectors
;
637 if (unlikely(section
>= ic
->journal_sections
) ||
638 unlikely(offset
>= limit
)) {
639 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
640 function
, section
, offset
, ic
->journal_sections
, limit
);
646 static void page_list_location(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
,
647 unsigned *pl_index
, unsigned *pl_offset
)
651 access_journal_check(ic
, section
, offset
, false, "page_list_location");
653 sector
= section
* ic
->journal_section_sectors
+ offset
;
655 *pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
656 *pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
659 static struct journal_sector
*access_page_list(struct dm_integrity_c
*ic
, struct page_list
*pl
,
660 unsigned section
, unsigned offset
, unsigned *n_sectors
)
662 unsigned pl_index
, pl_offset
;
665 page_list_location(ic
, section
, offset
, &pl_index
, &pl_offset
);
668 *n_sectors
= (PAGE_SIZE
- pl_offset
) >> SECTOR_SHIFT
;
670 va
= lowmem_page_address(pl
[pl_index
].page
);
672 return (struct journal_sector
*)(va
+ pl_offset
);
675 static struct journal_sector
*access_journal(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
)
677 return access_page_list(ic
, ic
->journal
, section
, offset
, NULL
);
680 static struct journal_entry
*access_journal_entry(struct dm_integrity_c
*ic
, unsigned section
, unsigned n
)
682 unsigned rel_sector
, offset
;
683 struct journal_sector
*js
;
685 access_journal_check(ic
, section
, n
, true, "access_journal_entry");
687 rel_sector
= n
% JOURNAL_BLOCK_SECTORS
;
688 offset
= n
/ JOURNAL_BLOCK_SECTORS
;
690 js
= access_journal(ic
, section
, rel_sector
);
691 return (struct journal_entry
*)((char *)js
+ offset
* ic
->journal_entry_size
);
694 static struct journal_sector
*access_journal_data(struct dm_integrity_c
*ic
, unsigned section
, unsigned n
)
696 n
<<= ic
->sb
->log2_sectors_per_block
;
698 n
+= JOURNAL_BLOCK_SECTORS
;
700 access_journal_check(ic
, section
, n
, false, "access_journal_data");
702 return access_journal(ic
, section
, n
);
705 static void section_mac(struct dm_integrity_c
*ic
, unsigned section
, __u8 result
[JOURNAL_MAC_SIZE
])
707 SHASH_DESC_ON_STACK(desc
, ic
->journal_mac
);
711 desc
->tfm
= ic
->journal_mac
;
713 r
= crypto_shash_init(desc
);
715 dm_integrity_io_error(ic
, "crypto_shash_init", r
);
719 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
720 struct journal_entry
*je
= access_journal_entry(ic
, section
, j
);
721 r
= crypto_shash_update(desc
, (__u8
*)&je
->u
.sector
, sizeof je
->u
.sector
);
723 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
728 size
= crypto_shash_digestsize(ic
->journal_mac
);
730 if (likely(size
<= JOURNAL_MAC_SIZE
)) {
731 r
= crypto_shash_final(desc
, result
);
733 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
736 memset(result
+ size
, 0, JOURNAL_MAC_SIZE
- size
);
738 __u8 digest
[HASH_MAX_DIGESTSIZE
];
740 if (WARN_ON(size
> sizeof(digest
))) {
741 dm_integrity_io_error(ic
, "digest_size", -EINVAL
);
744 r
= crypto_shash_final(desc
, digest
);
746 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
749 memcpy(result
, digest
, JOURNAL_MAC_SIZE
);
754 memset(result
, 0, JOURNAL_MAC_SIZE
);
757 static void rw_section_mac(struct dm_integrity_c
*ic
, unsigned section
, bool wr
)
759 __u8 result
[JOURNAL_MAC_SIZE
];
762 if (!ic
->journal_mac
)
765 section_mac(ic
, section
, result
);
767 for (j
= 0; j
< JOURNAL_BLOCK_SECTORS
; j
++) {
768 struct journal_sector
*js
= access_journal(ic
, section
, j
);
771 memcpy(&js
->mac
, result
+ (j
* JOURNAL_MAC_PER_SECTOR
), JOURNAL_MAC_PER_SECTOR
);
773 if (memcmp(&js
->mac
, result
+ (j
* JOURNAL_MAC_PER_SECTOR
), JOURNAL_MAC_PER_SECTOR
))
774 dm_integrity_io_error(ic
, "journal mac", -EILSEQ
);
779 static void complete_journal_op(void *context
)
781 struct journal_completion
*comp
= context
;
782 BUG_ON(!atomic_read(&comp
->in_flight
));
783 if (likely(atomic_dec_and_test(&comp
->in_flight
)))
784 complete(&comp
->comp
);
787 static void xor_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned section
,
788 unsigned n_sections
, struct journal_completion
*comp
)
790 struct async_submit_ctl submit
;
791 size_t n_bytes
= (size_t)(n_sections
* ic
->journal_section_sectors
) << SECTOR_SHIFT
;
792 unsigned pl_index
, pl_offset
, section_index
;
793 struct page_list
*source_pl
, *target_pl
;
795 if (likely(encrypt
)) {
796 source_pl
= ic
->journal
;
797 target_pl
= ic
->journal_io
;
799 source_pl
= ic
->journal_io
;
800 target_pl
= ic
->journal
;
803 page_list_location(ic
, section
, 0, &pl_index
, &pl_offset
);
805 atomic_add(roundup(pl_offset
+ n_bytes
, PAGE_SIZE
) >> PAGE_SHIFT
, &comp
->in_flight
);
807 init_async_submit(&submit
, ASYNC_TX_XOR_ZERO_DST
, NULL
, complete_journal_op
, comp
, NULL
);
809 section_index
= pl_index
;
813 struct page
*src_pages
[2];
814 struct page
*dst_page
;
816 while (unlikely(pl_index
== section_index
)) {
819 rw_section_mac(ic
, section
, true);
824 page_list_location(ic
, section
, 0, §ion_index
, &dummy
);
827 this_step
= min(n_bytes
, (size_t)PAGE_SIZE
- pl_offset
);
828 dst_page
= target_pl
[pl_index
].page
;
829 src_pages
[0] = source_pl
[pl_index
].page
;
830 src_pages
[1] = ic
->journal_xor
[pl_index
].page
;
832 async_xor(dst_page
, src_pages
, pl_offset
, 2, this_step
, &submit
);
836 n_bytes
-= this_step
;
841 async_tx_issue_pending_all();
844 static void complete_journal_encrypt(struct crypto_async_request
*req
, int err
)
846 struct journal_completion
*comp
= req
->data
;
848 if (likely(err
== -EINPROGRESS
)) {
849 complete(&comp
->ic
->crypto_backoff
);
852 dm_integrity_io_error(comp
->ic
, "asynchronous encrypt", err
);
854 complete_journal_op(comp
);
857 static bool do_crypt(bool encrypt
, struct skcipher_request
*req
, struct journal_completion
*comp
)
860 skcipher_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
861 complete_journal_encrypt
, comp
);
863 r
= crypto_skcipher_encrypt(req
);
865 r
= crypto_skcipher_decrypt(req
);
868 if (likely(r
== -EINPROGRESS
))
870 if (likely(r
== -EBUSY
)) {
871 wait_for_completion(&comp
->ic
->crypto_backoff
);
872 reinit_completion(&comp
->ic
->crypto_backoff
);
875 dm_integrity_io_error(comp
->ic
, "encrypt", r
);
879 static void crypt_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned section
,
880 unsigned n_sections
, struct journal_completion
*comp
)
882 struct scatterlist
**source_sg
;
883 struct scatterlist
**target_sg
;
885 atomic_add(2, &comp
->in_flight
);
887 if (likely(encrypt
)) {
888 source_sg
= ic
->journal_scatterlist
;
889 target_sg
= ic
->journal_io_scatterlist
;
891 source_sg
= ic
->journal_io_scatterlist
;
892 target_sg
= ic
->journal_scatterlist
;
896 struct skcipher_request
*req
;
901 rw_section_mac(ic
, section
, true);
903 req
= ic
->sk_requests
[section
];
904 ivsize
= crypto_skcipher_ivsize(ic
->journal_crypt
);
907 memcpy(iv
, iv
+ ivsize
, ivsize
);
909 req
->src
= source_sg
[section
];
910 req
->dst
= target_sg
[section
];
912 if (unlikely(do_crypt(encrypt
, req
, comp
)))
913 atomic_inc(&comp
->in_flight
);
917 } while (n_sections
);
919 atomic_dec(&comp
->in_flight
);
920 complete_journal_op(comp
);
923 static void encrypt_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned section
,
924 unsigned n_sections
, struct journal_completion
*comp
)
927 return xor_journal(ic
, encrypt
, section
, n_sections
, comp
);
929 return crypt_journal(ic
, encrypt
, section
, n_sections
, comp
);
932 static void complete_journal_io(unsigned long error
, void *context
)
934 struct journal_completion
*comp
= context
;
935 if (unlikely(error
!= 0))
936 dm_integrity_io_error(comp
->ic
, "writing journal", -EIO
);
937 complete_journal_op(comp
);
940 static void rw_journal_sectors(struct dm_integrity_c
*ic
, int op
, int op_flags
,
941 unsigned sector
, unsigned n_sectors
, struct journal_completion
*comp
)
943 struct dm_io_request io_req
;
944 struct dm_io_region io_loc
;
945 unsigned pl_index
, pl_offset
;
948 if (unlikely(dm_integrity_failed(ic
))) {
950 complete_journal_io(-1UL, comp
);
954 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
955 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
958 io_req
.bi_op_flags
= op_flags
;
959 io_req
.mem
.type
= DM_IO_PAGE_LIST
;
961 io_req
.mem
.ptr
.pl
= &ic
->journal_io
[pl_index
];
963 io_req
.mem
.ptr
.pl
= &ic
->journal
[pl_index
];
964 io_req
.mem
.offset
= pl_offset
;
965 if (likely(comp
!= NULL
)) {
966 io_req
.notify
.fn
= complete_journal_io
;
967 io_req
.notify
.context
= comp
;
969 io_req
.notify
.fn
= NULL
;
971 io_req
.client
= ic
->io
;
972 io_loc
.bdev
= ic
->meta_dev
? ic
->meta_dev
->bdev
: ic
->dev
->bdev
;
973 io_loc
.sector
= ic
->start
+ SB_SECTORS
+ sector
;
974 io_loc
.count
= n_sectors
;
976 r
= dm_io(&io_req
, 1, &io_loc
, NULL
);
978 dm_integrity_io_error(ic
, op
== REQ_OP_READ
? "reading journal" : "writing journal", r
);
980 WARN_ONCE(1, "asynchronous dm_io failed: %d", r
);
981 complete_journal_io(-1UL, comp
);
986 static void rw_journal(struct dm_integrity_c
*ic
, int op
, int op_flags
, unsigned section
,
987 unsigned n_sections
, struct journal_completion
*comp
)
989 unsigned sector
, n_sectors
;
991 sector
= section
* ic
->journal_section_sectors
;
992 n_sectors
= n_sections
* ic
->journal_section_sectors
;
994 rw_journal_sectors(ic
, op
, op_flags
, sector
, n_sectors
, comp
);
997 static void write_journal(struct dm_integrity_c
*ic
, unsigned commit_start
, unsigned commit_sections
)
999 struct journal_completion io_comp
;
1000 struct journal_completion crypt_comp_1
;
1001 struct journal_completion crypt_comp_2
;
1005 init_completion(&io_comp
.comp
);
1007 if (commit_start
+ commit_sections
<= ic
->journal_sections
) {
1008 io_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
1009 if (ic
->journal_io
) {
1010 crypt_comp_1
.ic
= ic
;
1011 init_completion(&crypt_comp_1
.comp
);
1012 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1013 encrypt_journal(ic
, true, commit_start
, commit_sections
, &crypt_comp_1
);
1014 wait_for_completion_io(&crypt_comp_1
.comp
);
1016 for (i
= 0; i
< commit_sections
; i
++)
1017 rw_section_mac(ic
, commit_start
+ i
, true);
1019 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, commit_start
,
1020 commit_sections
, &io_comp
);
1023 io_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(2);
1024 to_end
= ic
->journal_sections
- commit_start
;
1025 if (ic
->journal_io
) {
1026 crypt_comp_1
.ic
= ic
;
1027 init_completion(&crypt_comp_1
.comp
);
1028 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1029 encrypt_journal(ic
, true, commit_start
, to_end
, &crypt_comp_1
);
1030 if (try_wait_for_completion(&crypt_comp_1
.comp
)) {
1031 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, commit_start
, to_end
, &io_comp
);
1032 reinit_completion(&crypt_comp_1
.comp
);
1033 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1034 encrypt_journal(ic
, true, 0, commit_sections
- to_end
, &crypt_comp_1
);
1035 wait_for_completion_io(&crypt_comp_1
.comp
);
1037 crypt_comp_2
.ic
= ic
;
1038 init_completion(&crypt_comp_2
.comp
);
1039 crypt_comp_2
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1040 encrypt_journal(ic
, true, 0, commit_sections
- to_end
, &crypt_comp_2
);
1041 wait_for_completion_io(&crypt_comp_1
.comp
);
1042 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, commit_start
, to_end
, &io_comp
);
1043 wait_for_completion_io(&crypt_comp_2
.comp
);
1046 for (i
= 0; i
< to_end
; i
++)
1047 rw_section_mac(ic
, commit_start
+ i
, true);
1048 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, commit_start
, to_end
, &io_comp
);
1049 for (i
= 0; i
< commit_sections
- to_end
; i
++)
1050 rw_section_mac(ic
, i
, true);
1052 rw_journal(ic
, REQ_OP_WRITE
, REQ_FUA
, 0, commit_sections
- to_end
, &io_comp
);
1055 wait_for_completion_io(&io_comp
.comp
);
1058 static void copy_from_journal(struct dm_integrity_c
*ic
, unsigned section
, unsigned offset
,
1059 unsigned n_sectors
, sector_t target
, io_notify_fn fn
, void *data
)
1061 struct dm_io_request io_req
;
1062 struct dm_io_region io_loc
;
1064 unsigned sector
, pl_index
, pl_offset
;
1066 BUG_ON((target
| n_sectors
| offset
) & (unsigned)(ic
->sectors_per_block
- 1));
1068 if (unlikely(dm_integrity_failed(ic
))) {
1073 sector
= section
* ic
->journal_section_sectors
+ JOURNAL_BLOCK_SECTORS
+ offset
;
1075 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
1076 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
1078 io_req
.bi_op
= REQ_OP_WRITE
;
1079 io_req
.bi_op_flags
= 0;
1080 io_req
.mem
.type
= DM_IO_PAGE_LIST
;
1081 io_req
.mem
.ptr
.pl
= &ic
->journal
[pl_index
];
1082 io_req
.mem
.offset
= pl_offset
;
1083 io_req
.notify
.fn
= fn
;
1084 io_req
.notify
.context
= data
;
1085 io_req
.client
= ic
->io
;
1086 io_loc
.bdev
= ic
->dev
->bdev
;
1087 io_loc
.sector
= target
;
1088 io_loc
.count
= n_sectors
;
1090 r
= dm_io(&io_req
, 1, &io_loc
, NULL
);
1092 WARN_ONCE(1, "asynchronous dm_io failed: %d", r
);
1097 static bool ranges_overlap(struct dm_integrity_range
*range1
, struct dm_integrity_range
*range2
)
1099 return range1
->logical_sector
< range2
->logical_sector
+ range2
->n_sectors
&&
1100 range1
->logical_sector
+ range1
->n_sectors
> range2
->logical_sector
;
1103 static bool add_new_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
, bool check_waiting
)
1105 struct rb_node
**n
= &ic
->in_progress
.rb_node
;
1106 struct rb_node
*parent
;
1108 BUG_ON((new_range
->logical_sector
| new_range
->n_sectors
) & (unsigned)(ic
->sectors_per_block
- 1));
1110 if (likely(check_waiting
)) {
1111 struct dm_integrity_range
*range
;
1112 list_for_each_entry(range
, &ic
->wait_list
, wait_entry
) {
1113 if (unlikely(ranges_overlap(range
, new_range
)))
1121 struct dm_integrity_range
*range
= container_of(*n
, struct dm_integrity_range
, node
);
1124 if (new_range
->logical_sector
+ new_range
->n_sectors
<= range
->logical_sector
) {
1125 n
= &range
->node
.rb_left
;
1126 } else if (new_range
->logical_sector
>= range
->logical_sector
+ range
->n_sectors
) {
1127 n
= &range
->node
.rb_right
;
1133 rb_link_node(&new_range
->node
, parent
, n
);
1134 rb_insert_color(&new_range
->node
, &ic
->in_progress
);
1139 static void remove_range_unlocked(struct dm_integrity_c
*ic
, struct dm_integrity_range
*range
)
1141 rb_erase(&range
->node
, &ic
->in_progress
);
1142 while (unlikely(!list_empty(&ic
->wait_list
))) {
1143 struct dm_integrity_range
*last_range
=
1144 list_first_entry(&ic
->wait_list
, struct dm_integrity_range
, wait_entry
);
1145 struct task_struct
*last_range_task
;
1146 last_range_task
= last_range
->task
;
1147 list_del(&last_range
->wait_entry
);
1148 if (!add_new_range(ic
, last_range
, false)) {
1149 last_range
->task
= last_range_task
;
1150 list_add(&last_range
->wait_entry
, &ic
->wait_list
);
1153 last_range
->waiting
= false;
1154 wake_up_process(last_range_task
);
1158 static void remove_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*range
)
1160 unsigned long flags
;
1162 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1163 remove_range_unlocked(ic
, range
);
1164 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1167 static void wait_and_add_new_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
)
1169 new_range
->waiting
= true;
1170 list_add_tail(&new_range
->wait_entry
, &ic
->wait_list
);
1171 new_range
->task
= current
;
1173 __set_current_state(TASK_UNINTERRUPTIBLE
);
1174 spin_unlock_irq(&ic
->endio_wait
.lock
);
1176 spin_lock_irq(&ic
->endio_wait
.lock
);
1177 } while (unlikely(new_range
->waiting
));
1180 static void add_new_range_and_wait(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
)
1182 if (unlikely(!add_new_range(ic
, new_range
, true)))
1183 wait_and_add_new_range(ic
, new_range
);
1186 static void init_journal_node(struct journal_node
*node
)
1188 RB_CLEAR_NODE(&node
->node
);
1189 node
->sector
= (sector_t
)-1;
1192 static void add_journal_node(struct dm_integrity_c
*ic
, struct journal_node
*node
, sector_t sector
)
1194 struct rb_node
**link
;
1195 struct rb_node
*parent
;
1197 node
->sector
= sector
;
1198 BUG_ON(!RB_EMPTY_NODE(&node
->node
));
1200 link
= &ic
->journal_tree_root
.rb_node
;
1204 struct journal_node
*j
;
1206 j
= container_of(parent
, struct journal_node
, node
);
1207 if (sector
< j
->sector
)
1208 link
= &j
->node
.rb_left
;
1210 link
= &j
->node
.rb_right
;
1213 rb_link_node(&node
->node
, parent
, link
);
1214 rb_insert_color(&node
->node
, &ic
->journal_tree_root
);
1217 static void remove_journal_node(struct dm_integrity_c
*ic
, struct journal_node
*node
)
1219 BUG_ON(RB_EMPTY_NODE(&node
->node
));
1220 rb_erase(&node
->node
, &ic
->journal_tree_root
);
1221 init_journal_node(node
);
1224 #define NOT_FOUND (-1U)
1226 static unsigned find_journal_node(struct dm_integrity_c
*ic
, sector_t sector
, sector_t
*next_sector
)
1228 struct rb_node
*n
= ic
->journal_tree_root
.rb_node
;
1229 unsigned found
= NOT_FOUND
;
1230 *next_sector
= (sector_t
)-1;
1232 struct journal_node
*j
= container_of(n
, struct journal_node
, node
);
1233 if (sector
== j
->sector
) {
1234 found
= j
- ic
->journal_tree
;
1236 if (sector
< j
->sector
) {
1237 *next_sector
= j
->sector
;
1238 n
= j
->node
.rb_left
;
1240 n
= j
->node
.rb_right
;
1247 static bool test_journal_node(struct dm_integrity_c
*ic
, unsigned pos
, sector_t sector
)
1249 struct journal_node
*node
, *next_node
;
1250 struct rb_node
*next
;
1252 if (unlikely(pos
>= ic
->journal_entries
))
1254 node
= &ic
->journal_tree
[pos
];
1255 if (unlikely(RB_EMPTY_NODE(&node
->node
)))
1257 if (unlikely(node
->sector
!= sector
))
1260 next
= rb_next(&node
->node
);
1261 if (unlikely(!next
))
1264 next_node
= container_of(next
, struct journal_node
, node
);
1265 return next_node
->sector
!= sector
;
1268 static bool find_newer_committed_node(struct dm_integrity_c
*ic
, struct journal_node
*node
)
1270 struct rb_node
*next
;
1271 struct journal_node
*next_node
;
1272 unsigned next_section
;
1274 BUG_ON(RB_EMPTY_NODE(&node
->node
));
1276 next
= rb_next(&node
->node
);
1277 if (unlikely(!next
))
1280 next_node
= container_of(next
, struct journal_node
, node
);
1282 if (next_node
->sector
!= node
->sector
)
1285 next_section
= (unsigned)(next_node
- ic
->journal_tree
) / ic
->journal_section_entries
;
1286 if (next_section
>= ic
->committed_section
&&
1287 next_section
< ic
->committed_section
+ ic
->n_committed_sections
)
1289 if (next_section
+ ic
->journal_sections
< ic
->committed_section
+ ic
->n_committed_sections
)
1299 static int dm_integrity_rw_tag(struct dm_integrity_c
*ic
, unsigned char *tag
, sector_t
*metadata_block
,
1300 unsigned *metadata_offset
, unsigned total_size
, int op
)
1303 unsigned char *data
, *dp
;
1304 struct dm_buffer
*b
;
1308 r
= dm_integrity_failed(ic
);
1312 data
= dm_bufio_read(ic
->bufio
, *metadata_block
, &b
);
1314 return PTR_ERR(data
);
1316 to_copy
= min((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - *metadata_offset
, total_size
);
1317 dp
= data
+ *metadata_offset
;
1318 if (op
== TAG_READ
) {
1319 memcpy(tag
, dp
, to_copy
);
1320 } else if (op
== TAG_WRITE
) {
1321 memcpy(dp
, tag
, to_copy
);
1322 dm_bufio_mark_partial_buffer_dirty(b
, *metadata_offset
, *metadata_offset
+ to_copy
);
1324 /* e.g.: op == TAG_CMP */
1325 if (unlikely(memcmp(dp
, tag
, to_copy
))) {
1328 for (i
= 0; i
< to_copy
; i
++) {
1329 if (dp
[i
] != tag
[i
])
1333 dm_bufio_release(b
);
1337 dm_bufio_release(b
);
1340 *metadata_offset
+= to_copy
;
1341 if (unlikely(*metadata_offset
== 1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
)) {
1342 (*metadata_block
)++;
1343 *metadata_offset
= 0;
1345 total_size
-= to_copy
;
1346 } while (unlikely(total_size
));
1351 static void dm_integrity_flush_buffers(struct dm_integrity_c
*ic
)
1354 r
= dm_bufio_write_dirty_buffers(ic
->bufio
);
1356 dm_integrity_io_error(ic
, "writing tags", r
);
1359 static void sleep_on_endio_wait(struct dm_integrity_c
*ic
)
1361 DECLARE_WAITQUEUE(wait
, current
);
1362 __add_wait_queue(&ic
->endio_wait
, &wait
);
1363 __set_current_state(TASK_UNINTERRUPTIBLE
);
1364 spin_unlock_irq(&ic
->endio_wait
.lock
);
1366 spin_lock_irq(&ic
->endio_wait
.lock
);
1367 __remove_wait_queue(&ic
->endio_wait
, &wait
);
1370 static void autocommit_fn(struct timer_list
*t
)
1372 struct dm_integrity_c
*ic
= from_timer(ic
, t
, autocommit_timer
);
1374 if (likely(!dm_integrity_failed(ic
)))
1375 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1378 static void schedule_autocommit(struct dm_integrity_c
*ic
)
1380 if (!timer_pending(&ic
->autocommit_timer
))
1381 mod_timer(&ic
->autocommit_timer
, jiffies
+ ic
->autocommit_jiffies
);
1384 static void submit_flush_bio(struct dm_integrity_c
*ic
, struct dm_integrity_io
*dio
)
1387 unsigned long flags
;
1389 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1390 bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1391 bio_list_add(&ic
->flush_bio_list
, bio
);
1392 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1394 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1397 static void do_endio(struct dm_integrity_c
*ic
, struct bio
*bio
)
1399 int r
= dm_integrity_failed(ic
);
1400 if (unlikely(r
) && !bio
->bi_status
)
1401 bio
->bi_status
= errno_to_blk_status(r
);
1402 if (unlikely(ic
->synchronous_mode
) && bio_op(bio
) == REQ_OP_WRITE
) {
1403 unsigned long flags
;
1404 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1405 bio_list_add(&ic
->synchronous_bios
, bio
);
1406 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, 0);
1407 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1413 static void do_endio_flush(struct dm_integrity_c
*ic
, struct dm_integrity_io
*dio
)
1415 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1417 if (unlikely(dio
->fua
) && likely(!bio
->bi_status
) && likely(!dm_integrity_failed(ic
)))
1418 submit_flush_bio(ic
, dio
);
1423 static void dec_in_flight(struct dm_integrity_io
*dio
)
1425 if (atomic_dec_and_test(&dio
->in_flight
)) {
1426 struct dm_integrity_c
*ic
= dio
->ic
;
1429 remove_range(ic
, &dio
->range
);
1431 if (unlikely(dio
->write
))
1432 schedule_autocommit(ic
);
1434 bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1436 if (unlikely(dio
->bi_status
) && !bio
->bi_status
)
1437 bio
->bi_status
= dio
->bi_status
;
1438 if (likely(!bio
->bi_status
) && unlikely(bio_sectors(bio
) != dio
->range
.n_sectors
)) {
1439 dio
->range
.logical_sector
+= dio
->range
.n_sectors
;
1440 bio_advance(bio
, dio
->range
.n_sectors
<< SECTOR_SHIFT
);
1441 INIT_WORK(&dio
->work
, integrity_bio_wait
);
1442 queue_work(ic
->wait_wq
, &dio
->work
);
1445 do_endio_flush(ic
, dio
);
1449 static void integrity_end_io(struct bio
*bio
)
1451 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
1453 bio
->bi_iter
= dio
->orig_bi_iter
;
1454 bio
->bi_disk
= dio
->orig_bi_disk
;
1455 bio
->bi_partno
= dio
->orig_bi_partno
;
1456 if (dio
->orig_bi_integrity
) {
1457 bio
->bi_integrity
= dio
->orig_bi_integrity
;
1458 bio
->bi_opf
|= REQ_INTEGRITY
;
1460 bio
->bi_end_io
= dio
->orig_bi_end_io
;
1462 if (dio
->completion
)
1463 complete(dio
->completion
);
1468 static void integrity_sector_checksum(struct dm_integrity_c
*ic
, sector_t sector
,
1469 const char *data
, char *result
)
1471 __u64 sector_le
= cpu_to_le64(sector
);
1472 SHASH_DESC_ON_STACK(req
, ic
->internal_hash
);
1474 unsigned digest_size
;
1476 req
->tfm
= ic
->internal_hash
;
1478 r
= crypto_shash_init(req
);
1479 if (unlikely(r
< 0)) {
1480 dm_integrity_io_error(ic
, "crypto_shash_init", r
);
1484 r
= crypto_shash_update(req
, (const __u8
*)§or_le
, sizeof sector_le
);
1485 if (unlikely(r
< 0)) {
1486 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
1490 r
= crypto_shash_update(req
, data
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
1491 if (unlikely(r
< 0)) {
1492 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
1496 r
= crypto_shash_final(req
, result
);
1497 if (unlikely(r
< 0)) {
1498 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
1502 digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1503 if (unlikely(digest_size
< ic
->tag_size
))
1504 memset(result
+ digest_size
, 0, ic
->tag_size
- digest_size
);
1509 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1510 get_random_bytes(result
, ic
->tag_size
);
1513 static void integrity_metadata(struct work_struct
*w
)
1515 struct dm_integrity_io
*dio
= container_of(w
, struct dm_integrity_io
, work
);
1516 struct dm_integrity_c
*ic
= dio
->ic
;
1520 if (ic
->internal_hash
) {
1521 struct bvec_iter iter
;
1523 unsigned digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1524 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1526 unsigned extra_space
= unlikely(digest_size
> ic
->tag_size
) ? digest_size
- ic
->tag_size
: 0;
1527 char checksums_onstack
[HASH_MAX_DIGESTSIZE
];
1528 unsigned sectors_to_process
= dio
->range
.n_sectors
;
1529 sector_t sector
= dio
->range
.logical_sector
;
1531 if (unlikely(ic
->mode
== 'R'))
1534 checksums
= kmalloc((PAGE_SIZE
>> SECTOR_SHIFT
>> ic
->sb
->log2_sectors_per_block
) * ic
->tag_size
+ extra_space
,
1535 GFP_NOIO
| __GFP_NORETRY
| __GFP_NOWARN
);
1537 checksums
= checksums_onstack
;
1538 if (WARN_ON(extra_space
&&
1539 digest_size
> sizeof(checksums_onstack
))) {
1545 __bio_for_each_segment(bv
, bio
, iter
, dio
->orig_bi_iter
) {
1547 char *mem
, *checksums_ptr
;
1550 mem
= (char *)kmap_atomic(bv
.bv_page
) + bv
.bv_offset
;
1552 checksums_ptr
= checksums
;
1554 integrity_sector_checksum(ic
, sector
, mem
+ pos
, checksums_ptr
);
1555 checksums_ptr
+= ic
->tag_size
;
1556 sectors_to_process
-= ic
->sectors_per_block
;
1557 pos
+= ic
->sectors_per_block
<< SECTOR_SHIFT
;
1558 sector
+= ic
->sectors_per_block
;
1559 } while (pos
< bv
.bv_len
&& sectors_to_process
&& checksums
!= checksums_onstack
);
1562 r
= dm_integrity_rw_tag(ic
, checksums
, &dio
->metadata_block
, &dio
->metadata_offset
,
1563 checksums_ptr
- checksums
, !dio
->write
? TAG_CMP
: TAG_WRITE
);
1566 DMERR_LIMIT("Checksum failed at sector 0x%llx",
1567 (unsigned long long)(sector
- ((r
+ ic
->tag_size
- 1) / ic
->tag_size
)));
1569 atomic64_inc(&ic
->number_of_mismatches
);
1571 if (likely(checksums
!= checksums_onstack
))
1576 if (!sectors_to_process
)
1579 if (unlikely(pos
< bv
.bv_len
)) {
1580 bv
.bv_offset
+= pos
;
1586 if (likely(checksums
!= checksums_onstack
))
1589 struct bio_integrity_payload
*bip
= dio
->orig_bi_integrity
;
1593 struct bvec_iter iter
;
1594 unsigned data_to_process
= dio
->range
.n_sectors
;
1595 sector_to_block(ic
, data_to_process
);
1596 data_to_process
*= ic
->tag_size
;
1598 bip_for_each_vec(biv
, bip
, iter
) {
1602 BUG_ON(PageHighMem(biv
.bv_page
));
1603 tag
= lowmem_page_address(biv
.bv_page
) + biv
.bv_offset
;
1604 this_len
= min(biv
.bv_len
, data_to_process
);
1605 r
= dm_integrity_rw_tag(ic
, tag
, &dio
->metadata_block
, &dio
->metadata_offset
,
1606 this_len
, !dio
->write
? TAG_READ
: TAG_WRITE
);
1609 data_to_process
-= this_len
;
1610 if (!data_to_process
)
1619 dio
->bi_status
= errno_to_blk_status(r
);
1623 static int dm_integrity_map(struct dm_target
*ti
, struct bio
*bio
)
1625 struct dm_integrity_c
*ic
= ti
->private;
1626 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
1627 struct bio_integrity_payload
*bip
;
1629 sector_t area
, offset
;
1634 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1635 submit_flush_bio(ic
, dio
);
1636 return DM_MAPIO_SUBMITTED
;
1639 dio
->range
.logical_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1640 dio
->write
= bio_op(bio
) == REQ_OP_WRITE
;
1641 dio
->fua
= dio
->write
&& bio
->bi_opf
& REQ_FUA
;
1642 if (unlikely(dio
->fua
)) {
1644 * Don't pass down the FUA flag because we have to flush
1645 * disk cache anyway.
1647 bio
->bi_opf
&= ~REQ_FUA
;
1649 if (unlikely(dio
->range
.logical_sector
+ bio_sectors(bio
) > ic
->provided_data_sectors
)) {
1650 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1651 (unsigned long long)dio
->range
.logical_sector
, bio_sectors(bio
),
1652 (unsigned long long)ic
->provided_data_sectors
);
1653 return DM_MAPIO_KILL
;
1655 if (unlikely((dio
->range
.logical_sector
| bio_sectors(bio
)) & (unsigned)(ic
->sectors_per_block
- 1))) {
1656 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1657 ic
->sectors_per_block
,
1658 (unsigned long long)dio
->range
.logical_sector
, bio_sectors(bio
));
1659 return DM_MAPIO_KILL
;
1662 if (ic
->sectors_per_block
> 1) {
1663 struct bvec_iter iter
;
1665 bio_for_each_segment(bv
, bio
, iter
) {
1666 if (unlikely(bv
.bv_len
& ((ic
->sectors_per_block
<< SECTOR_SHIFT
) - 1))) {
1667 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1668 bv
.bv_offset
, bv
.bv_len
, ic
->sectors_per_block
);
1669 return DM_MAPIO_KILL
;
1674 bip
= bio_integrity(bio
);
1675 if (!ic
->internal_hash
) {
1677 unsigned wanted_tag_size
= bio_sectors(bio
) >> ic
->sb
->log2_sectors_per_block
;
1678 if (ic
->log2_tag_size
>= 0)
1679 wanted_tag_size
<<= ic
->log2_tag_size
;
1681 wanted_tag_size
*= ic
->tag_size
;
1682 if (unlikely(wanted_tag_size
!= bip
->bip_iter
.bi_size
)) {
1683 DMERR("Invalid integrity data size %u, expected %u",
1684 bip
->bip_iter
.bi_size
, wanted_tag_size
);
1685 return DM_MAPIO_KILL
;
1689 if (unlikely(bip
!= NULL
)) {
1690 DMERR("Unexpected integrity data when using internal hash");
1691 return DM_MAPIO_KILL
;
1695 if (unlikely(ic
->mode
== 'R') && unlikely(dio
->write
))
1696 return DM_MAPIO_KILL
;
1698 get_area_and_offset(ic
, dio
->range
.logical_sector
, &area
, &offset
);
1699 dio
->metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &dio
->metadata_offset
);
1700 bio
->bi_iter
.bi_sector
= get_data_sector(ic
, area
, offset
);
1702 dm_integrity_map_continue(dio
, true);
1703 return DM_MAPIO_SUBMITTED
;
1706 static bool __journal_read_write(struct dm_integrity_io
*dio
, struct bio
*bio
,
1707 unsigned journal_section
, unsigned journal_entry
)
1709 struct dm_integrity_c
*ic
= dio
->ic
;
1710 sector_t logical_sector
;
1713 logical_sector
= dio
->range
.logical_sector
;
1714 n_sectors
= dio
->range
.n_sectors
;
1716 struct bio_vec bv
= bio_iovec(bio
);
1719 if (unlikely(bv
.bv_len
>> SECTOR_SHIFT
> n_sectors
))
1720 bv
.bv_len
= n_sectors
<< SECTOR_SHIFT
;
1721 n_sectors
-= bv
.bv_len
>> SECTOR_SHIFT
;
1722 bio_advance_iter(bio
, &bio
->bi_iter
, bv
.bv_len
);
1724 mem
= kmap_atomic(bv
.bv_page
);
1725 if (likely(dio
->write
))
1726 flush_dcache_page(bv
.bv_page
);
1729 struct journal_entry
*je
= access_journal_entry(ic
, journal_section
, journal_entry
);
1731 if (unlikely(!dio
->write
)) {
1732 struct journal_sector
*js
;
1736 if (unlikely(journal_entry_is_inprogress(je
))) {
1737 flush_dcache_page(bv
.bv_page
);
1740 __io_wait_event(ic
->copy_to_journal_wait
, !journal_entry_is_inprogress(je
));
1744 BUG_ON(journal_entry_get_sector(je
) != logical_sector
);
1745 js
= access_journal_data(ic
, journal_section
, journal_entry
);
1746 mem_ptr
= mem
+ bv
.bv_offset
;
1749 memcpy(mem_ptr
, js
, JOURNAL_SECTOR_DATA
);
1750 *(commit_id_t
*)(mem_ptr
+ JOURNAL_SECTOR_DATA
) = je
->last_bytes
[s
];
1752 mem_ptr
+= 1 << SECTOR_SHIFT
;
1753 } while (++s
< ic
->sectors_per_block
);
1754 #ifdef INTERNAL_VERIFY
1755 if (ic
->internal_hash
) {
1756 char checksums_onstack
[max(HASH_MAX_DIGESTSIZE
, MAX_TAG_SIZE
)];
1758 integrity_sector_checksum(ic
, logical_sector
, mem
+ bv
.bv_offset
, checksums_onstack
);
1759 if (unlikely(memcmp(checksums_onstack
, journal_entry_tag(ic
, je
), ic
->tag_size
))) {
1760 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1761 (unsigned long long)logical_sector
);
1767 if (!ic
->internal_hash
) {
1768 struct bio_integrity_payload
*bip
= bio_integrity(bio
);
1769 unsigned tag_todo
= ic
->tag_size
;
1770 char *tag_ptr
= journal_entry_tag(ic
, je
);
1773 struct bio_vec biv
= bvec_iter_bvec(bip
->bip_vec
, bip
->bip_iter
);
1774 unsigned tag_now
= min(biv
.bv_len
, tag_todo
);
1776 BUG_ON(PageHighMem(biv
.bv_page
));
1777 tag_addr
= lowmem_page_address(biv
.bv_page
) + biv
.bv_offset
;
1778 if (likely(dio
->write
))
1779 memcpy(tag_ptr
, tag_addr
, tag_now
);
1781 memcpy(tag_addr
, tag_ptr
, tag_now
);
1782 bvec_iter_advance(bip
->bip_vec
, &bip
->bip_iter
, tag_now
);
1784 tag_todo
-= tag_now
;
1785 } while (unlikely(tag_todo
)); else {
1786 if (likely(dio
->write
))
1787 memset(tag_ptr
, 0, tag_todo
);
1791 if (likely(dio
->write
)) {
1792 struct journal_sector
*js
;
1795 js
= access_journal_data(ic
, journal_section
, journal_entry
);
1796 memcpy(js
, mem
+ bv
.bv_offset
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
1800 je
->last_bytes
[s
] = js
[s
].commit_id
;
1801 } while (++s
< ic
->sectors_per_block
);
1803 if (ic
->internal_hash
) {
1804 unsigned digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1805 if (unlikely(digest_size
> ic
->tag_size
)) {
1806 char checksums_onstack
[HASH_MAX_DIGESTSIZE
];
1807 integrity_sector_checksum(ic
, logical_sector
, (char *)js
, checksums_onstack
);
1808 memcpy(journal_entry_tag(ic
, je
), checksums_onstack
, ic
->tag_size
);
1810 integrity_sector_checksum(ic
, logical_sector
, (char *)js
, journal_entry_tag(ic
, je
));
1813 journal_entry_set_sector(je
, logical_sector
);
1815 logical_sector
+= ic
->sectors_per_block
;
1818 if (unlikely(journal_entry
== ic
->journal_section_entries
)) {
1821 wraparound_section(ic
, &journal_section
);
1824 bv
.bv_offset
+= ic
->sectors_per_block
<< SECTOR_SHIFT
;
1825 } while (bv
.bv_len
-= ic
->sectors_per_block
<< SECTOR_SHIFT
);
1827 if (unlikely(!dio
->write
))
1828 flush_dcache_page(bv
.bv_page
);
1830 } while (n_sectors
);
1832 if (likely(dio
->write
)) {
1834 if (unlikely(waitqueue_active(&ic
->copy_to_journal_wait
)))
1835 wake_up(&ic
->copy_to_journal_wait
);
1836 if (READ_ONCE(ic
->free_sectors
) <= ic
->free_sectors_threshold
) {
1837 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1839 schedule_autocommit(ic
);
1842 remove_range(ic
, &dio
->range
);
1845 if (unlikely(bio
->bi_iter
.bi_size
)) {
1846 sector_t area
, offset
;
1848 dio
->range
.logical_sector
= logical_sector
;
1849 get_area_and_offset(ic
, dio
->range
.logical_sector
, &area
, &offset
);
1850 dio
->metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &dio
->metadata_offset
);
1857 static void dm_integrity_map_continue(struct dm_integrity_io
*dio
, bool from_map
)
1859 struct dm_integrity_c
*ic
= dio
->ic
;
1860 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1861 unsigned journal_section
, journal_entry
;
1862 unsigned journal_read_pos
;
1863 struct completion read_comp
;
1864 bool need_sync_io
= ic
->internal_hash
&& !dio
->write
;
1866 if (need_sync_io
&& from_map
) {
1867 INIT_WORK(&dio
->work
, integrity_bio_wait
);
1868 queue_work(ic
->metadata_wq
, &dio
->work
);
1873 spin_lock_irq(&ic
->endio_wait
.lock
);
1875 if (unlikely(dm_integrity_failed(ic
))) {
1876 spin_unlock_irq(&ic
->endio_wait
.lock
);
1880 dio
->range
.n_sectors
= bio_sectors(bio
);
1881 journal_read_pos
= NOT_FOUND
;
1882 if (likely(ic
->mode
== 'J')) {
1884 unsigned next_entry
, i
, pos
;
1885 unsigned ws
, we
, range_sectors
;
1887 dio
->range
.n_sectors
= min(dio
->range
.n_sectors
,
1888 (sector_t
)ic
->free_sectors
<< ic
->sb
->log2_sectors_per_block
);
1889 if (unlikely(!dio
->range
.n_sectors
)) {
1891 goto offload_to_thread
;
1892 sleep_on_endio_wait(ic
);
1895 range_sectors
= dio
->range
.n_sectors
>> ic
->sb
->log2_sectors_per_block
;
1896 ic
->free_sectors
-= range_sectors
;
1897 journal_section
= ic
->free_section
;
1898 journal_entry
= ic
->free_section_entry
;
1900 next_entry
= ic
->free_section_entry
+ range_sectors
;
1901 ic
->free_section_entry
= next_entry
% ic
->journal_section_entries
;
1902 ic
->free_section
+= next_entry
/ ic
->journal_section_entries
;
1903 ic
->n_uncommitted_sections
+= next_entry
/ ic
->journal_section_entries
;
1904 wraparound_section(ic
, &ic
->free_section
);
1906 pos
= journal_section
* ic
->journal_section_entries
+ journal_entry
;
1907 ws
= journal_section
;
1911 struct journal_entry
*je
;
1913 add_journal_node(ic
, &ic
->journal_tree
[pos
], dio
->range
.logical_sector
+ i
);
1915 if (unlikely(pos
>= ic
->journal_entries
))
1918 je
= access_journal_entry(ic
, ws
, we
);
1919 BUG_ON(!journal_entry_is_unused(je
));
1920 journal_entry_set_inprogress(je
);
1922 if (unlikely(we
== ic
->journal_section_entries
)) {
1925 wraparound_section(ic
, &ws
);
1927 } while ((i
+= ic
->sectors_per_block
) < dio
->range
.n_sectors
);
1929 spin_unlock_irq(&ic
->endio_wait
.lock
);
1930 goto journal_read_write
;
1932 sector_t next_sector
;
1933 journal_read_pos
= find_journal_node(ic
, dio
->range
.logical_sector
, &next_sector
);
1934 if (likely(journal_read_pos
== NOT_FOUND
)) {
1935 if (unlikely(dio
->range
.n_sectors
> next_sector
- dio
->range
.logical_sector
))
1936 dio
->range
.n_sectors
= next_sector
- dio
->range
.logical_sector
;
1939 unsigned jp
= journal_read_pos
+ 1;
1940 for (i
= ic
->sectors_per_block
; i
< dio
->range
.n_sectors
; i
+= ic
->sectors_per_block
, jp
++) {
1941 if (!test_journal_node(ic
, jp
, dio
->range
.logical_sector
+ i
))
1944 dio
->range
.n_sectors
= i
;
1948 if (unlikely(!add_new_range(ic
, &dio
->range
, true))) {
1950 * We must not sleep in the request routine because it could
1951 * stall bios on current->bio_list.
1952 * So, we offload the bio to a workqueue if we have to sleep.
1956 spin_unlock_irq(&ic
->endio_wait
.lock
);
1957 INIT_WORK(&dio
->work
, integrity_bio_wait
);
1958 queue_work(ic
->wait_wq
, &dio
->work
);
1961 if (journal_read_pos
!= NOT_FOUND
)
1962 dio
->range
.n_sectors
= ic
->sectors_per_block
;
1963 wait_and_add_new_range(ic
, &dio
->range
);
1965 * wait_and_add_new_range drops the spinlock, so the journal
1966 * may have been changed arbitrarily. We need to recheck.
1967 * To simplify the code, we restrict I/O size to just one block.
1969 if (journal_read_pos
!= NOT_FOUND
) {
1970 sector_t next_sector
;
1971 unsigned new_pos
= find_journal_node(ic
, dio
->range
.logical_sector
, &next_sector
);
1972 if (unlikely(new_pos
!= journal_read_pos
)) {
1973 remove_range_unlocked(ic
, &dio
->range
);
1978 spin_unlock_irq(&ic
->endio_wait
.lock
);
1980 if (unlikely(journal_read_pos
!= NOT_FOUND
)) {
1981 journal_section
= journal_read_pos
/ ic
->journal_section_entries
;
1982 journal_entry
= journal_read_pos
% ic
->journal_section_entries
;
1983 goto journal_read_write
;
1986 if (ic
->mode
== 'B' && dio
->write
) {
1987 if (!block_bitmap_op(ic
, ic
->may_write_bitmap
, dio
->range
.logical_sector
,
1988 dio
->range
.n_sectors
, BITMAP_OP_TEST_ALL_SET
)) {
1989 struct bitmap_block_status
*bbs
;
1991 bbs
= sector_to_bitmap_block(ic
, dio
->range
.logical_sector
);
1992 spin_lock(&bbs
->bio_queue_lock
);
1993 bio_list_add(&bbs
->bio_queue
, bio
);
1994 spin_unlock(&bbs
->bio_queue_lock
);
1995 queue_work(ic
->writer_wq
, &bbs
->work
);
2000 dio
->in_flight
= (atomic_t
)ATOMIC_INIT(2);
2003 init_completion(&read_comp
);
2004 dio
->completion
= &read_comp
;
2006 dio
->completion
= NULL
;
2008 dio
->orig_bi_iter
= bio
->bi_iter
;
2010 dio
->orig_bi_disk
= bio
->bi_disk
;
2011 dio
->orig_bi_partno
= bio
->bi_partno
;
2012 bio_set_dev(bio
, ic
->dev
->bdev
);
2014 dio
->orig_bi_integrity
= bio_integrity(bio
);
2015 bio
->bi_integrity
= NULL
;
2016 bio
->bi_opf
&= ~REQ_INTEGRITY
;
2018 dio
->orig_bi_end_io
= bio
->bi_end_io
;
2019 bio
->bi_end_io
= integrity_end_io
;
2021 bio
->bi_iter
.bi_size
= dio
->range
.n_sectors
<< SECTOR_SHIFT
;
2022 generic_make_request(bio
);
2025 wait_for_completion_io(&read_comp
);
2026 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
) &&
2027 dio
->range
.logical_sector
+ dio
->range
.n_sectors
> le64_to_cpu(ic
->sb
->recalc_sector
))
2029 if (ic
->mode
== 'B') {
2030 if (!block_bitmap_op(ic
, ic
->recalc_bitmap
, dio
->range
.logical_sector
,
2031 dio
->range
.n_sectors
, BITMAP_OP_TEST_ALL_CLEAR
))
2035 if (likely(!bio
->bi_status
))
2036 integrity_metadata(&dio
->work
);
2042 INIT_WORK(&dio
->work
, integrity_metadata
);
2043 queue_work(ic
->metadata_wq
, &dio
->work
);
2049 if (unlikely(__journal_read_write(dio
, bio
, journal_section
, journal_entry
)))
2052 do_endio_flush(ic
, dio
);
2056 static void integrity_bio_wait(struct work_struct
*w
)
2058 struct dm_integrity_io
*dio
= container_of(w
, struct dm_integrity_io
, work
);
2060 dm_integrity_map_continue(dio
, false);
2063 static void pad_uncommitted(struct dm_integrity_c
*ic
)
2065 if (ic
->free_section_entry
) {
2066 ic
->free_sectors
-= ic
->journal_section_entries
- ic
->free_section_entry
;
2067 ic
->free_section_entry
= 0;
2069 wraparound_section(ic
, &ic
->free_section
);
2070 ic
->n_uncommitted_sections
++;
2072 if (WARN_ON(ic
->journal_sections
* ic
->journal_section_entries
!=
2073 (ic
->n_uncommitted_sections
+ ic
->n_committed_sections
) *
2074 ic
->journal_section_entries
+ ic
->free_sectors
)) {
2075 DMCRIT("journal_sections %u, journal_section_entries %u, "
2076 "n_uncommitted_sections %u, n_committed_sections %u, "
2077 "journal_section_entries %u, free_sectors %u",
2078 ic
->journal_sections
, ic
->journal_section_entries
,
2079 ic
->n_uncommitted_sections
, ic
->n_committed_sections
,
2080 ic
->journal_section_entries
, ic
->free_sectors
);
2084 static void integrity_commit(struct work_struct
*w
)
2086 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, commit_work
);
2087 unsigned commit_start
, commit_sections
;
2089 struct bio
*flushes
;
2091 del_timer(&ic
->autocommit_timer
);
2093 spin_lock_irq(&ic
->endio_wait
.lock
);
2094 flushes
= bio_list_get(&ic
->flush_bio_list
);
2095 if (unlikely(ic
->mode
!= 'J')) {
2096 spin_unlock_irq(&ic
->endio_wait
.lock
);
2097 dm_integrity_flush_buffers(ic
);
2098 goto release_flush_bios
;
2101 pad_uncommitted(ic
);
2102 commit_start
= ic
->uncommitted_section
;
2103 commit_sections
= ic
->n_uncommitted_sections
;
2104 spin_unlock_irq(&ic
->endio_wait
.lock
);
2106 if (!commit_sections
)
2107 goto release_flush_bios
;
2110 for (n
= 0; n
< commit_sections
; n
++) {
2111 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2112 struct journal_entry
*je
;
2113 je
= access_journal_entry(ic
, i
, j
);
2114 io_wait_event(ic
->copy_to_journal_wait
, !journal_entry_is_inprogress(je
));
2116 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2117 struct journal_sector
*js
;
2118 js
= access_journal(ic
, i
, j
);
2119 js
->commit_id
= dm_integrity_commit_id(ic
, i
, j
, ic
->commit_seq
);
2122 if (unlikely(i
>= ic
->journal_sections
))
2123 ic
->commit_seq
= next_commit_seq(ic
->commit_seq
);
2124 wraparound_section(ic
, &i
);
2128 write_journal(ic
, commit_start
, commit_sections
);
2130 spin_lock_irq(&ic
->endio_wait
.lock
);
2131 ic
->uncommitted_section
+= commit_sections
;
2132 wraparound_section(ic
, &ic
->uncommitted_section
);
2133 ic
->n_uncommitted_sections
-= commit_sections
;
2134 ic
->n_committed_sections
+= commit_sections
;
2135 spin_unlock_irq(&ic
->endio_wait
.lock
);
2137 if (READ_ONCE(ic
->free_sectors
) <= ic
->free_sectors_threshold
)
2138 queue_work(ic
->writer_wq
, &ic
->writer_work
);
2142 struct bio
*next
= flushes
->bi_next
;
2143 flushes
->bi_next
= NULL
;
2144 do_endio(ic
, flushes
);
2149 static void complete_copy_from_journal(unsigned long error
, void *context
)
2151 struct journal_io
*io
= context
;
2152 struct journal_completion
*comp
= io
->comp
;
2153 struct dm_integrity_c
*ic
= comp
->ic
;
2154 remove_range(ic
, &io
->range
);
2155 mempool_free(io
, &ic
->journal_io_mempool
);
2156 if (unlikely(error
!= 0))
2157 dm_integrity_io_error(ic
, "copying from journal", -EIO
);
2158 complete_journal_op(comp
);
2161 static void restore_last_bytes(struct dm_integrity_c
*ic
, struct journal_sector
*js
,
2162 struct journal_entry
*je
)
2166 js
->commit_id
= je
->last_bytes
[s
];
2168 } while (++s
< ic
->sectors_per_block
);
2171 static void do_journal_write(struct dm_integrity_c
*ic
, unsigned write_start
,
2172 unsigned write_sections
, bool from_replay
)
2175 struct journal_completion comp
;
2176 struct blk_plug plug
;
2178 blk_start_plug(&plug
);
2181 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
2182 init_completion(&comp
.comp
);
2185 for (n
= 0; n
< write_sections
; n
++, i
++, wraparound_section(ic
, &i
)) {
2186 #ifndef INTERNAL_VERIFY
2187 if (unlikely(from_replay
))
2189 rw_section_mac(ic
, i
, false);
2190 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2191 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
2192 sector_t sec
, area
, offset
;
2193 unsigned k
, l
, next_loop
;
2194 sector_t metadata_block
;
2195 unsigned metadata_offset
;
2196 struct journal_io
*io
;
2198 if (journal_entry_is_unused(je
))
2200 BUG_ON(unlikely(journal_entry_is_inprogress(je
)) && !from_replay
);
2201 sec
= journal_entry_get_sector(je
);
2202 if (unlikely(from_replay
)) {
2203 if (unlikely(sec
& (unsigned)(ic
->sectors_per_block
- 1))) {
2204 dm_integrity_io_error(ic
, "invalid sector in journal", -EIO
);
2205 sec
&= ~(sector_t
)(ic
->sectors_per_block
- 1);
2208 get_area_and_offset(ic
, sec
, &area
, &offset
);
2209 restore_last_bytes(ic
, access_journal_data(ic
, i
, j
), je
);
2210 for (k
= j
+ 1; k
< ic
->journal_section_entries
; k
++) {
2211 struct journal_entry
*je2
= access_journal_entry(ic
, i
, k
);
2212 sector_t sec2
, area2
, offset2
;
2213 if (journal_entry_is_unused(je2
))
2215 BUG_ON(unlikely(journal_entry_is_inprogress(je2
)) && !from_replay
);
2216 sec2
= journal_entry_get_sector(je2
);
2217 get_area_and_offset(ic
, sec2
, &area2
, &offset2
);
2218 if (area2
!= area
|| offset2
!= offset
+ ((k
- j
) << ic
->sb
->log2_sectors_per_block
))
2220 restore_last_bytes(ic
, access_journal_data(ic
, i
, k
), je2
);
2224 io
= mempool_alloc(&ic
->journal_io_mempool
, GFP_NOIO
);
2226 io
->range
.logical_sector
= sec
;
2227 io
->range
.n_sectors
= (k
- j
) << ic
->sb
->log2_sectors_per_block
;
2229 spin_lock_irq(&ic
->endio_wait
.lock
);
2230 add_new_range_and_wait(ic
, &io
->range
);
2232 if (likely(!from_replay
)) {
2233 struct journal_node
*section_node
= &ic
->journal_tree
[i
* ic
->journal_section_entries
];
2235 /* don't write if there is newer committed sector */
2236 while (j
< k
&& find_newer_committed_node(ic
, §ion_node
[j
])) {
2237 struct journal_entry
*je2
= access_journal_entry(ic
, i
, j
);
2239 journal_entry_set_unused(je2
);
2240 remove_journal_node(ic
, §ion_node
[j
]);
2242 sec
+= ic
->sectors_per_block
;
2243 offset
+= ic
->sectors_per_block
;
2245 while (j
< k
&& find_newer_committed_node(ic
, §ion_node
[k
- 1])) {
2246 struct journal_entry
*je2
= access_journal_entry(ic
, i
, k
- 1);
2248 journal_entry_set_unused(je2
);
2249 remove_journal_node(ic
, §ion_node
[k
- 1]);
2253 remove_range_unlocked(ic
, &io
->range
);
2254 spin_unlock_irq(&ic
->endio_wait
.lock
);
2255 mempool_free(io
, &ic
->journal_io_mempool
);
2258 for (l
= j
; l
< k
; l
++) {
2259 remove_journal_node(ic
, §ion_node
[l
]);
2262 spin_unlock_irq(&ic
->endio_wait
.lock
);
2264 metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &metadata_offset
);
2265 for (l
= j
; l
< k
; l
++) {
2267 struct journal_entry
*je2
= access_journal_entry(ic
, i
, l
);
2270 #ifndef INTERNAL_VERIFY
2271 unlikely(from_replay
) &&
2273 ic
->internal_hash
) {
2274 char test_tag
[max_t(size_t, HASH_MAX_DIGESTSIZE
, MAX_TAG_SIZE
)];
2276 integrity_sector_checksum(ic
, sec
+ ((l
- j
) << ic
->sb
->log2_sectors_per_block
),
2277 (char *)access_journal_data(ic
, i
, l
), test_tag
);
2278 if (unlikely(memcmp(test_tag
, journal_entry_tag(ic
, je2
), ic
->tag_size
)))
2279 dm_integrity_io_error(ic
, "tag mismatch when replaying journal", -EILSEQ
);
2282 journal_entry_set_unused(je2
);
2283 r
= dm_integrity_rw_tag(ic
, journal_entry_tag(ic
, je2
), &metadata_block
, &metadata_offset
,
2284 ic
->tag_size
, TAG_WRITE
);
2286 dm_integrity_io_error(ic
, "reading tags", r
);
2290 atomic_inc(&comp
.in_flight
);
2291 copy_from_journal(ic
, i
, j
<< ic
->sb
->log2_sectors_per_block
,
2292 (k
- j
) << ic
->sb
->log2_sectors_per_block
,
2293 get_data_sector(ic
, area
, offset
),
2294 complete_copy_from_journal
, io
);
2300 dm_bufio_write_dirty_buffers_async(ic
->bufio
);
2302 blk_finish_plug(&plug
);
2304 complete_journal_op(&comp
);
2305 wait_for_completion_io(&comp
.comp
);
2307 dm_integrity_flush_buffers(ic
);
2310 static void integrity_writer(struct work_struct
*w
)
2312 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, writer_work
);
2313 unsigned write_start
, write_sections
;
2315 unsigned prev_free_sectors
;
2317 /* the following test is not needed, but it tests the replay code */
2318 if (READ_ONCE(ic
->suspending
) && !ic
->meta_dev
)
2321 spin_lock_irq(&ic
->endio_wait
.lock
);
2322 write_start
= ic
->committed_section
;
2323 write_sections
= ic
->n_committed_sections
;
2324 spin_unlock_irq(&ic
->endio_wait
.lock
);
2326 if (!write_sections
)
2329 do_journal_write(ic
, write_start
, write_sections
, false);
2331 spin_lock_irq(&ic
->endio_wait
.lock
);
2333 ic
->committed_section
+= write_sections
;
2334 wraparound_section(ic
, &ic
->committed_section
);
2335 ic
->n_committed_sections
-= write_sections
;
2337 prev_free_sectors
= ic
->free_sectors
;
2338 ic
->free_sectors
+= write_sections
* ic
->journal_section_entries
;
2339 if (unlikely(!prev_free_sectors
))
2340 wake_up_locked(&ic
->endio_wait
);
2342 spin_unlock_irq(&ic
->endio_wait
.lock
);
2345 static void recalc_write_super(struct dm_integrity_c
*ic
)
2349 dm_integrity_flush_buffers(ic
);
2350 if (dm_integrity_failed(ic
))
2353 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, 0);
2355 dm_integrity_io_error(ic
, "writing superblock", r
);
2358 static void integrity_recalc(struct work_struct
*w
)
2360 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, recalc_work
);
2361 struct dm_integrity_range range
;
2362 struct dm_io_request io_req
;
2363 struct dm_io_region io_loc
;
2364 sector_t area
, offset
;
2365 sector_t metadata_block
;
2366 unsigned metadata_offset
;
2367 sector_t logical_sector
, n_sectors
;
2371 unsigned super_counter
= 0;
2373 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic
->sb
->recalc_sector
));
2375 spin_lock_irq(&ic
->endio_wait
.lock
);
2379 if (unlikely(READ_ONCE(ic
->suspending
)))
2382 range
.logical_sector
= le64_to_cpu(ic
->sb
->recalc_sector
);
2383 if (unlikely(range
.logical_sector
>= ic
->provided_data_sectors
)) {
2384 if (ic
->mode
== 'B') {
2385 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2386 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, 0);
2391 get_area_and_offset(ic
, range
.logical_sector
, &area
, &offset
);
2392 range
.n_sectors
= min((sector_t
)RECALC_SECTORS
, ic
->provided_data_sectors
- range
.logical_sector
);
2394 range
.n_sectors
= min(range
.n_sectors
, ((sector_t
)1U << ic
->sb
->log2_interleave_sectors
) - (unsigned)offset
);
2396 add_new_range_and_wait(ic
, &range
);
2397 spin_unlock_irq(&ic
->endio_wait
.lock
);
2398 logical_sector
= range
.logical_sector
;
2399 n_sectors
= range
.n_sectors
;
2401 if (ic
->mode
== 'B') {
2402 if (block_bitmap_op(ic
, ic
->recalc_bitmap
, logical_sector
, n_sectors
, BITMAP_OP_TEST_ALL_CLEAR
)) {
2403 goto advance_and_next
;
2405 while (block_bitmap_op(ic
, ic
->recalc_bitmap
, logical_sector
,
2406 ic
->sectors_per_block
, BITMAP_OP_TEST_ALL_CLEAR
)) {
2407 logical_sector
+= ic
->sectors_per_block
;
2408 n_sectors
-= ic
->sectors_per_block
;
2411 while (block_bitmap_op(ic
, ic
->recalc_bitmap
, logical_sector
+ n_sectors
- ic
->sectors_per_block
,
2412 ic
->sectors_per_block
, BITMAP_OP_TEST_ALL_CLEAR
)) {
2413 n_sectors
-= ic
->sectors_per_block
;
2416 get_area_and_offset(ic
, logical_sector
, &area
, &offset
);
2419 DEBUG_print("recalculating: %lx, %lx\n", logical_sector
, n_sectors
);
2421 if (unlikely(++super_counter
== RECALC_WRITE_SUPER
)) {
2422 recalc_write_super(ic
);
2423 if (ic
->mode
== 'B') {
2424 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, ic
->bitmap_flush_interval
);
2429 if (unlikely(dm_integrity_failed(ic
)))
2432 io_req
.bi_op
= REQ_OP_READ
;
2433 io_req
.bi_op_flags
= 0;
2434 io_req
.mem
.type
= DM_IO_VMA
;
2435 io_req
.mem
.ptr
.addr
= ic
->recalc_buffer
;
2436 io_req
.notify
.fn
= NULL
;
2437 io_req
.client
= ic
->io
;
2438 io_loc
.bdev
= ic
->dev
->bdev
;
2439 io_loc
.sector
= get_data_sector(ic
, area
, offset
);
2440 io_loc
.count
= n_sectors
;
2442 r
= dm_io(&io_req
, 1, &io_loc
, NULL
);
2444 dm_integrity_io_error(ic
, "reading data", r
);
2448 t
= ic
->recalc_tags
;
2449 for (i
= 0; i
< n_sectors
; i
+= ic
->sectors_per_block
) {
2450 integrity_sector_checksum(ic
, logical_sector
+ i
, ic
->recalc_buffer
+ (i
<< SECTOR_SHIFT
), t
);
2454 metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &metadata_offset
);
2456 r
= dm_integrity_rw_tag(ic
, ic
->recalc_tags
, &metadata_block
, &metadata_offset
, t
- ic
->recalc_tags
, TAG_WRITE
);
2458 dm_integrity_io_error(ic
, "writing tags", r
);
2465 spin_lock_irq(&ic
->endio_wait
.lock
);
2466 remove_range_unlocked(ic
, &range
);
2467 ic
->sb
->recalc_sector
= cpu_to_le64(range
.logical_sector
+ range
.n_sectors
);
2471 remove_range(ic
, &range
);
2475 spin_unlock_irq(&ic
->endio_wait
.lock
);
2477 recalc_write_super(ic
);
2480 static void bitmap_block_work(struct work_struct
*w
)
2482 struct bitmap_block_status
*bbs
= container_of(w
, struct bitmap_block_status
, work
);
2483 struct dm_integrity_c
*ic
= bbs
->ic
;
2485 struct bio_list bio_queue
;
2486 struct bio_list waiting
;
2488 bio_list_init(&waiting
);
2490 spin_lock(&bbs
->bio_queue_lock
);
2491 bio_queue
= bbs
->bio_queue
;
2492 bio_list_init(&bbs
->bio_queue
);
2493 spin_unlock(&bbs
->bio_queue_lock
);
2495 while ((bio
= bio_list_pop(&bio_queue
))) {
2496 struct dm_integrity_io
*dio
;
2498 dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
2500 if (block_bitmap_op(ic
, ic
->may_write_bitmap
, dio
->range
.logical_sector
,
2501 dio
->range
.n_sectors
, BITMAP_OP_TEST_ALL_SET
)) {
2502 remove_range(ic
, &dio
->range
);
2503 INIT_WORK(&dio
->work
, integrity_bio_wait
);
2504 queue_work(ic
->wait_wq
, &dio
->work
);
2506 block_bitmap_op(ic
, ic
->journal
, dio
->range
.logical_sector
,
2507 dio
->range
.n_sectors
, BITMAP_OP_SET
);
2508 bio_list_add(&waiting
, bio
);
2512 if (bio_list_empty(&waiting
))
2515 rw_journal_sectors(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
,
2516 bbs
->idx
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
),
2517 BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
, NULL
);
2519 while ((bio
= bio_list_pop(&waiting
))) {
2520 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
2522 block_bitmap_op(ic
, ic
->may_write_bitmap
, dio
->range
.logical_sector
,
2523 dio
->range
.n_sectors
, BITMAP_OP_SET
);
2525 remove_range(ic
, &dio
->range
);
2526 INIT_WORK(&dio
->work
, integrity_bio_wait
);
2527 queue_work(ic
->wait_wq
, &dio
->work
);
2530 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, ic
->bitmap_flush_interval
);
2533 static void bitmap_flush_work(struct work_struct
*work
)
2535 struct dm_integrity_c
*ic
= container_of(work
, struct dm_integrity_c
, bitmap_flush_work
.work
);
2536 struct dm_integrity_range range
;
2537 unsigned long limit
;
2540 dm_integrity_flush_buffers(ic
);
2542 range
.logical_sector
= 0;
2543 range
.n_sectors
= ic
->provided_data_sectors
;
2545 spin_lock_irq(&ic
->endio_wait
.lock
);
2546 add_new_range_and_wait(ic
, &range
);
2547 spin_unlock_irq(&ic
->endio_wait
.lock
);
2549 dm_integrity_flush_buffers(ic
);
2551 blkdev_issue_flush(ic
->dev
->bdev
, GFP_NOIO
, NULL
);
2553 limit
= ic
->provided_data_sectors
;
2554 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
)) {
2555 limit
= le64_to_cpu(ic
->sb
->recalc_sector
)
2556 >> (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
)
2557 << (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
2559 /*DEBUG_print("zeroing journal\n");*/
2560 block_bitmap_op(ic
, ic
->journal
, 0, limit
, BITMAP_OP_CLEAR
);
2561 block_bitmap_op(ic
, ic
->may_write_bitmap
, 0, limit
, BITMAP_OP_CLEAR
);
2563 rw_journal_sectors(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, 0,
2564 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
2566 spin_lock_irq(&ic
->endio_wait
.lock
);
2567 remove_range_unlocked(ic
, &range
);
2568 while (unlikely((bio
= bio_list_pop(&ic
->synchronous_bios
)) != NULL
)) {
2570 spin_unlock_irq(&ic
->endio_wait
.lock
);
2571 spin_lock_irq(&ic
->endio_wait
.lock
);
2573 spin_unlock_irq(&ic
->endio_wait
.lock
);
2577 static void init_journal(struct dm_integrity_c
*ic
, unsigned start_section
,
2578 unsigned n_sections
, unsigned char commit_seq
)
2585 for (n
= 0; n
< n_sections
; n
++) {
2586 i
= start_section
+ n
;
2587 wraparound_section(ic
, &i
);
2588 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2589 struct journal_sector
*js
= access_journal(ic
, i
, j
);
2590 memset(&js
->entries
, 0, JOURNAL_SECTOR_DATA
);
2591 js
->commit_id
= dm_integrity_commit_id(ic
, i
, j
, commit_seq
);
2593 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2594 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
2595 journal_entry_set_unused(je
);
2599 write_journal(ic
, start_section
, n_sections
);
2602 static int find_commit_seq(struct dm_integrity_c
*ic
, unsigned i
, unsigned j
, commit_id_t id
)
2605 for (k
= 0; k
< N_COMMIT_IDS
; k
++) {
2606 if (dm_integrity_commit_id(ic
, i
, j
, k
) == id
)
2609 dm_integrity_io_error(ic
, "journal commit id", -EIO
);
2613 static void replay_journal(struct dm_integrity_c
*ic
)
2616 bool used_commit_ids
[N_COMMIT_IDS
];
2617 unsigned max_commit_id_sections
[N_COMMIT_IDS
];
2618 unsigned write_start
, write_sections
;
2619 unsigned continue_section
;
2621 unsigned char unused
, last_used
, want_commit_seq
;
2623 if (ic
->mode
== 'R')
2626 if (ic
->journal_uptodate
)
2632 if (!ic
->just_formatted
) {
2633 DEBUG_print("reading journal\n");
2634 rw_journal(ic
, REQ_OP_READ
, 0, 0, ic
->journal_sections
, NULL
);
2636 DEBUG_bytes(lowmem_page_address(ic
->journal_io
[0].page
), 64, "read journal");
2637 if (ic
->journal_io
) {
2638 struct journal_completion crypt_comp
;
2640 init_completion(&crypt_comp
.comp
);
2641 crypt_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
2642 encrypt_journal(ic
, false, 0, ic
->journal_sections
, &crypt_comp
);
2643 wait_for_completion(&crypt_comp
.comp
);
2645 DEBUG_bytes(lowmem_page_address(ic
->journal
[0].page
), 64, "decrypted journal");
2648 if (dm_integrity_failed(ic
))
2651 journal_empty
= true;
2652 memset(used_commit_ids
, 0, sizeof used_commit_ids
);
2653 memset(max_commit_id_sections
, 0, sizeof max_commit_id_sections
);
2654 for (i
= 0; i
< ic
->journal_sections
; i
++) {
2655 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2657 struct journal_sector
*js
= access_journal(ic
, i
, j
);
2658 k
= find_commit_seq(ic
, i
, j
, js
->commit_id
);
2661 used_commit_ids
[k
] = true;
2662 max_commit_id_sections
[k
] = i
;
2664 if (journal_empty
) {
2665 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2666 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
2667 if (!journal_entry_is_unused(je
)) {
2668 journal_empty
= false;
2675 if (!used_commit_ids
[N_COMMIT_IDS
- 1]) {
2676 unused
= N_COMMIT_IDS
- 1;
2677 while (unused
&& !used_commit_ids
[unused
- 1])
2680 for (unused
= 0; unused
< N_COMMIT_IDS
; unused
++)
2681 if (!used_commit_ids
[unused
])
2683 if (unused
== N_COMMIT_IDS
) {
2684 dm_integrity_io_error(ic
, "journal commit ids", -EIO
);
2688 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2689 unused
, used_commit_ids
[0], used_commit_ids
[1],
2690 used_commit_ids
[2], used_commit_ids
[3]);
2692 last_used
= prev_commit_seq(unused
);
2693 want_commit_seq
= prev_commit_seq(last_used
);
2695 if (!used_commit_ids
[want_commit_seq
] && used_commit_ids
[prev_commit_seq(want_commit_seq
)])
2696 journal_empty
= true;
2698 write_start
= max_commit_id_sections
[last_used
] + 1;
2699 if (unlikely(write_start
>= ic
->journal_sections
))
2700 want_commit_seq
= next_commit_seq(want_commit_seq
);
2701 wraparound_section(ic
, &write_start
);
2704 for (write_sections
= 0; write_sections
< ic
->journal_sections
; write_sections
++) {
2705 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2706 struct journal_sector
*js
= access_journal(ic
, i
, j
);
2708 if (js
->commit_id
!= dm_integrity_commit_id(ic
, i
, j
, want_commit_seq
)) {
2710 * This could be caused by crash during writing.
2711 * We won't replay the inconsistent part of the
2714 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2715 i
, j
, find_commit_seq(ic
, i
, j
, js
->commit_id
), want_commit_seq
);
2720 if (unlikely(i
>= ic
->journal_sections
))
2721 want_commit_seq
= next_commit_seq(want_commit_seq
);
2722 wraparound_section(ic
, &i
);
2726 if (!journal_empty
) {
2727 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2728 write_sections
, write_start
, want_commit_seq
);
2729 do_journal_write(ic
, write_start
, write_sections
, true);
2732 if (write_sections
== ic
->journal_sections
&& (ic
->mode
== 'J' || journal_empty
)) {
2733 continue_section
= write_start
;
2734 ic
->commit_seq
= want_commit_seq
;
2735 DEBUG_print("continuing from section %u, commit seq %d\n", write_start
, ic
->commit_seq
);
2738 unsigned char erase_seq
;
2740 DEBUG_print("clearing journal\n");
2742 erase_seq
= prev_commit_seq(prev_commit_seq(last_used
));
2744 init_journal(ic
, s
, 1, erase_seq
);
2746 wraparound_section(ic
, &s
);
2747 if (ic
->journal_sections
>= 2) {
2748 init_journal(ic
, s
, ic
->journal_sections
- 2, erase_seq
);
2749 s
+= ic
->journal_sections
- 2;
2750 wraparound_section(ic
, &s
);
2751 init_journal(ic
, s
, 1, erase_seq
);
2754 continue_section
= 0;
2755 ic
->commit_seq
= next_commit_seq(erase_seq
);
2758 ic
->committed_section
= continue_section
;
2759 ic
->n_committed_sections
= 0;
2761 ic
->uncommitted_section
= continue_section
;
2762 ic
->n_uncommitted_sections
= 0;
2764 ic
->free_section
= continue_section
;
2765 ic
->free_section_entry
= 0;
2766 ic
->free_sectors
= ic
->journal_entries
;
2768 ic
->journal_tree_root
= RB_ROOT
;
2769 for (i
= 0; i
< ic
->journal_entries
; i
++)
2770 init_journal_node(&ic
->journal_tree
[i
]);
2773 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c
*ic
)
2775 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2777 if (ic
->mode
== 'B') {
2778 ic
->bitmap_flush_interval
= msecs_to_jiffies(10) + 1;
2779 ic
->synchronous_mode
= 1;
2781 cancel_delayed_work_sync(&ic
->bitmap_flush_work
);
2782 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, 0);
2783 flush_workqueue(ic
->commit_wq
);
2787 static int dm_integrity_reboot(struct notifier_block
*n
, unsigned long code
, void *x
)
2789 struct dm_integrity_c
*ic
= container_of(n
, struct dm_integrity_c
, reboot_notifier
);
2791 DEBUG_print("dm_integrity_reboot\n");
2793 dm_integrity_enter_synchronous_mode(ic
);
2798 static void dm_integrity_postsuspend(struct dm_target
*ti
)
2800 struct dm_integrity_c
*ic
= (struct dm_integrity_c
*)ti
->private;
2803 WARN_ON(unregister_reboot_notifier(&ic
->reboot_notifier
));
2805 del_timer_sync(&ic
->autocommit_timer
);
2807 WRITE_ONCE(ic
->suspending
, 1);
2810 drain_workqueue(ic
->recalc_wq
);
2812 if (ic
->mode
== 'B')
2813 cancel_delayed_work_sync(&ic
->bitmap_flush_work
);
2815 queue_work(ic
->commit_wq
, &ic
->commit_work
);
2816 drain_workqueue(ic
->commit_wq
);
2818 if (ic
->mode
== 'J') {
2820 queue_work(ic
->writer_wq
, &ic
->writer_work
);
2821 drain_workqueue(ic
->writer_wq
);
2822 dm_integrity_flush_buffers(ic
);
2825 if (ic
->mode
== 'B') {
2826 dm_integrity_flush_buffers(ic
);
2828 /* set to 0 to test bitmap replay code */
2829 init_journal(ic
, 0, ic
->journal_sections
, 0);
2830 ic
->sb
->flags
&= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP
);
2831 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
2833 dm_integrity_io_error(ic
, "writing superblock", r
);
2837 WRITE_ONCE(ic
->suspending
, 0);
2839 BUG_ON(!RB_EMPTY_ROOT(&ic
->in_progress
));
2841 ic
->journal_uptodate
= true;
2844 static void dm_integrity_resume(struct dm_target
*ti
)
2846 struct dm_integrity_c
*ic
= (struct dm_integrity_c
*)ti
->private;
2848 DEBUG_print("resume\n");
2850 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_DIRTY_BITMAP
)) {
2851 DEBUG_print("resume dirty_bitmap\n");
2852 rw_journal_sectors(ic
, REQ_OP_READ
, 0, 0,
2853 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
2854 if (ic
->mode
== 'B') {
2855 if (ic
->sb
->log2_blocks_per_bitmap_bit
== ic
->log2_blocks_per_bitmap_bit
) {
2856 block_bitmap_copy(ic
, ic
->recalc_bitmap
, ic
->journal
);
2857 block_bitmap_copy(ic
, ic
->may_write_bitmap
, ic
->journal
);
2858 if (!block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
,
2859 BITMAP_OP_TEST_ALL_CLEAR
)) {
2860 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
2861 ic
->sb
->recalc_sector
= cpu_to_le64(0);
2864 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2865 ic
->sb
->log2_blocks_per_bitmap_bit
, ic
->log2_blocks_per_bitmap_bit
);
2866 ic
->sb
->log2_blocks_per_bitmap_bit
= ic
->log2_blocks_per_bitmap_bit
;
2867 block_bitmap_op(ic
, ic
->recalc_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_SET
);
2868 block_bitmap_op(ic
, ic
->may_write_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_SET
);
2869 block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
, BITMAP_OP_SET
);
2870 rw_journal_sectors(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, 0,
2871 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
2872 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
2873 ic
->sb
->recalc_sector
= cpu_to_le64(0);
2876 if (!(ic
->sb
->log2_blocks_per_bitmap_bit
== ic
->log2_blocks_per_bitmap_bit
&&
2877 block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
, BITMAP_OP_TEST_ALL_CLEAR
))) {
2878 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
2879 ic
->sb
->recalc_sector
= cpu_to_le64(0);
2881 init_journal(ic
, 0, ic
->journal_sections
, 0);
2883 ic
->sb
->flags
&= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP
);
2885 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
2887 dm_integrity_io_error(ic
, "writing superblock", r
);
2890 if (ic
->mode
== 'B') {
2892 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_DIRTY_BITMAP
);
2893 ic
->sb
->log2_blocks_per_bitmap_bit
= ic
->log2_blocks_per_bitmap_bit
;
2894 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
2896 dm_integrity_io_error(ic
, "writing superblock", r
);
2898 mode
= ic
->recalculate_flag
? BITMAP_OP_SET
: BITMAP_OP_CLEAR
;
2899 block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
, mode
);
2900 block_bitmap_op(ic
, ic
->recalc_bitmap
, 0, ic
->provided_data_sectors
, mode
);
2901 block_bitmap_op(ic
, ic
->may_write_bitmap
, 0, ic
->provided_data_sectors
, mode
);
2902 rw_journal_sectors(ic
, REQ_OP_WRITE
, REQ_FUA
| REQ_SYNC
, 0,
2903 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
2907 DEBUG_print("testing recalc: %x\n", ic
->sb
->flags
);
2908 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
)) {
2909 __u64 recalc_pos
= le64_to_cpu(ic
->sb
->recalc_sector
);
2910 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos
, ic
->provided_data_sectors
);
2911 if (recalc_pos
< ic
->provided_data_sectors
) {
2912 queue_work(ic
->recalc_wq
, &ic
->recalc_work
);
2913 } else if (recalc_pos
> ic
->provided_data_sectors
) {
2914 ic
->sb
->recalc_sector
= cpu_to_le64(ic
->provided_data_sectors
);
2915 recalc_write_super(ic
);
2919 ic
->reboot_notifier
.notifier_call
= dm_integrity_reboot
;
2920 ic
->reboot_notifier
.next
= NULL
;
2921 ic
->reboot_notifier
.priority
= INT_MAX
- 1; /* be notified after md and before hardware drivers */
2922 WARN_ON(register_reboot_notifier(&ic
->reboot_notifier
));
2925 /* set to 1 to stress test synchronous mode */
2926 dm_integrity_enter_synchronous_mode(ic
);
2930 static void dm_integrity_status(struct dm_target
*ti
, status_type_t type
,
2931 unsigned status_flags
, char *result
, unsigned maxlen
)
2933 struct dm_integrity_c
*ic
= (struct dm_integrity_c
*)ti
->private;
2938 case STATUSTYPE_INFO
:
2940 (unsigned long long)atomic64_read(&ic
->number_of_mismatches
),
2941 (unsigned long long)ic
->provided_data_sectors
);
2942 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))
2943 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic
->sb
->recalc_sector
));
2948 case STATUSTYPE_TABLE
: {
2949 __u64 watermark_percentage
= (__u64
)(ic
->journal_entries
- ic
->free_sectors_threshold
) * 100;
2950 watermark_percentage
+= ic
->journal_entries
/ 2;
2951 do_div(watermark_percentage
, ic
->journal_entries
);
2953 arg_count
+= !!ic
->meta_dev
;
2954 arg_count
+= ic
->sectors_per_block
!= 1;
2955 arg_count
+= !!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
));
2956 arg_count
+= ic
->mode
== 'J';
2957 arg_count
+= ic
->mode
== 'J';
2958 arg_count
+= ic
->mode
== 'B';
2959 arg_count
+= ic
->mode
== 'B';
2960 arg_count
+= !!ic
->internal_hash_alg
.alg_string
;
2961 arg_count
+= !!ic
->journal_crypt_alg
.alg_string
;
2962 arg_count
+= !!ic
->journal_mac_alg
.alg_string
;
2963 arg_count
+= (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
)) != 0;
2964 DMEMIT("%s %llu %u %c %u", ic
->dev
->name
, (unsigned long long)ic
->start
,
2965 ic
->tag_size
, ic
->mode
, arg_count
);
2967 DMEMIT(" meta_device:%s", ic
->meta_dev
->name
);
2968 if (ic
->sectors_per_block
!= 1)
2969 DMEMIT(" block_size:%u", ic
->sectors_per_block
<< SECTOR_SHIFT
);
2970 if (ic
->recalculate_flag
)
2971 DMEMIT(" recalculate");
2972 DMEMIT(" journal_sectors:%u", ic
->initial_sectors
- SB_SECTORS
);
2973 DMEMIT(" interleave_sectors:%u", 1U << ic
->sb
->log2_interleave_sectors
);
2974 DMEMIT(" buffer_sectors:%u", 1U << ic
->log2_buffer_sectors
);
2975 if (ic
->mode
== 'J') {
2976 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage
);
2977 DMEMIT(" commit_time:%u", ic
->autocommit_msec
);
2979 if (ic
->mode
== 'B') {
2980 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic
->sectors_per_block
<< ic
->log2_blocks_per_bitmap_bit
);
2981 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic
->bitmap_flush_interval
));
2983 if ((ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
)) != 0)
2984 DMEMIT(" fix_padding");
2986 #define EMIT_ALG(a, n) \
2988 if (ic->a.alg_string) { \
2989 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2990 if (ic->a.key_string) \
2991 DMEMIT(":%s", ic->a.key_string);\
2994 EMIT_ALG(internal_hash_alg
, "internal_hash");
2995 EMIT_ALG(journal_crypt_alg
, "journal_crypt");
2996 EMIT_ALG(journal_mac_alg
, "journal_mac");
3002 static int dm_integrity_iterate_devices(struct dm_target
*ti
,
3003 iterate_devices_callout_fn fn
, void *data
)
3005 struct dm_integrity_c
*ic
= ti
->private;
3008 return fn(ti
, ic
->dev
, ic
->start
+ ic
->initial_sectors
+ ic
->metadata_run
, ti
->len
, data
);
3010 return fn(ti
, ic
->dev
, 0, ti
->len
, data
);
3013 static void dm_integrity_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3015 struct dm_integrity_c
*ic
= ti
->private;
3017 if (ic
->sectors_per_block
> 1) {
3018 limits
->logical_block_size
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
3019 limits
->physical_block_size
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
3020 blk_limits_io_min(limits
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
3024 static void calculate_journal_section_size(struct dm_integrity_c
*ic
)
3026 unsigned sector_space
= JOURNAL_SECTOR_DATA
;
3028 ic
->journal_sections
= le32_to_cpu(ic
->sb
->journal_sections
);
3029 ic
->journal_entry_size
= roundup(offsetof(struct journal_entry
, last_bytes
[ic
->sectors_per_block
]) + ic
->tag_size
,
3030 JOURNAL_ENTRY_ROUNDUP
);
3032 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
))
3033 sector_space
-= JOURNAL_MAC_PER_SECTOR
;
3034 ic
->journal_entries_per_sector
= sector_space
/ ic
->journal_entry_size
;
3035 ic
->journal_section_entries
= ic
->journal_entries_per_sector
* JOURNAL_BLOCK_SECTORS
;
3036 ic
->journal_section_sectors
= (ic
->journal_section_entries
<< ic
->sb
->log2_sectors_per_block
) + JOURNAL_BLOCK_SECTORS
;
3037 ic
->journal_entries
= ic
->journal_section_entries
* ic
->journal_sections
;
3040 static int calculate_device_limits(struct dm_integrity_c
*ic
)
3042 __u64 initial_sectors
;
3044 calculate_journal_section_size(ic
);
3045 initial_sectors
= SB_SECTORS
+ (__u64
)ic
->journal_section_sectors
* ic
->journal_sections
;
3046 if (initial_sectors
+ METADATA_PADDING_SECTORS
>= ic
->meta_device_sectors
|| initial_sectors
> UINT_MAX
)
3048 ic
->initial_sectors
= initial_sectors
;
3050 if (!ic
->meta_dev
) {
3051 sector_t last_sector
, last_area
, last_offset
;
3053 /* we have to maintain excessive padding for compatibility with existing volumes */
3054 __u64 metadata_run_padding
=
3055 ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
) ?
3056 (__u64
)(METADATA_PADDING_SECTORS
<< SECTOR_SHIFT
) :
3057 (__u64
)(1 << SECTOR_SHIFT
<< METADATA_PADDING_SECTORS
);
3059 ic
->metadata_run
= round_up((__u64
)ic
->tag_size
<< (ic
->sb
->log2_interleave_sectors
- ic
->sb
->log2_sectors_per_block
),
3060 metadata_run_padding
) >> SECTOR_SHIFT
;
3061 if (!(ic
->metadata_run
& (ic
->metadata_run
- 1)))
3062 ic
->log2_metadata_run
= __ffs(ic
->metadata_run
);
3064 ic
->log2_metadata_run
= -1;
3066 get_area_and_offset(ic
, ic
->provided_data_sectors
- 1, &last_area
, &last_offset
);
3067 last_sector
= get_data_sector(ic
, last_area
, last_offset
);
3068 if (last_sector
< ic
->start
|| last_sector
>= ic
->meta_device_sectors
)
3071 __u64 meta_size
= (ic
->provided_data_sectors
>> ic
->sb
->log2_sectors_per_block
) * ic
->tag_size
;
3072 meta_size
= (meta_size
+ ((1U << (ic
->log2_buffer_sectors
+ SECTOR_SHIFT
)) - 1))
3073 >> (ic
->log2_buffer_sectors
+ SECTOR_SHIFT
);
3074 meta_size
<<= ic
->log2_buffer_sectors
;
3075 if (ic
->initial_sectors
+ meta_size
< ic
->initial_sectors
||
3076 ic
->initial_sectors
+ meta_size
> ic
->meta_device_sectors
)
3078 ic
->metadata_run
= 1;
3079 ic
->log2_metadata_run
= 0;
3085 static int initialize_superblock(struct dm_integrity_c
*ic
, unsigned journal_sectors
, unsigned interleave_sectors
)
3087 unsigned journal_sections
;
3090 memset(ic
->sb
, 0, SB_SECTORS
<< SECTOR_SHIFT
);
3091 memcpy(ic
->sb
->magic
, SB_MAGIC
, 8);
3092 ic
->sb
->integrity_tag_size
= cpu_to_le16(ic
->tag_size
);
3093 ic
->sb
->log2_sectors_per_block
= __ffs(ic
->sectors_per_block
);
3094 if (ic
->journal_mac_alg
.alg_string
)
3095 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
);
3097 calculate_journal_section_size(ic
);
3098 journal_sections
= journal_sectors
/ ic
->journal_section_sectors
;
3099 if (!journal_sections
)
3100 journal_sections
= 1;
3102 if (!ic
->meta_dev
) {
3103 if (ic
->fix_padding
)
3104 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_FIXED_PADDING
);
3105 ic
->sb
->journal_sections
= cpu_to_le32(journal_sections
);
3106 if (!interleave_sectors
)
3107 interleave_sectors
= DEFAULT_INTERLEAVE_SECTORS
;
3108 ic
->sb
->log2_interleave_sectors
= __fls(interleave_sectors
);
3109 ic
->sb
->log2_interleave_sectors
= max((__u8
)MIN_LOG2_INTERLEAVE_SECTORS
, ic
->sb
->log2_interleave_sectors
);
3110 ic
->sb
->log2_interleave_sectors
= min((__u8
)MAX_LOG2_INTERLEAVE_SECTORS
, ic
->sb
->log2_interleave_sectors
);
3112 ic
->provided_data_sectors
= 0;
3113 for (test_bit
= fls64(ic
->meta_device_sectors
) - 1; test_bit
>= 3; test_bit
--) {
3114 __u64 prev_data_sectors
= ic
->provided_data_sectors
;
3116 ic
->provided_data_sectors
|= (sector_t
)1 << test_bit
;
3117 if (calculate_device_limits(ic
))
3118 ic
->provided_data_sectors
= prev_data_sectors
;
3120 if (!ic
->provided_data_sectors
)
3123 ic
->sb
->log2_interleave_sectors
= 0;
3124 ic
->provided_data_sectors
= ic
->data_device_sectors
;
3125 ic
->provided_data_sectors
&= ~(sector_t
)(ic
->sectors_per_block
- 1);
3128 ic
->sb
->journal_sections
= cpu_to_le32(0);
3129 for (test_bit
= fls(journal_sections
) - 1; test_bit
>= 0; test_bit
--) {
3130 __u32 prev_journal_sections
= le32_to_cpu(ic
->sb
->journal_sections
);
3131 __u32 test_journal_sections
= prev_journal_sections
| (1U << test_bit
);
3132 if (test_journal_sections
> journal_sections
)
3134 ic
->sb
->journal_sections
= cpu_to_le32(test_journal_sections
);
3135 if (calculate_device_limits(ic
))
3136 ic
->sb
->journal_sections
= cpu_to_le32(prev_journal_sections
);
3139 if (!le32_to_cpu(ic
->sb
->journal_sections
)) {
3140 if (ic
->log2_buffer_sectors
> 3) {
3141 ic
->log2_buffer_sectors
--;
3142 goto try_smaller_buffer
;
3148 ic
->sb
->provided_data_sectors
= cpu_to_le64(ic
->provided_data_sectors
);
3155 static void dm_integrity_set(struct dm_target
*ti
, struct dm_integrity_c
*ic
)
3157 struct gendisk
*disk
= dm_disk(dm_table_get_md(ti
->table
));
3158 struct blk_integrity bi
;
3160 memset(&bi
, 0, sizeof(bi
));
3161 bi
.profile
= &dm_integrity_profile
;
3162 bi
.tuple_size
= ic
->tag_size
;
3163 bi
.tag_size
= bi
.tuple_size
;
3164 bi
.interval_exp
= ic
->sb
->log2_sectors_per_block
+ SECTOR_SHIFT
;
3166 blk_integrity_register(disk
, &bi
);
3167 blk_queue_max_integrity_segments(disk
->queue
, UINT_MAX
);
3170 static void dm_integrity_free_page_list(struct page_list
*pl
)
3176 for (i
= 0; pl
[i
].page
; i
++)
3177 __free_page(pl
[i
].page
);
3181 static struct page_list
*dm_integrity_alloc_page_list(unsigned n_pages
)
3183 struct page_list
*pl
;
3186 pl
= kvmalloc_array(n_pages
+ 1, sizeof(struct page_list
), GFP_KERNEL
| __GFP_ZERO
);
3190 for (i
= 0; i
< n_pages
; i
++) {
3191 pl
[i
].page
= alloc_page(GFP_KERNEL
);
3193 dm_integrity_free_page_list(pl
);
3197 pl
[i
- 1].next
= &pl
[i
];
3205 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c
*ic
, struct scatterlist
**sl
)
3208 for (i
= 0; i
< ic
->journal_sections
; i
++)
3213 static struct scatterlist
**dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c
*ic
,
3214 struct page_list
*pl
)
3216 struct scatterlist
**sl
;
3219 sl
= kvmalloc_array(ic
->journal_sections
,
3220 sizeof(struct scatterlist
*),
3221 GFP_KERNEL
| __GFP_ZERO
);
3225 for (i
= 0; i
< ic
->journal_sections
; i
++) {
3226 struct scatterlist
*s
;
3227 unsigned start_index
, start_offset
;
3228 unsigned end_index
, end_offset
;
3232 page_list_location(ic
, i
, 0, &start_index
, &start_offset
);
3233 page_list_location(ic
, i
, ic
->journal_section_sectors
- 1,
3234 &end_index
, &end_offset
);
3236 n_pages
= (end_index
- start_index
+ 1);
3238 s
= kvmalloc_array(n_pages
, sizeof(struct scatterlist
),
3241 dm_integrity_free_journal_scatterlist(ic
, sl
);
3245 sg_init_table(s
, n_pages
);
3246 for (idx
= start_index
; idx
<= end_index
; idx
++) {
3247 char *va
= lowmem_page_address(pl
[idx
].page
);
3248 unsigned start
= 0, end
= PAGE_SIZE
;
3249 if (idx
== start_index
)
3250 start
= start_offset
;
3251 if (idx
== end_index
)
3252 end
= end_offset
+ (1 << SECTOR_SHIFT
);
3253 sg_set_buf(&s
[idx
- start_index
], va
+ start
, end
- start
);
3262 static void free_alg(struct alg_spec
*a
)
3264 kzfree(a
->alg_string
);
3266 memset(a
, 0, sizeof *a
);
3269 static int get_alg_and_key(const char *arg
, struct alg_spec
*a
, char **error
, char *error_inval
)
3275 a
->alg_string
= kstrdup(strchr(arg
, ':') + 1, GFP_KERNEL
);
3279 k
= strchr(a
->alg_string
, ':');
3282 a
->key_string
= k
+ 1;
3283 if (strlen(a
->key_string
) & 1)
3286 a
->key_size
= strlen(a
->key_string
) / 2;
3287 a
->key
= kmalloc(a
->key_size
, GFP_KERNEL
);
3290 if (hex2bin(a
->key
, a
->key_string
, a
->key_size
))
3296 *error
= error_inval
;
3299 *error
= "Out of memory for an argument";
3303 static int get_mac(struct crypto_shash
**hash
, struct alg_spec
*a
, char **error
,
3304 char *error_alg
, char *error_key
)
3308 if (a
->alg_string
) {
3309 *hash
= crypto_alloc_shash(a
->alg_string
, 0, 0);
3310 if (IS_ERR(*hash
)) {
3318 r
= crypto_shash_setkey(*hash
, a
->key
, a
->key_size
);
3323 } else if (crypto_shash_get_flags(*hash
) & CRYPTO_TFM_NEED_KEY
) {
3332 static int create_journal(struct dm_integrity_c
*ic
, char **error
)
3336 __u64 journal_pages
, journal_desc_size
, journal_tree_size
;
3337 unsigned char *crypt_data
= NULL
, *crypt_iv
= NULL
;
3338 struct skcipher_request
*req
= NULL
;
3340 ic
->commit_ids
[0] = cpu_to_le64(0x1111111111111111ULL
);
3341 ic
->commit_ids
[1] = cpu_to_le64(0x2222222222222222ULL
);
3342 ic
->commit_ids
[2] = cpu_to_le64(0x3333333333333333ULL
);
3343 ic
->commit_ids
[3] = cpu_to_le64(0x4444444444444444ULL
);
3345 journal_pages
= roundup((__u64
)ic
->journal_sections
* ic
->journal_section_sectors
,
3346 PAGE_SIZE
>> SECTOR_SHIFT
) >> (PAGE_SHIFT
- SECTOR_SHIFT
);
3347 journal_desc_size
= journal_pages
* sizeof(struct page_list
);
3348 if (journal_pages
>= totalram_pages() - totalhigh_pages() || journal_desc_size
> ULONG_MAX
) {
3349 *error
= "Journal doesn't fit into memory";
3353 ic
->journal_pages
= journal_pages
;
3355 ic
->journal
= dm_integrity_alloc_page_list(ic
->journal_pages
);
3357 *error
= "Could not allocate memory for journal";
3361 if (ic
->journal_crypt_alg
.alg_string
) {
3362 unsigned ivsize
, blocksize
;
3363 struct journal_completion comp
;
3366 ic
->journal_crypt
= crypto_alloc_skcipher(ic
->journal_crypt_alg
.alg_string
, 0, 0);
3367 if (IS_ERR(ic
->journal_crypt
)) {
3368 *error
= "Invalid journal cipher";
3369 r
= PTR_ERR(ic
->journal_crypt
);
3370 ic
->journal_crypt
= NULL
;
3373 ivsize
= crypto_skcipher_ivsize(ic
->journal_crypt
);
3374 blocksize
= crypto_skcipher_blocksize(ic
->journal_crypt
);
3376 if (ic
->journal_crypt_alg
.key
) {
3377 r
= crypto_skcipher_setkey(ic
->journal_crypt
, ic
->journal_crypt_alg
.key
,
3378 ic
->journal_crypt_alg
.key_size
);
3380 *error
= "Error setting encryption key";
3384 DEBUG_print("cipher %s, block size %u iv size %u\n",
3385 ic
->journal_crypt_alg
.alg_string
, blocksize
, ivsize
);
3387 ic
->journal_io
= dm_integrity_alloc_page_list(ic
->journal_pages
);
3388 if (!ic
->journal_io
) {
3389 *error
= "Could not allocate memory for journal io";
3394 if (blocksize
== 1) {
3395 struct scatterlist
*sg
;
3397 req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
3399 *error
= "Could not allocate crypt request";
3404 crypt_iv
= kzalloc(ivsize
, GFP_KERNEL
);
3406 *error
= "Could not allocate iv";
3411 ic
->journal_xor
= dm_integrity_alloc_page_list(ic
->journal_pages
);
3412 if (!ic
->journal_xor
) {
3413 *error
= "Could not allocate memory for journal xor";
3418 sg
= kvmalloc_array(ic
->journal_pages
+ 1,
3419 sizeof(struct scatterlist
),
3422 *error
= "Unable to allocate sg list";
3426 sg_init_table(sg
, ic
->journal_pages
+ 1);
3427 for (i
= 0; i
< ic
->journal_pages
; i
++) {
3428 char *va
= lowmem_page_address(ic
->journal_xor
[i
].page
);
3430 sg_set_buf(&sg
[i
], va
, PAGE_SIZE
);
3432 sg_set_buf(&sg
[i
], &ic
->commit_ids
, sizeof ic
->commit_ids
);
3434 skcipher_request_set_crypt(req
, sg
, sg
,
3435 PAGE_SIZE
* ic
->journal_pages
+ sizeof ic
->commit_ids
, crypt_iv
);
3436 init_completion(&comp
.comp
);
3437 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
3438 if (do_crypt(true, req
, &comp
))
3439 wait_for_completion(&comp
.comp
);
3441 r
= dm_integrity_failed(ic
);
3443 *error
= "Unable to encrypt journal";
3446 DEBUG_bytes(lowmem_page_address(ic
->journal_xor
[0].page
), 64, "xor data");
3448 crypto_free_skcipher(ic
->journal_crypt
);
3449 ic
->journal_crypt
= NULL
;
3451 unsigned crypt_len
= roundup(ivsize
, blocksize
);
3453 req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
3455 *error
= "Could not allocate crypt request";
3460 crypt_iv
= kmalloc(ivsize
, GFP_KERNEL
);
3462 *error
= "Could not allocate iv";
3467 crypt_data
= kmalloc(crypt_len
, GFP_KERNEL
);
3469 *error
= "Unable to allocate crypt data";
3474 ic
->journal_scatterlist
= dm_integrity_alloc_journal_scatterlist(ic
, ic
->journal
);
3475 if (!ic
->journal_scatterlist
) {
3476 *error
= "Unable to allocate sg list";
3480 ic
->journal_io_scatterlist
= dm_integrity_alloc_journal_scatterlist(ic
, ic
->journal_io
);
3481 if (!ic
->journal_io_scatterlist
) {
3482 *error
= "Unable to allocate sg list";
3486 ic
->sk_requests
= kvmalloc_array(ic
->journal_sections
,
3487 sizeof(struct skcipher_request
*),
3488 GFP_KERNEL
| __GFP_ZERO
);
3489 if (!ic
->sk_requests
) {
3490 *error
= "Unable to allocate sk requests";
3494 for (i
= 0; i
< ic
->journal_sections
; i
++) {
3495 struct scatterlist sg
;
3496 struct skcipher_request
*section_req
;
3497 __u32 section_le
= cpu_to_le32(i
);
3499 memset(crypt_iv
, 0x00, ivsize
);
3500 memset(crypt_data
, 0x00, crypt_len
);
3501 memcpy(crypt_data
, §ion_le
, min((size_t)crypt_len
, sizeof(section_le
)));
3503 sg_init_one(&sg
, crypt_data
, crypt_len
);
3504 skcipher_request_set_crypt(req
, &sg
, &sg
, crypt_len
, crypt_iv
);
3505 init_completion(&comp
.comp
);
3506 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
3507 if (do_crypt(true, req
, &comp
))
3508 wait_for_completion(&comp
.comp
);
3510 r
= dm_integrity_failed(ic
);
3512 *error
= "Unable to generate iv";
3516 section_req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
3518 *error
= "Unable to allocate crypt request";
3522 section_req
->iv
= kmalloc_array(ivsize
, 2,
3524 if (!section_req
->iv
) {
3525 skcipher_request_free(section_req
);
3526 *error
= "Unable to allocate iv";
3530 memcpy(section_req
->iv
+ ivsize
, crypt_data
, ivsize
);
3531 section_req
->cryptlen
= (size_t)ic
->journal_section_sectors
<< SECTOR_SHIFT
;
3532 ic
->sk_requests
[i
] = section_req
;
3533 DEBUG_bytes(crypt_data
, ivsize
, "iv(%u)", i
);
3538 for (i
= 0; i
< N_COMMIT_IDS
; i
++) {
3541 for (j
= 0; j
< i
; j
++) {
3542 if (ic
->commit_ids
[j
] == ic
->commit_ids
[i
]) {
3543 ic
->commit_ids
[i
] = cpu_to_le64(le64_to_cpu(ic
->commit_ids
[i
]) + 1);
3544 goto retest_commit_id
;
3547 DEBUG_print("commit id %u: %016llx\n", i
, ic
->commit_ids
[i
]);
3550 journal_tree_size
= (__u64
)ic
->journal_entries
* sizeof(struct journal_node
);
3551 if (journal_tree_size
> ULONG_MAX
) {
3552 *error
= "Journal doesn't fit into memory";
3556 ic
->journal_tree
= kvmalloc(journal_tree_size
, GFP_KERNEL
);
3557 if (!ic
->journal_tree
) {
3558 *error
= "Could not allocate memory for journal tree";
3564 skcipher_request_free(req
);
3570 * Construct a integrity mapping
3574 * offset from the start of the device
3576 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3577 * number of optional arguments
3578 * optional arguments:
3580 * interleave_sectors
3587 * bitmap_flush_interval
3593 static int dm_integrity_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3595 struct dm_integrity_c
*ic
;
3598 unsigned extra_args
;
3599 struct dm_arg_set as
;
3600 static const struct dm_arg _args
[] = {
3601 {0, 9, "Invalid number of feature args"},
3603 unsigned journal_sectors
, interleave_sectors
, buffer_sectors
, journal_watermark
, sync_msec
;
3604 bool should_write_sb
;
3606 unsigned long long start
;
3607 __s8 log2_sectors_per_bitmap_bit
= -1;
3608 __s8 log2_blocks_per_bitmap_bit
;
3609 __u64 bits_in_journal
;
3610 __u64 n_bitmap_bits
;
3612 #define DIRECT_ARGUMENTS 4
3614 if (argc
<= DIRECT_ARGUMENTS
) {
3615 ti
->error
= "Invalid argument count";
3619 ic
= kzalloc(sizeof(struct dm_integrity_c
), GFP_KERNEL
);
3621 ti
->error
= "Cannot allocate integrity context";
3625 ti
->per_io_data_size
= sizeof(struct dm_integrity_io
);
3627 ic
->in_progress
= RB_ROOT
;
3628 INIT_LIST_HEAD(&ic
->wait_list
);
3629 init_waitqueue_head(&ic
->endio_wait
);
3630 bio_list_init(&ic
->flush_bio_list
);
3631 init_waitqueue_head(&ic
->copy_to_journal_wait
);
3632 init_completion(&ic
->crypto_backoff
);
3633 atomic64_set(&ic
->number_of_mismatches
, 0);
3634 ic
->bitmap_flush_interval
= BITMAP_FLUSH_INTERVAL
;
3636 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &ic
->dev
);
3638 ti
->error
= "Device lookup failed";
3642 if (sscanf(argv
[1], "%llu%c", &start
, &dummy
) != 1 || start
!= (sector_t
)start
) {
3643 ti
->error
= "Invalid starting offset";
3649 if (strcmp(argv
[2], "-")) {
3650 if (sscanf(argv
[2], "%u%c", &ic
->tag_size
, &dummy
) != 1 || !ic
->tag_size
) {
3651 ti
->error
= "Invalid tag size";
3657 if (!strcmp(argv
[3], "J") || !strcmp(argv
[3], "B") ||
3658 !strcmp(argv
[3], "D") || !strcmp(argv
[3], "R")) {
3659 ic
->mode
= argv
[3][0];
3661 ti
->error
= "Invalid mode (expecting J, B, D, R)";
3666 journal_sectors
= 0;
3667 interleave_sectors
= DEFAULT_INTERLEAVE_SECTORS
;
3668 buffer_sectors
= DEFAULT_BUFFER_SECTORS
;
3669 journal_watermark
= DEFAULT_JOURNAL_WATERMARK
;
3670 sync_msec
= DEFAULT_SYNC_MSEC
;
3671 ic
->sectors_per_block
= 1;
3673 as
.argc
= argc
- DIRECT_ARGUMENTS
;
3674 as
.argv
= argv
+ DIRECT_ARGUMENTS
;
3675 r
= dm_read_arg_group(_args
, &as
, &extra_args
, &ti
->error
);
3679 while (extra_args
--) {
3680 const char *opt_string
;
3682 unsigned long long llval
;
3683 opt_string
= dm_shift_arg(&as
);
3686 ti
->error
= "Not enough feature arguments";
3689 if (sscanf(opt_string
, "journal_sectors:%u%c", &val
, &dummy
) == 1)
3690 journal_sectors
= val
? val
: 1;
3691 else if (sscanf(opt_string
, "interleave_sectors:%u%c", &val
, &dummy
) == 1)
3692 interleave_sectors
= val
;
3693 else if (sscanf(opt_string
, "buffer_sectors:%u%c", &val
, &dummy
) == 1)
3694 buffer_sectors
= val
;
3695 else if (sscanf(opt_string
, "journal_watermark:%u%c", &val
, &dummy
) == 1 && val
<= 100)
3696 journal_watermark
= val
;
3697 else if (sscanf(opt_string
, "commit_time:%u%c", &val
, &dummy
) == 1)
3699 else if (!strncmp(opt_string
, "meta_device:", strlen("meta_device:"))) {
3701 dm_put_device(ti
, ic
->meta_dev
);
3702 ic
->meta_dev
= NULL
;
3704 r
= dm_get_device(ti
, strchr(opt_string
, ':') + 1,
3705 dm_table_get_mode(ti
->table
), &ic
->meta_dev
);
3707 ti
->error
= "Device lookup failed";
3710 } else if (sscanf(opt_string
, "block_size:%u%c", &val
, &dummy
) == 1) {
3711 if (val
< 1 << SECTOR_SHIFT
||
3712 val
> MAX_SECTORS_PER_BLOCK
<< SECTOR_SHIFT
||
3715 ti
->error
= "Invalid block_size argument";
3718 ic
->sectors_per_block
= val
>> SECTOR_SHIFT
;
3719 } else if (sscanf(opt_string
, "sectors_per_bit:%llu%c", &llval
, &dummy
) == 1) {
3720 log2_sectors_per_bitmap_bit
= !llval
? 0 : __ilog2_u64(llval
);
3721 } else if (sscanf(opt_string
, "bitmap_flush_interval:%u%c", &val
, &dummy
) == 1) {
3722 if (val
>= (uint64_t)UINT_MAX
* 1000 / HZ
) {
3724 ti
->error
= "Invalid bitmap_flush_interval argument";
3726 ic
->bitmap_flush_interval
= msecs_to_jiffies(val
);
3727 } else if (!strncmp(opt_string
, "internal_hash:", strlen("internal_hash:"))) {
3728 r
= get_alg_and_key(opt_string
, &ic
->internal_hash_alg
, &ti
->error
,
3729 "Invalid internal_hash argument");
3732 } else if (!strncmp(opt_string
, "journal_crypt:", strlen("journal_crypt:"))) {
3733 r
= get_alg_and_key(opt_string
, &ic
->journal_crypt_alg
, &ti
->error
,
3734 "Invalid journal_crypt argument");
3737 } else if (!strncmp(opt_string
, "journal_mac:", strlen("journal_mac:"))) {
3738 r
= get_alg_and_key(opt_string
, &ic
->journal_mac_alg
, &ti
->error
,
3739 "Invalid journal_mac argument");
3742 } else if (!strcmp(opt_string
, "recalculate")) {
3743 ic
->recalculate_flag
= true;
3744 } else if (!strcmp(opt_string
, "fix_padding")) {
3745 ic
->fix_padding
= true;
3748 ti
->error
= "Invalid argument";
3753 ic
->data_device_sectors
= i_size_read(ic
->dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
3755 ic
->meta_device_sectors
= ic
->data_device_sectors
;
3757 ic
->meta_device_sectors
= i_size_read(ic
->meta_dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
3759 if (!journal_sectors
) {
3760 journal_sectors
= min((sector_t
)DEFAULT_MAX_JOURNAL_SECTORS
,
3761 ic
->data_device_sectors
>> DEFAULT_JOURNAL_SIZE_FACTOR
);
3764 if (!buffer_sectors
)
3766 ic
->log2_buffer_sectors
= min((int)__fls(buffer_sectors
), 31 - SECTOR_SHIFT
);
3768 r
= get_mac(&ic
->internal_hash
, &ic
->internal_hash_alg
, &ti
->error
,
3769 "Invalid internal hash", "Error setting internal hash key");
3773 r
= get_mac(&ic
->journal_mac
, &ic
->journal_mac_alg
, &ti
->error
,
3774 "Invalid journal mac", "Error setting journal mac key");
3778 if (!ic
->tag_size
) {
3779 if (!ic
->internal_hash
) {
3780 ti
->error
= "Unknown tag size";
3784 ic
->tag_size
= crypto_shash_digestsize(ic
->internal_hash
);
3786 if (ic
->tag_size
> MAX_TAG_SIZE
) {
3787 ti
->error
= "Too big tag size";
3791 if (!(ic
->tag_size
& (ic
->tag_size
- 1)))
3792 ic
->log2_tag_size
= __ffs(ic
->tag_size
);
3794 ic
->log2_tag_size
= -1;
3796 if (ic
->mode
== 'B' && !ic
->internal_hash
) {
3798 ti
->error
= "Bitmap mode can be only used with internal hash";
3802 ic
->autocommit_jiffies
= msecs_to_jiffies(sync_msec
);
3803 ic
->autocommit_msec
= sync_msec
;
3804 timer_setup(&ic
->autocommit_timer
, autocommit_fn
, 0);
3806 ic
->io
= dm_io_client_create();
3807 if (IS_ERR(ic
->io
)) {
3808 r
= PTR_ERR(ic
->io
);
3810 ti
->error
= "Cannot allocate dm io";
3814 r
= mempool_init_slab_pool(&ic
->journal_io_mempool
, JOURNAL_IO_MEMPOOL
, journal_io_cache
);
3816 ti
->error
= "Cannot allocate mempool";
3820 ic
->metadata_wq
= alloc_workqueue("dm-integrity-metadata",
3821 WQ_MEM_RECLAIM
, METADATA_WORKQUEUE_MAX_ACTIVE
);
3822 if (!ic
->metadata_wq
) {
3823 ti
->error
= "Cannot allocate workqueue";
3829 * If this workqueue were percpu, it would cause bio reordering
3830 * and reduced performance.
3832 ic
->wait_wq
= alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM
| WQ_UNBOUND
, 1);
3834 ti
->error
= "Cannot allocate workqueue";
3839 ic
->commit_wq
= alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM
, 1);
3840 if (!ic
->commit_wq
) {
3841 ti
->error
= "Cannot allocate workqueue";
3845 INIT_WORK(&ic
->commit_work
, integrity_commit
);
3847 if (ic
->mode
== 'J' || ic
->mode
== 'B') {
3848 ic
->writer_wq
= alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM
, 1);
3849 if (!ic
->writer_wq
) {
3850 ti
->error
= "Cannot allocate workqueue";
3854 INIT_WORK(&ic
->writer_work
, integrity_writer
);
3857 ic
->sb
= alloc_pages_exact(SB_SECTORS
<< SECTOR_SHIFT
, GFP_KERNEL
);
3860 ti
->error
= "Cannot allocate superblock area";
3864 r
= sync_rw_sb(ic
, REQ_OP_READ
, 0);
3866 ti
->error
= "Error reading superblock";
3869 should_write_sb
= false;
3870 if (memcmp(ic
->sb
->magic
, SB_MAGIC
, 8)) {
3871 if (ic
->mode
!= 'R') {
3872 if (memchr_inv(ic
->sb
, 0, SB_SECTORS
<< SECTOR_SHIFT
)) {
3874 ti
->error
= "The device is not initialized";
3879 r
= initialize_superblock(ic
, journal_sectors
, interleave_sectors
);
3881 ti
->error
= "Could not initialize superblock";
3884 if (ic
->mode
!= 'R')
3885 should_write_sb
= true;
3888 if (!ic
->sb
->version
|| ic
->sb
->version
> SB_VERSION_4
) {
3890 ti
->error
= "Unknown version";
3893 if (le16_to_cpu(ic
->sb
->integrity_tag_size
) != ic
->tag_size
) {
3895 ti
->error
= "Tag size doesn't match the information in superblock";
3898 if (ic
->sb
->log2_sectors_per_block
!= __ffs(ic
->sectors_per_block
)) {
3900 ti
->error
= "Block size doesn't match the information in superblock";
3903 if (!le32_to_cpu(ic
->sb
->journal_sections
)) {
3905 ti
->error
= "Corrupted superblock, journal_sections is 0";
3908 /* make sure that ti->max_io_len doesn't overflow */
3909 if (!ic
->meta_dev
) {
3910 if (ic
->sb
->log2_interleave_sectors
< MIN_LOG2_INTERLEAVE_SECTORS
||
3911 ic
->sb
->log2_interleave_sectors
> MAX_LOG2_INTERLEAVE_SECTORS
) {
3913 ti
->error
= "Invalid interleave_sectors in the superblock";
3917 if (ic
->sb
->log2_interleave_sectors
) {
3919 ti
->error
= "Invalid interleave_sectors in the superblock";
3923 ic
->provided_data_sectors
= le64_to_cpu(ic
->sb
->provided_data_sectors
);
3924 if (ic
->provided_data_sectors
!= le64_to_cpu(ic
->sb
->provided_data_sectors
)) {
3925 /* test for overflow */
3927 ti
->error
= "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3930 if (!!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
)) != !!ic
->journal_mac_alg
.alg_string
) {
3932 ti
->error
= "Journal mac mismatch";
3937 r
= calculate_device_limits(ic
);
3940 if (ic
->log2_buffer_sectors
> 3) {
3941 ic
->log2_buffer_sectors
--;
3942 goto try_smaller_buffer
;
3945 ti
->error
= "The device is too small";
3949 if (log2_sectors_per_bitmap_bit
< 0)
3950 log2_sectors_per_bitmap_bit
= __fls(DEFAULT_SECTORS_PER_BITMAP_BIT
);
3951 if (log2_sectors_per_bitmap_bit
< ic
->sb
->log2_sectors_per_block
)
3952 log2_sectors_per_bitmap_bit
= ic
->sb
->log2_sectors_per_block
;
3954 bits_in_journal
= ((__u64
)ic
->journal_section_sectors
* ic
->journal_sections
) << (SECTOR_SHIFT
+ 3);
3955 if (bits_in_journal
> UINT_MAX
)
3956 bits_in_journal
= UINT_MAX
;
3957 while (bits_in_journal
< (ic
->provided_data_sectors
+ ((sector_t
)1 << log2_sectors_per_bitmap_bit
) - 1) >> log2_sectors_per_bitmap_bit
)
3958 log2_sectors_per_bitmap_bit
++;
3960 log2_blocks_per_bitmap_bit
= log2_sectors_per_bitmap_bit
- ic
->sb
->log2_sectors_per_block
;
3961 ic
->log2_blocks_per_bitmap_bit
= log2_blocks_per_bitmap_bit
;
3962 if (should_write_sb
) {
3963 ic
->sb
->log2_blocks_per_bitmap_bit
= log2_blocks_per_bitmap_bit
;
3965 n_bitmap_bits
= ((ic
->provided_data_sectors
>> ic
->sb
->log2_sectors_per_block
)
3966 + (((sector_t
)1 << log2_blocks_per_bitmap_bit
) - 1)) >> log2_blocks_per_bitmap_bit
;
3967 ic
->n_bitmap_blocks
= DIV_ROUND_UP(n_bitmap_bits
, BITMAP_BLOCK_SIZE
* 8);
3970 ic
->log2_buffer_sectors
= min(ic
->log2_buffer_sectors
, (__u8
)__ffs(ic
->metadata_run
));
3972 if (ti
->len
> ic
->provided_data_sectors
) {
3974 ti
->error
= "Not enough provided sectors for requested mapping size";
3979 threshold
= (__u64
)ic
->journal_entries
* (100 - journal_watermark
);
3981 do_div(threshold
, 100);
3982 ic
->free_sectors_threshold
= threshold
;
3984 DEBUG_print("initialized:\n");
3985 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic
->sb
->integrity_tag_size
));
3986 DEBUG_print(" journal_entry_size %u\n", ic
->journal_entry_size
);
3987 DEBUG_print(" journal_entries_per_sector %u\n", ic
->journal_entries_per_sector
);
3988 DEBUG_print(" journal_section_entries %u\n", ic
->journal_section_entries
);
3989 DEBUG_print(" journal_section_sectors %u\n", ic
->journal_section_sectors
);
3990 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic
->sb
->journal_sections
));
3991 DEBUG_print(" journal_entries %u\n", ic
->journal_entries
);
3992 DEBUG_print(" log2_interleave_sectors %d\n", ic
->sb
->log2_interleave_sectors
);
3993 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic
->dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
);
3994 DEBUG_print(" initial_sectors 0x%x\n", ic
->initial_sectors
);
3995 DEBUG_print(" metadata_run 0x%x\n", ic
->metadata_run
);
3996 DEBUG_print(" log2_metadata_run %d\n", ic
->log2_metadata_run
);
3997 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic
->provided_data_sectors
,
3998 (unsigned long long)ic
->provided_data_sectors
);
3999 DEBUG_print(" log2_buffer_sectors %u\n", ic
->log2_buffer_sectors
);
4000 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal
);
4002 if (ic
->recalculate_flag
&& !(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))) {
4003 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
4004 ic
->sb
->recalc_sector
= cpu_to_le64(0);
4007 if (ic
->internal_hash
) {
4008 ic
->recalc_wq
= alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM
, 1);
4009 if (!ic
->recalc_wq
) {
4010 ti
->error
= "Cannot allocate workqueue";
4014 INIT_WORK(&ic
->recalc_work
, integrity_recalc
);
4015 ic
->recalc_buffer
= vmalloc(RECALC_SECTORS
<< SECTOR_SHIFT
);
4016 if (!ic
->recalc_buffer
) {
4017 ti
->error
= "Cannot allocate buffer for recalculating";
4021 ic
->recalc_tags
= kvmalloc_array(RECALC_SECTORS
>> ic
->sb
->log2_sectors_per_block
,
4022 ic
->tag_size
, GFP_KERNEL
);
4023 if (!ic
->recalc_tags
) {
4024 ti
->error
= "Cannot allocate tags for recalculating";
4030 ic
->bufio
= dm_bufio_client_create(ic
->meta_dev
? ic
->meta_dev
->bdev
: ic
->dev
->bdev
,
4031 1U << (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
), 1, 0, NULL
, NULL
);
4032 if (IS_ERR(ic
->bufio
)) {
4033 r
= PTR_ERR(ic
->bufio
);
4034 ti
->error
= "Cannot initialize dm-bufio";
4038 dm_bufio_set_sector_offset(ic
->bufio
, ic
->start
+ ic
->initial_sectors
);
4040 if (ic
->mode
!= 'R') {
4041 r
= create_journal(ic
, &ti
->error
);
4047 if (ic
->mode
== 'B') {
4049 unsigned n_bitmap_pages
= DIV_ROUND_UP(ic
->n_bitmap_blocks
, PAGE_SIZE
/ BITMAP_BLOCK_SIZE
);
4051 ic
->recalc_bitmap
= dm_integrity_alloc_page_list(n_bitmap_pages
);
4052 if (!ic
->recalc_bitmap
) {
4056 ic
->may_write_bitmap
= dm_integrity_alloc_page_list(n_bitmap_pages
);
4057 if (!ic
->may_write_bitmap
) {
4061 ic
->bbs
= kvmalloc_array(ic
->n_bitmap_blocks
, sizeof(struct bitmap_block_status
), GFP_KERNEL
);
4066 INIT_DELAYED_WORK(&ic
->bitmap_flush_work
, bitmap_flush_work
);
4067 for (i
= 0; i
< ic
->n_bitmap_blocks
; i
++) {
4068 struct bitmap_block_status
*bbs
= &ic
->bbs
[i
];
4069 unsigned sector
, pl_index
, pl_offset
;
4071 INIT_WORK(&bbs
->work
, bitmap_block_work
);
4074 bio_list_init(&bbs
->bio_queue
);
4075 spin_lock_init(&bbs
->bio_queue_lock
);
4077 sector
= i
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
);
4078 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
4079 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
4081 bbs
->bitmap
= lowmem_page_address(ic
->journal
[pl_index
].page
) + pl_offset
;
4085 if (should_write_sb
) {
4088 init_journal(ic
, 0, ic
->journal_sections
, 0);
4089 r
= dm_integrity_failed(ic
);
4091 ti
->error
= "Error initializing journal";
4094 r
= sync_rw_sb(ic
, REQ_OP_WRITE
, REQ_FUA
);
4096 ti
->error
= "Error initializing superblock";
4099 ic
->just_formatted
= true;
4102 if (!ic
->meta_dev
) {
4103 r
= dm_set_target_max_io_len(ti
, 1U << ic
->sb
->log2_interleave_sectors
);
4107 if (ic
->mode
== 'B') {
4108 unsigned max_io_len
= ((sector_t
)ic
->sectors_per_block
<< ic
->log2_blocks_per_bitmap_bit
) * (BITMAP_BLOCK_SIZE
* 8);
4110 max_io_len
= 1U << 31;
4111 DEBUG_print("max_io_len: old %u, new %u\n", ti
->max_io_len
, max_io_len
);
4112 if (!ti
->max_io_len
|| ti
->max_io_len
> max_io_len
) {
4113 r
= dm_set_target_max_io_len(ti
, max_io_len
);
4119 if (!ic
->internal_hash
)
4120 dm_integrity_set(ti
, ic
);
4122 ti
->num_flush_bios
= 1;
4123 ti
->flush_supported
= true;
4128 dm_integrity_dtr(ti
);
4132 static void dm_integrity_dtr(struct dm_target
*ti
)
4134 struct dm_integrity_c
*ic
= ti
->private;
4136 BUG_ON(!RB_EMPTY_ROOT(&ic
->in_progress
));
4137 BUG_ON(!list_empty(&ic
->wait_list
));
4139 if (ic
->metadata_wq
)
4140 destroy_workqueue(ic
->metadata_wq
);
4142 destroy_workqueue(ic
->wait_wq
);
4144 destroy_workqueue(ic
->commit_wq
);
4146 destroy_workqueue(ic
->writer_wq
);
4148 destroy_workqueue(ic
->recalc_wq
);
4149 vfree(ic
->recalc_buffer
);
4150 kvfree(ic
->recalc_tags
);
4153 dm_bufio_client_destroy(ic
->bufio
);
4154 mempool_exit(&ic
->journal_io_mempool
);
4156 dm_io_client_destroy(ic
->io
);
4158 dm_put_device(ti
, ic
->dev
);
4160 dm_put_device(ti
, ic
->meta_dev
);
4161 dm_integrity_free_page_list(ic
->journal
);
4162 dm_integrity_free_page_list(ic
->journal_io
);
4163 dm_integrity_free_page_list(ic
->journal_xor
);
4164 dm_integrity_free_page_list(ic
->recalc_bitmap
);
4165 dm_integrity_free_page_list(ic
->may_write_bitmap
);
4166 if (ic
->journal_scatterlist
)
4167 dm_integrity_free_journal_scatterlist(ic
, ic
->journal_scatterlist
);
4168 if (ic
->journal_io_scatterlist
)
4169 dm_integrity_free_journal_scatterlist(ic
, ic
->journal_io_scatterlist
);
4170 if (ic
->sk_requests
) {
4173 for (i
= 0; i
< ic
->journal_sections
; i
++) {
4174 struct skcipher_request
*req
= ic
->sk_requests
[i
];
4177 skcipher_request_free(req
);
4180 kvfree(ic
->sk_requests
);
4182 kvfree(ic
->journal_tree
);
4184 free_pages_exact(ic
->sb
, SB_SECTORS
<< SECTOR_SHIFT
);
4186 if (ic
->internal_hash
)
4187 crypto_free_shash(ic
->internal_hash
);
4188 free_alg(&ic
->internal_hash_alg
);
4190 if (ic
->journal_crypt
)
4191 crypto_free_skcipher(ic
->journal_crypt
);
4192 free_alg(&ic
->journal_crypt_alg
);
4194 if (ic
->journal_mac
)
4195 crypto_free_shash(ic
->journal_mac
);
4196 free_alg(&ic
->journal_mac_alg
);
4201 static struct target_type integrity_target
= {
4202 .name
= "integrity",
4203 .version
= {1, 4, 0},
4204 .module
= THIS_MODULE
,
4205 .features
= DM_TARGET_SINGLETON
| DM_TARGET_INTEGRITY
,
4206 .ctr
= dm_integrity_ctr
,
4207 .dtr
= dm_integrity_dtr
,
4208 .map
= dm_integrity_map
,
4209 .postsuspend
= dm_integrity_postsuspend
,
4210 .resume
= dm_integrity_resume
,
4211 .status
= dm_integrity_status
,
4212 .iterate_devices
= dm_integrity_iterate_devices
,
4213 .io_hints
= dm_integrity_io_hints
,
4216 static int __init
dm_integrity_init(void)
4220 journal_io_cache
= kmem_cache_create("integrity_journal_io",
4221 sizeof(struct journal_io
), 0, 0, NULL
);
4222 if (!journal_io_cache
) {
4223 DMERR("can't allocate journal io cache");
4227 r
= dm_register_target(&integrity_target
);
4230 DMERR("register failed %d", r
);
4235 static void __exit
dm_integrity_exit(void)
4237 dm_unregister_target(&integrity_target
);
4238 kmem_cache_destroy(journal_io_cache
);
4241 module_init(dm_integrity_init
);
4242 module_exit(dm_integrity_exit
);
4244 MODULE_AUTHOR("Milan Broz");
4245 MODULE_AUTHOR("Mikulas Patocka");
4246 MODULE_DESCRIPTION(DM_NAME
" target for integrity tags extension");
4247 MODULE_LICENSE("GPL");