usb: xhci: Fix build warning seen with CONFIG_PM=n
[linux/fpc-iii.git] / drivers / md / dm-table.c
blob0a2cc197f62b4bc5db79068fe1cef078d0b72900
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
25 #define DM_MSG_PREFIX "table"
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32 struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
46 struct target_type *immutable_target_type;
48 bool integrity_supported:1;
49 bool singleton:1;
50 unsigned integrity_added:1;
53 * Indicates the rw permissions for the new logical
54 * device. This should be a combination of FMODE_READ
55 * and FMODE_WRITE.
57 fmode_t mode;
59 /* a list of devices used by this table */
60 struct list_head devices;
62 /* events get handed up using this callback */
63 void (*event_fn)(void *);
64 void *event_context;
66 struct dm_md_mempools *mempools;
68 struct list_head target_callbacks;
72 * Similar to ceiling(log_size(n))
74 static unsigned int int_log(unsigned int n, unsigned int base)
76 int result = 0;
78 while (n > 1) {
79 n = dm_div_up(n, base);
80 result++;
83 return result;
87 * Calculate the index of the child node of the n'th node k'th key.
89 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 return (n * CHILDREN_PER_NODE) + k;
95 * Return the n'th node of level l from table t.
97 static inline sector_t *get_node(struct dm_table *t,
98 unsigned int l, unsigned int n)
100 return t->index[l] + (n * KEYS_PER_NODE);
104 * Return the highest key that you could lookup from the n'th
105 * node on level l of the btree.
107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 for (; l < t->depth - 1; l++)
110 n = get_child(n, CHILDREN_PER_NODE - 1);
112 if (n >= t->counts[l])
113 return (sector_t) - 1;
115 return get_node(t, l, n)[KEYS_PER_NODE - 1];
119 * Fills in a level of the btree based on the highs of the level
120 * below it.
122 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 unsigned int n, k;
125 sector_t *node;
127 for (n = 0U; n < t->counts[l]; n++) {
128 node = get_node(t, l, n);
130 for (k = 0U; k < KEYS_PER_NODE; k++)
131 node[k] = high(t, l + 1, get_child(n, k));
134 return 0;
137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 unsigned long size;
140 void *addr;
143 * Check that we're not going to overflow.
145 if (nmemb > (ULONG_MAX / elem_size))
146 return NULL;
148 size = nmemb * elem_size;
149 addr = vzalloc(size);
151 return addr;
153 EXPORT_SYMBOL(dm_vcalloc);
156 * highs, and targets are managed as dynamic arrays during a
157 * table load.
159 static int alloc_targets(struct dm_table *t, unsigned int num)
161 sector_t *n_highs;
162 struct dm_target *n_targets;
165 * Allocate both the target array and offset array at once.
167 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
168 sizeof(sector_t));
169 if (!n_highs)
170 return -ENOMEM;
172 n_targets = (struct dm_target *) (n_highs + num);
174 memset(n_highs, -1, sizeof(*n_highs) * num);
175 vfree(t->highs);
177 t->num_allocated = num;
178 t->highs = n_highs;
179 t->targets = n_targets;
181 return 0;
184 int dm_table_create(struct dm_table **result, fmode_t mode,
185 unsigned num_targets, struct mapped_device *md)
187 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
189 if (!t)
190 return -ENOMEM;
192 INIT_LIST_HEAD(&t->devices);
193 INIT_LIST_HEAD(&t->target_callbacks);
195 if (!num_targets)
196 num_targets = KEYS_PER_NODE;
198 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
200 if (!num_targets) {
201 kfree(t);
202 return -ENOMEM;
205 if (alloc_targets(t, num_targets)) {
206 kfree(t);
207 return -ENOMEM;
210 t->type = DM_TYPE_NONE;
211 t->mode = mode;
212 t->md = md;
213 *result = t;
214 return 0;
217 static void free_devices(struct list_head *devices, struct mapped_device *md)
219 struct list_head *tmp, *next;
221 list_for_each_safe(tmp, next, devices) {
222 struct dm_dev_internal *dd =
223 list_entry(tmp, struct dm_dev_internal, list);
224 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
225 dm_device_name(md), dd->dm_dev->name);
226 dm_put_table_device(md, dd->dm_dev);
227 kfree(dd);
231 void dm_table_destroy(struct dm_table *t)
233 unsigned int i;
235 if (!t)
236 return;
238 /* free the indexes */
239 if (t->depth >= 2)
240 vfree(t->index[t->depth - 2]);
242 /* free the targets */
243 for (i = 0; i < t->num_targets; i++) {
244 struct dm_target *tgt = t->targets + i;
246 if (tgt->type->dtr)
247 tgt->type->dtr(tgt);
249 dm_put_target_type(tgt->type);
252 vfree(t->highs);
254 /* free the device list */
255 free_devices(&t->devices, t->md);
257 dm_free_md_mempools(t->mempools);
259 kfree(t);
263 * See if we've already got a device in the list.
265 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
267 struct dm_dev_internal *dd;
269 list_for_each_entry (dd, l, list)
270 if (dd->dm_dev->bdev->bd_dev == dev)
271 return dd;
273 return NULL;
277 * If possible, this checks an area of a destination device is invalid.
279 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
280 sector_t start, sector_t len, void *data)
282 struct request_queue *q;
283 struct queue_limits *limits = data;
284 struct block_device *bdev = dev->bdev;
285 sector_t dev_size =
286 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
287 unsigned short logical_block_size_sectors =
288 limits->logical_block_size >> SECTOR_SHIFT;
289 char b[BDEVNAME_SIZE];
292 * Some devices exist without request functions,
293 * such as loop devices not yet bound to backing files.
294 * Forbid the use of such devices.
296 q = bdev_get_queue(bdev);
297 if (!q || !q->make_request_fn) {
298 DMWARN("%s: %s is not yet initialised: "
299 "start=%llu, len=%llu, dev_size=%llu",
300 dm_device_name(ti->table->md), bdevname(bdev, b),
301 (unsigned long long)start,
302 (unsigned long long)len,
303 (unsigned long long)dev_size);
304 return 1;
307 if (!dev_size)
308 return 0;
310 if ((start >= dev_size) || (start + len > dev_size)) {
311 DMWARN("%s: %s too small for target: "
312 "start=%llu, len=%llu, dev_size=%llu",
313 dm_device_name(ti->table->md), bdevname(bdev, b),
314 (unsigned long long)start,
315 (unsigned long long)len,
316 (unsigned long long)dev_size);
317 return 1;
321 * If the target is mapped to zoned block device(s), check
322 * that the zones are not partially mapped.
324 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
325 unsigned int zone_sectors = bdev_zone_sectors(bdev);
327 if (start & (zone_sectors - 1)) {
328 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
329 dm_device_name(ti->table->md),
330 (unsigned long long)start,
331 zone_sectors, bdevname(bdev, b));
332 return 1;
336 * Note: The last zone of a zoned block device may be smaller
337 * than other zones. So for a target mapping the end of a
338 * zoned block device with such a zone, len would not be zone
339 * aligned. We do not allow such last smaller zone to be part
340 * of the mapping here to ensure that mappings with multiple
341 * devices do not end up with a smaller zone in the middle of
342 * the sector range.
344 if (len & (zone_sectors - 1)) {
345 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
346 dm_device_name(ti->table->md),
347 (unsigned long long)len,
348 zone_sectors, bdevname(bdev, b));
349 return 1;
353 if (logical_block_size_sectors <= 1)
354 return 0;
356 if (start & (logical_block_size_sectors - 1)) {
357 DMWARN("%s: start=%llu not aligned to h/w "
358 "logical block size %u of %s",
359 dm_device_name(ti->table->md),
360 (unsigned long long)start,
361 limits->logical_block_size, bdevname(bdev, b));
362 return 1;
365 if (len & (logical_block_size_sectors - 1)) {
366 DMWARN("%s: len=%llu not aligned to h/w "
367 "logical block size %u of %s",
368 dm_device_name(ti->table->md),
369 (unsigned long long)len,
370 limits->logical_block_size, bdevname(bdev, b));
371 return 1;
374 return 0;
378 * This upgrades the mode on an already open dm_dev, being
379 * careful to leave things as they were if we fail to reopen the
380 * device and not to touch the existing bdev field in case
381 * it is accessed concurrently inside dm_table_any_congested().
383 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
384 struct mapped_device *md)
386 int r;
387 struct dm_dev *old_dev, *new_dev;
389 old_dev = dd->dm_dev;
391 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
392 dd->dm_dev->mode | new_mode, &new_dev);
393 if (r)
394 return r;
396 dd->dm_dev = new_dev;
397 dm_put_table_device(md, old_dev);
399 return 0;
403 * Convert the path to a device
405 dev_t dm_get_dev_t(const char *path)
407 dev_t dev;
408 struct block_device *bdev;
410 bdev = lookup_bdev(path);
411 if (IS_ERR(bdev))
412 dev = name_to_dev_t(path);
413 else {
414 dev = bdev->bd_dev;
415 bdput(bdev);
418 return dev;
420 EXPORT_SYMBOL_GPL(dm_get_dev_t);
423 * Add a device to the list, or just increment the usage count if
424 * it's already present.
426 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
427 struct dm_dev **result)
429 int r;
430 dev_t dev;
431 struct dm_dev_internal *dd;
432 struct dm_table *t = ti->table;
434 BUG_ON(!t);
436 dev = dm_get_dev_t(path);
437 if (!dev)
438 return -ENODEV;
440 dd = find_device(&t->devices, dev);
441 if (!dd) {
442 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
443 if (!dd)
444 return -ENOMEM;
446 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
447 kfree(dd);
448 return r;
451 refcount_set(&dd->count, 1);
452 list_add(&dd->list, &t->devices);
453 goto out;
455 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
456 r = upgrade_mode(dd, mode, t->md);
457 if (r)
458 return r;
460 refcount_inc(&dd->count);
461 out:
462 *result = dd->dm_dev;
463 return 0;
465 EXPORT_SYMBOL(dm_get_device);
467 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
468 sector_t start, sector_t len, void *data)
470 struct queue_limits *limits = data;
471 struct block_device *bdev = dev->bdev;
472 struct request_queue *q = bdev_get_queue(bdev);
473 char b[BDEVNAME_SIZE];
475 if (unlikely(!q)) {
476 DMWARN("%s: Cannot set limits for nonexistent device %s",
477 dm_device_name(ti->table->md), bdevname(bdev, b));
478 return 0;
481 if (bdev_stack_limits(limits, bdev, start) < 0)
482 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
483 "physical_block_size=%u, logical_block_size=%u, "
484 "alignment_offset=%u, start=%llu",
485 dm_device_name(ti->table->md), bdevname(bdev, b),
486 q->limits.physical_block_size,
487 q->limits.logical_block_size,
488 q->limits.alignment_offset,
489 (unsigned long long) start << SECTOR_SHIFT);
491 limits->zoned = blk_queue_zoned_model(q);
493 return 0;
497 * Decrement a device's use count and remove it if necessary.
499 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
501 int found = 0;
502 struct list_head *devices = &ti->table->devices;
503 struct dm_dev_internal *dd;
505 list_for_each_entry(dd, devices, list) {
506 if (dd->dm_dev == d) {
507 found = 1;
508 break;
511 if (!found) {
512 DMWARN("%s: device %s not in table devices list",
513 dm_device_name(ti->table->md), d->name);
514 return;
516 if (refcount_dec_and_test(&dd->count)) {
517 dm_put_table_device(ti->table->md, d);
518 list_del(&dd->list);
519 kfree(dd);
522 EXPORT_SYMBOL(dm_put_device);
525 * Checks to see if the target joins onto the end of the table.
527 static int adjoin(struct dm_table *table, struct dm_target *ti)
529 struct dm_target *prev;
531 if (!table->num_targets)
532 return !ti->begin;
534 prev = &table->targets[table->num_targets - 1];
535 return (ti->begin == (prev->begin + prev->len));
539 * Used to dynamically allocate the arg array.
541 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
542 * process messages even if some device is suspended. These messages have a
543 * small fixed number of arguments.
545 * On the other hand, dm-switch needs to process bulk data using messages and
546 * excessive use of GFP_NOIO could cause trouble.
548 static char **realloc_argv(unsigned *size, char **old_argv)
550 char **argv;
551 unsigned new_size;
552 gfp_t gfp;
554 if (*size) {
555 new_size = *size * 2;
556 gfp = GFP_KERNEL;
557 } else {
558 new_size = 8;
559 gfp = GFP_NOIO;
561 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
562 if (argv && old_argv) {
563 memcpy(argv, old_argv, *size * sizeof(*argv));
564 *size = new_size;
567 kfree(old_argv);
568 return argv;
572 * Destructively splits up the argument list to pass to ctr.
574 int dm_split_args(int *argc, char ***argvp, char *input)
576 char *start, *end = input, *out, **argv = NULL;
577 unsigned array_size = 0;
579 *argc = 0;
581 if (!input) {
582 *argvp = NULL;
583 return 0;
586 argv = realloc_argv(&array_size, argv);
587 if (!argv)
588 return -ENOMEM;
590 while (1) {
591 /* Skip whitespace */
592 start = skip_spaces(end);
594 if (!*start)
595 break; /* success, we hit the end */
597 /* 'out' is used to remove any back-quotes */
598 end = out = start;
599 while (*end) {
600 /* Everything apart from '\0' can be quoted */
601 if (*end == '\\' && *(end + 1)) {
602 *out++ = *(end + 1);
603 end += 2;
604 continue;
607 if (isspace(*end))
608 break; /* end of token */
610 *out++ = *end++;
613 /* have we already filled the array ? */
614 if ((*argc + 1) > array_size) {
615 argv = realloc_argv(&array_size, argv);
616 if (!argv)
617 return -ENOMEM;
620 /* we know this is whitespace */
621 if (*end)
622 end++;
624 /* terminate the string and put it in the array */
625 *out = '\0';
626 argv[*argc] = start;
627 (*argc)++;
630 *argvp = argv;
631 return 0;
635 * Impose necessary and sufficient conditions on a devices's table such
636 * that any incoming bio which respects its logical_block_size can be
637 * processed successfully. If it falls across the boundary between
638 * two or more targets, the size of each piece it gets split into must
639 * be compatible with the logical_block_size of the target processing it.
641 static int validate_hardware_logical_block_alignment(struct dm_table *table,
642 struct queue_limits *limits)
645 * This function uses arithmetic modulo the logical_block_size
646 * (in units of 512-byte sectors).
648 unsigned short device_logical_block_size_sects =
649 limits->logical_block_size >> SECTOR_SHIFT;
652 * Offset of the start of the next table entry, mod logical_block_size.
654 unsigned short next_target_start = 0;
657 * Given an aligned bio that extends beyond the end of a
658 * target, how many sectors must the next target handle?
660 unsigned short remaining = 0;
662 struct dm_target *uninitialized_var(ti);
663 struct queue_limits ti_limits;
664 unsigned i;
667 * Check each entry in the table in turn.
669 for (i = 0; i < dm_table_get_num_targets(table); i++) {
670 ti = dm_table_get_target(table, i);
672 blk_set_stacking_limits(&ti_limits);
674 /* combine all target devices' limits */
675 if (ti->type->iterate_devices)
676 ti->type->iterate_devices(ti, dm_set_device_limits,
677 &ti_limits);
680 * If the remaining sectors fall entirely within this
681 * table entry are they compatible with its logical_block_size?
683 if (remaining < ti->len &&
684 remaining & ((ti_limits.logical_block_size >>
685 SECTOR_SHIFT) - 1))
686 break; /* Error */
688 next_target_start =
689 (unsigned short) ((next_target_start + ti->len) &
690 (device_logical_block_size_sects - 1));
691 remaining = next_target_start ?
692 device_logical_block_size_sects - next_target_start : 0;
695 if (remaining) {
696 DMWARN("%s: table line %u (start sect %llu len %llu) "
697 "not aligned to h/w logical block size %u",
698 dm_device_name(table->md), i,
699 (unsigned long long) ti->begin,
700 (unsigned long long) ti->len,
701 limits->logical_block_size);
702 return -EINVAL;
705 return 0;
708 int dm_table_add_target(struct dm_table *t, const char *type,
709 sector_t start, sector_t len, char *params)
711 int r = -EINVAL, argc;
712 char **argv;
713 struct dm_target *tgt;
715 if (t->singleton) {
716 DMERR("%s: target type %s must appear alone in table",
717 dm_device_name(t->md), t->targets->type->name);
718 return -EINVAL;
721 BUG_ON(t->num_targets >= t->num_allocated);
723 tgt = t->targets + t->num_targets;
724 memset(tgt, 0, sizeof(*tgt));
726 if (!len) {
727 DMERR("%s: zero-length target", dm_device_name(t->md));
728 return -EINVAL;
731 tgt->type = dm_get_target_type(type);
732 if (!tgt->type) {
733 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
734 return -EINVAL;
737 if (dm_target_needs_singleton(tgt->type)) {
738 if (t->num_targets) {
739 tgt->error = "singleton target type must appear alone in table";
740 goto bad;
742 t->singleton = true;
745 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
746 tgt->error = "target type may not be included in a read-only table";
747 goto bad;
750 if (t->immutable_target_type) {
751 if (t->immutable_target_type != tgt->type) {
752 tgt->error = "immutable target type cannot be mixed with other target types";
753 goto bad;
755 } else if (dm_target_is_immutable(tgt->type)) {
756 if (t->num_targets) {
757 tgt->error = "immutable target type cannot be mixed with other target types";
758 goto bad;
760 t->immutable_target_type = tgt->type;
763 if (dm_target_has_integrity(tgt->type))
764 t->integrity_added = 1;
766 tgt->table = t;
767 tgt->begin = start;
768 tgt->len = len;
769 tgt->error = "Unknown error";
772 * Does this target adjoin the previous one ?
774 if (!adjoin(t, tgt)) {
775 tgt->error = "Gap in table";
776 goto bad;
779 r = dm_split_args(&argc, &argv, params);
780 if (r) {
781 tgt->error = "couldn't split parameters (insufficient memory)";
782 goto bad;
785 r = tgt->type->ctr(tgt, argc, argv);
786 kfree(argv);
787 if (r)
788 goto bad;
790 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
792 if (!tgt->num_discard_bios && tgt->discards_supported)
793 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
794 dm_device_name(t->md), type);
796 return 0;
798 bad:
799 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
800 dm_put_target_type(tgt->type);
801 return r;
805 * Target argument parsing helpers.
807 static int validate_next_arg(const struct dm_arg *arg,
808 struct dm_arg_set *arg_set,
809 unsigned *value, char **error, unsigned grouped)
811 const char *arg_str = dm_shift_arg(arg_set);
812 char dummy;
814 if (!arg_str ||
815 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
816 (*value < arg->min) ||
817 (*value > arg->max) ||
818 (grouped && arg_set->argc < *value)) {
819 *error = arg->error;
820 return -EINVAL;
823 return 0;
826 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
827 unsigned *value, char **error)
829 return validate_next_arg(arg, arg_set, value, error, 0);
831 EXPORT_SYMBOL(dm_read_arg);
833 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
834 unsigned *value, char **error)
836 return validate_next_arg(arg, arg_set, value, error, 1);
838 EXPORT_SYMBOL(dm_read_arg_group);
840 const char *dm_shift_arg(struct dm_arg_set *as)
842 char *r;
844 if (as->argc) {
845 as->argc--;
846 r = *as->argv;
847 as->argv++;
848 return r;
851 return NULL;
853 EXPORT_SYMBOL(dm_shift_arg);
855 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
857 BUG_ON(as->argc < num_args);
858 as->argc -= num_args;
859 as->argv += num_args;
861 EXPORT_SYMBOL(dm_consume_args);
863 static bool __table_type_bio_based(enum dm_queue_mode table_type)
865 return (table_type == DM_TYPE_BIO_BASED ||
866 table_type == DM_TYPE_DAX_BIO_BASED ||
867 table_type == DM_TYPE_NVME_BIO_BASED);
870 static bool __table_type_request_based(enum dm_queue_mode table_type)
872 return table_type == DM_TYPE_REQUEST_BASED;
875 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
877 t->type = type;
879 EXPORT_SYMBOL_GPL(dm_table_set_type);
881 /* validate the dax capability of the target device span */
882 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
883 sector_t start, sector_t len, void *data)
885 int blocksize = *(int *) data;
887 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
888 start, len);
891 /* Check devices support synchronous DAX */
892 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
893 sector_t start, sector_t len, void *data)
895 return dev->dax_dev && dax_synchronous(dev->dax_dev);
898 bool dm_table_supports_dax(struct dm_table *t,
899 iterate_devices_callout_fn iterate_fn, int *blocksize)
901 struct dm_target *ti;
902 unsigned i;
904 /* Ensure that all targets support DAX. */
905 for (i = 0; i < dm_table_get_num_targets(t); i++) {
906 ti = dm_table_get_target(t, i);
908 if (!ti->type->direct_access)
909 return false;
911 if (!ti->type->iterate_devices ||
912 !ti->type->iterate_devices(ti, iterate_fn, blocksize))
913 return false;
916 return true;
919 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
921 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
922 sector_t start, sector_t len, void *data)
924 struct block_device *bdev = dev->bdev;
925 struct request_queue *q = bdev_get_queue(bdev);
927 /* request-based cannot stack on partitions! */
928 if (bdev != bdev->bd_contains)
929 return false;
931 return queue_is_mq(q);
934 static int dm_table_determine_type(struct dm_table *t)
936 unsigned i;
937 unsigned bio_based = 0, request_based = 0, hybrid = 0;
938 struct dm_target *tgt;
939 struct list_head *devices = dm_table_get_devices(t);
940 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
941 int page_size = PAGE_SIZE;
943 if (t->type != DM_TYPE_NONE) {
944 /* target already set the table's type */
945 if (t->type == DM_TYPE_BIO_BASED) {
946 /* possibly upgrade to a variant of bio-based */
947 goto verify_bio_based;
949 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
950 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
951 goto verify_rq_based;
954 for (i = 0; i < t->num_targets; i++) {
955 tgt = t->targets + i;
956 if (dm_target_hybrid(tgt))
957 hybrid = 1;
958 else if (dm_target_request_based(tgt))
959 request_based = 1;
960 else
961 bio_based = 1;
963 if (bio_based && request_based) {
964 DMERR("Inconsistent table: different target types"
965 " can't be mixed up");
966 return -EINVAL;
970 if (hybrid && !bio_based && !request_based) {
972 * The targets can work either way.
973 * Determine the type from the live device.
974 * Default to bio-based if device is new.
976 if (__table_type_request_based(live_md_type))
977 request_based = 1;
978 else
979 bio_based = 1;
982 if (bio_based) {
983 verify_bio_based:
984 /* We must use this table as bio-based */
985 t->type = DM_TYPE_BIO_BASED;
986 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
987 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
988 t->type = DM_TYPE_DAX_BIO_BASED;
989 } else {
990 /* Check if upgrading to NVMe bio-based is valid or required */
991 tgt = dm_table_get_immutable_target(t);
992 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
993 t->type = DM_TYPE_NVME_BIO_BASED;
994 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
995 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
996 t->type = DM_TYPE_NVME_BIO_BASED;
999 return 0;
1002 BUG_ON(!request_based); /* No targets in this table */
1004 t->type = DM_TYPE_REQUEST_BASED;
1006 verify_rq_based:
1008 * Request-based dm supports only tables that have a single target now.
1009 * To support multiple targets, request splitting support is needed,
1010 * and that needs lots of changes in the block-layer.
1011 * (e.g. request completion process for partial completion.)
1013 if (t->num_targets > 1) {
1014 DMERR("%s DM doesn't support multiple targets",
1015 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1016 return -EINVAL;
1019 if (list_empty(devices)) {
1020 int srcu_idx;
1021 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1023 /* inherit live table's type */
1024 if (live_table)
1025 t->type = live_table->type;
1026 dm_put_live_table(t->md, srcu_idx);
1027 return 0;
1030 tgt = dm_table_get_immutable_target(t);
1031 if (!tgt) {
1032 DMERR("table load rejected: immutable target is required");
1033 return -EINVAL;
1034 } else if (tgt->max_io_len) {
1035 DMERR("table load rejected: immutable target that splits IO is not supported");
1036 return -EINVAL;
1039 /* Non-request-stackable devices can't be used for request-based dm */
1040 if (!tgt->type->iterate_devices ||
1041 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
1042 DMERR("table load rejected: including non-request-stackable devices");
1043 return -EINVAL;
1046 return 0;
1049 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1051 return t->type;
1054 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1056 return t->immutable_target_type;
1059 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1061 /* Immutable target is implicitly a singleton */
1062 if (t->num_targets > 1 ||
1063 !dm_target_is_immutable(t->targets[0].type))
1064 return NULL;
1066 return t->targets;
1069 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1071 struct dm_target *ti;
1072 unsigned i;
1074 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1075 ti = dm_table_get_target(t, i);
1076 if (dm_target_is_wildcard(ti->type))
1077 return ti;
1080 return NULL;
1083 bool dm_table_bio_based(struct dm_table *t)
1085 return __table_type_bio_based(dm_table_get_type(t));
1088 bool dm_table_request_based(struct dm_table *t)
1090 return __table_type_request_based(dm_table_get_type(t));
1093 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1095 enum dm_queue_mode type = dm_table_get_type(t);
1096 unsigned per_io_data_size = 0;
1097 unsigned min_pool_size = 0;
1098 struct dm_target *ti;
1099 unsigned i;
1101 if (unlikely(type == DM_TYPE_NONE)) {
1102 DMWARN("no table type is set, can't allocate mempools");
1103 return -EINVAL;
1106 if (__table_type_bio_based(type))
1107 for (i = 0; i < t->num_targets; i++) {
1108 ti = t->targets + i;
1109 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1110 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1113 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1114 per_io_data_size, min_pool_size);
1115 if (!t->mempools)
1116 return -ENOMEM;
1118 return 0;
1121 void dm_table_free_md_mempools(struct dm_table *t)
1123 dm_free_md_mempools(t->mempools);
1124 t->mempools = NULL;
1127 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1129 return t->mempools;
1132 static int setup_indexes(struct dm_table *t)
1134 int i;
1135 unsigned int total = 0;
1136 sector_t *indexes;
1138 /* allocate the space for *all* the indexes */
1139 for (i = t->depth - 2; i >= 0; i--) {
1140 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1141 total += t->counts[i];
1144 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1145 if (!indexes)
1146 return -ENOMEM;
1148 /* set up internal nodes, bottom-up */
1149 for (i = t->depth - 2; i >= 0; i--) {
1150 t->index[i] = indexes;
1151 indexes += (KEYS_PER_NODE * t->counts[i]);
1152 setup_btree_index(i, t);
1155 return 0;
1159 * Builds the btree to index the map.
1161 static int dm_table_build_index(struct dm_table *t)
1163 int r = 0;
1164 unsigned int leaf_nodes;
1166 /* how many indexes will the btree have ? */
1167 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1168 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1170 /* leaf layer has already been set up */
1171 t->counts[t->depth - 1] = leaf_nodes;
1172 t->index[t->depth - 1] = t->highs;
1174 if (t->depth >= 2)
1175 r = setup_indexes(t);
1177 return r;
1180 static bool integrity_profile_exists(struct gendisk *disk)
1182 return !!blk_get_integrity(disk);
1186 * Get a disk whose integrity profile reflects the table's profile.
1187 * Returns NULL if integrity support was inconsistent or unavailable.
1189 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1191 struct list_head *devices = dm_table_get_devices(t);
1192 struct dm_dev_internal *dd = NULL;
1193 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1194 unsigned i;
1196 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1197 struct dm_target *ti = dm_table_get_target(t, i);
1198 if (!dm_target_passes_integrity(ti->type))
1199 goto no_integrity;
1202 list_for_each_entry(dd, devices, list) {
1203 template_disk = dd->dm_dev->bdev->bd_disk;
1204 if (!integrity_profile_exists(template_disk))
1205 goto no_integrity;
1206 else if (prev_disk &&
1207 blk_integrity_compare(prev_disk, template_disk) < 0)
1208 goto no_integrity;
1209 prev_disk = template_disk;
1212 return template_disk;
1214 no_integrity:
1215 if (prev_disk)
1216 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1217 dm_device_name(t->md),
1218 prev_disk->disk_name,
1219 template_disk->disk_name);
1220 return NULL;
1224 * Register the mapped device for blk_integrity support if the
1225 * underlying devices have an integrity profile. But all devices may
1226 * not have matching profiles (checking all devices isn't reliable
1227 * during table load because this table may use other DM device(s) which
1228 * must be resumed before they will have an initialized integity
1229 * profile). Consequently, stacked DM devices force a 2 stage integrity
1230 * profile validation: First pass during table load, final pass during
1231 * resume.
1233 static int dm_table_register_integrity(struct dm_table *t)
1235 struct mapped_device *md = t->md;
1236 struct gendisk *template_disk = NULL;
1238 /* If target handles integrity itself do not register it here. */
1239 if (t->integrity_added)
1240 return 0;
1242 template_disk = dm_table_get_integrity_disk(t);
1243 if (!template_disk)
1244 return 0;
1246 if (!integrity_profile_exists(dm_disk(md))) {
1247 t->integrity_supported = true;
1249 * Register integrity profile during table load; we can do
1250 * this because the final profile must match during resume.
1252 blk_integrity_register(dm_disk(md),
1253 blk_get_integrity(template_disk));
1254 return 0;
1258 * If DM device already has an initialized integrity
1259 * profile the new profile should not conflict.
1261 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1262 DMWARN("%s: conflict with existing integrity profile: "
1263 "%s profile mismatch",
1264 dm_device_name(t->md),
1265 template_disk->disk_name);
1266 return 1;
1269 /* Preserve existing integrity profile */
1270 t->integrity_supported = true;
1271 return 0;
1275 * Prepares the table for use by building the indices,
1276 * setting the type, and allocating mempools.
1278 int dm_table_complete(struct dm_table *t)
1280 int r;
1282 r = dm_table_determine_type(t);
1283 if (r) {
1284 DMERR("unable to determine table type");
1285 return r;
1288 r = dm_table_build_index(t);
1289 if (r) {
1290 DMERR("unable to build btrees");
1291 return r;
1294 r = dm_table_register_integrity(t);
1295 if (r) {
1296 DMERR("could not register integrity profile.");
1297 return r;
1300 r = dm_table_alloc_md_mempools(t, t->md);
1301 if (r)
1302 DMERR("unable to allocate mempools");
1304 return r;
1307 static DEFINE_MUTEX(_event_lock);
1308 void dm_table_event_callback(struct dm_table *t,
1309 void (*fn)(void *), void *context)
1311 mutex_lock(&_event_lock);
1312 t->event_fn = fn;
1313 t->event_context = context;
1314 mutex_unlock(&_event_lock);
1317 void dm_table_event(struct dm_table *t)
1320 * You can no longer call dm_table_event() from interrupt
1321 * context, use a bottom half instead.
1323 BUG_ON(in_interrupt());
1325 mutex_lock(&_event_lock);
1326 if (t->event_fn)
1327 t->event_fn(t->event_context);
1328 mutex_unlock(&_event_lock);
1330 EXPORT_SYMBOL(dm_table_event);
1332 inline sector_t dm_table_get_size(struct dm_table *t)
1334 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1336 EXPORT_SYMBOL(dm_table_get_size);
1338 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1340 if (index >= t->num_targets)
1341 return NULL;
1343 return t->targets + index;
1347 * Search the btree for the correct target.
1349 * Caller should check returned pointer for NULL
1350 * to trap I/O beyond end of device.
1352 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1354 unsigned int l, n = 0, k = 0;
1355 sector_t *node;
1357 if (unlikely(sector >= dm_table_get_size(t)))
1358 return NULL;
1360 for (l = 0; l < t->depth; l++) {
1361 n = get_child(n, k);
1362 node = get_node(t, l, n);
1364 for (k = 0; k < KEYS_PER_NODE; k++)
1365 if (node[k] >= sector)
1366 break;
1369 return &t->targets[(KEYS_PER_NODE * n) + k];
1372 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1373 sector_t start, sector_t len, void *data)
1375 unsigned *num_devices = data;
1377 (*num_devices)++;
1379 return 0;
1383 * Check whether a table has no data devices attached using each
1384 * target's iterate_devices method.
1385 * Returns false if the result is unknown because a target doesn't
1386 * support iterate_devices.
1388 bool dm_table_has_no_data_devices(struct dm_table *table)
1390 struct dm_target *ti;
1391 unsigned i, num_devices;
1393 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1394 ti = dm_table_get_target(table, i);
1396 if (!ti->type->iterate_devices)
1397 return false;
1399 num_devices = 0;
1400 ti->type->iterate_devices(ti, count_device, &num_devices);
1401 if (num_devices)
1402 return false;
1405 return true;
1408 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1409 sector_t start, sector_t len, void *data)
1411 struct request_queue *q = bdev_get_queue(dev->bdev);
1412 enum blk_zoned_model *zoned_model = data;
1414 return q && blk_queue_zoned_model(q) == *zoned_model;
1417 static bool dm_table_supports_zoned_model(struct dm_table *t,
1418 enum blk_zoned_model zoned_model)
1420 struct dm_target *ti;
1421 unsigned i;
1423 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1424 ti = dm_table_get_target(t, i);
1426 if (zoned_model == BLK_ZONED_HM &&
1427 !dm_target_supports_zoned_hm(ti->type))
1428 return false;
1430 if (!ti->type->iterate_devices ||
1431 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1432 return false;
1435 return true;
1438 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1439 sector_t start, sector_t len, void *data)
1441 struct request_queue *q = bdev_get_queue(dev->bdev);
1442 unsigned int *zone_sectors = data;
1444 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1447 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1448 unsigned int zone_sectors)
1450 struct dm_target *ti;
1451 unsigned i;
1453 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1454 ti = dm_table_get_target(t, i);
1456 if (!ti->type->iterate_devices ||
1457 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1458 return false;
1461 return true;
1464 static int validate_hardware_zoned_model(struct dm_table *table,
1465 enum blk_zoned_model zoned_model,
1466 unsigned int zone_sectors)
1468 if (zoned_model == BLK_ZONED_NONE)
1469 return 0;
1471 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1472 DMERR("%s: zoned model is not consistent across all devices",
1473 dm_device_name(table->md));
1474 return -EINVAL;
1477 /* Check zone size validity and compatibility */
1478 if (!zone_sectors || !is_power_of_2(zone_sectors))
1479 return -EINVAL;
1481 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1482 DMERR("%s: zone sectors is not consistent across all devices",
1483 dm_device_name(table->md));
1484 return -EINVAL;
1487 return 0;
1491 * Establish the new table's queue_limits and validate them.
1493 int dm_calculate_queue_limits(struct dm_table *table,
1494 struct queue_limits *limits)
1496 struct dm_target *ti;
1497 struct queue_limits ti_limits;
1498 unsigned i;
1499 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1500 unsigned int zone_sectors = 0;
1502 blk_set_stacking_limits(limits);
1504 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1505 blk_set_stacking_limits(&ti_limits);
1507 ti = dm_table_get_target(table, i);
1509 if (!ti->type->iterate_devices)
1510 goto combine_limits;
1513 * Combine queue limits of all the devices this target uses.
1515 ti->type->iterate_devices(ti, dm_set_device_limits,
1516 &ti_limits);
1518 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1520 * After stacking all limits, validate all devices
1521 * in table support this zoned model and zone sectors.
1523 zoned_model = ti_limits.zoned;
1524 zone_sectors = ti_limits.chunk_sectors;
1527 /* Set I/O hints portion of queue limits */
1528 if (ti->type->io_hints)
1529 ti->type->io_hints(ti, &ti_limits);
1532 * Check each device area is consistent with the target's
1533 * overall queue limits.
1535 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1536 &ti_limits))
1537 return -EINVAL;
1539 combine_limits:
1541 * Merge this target's queue limits into the overall limits
1542 * for the table.
1544 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1545 DMWARN("%s: adding target device "
1546 "(start sect %llu len %llu) "
1547 "caused an alignment inconsistency",
1548 dm_device_name(table->md),
1549 (unsigned long long) ti->begin,
1550 (unsigned long long) ti->len);
1553 * FIXME: this should likely be moved to blk_stack_limits(), would
1554 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1556 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1558 * By default, the stacked limits zoned model is set to
1559 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1560 * this model using the first target model reported
1561 * that is not BLK_ZONED_NONE. This will be either the
1562 * first target device zoned model or the model reported
1563 * by the target .io_hints.
1565 limits->zoned = ti_limits.zoned;
1570 * Verify that the zoned model and zone sectors, as determined before
1571 * any .io_hints override, are the same across all devices in the table.
1572 * - this is especially relevant if .io_hints is emulating a disk-managed
1573 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1574 * BUT...
1576 if (limits->zoned != BLK_ZONED_NONE) {
1578 * ...IF the above limits stacking determined a zoned model
1579 * validate that all of the table's devices conform to it.
1581 zoned_model = limits->zoned;
1582 zone_sectors = limits->chunk_sectors;
1584 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1585 return -EINVAL;
1587 return validate_hardware_logical_block_alignment(table, limits);
1591 * Verify that all devices have an integrity profile that matches the
1592 * DM device's registered integrity profile. If the profiles don't
1593 * match then unregister the DM device's integrity profile.
1595 static void dm_table_verify_integrity(struct dm_table *t)
1597 struct gendisk *template_disk = NULL;
1599 if (t->integrity_added)
1600 return;
1602 if (t->integrity_supported) {
1604 * Verify that the original integrity profile
1605 * matches all the devices in this table.
1607 template_disk = dm_table_get_integrity_disk(t);
1608 if (template_disk &&
1609 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1610 return;
1613 if (integrity_profile_exists(dm_disk(t->md))) {
1614 DMWARN("%s: unable to establish an integrity profile",
1615 dm_device_name(t->md));
1616 blk_integrity_unregister(dm_disk(t->md));
1620 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1621 sector_t start, sector_t len, void *data)
1623 unsigned long flush = (unsigned long) data;
1624 struct request_queue *q = bdev_get_queue(dev->bdev);
1626 return q && (q->queue_flags & flush);
1629 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1631 struct dm_target *ti;
1632 unsigned i;
1635 * Require at least one underlying device to support flushes.
1636 * t->devices includes internal dm devices such as mirror logs
1637 * so we need to use iterate_devices here, which targets
1638 * supporting flushes must provide.
1640 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1641 ti = dm_table_get_target(t, i);
1643 if (!ti->num_flush_bios)
1644 continue;
1646 if (ti->flush_supported)
1647 return true;
1649 if (ti->type->iterate_devices &&
1650 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1651 return true;
1654 return false;
1657 static int device_dax_write_cache_enabled(struct dm_target *ti,
1658 struct dm_dev *dev, sector_t start,
1659 sector_t len, void *data)
1661 struct dax_device *dax_dev = dev->dax_dev;
1663 if (!dax_dev)
1664 return false;
1666 if (dax_write_cache_enabled(dax_dev))
1667 return true;
1668 return false;
1671 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1673 struct dm_target *ti;
1674 unsigned i;
1676 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1677 ti = dm_table_get_target(t, i);
1679 if (ti->type->iterate_devices &&
1680 ti->type->iterate_devices(ti,
1681 device_dax_write_cache_enabled, NULL))
1682 return true;
1685 return false;
1688 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1689 sector_t start, sector_t len, void *data)
1691 struct request_queue *q = bdev_get_queue(dev->bdev);
1693 return q && blk_queue_nonrot(q);
1696 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1697 sector_t start, sector_t len, void *data)
1699 struct request_queue *q = bdev_get_queue(dev->bdev);
1701 return q && !blk_queue_add_random(q);
1704 static bool dm_table_all_devices_attribute(struct dm_table *t,
1705 iterate_devices_callout_fn func)
1707 struct dm_target *ti;
1708 unsigned i;
1710 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1711 ti = dm_table_get_target(t, i);
1713 if (!ti->type->iterate_devices ||
1714 !ti->type->iterate_devices(ti, func, NULL))
1715 return false;
1718 return true;
1721 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1722 sector_t start, sector_t len, void *data)
1724 char b[BDEVNAME_SIZE];
1726 /* For now, NVMe devices are the only devices of this class */
1727 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1730 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1732 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1735 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1736 sector_t start, sector_t len, void *data)
1738 struct request_queue *q = bdev_get_queue(dev->bdev);
1740 return q && !q->limits.max_write_same_sectors;
1743 static bool dm_table_supports_write_same(struct dm_table *t)
1745 struct dm_target *ti;
1746 unsigned i;
1748 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1749 ti = dm_table_get_target(t, i);
1751 if (!ti->num_write_same_bios)
1752 return false;
1754 if (!ti->type->iterate_devices ||
1755 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1756 return false;
1759 return true;
1762 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1763 sector_t start, sector_t len, void *data)
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1767 return q && !q->limits.max_write_zeroes_sectors;
1770 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1772 struct dm_target *ti;
1773 unsigned i = 0;
1775 while (i < dm_table_get_num_targets(t)) {
1776 ti = dm_table_get_target(t, i++);
1778 if (!ti->num_write_zeroes_bios)
1779 return false;
1781 if (!ti->type->iterate_devices ||
1782 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1783 return false;
1786 return true;
1789 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1790 sector_t start, sector_t len, void *data)
1792 struct request_queue *q = bdev_get_queue(dev->bdev);
1794 return q && !blk_queue_discard(q);
1797 static bool dm_table_supports_discards(struct dm_table *t)
1799 struct dm_target *ti;
1800 unsigned i;
1802 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1803 ti = dm_table_get_target(t, i);
1805 if (!ti->num_discard_bios)
1806 return false;
1809 * Either the target provides discard support (as implied by setting
1810 * 'discards_supported') or it relies on _all_ data devices having
1811 * discard support.
1813 if (!ti->discards_supported &&
1814 (!ti->type->iterate_devices ||
1815 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1816 return false;
1819 return true;
1822 static int device_not_secure_erase_capable(struct dm_target *ti,
1823 struct dm_dev *dev, sector_t start,
1824 sector_t len, void *data)
1826 struct request_queue *q = bdev_get_queue(dev->bdev);
1828 return q && !blk_queue_secure_erase(q);
1831 static bool dm_table_supports_secure_erase(struct dm_table *t)
1833 struct dm_target *ti;
1834 unsigned int i;
1836 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1837 ti = dm_table_get_target(t, i);
1839 if (!ti->num_secure_erase_bios)
1840 return false;
1842 if (!ti->type->iterate_devices ||
1843 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1844 return false;
1847 return true;
1850 static int device_requires_stable_pages(struct dm_target *ti,
1851 struct dm_dev *dev, sector_t start,
1852 sector_t len, void *data)
1854 struct request_queue *q = bdev_get_queue(dev->bdev);
1856 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1860 * If any underlying device requires stable pages, a table must require
1861 * them as well. Only targets that support iterate_devices are considered:
1862 * don't want error, zero, etc to require stable pages.
1864 static bool dm_table_requires_stable_pages(struct dm_table *t)
1866 struct dm_target *ti;
1867 unsigned i;
1869 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1870 ti = dm_table_get_target(t, i);
1872 if (ti->type->iterate_devices &&
1873 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1874 return true;
1877 return false;
1880 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1881 struct queue_limits *limits)
1883 bool wc = false, fua = false;
1884 int page_size = PAGE_SIZE;
1887 * Copy table's limits to the DM device's request_queue
1889 q->limits = *limits;
1891 if (!dm_table_supports_discards(t)) {
1892 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1893 /* Must also clear discard limits... */
1894 q->limits.max_discard_sectors = 0;
1895 q->limits.max_hw_discard_sectors = 0;
1896 q->limits.discard_granularity = 0;
1897 q->limits.discard_alignment = 0;
1898 q->limits.discard_misaligned = 0;
1899 } else
1900 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1902 if (dm_table_supports_secure_erase(t))
1903 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1905 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1906 wc = true;
1907 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1908 fua = true;
1910 blk_queue_write_cache(q, wc, fua);
1912 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1913 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1914 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1915 set_dax_synchronous(t->md->dax_dev);
1917 else
1918 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1920 if (dm_table_supports_dax_write_cache(t))
1921 dax_write_cache(t->md->dax_dev, true);
1923 /* Ensure that all underlying devices are non-rotational. */
1924 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1925 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1926 else
1927 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1929 if (!dm_table_supports_write_same(t))
1930 q->limits.max_write_same_sectors = 0;
1931 if (!dm_table_supports_write_zeroes(t))
1932 q->limits.max_write_zeroes_sectors = 0;
1934 dm_table_verify_integrity(t);
1937 * Some devices don't use blk_integrity but still want stable pages
1938 * because they do their own checksumming.
1940 if (dm_table_requires_stable_pages(t))
1941 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1942 else
1943 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1946 * Determine whether or not this queue's I/O timings contribute
1947 * to the entropy pool, Only request-based targets use this.
1948 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1949 * have it set.
1951 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1952 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1955 * For a zoned target, the number of zones should be updated for the
1956 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1957 * target, this is all that is needed.
1959 #ifdef CONFIG_BLK_DEV_ZONED
1960 if (blk_queue_is_zoned(q)) {
1961 WARN_ON_ONCE(queue_is_mq(q));
1962 q->nr_zones = blkdev_nr_zones(t->md->disk);
1964 #endif
1966 /* Allow reads to exceed readahead limits */
1967 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1970 unsigned int dm_table_get_num_targets(struct dm_table *t)
1972 return t->num_targets;
1975 struct list_head *dm_table_get_devices(struct dm_table *t)
1977 return &t->devices;
1980 fmode_t dm_table_get_mode(struct dm_table *t)
1982 return t->mode;
1984 EXPORT_SYMBOL(dm_table_get_mode);
1986 enum suspend_mode {
1987 PRESUSPEND,
1988 PRESUSPEND_UNDO,
1989 POSTSUSPEND,
1992 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1994 int i = t->num_targets;
1995 struct dm_target *ti = t->targets;
1997 lockdep_assert_held(&t->md->suspend_lock);
1999 while (i--) {
2000 switch (mode) {
2001 case PRESUSPEND:
2002 if (ti->type->presuspend)
2003 ti->type->presuspend(ti);
2004 break;
2005 case PRESUSPEND_UNDO:
2006 if (ti->type->presuspend_undo)
2007 ti->type->presuspend_undo(ti);
2008 break;
2009 case POSTSUSPEND:
2010 if (ti->type->postsuspend)
2011 ti->type->postsuspend(ti);
2012 break;
2014 ti++;
2018 void dm_table_presuspend_targets(struct dm_table *t)
2020 if (!t)
2021 return;
2023 suspend_targets(t, PRESUSPEND);
2026 void dm_table_presuspend_undo_targets(struct dm_table *t)
2028 if (!t)
2029 return;
2031 suspend_targets(t, PRESUSPEND_UNDO);
2034 void dm_table_postsuspend_targets(struct dm_table *t)
2036 if (!t)
2037 return;
2039 suspend_targets(t, POSTSUSPEND);
2042 int dm_table_resume_targets(struct dm_table *t)
2044 int i, r = 0;
2046 lockdep_assert_held(&t->md->suspend_lock);
2048 for (i = 0; i < t->num_targets; i++) {
2049 struct dm_target *ti = t->targets + i;
2051 if (!ti->type->preresume)
2052 continue;
2054 r = ti->type->preresume(ti);
2055 if (r) {
2056 DMERR("%s: %s: preresume failed, error = %d",
2057 dm_device_name(t->md), ti->type->name, r);
2058 return r;
2062 for (i = 0; i < t->num_targets; i++) {
2063 struct dm_target *ti = t->targets + i;
2065 if (ti->type->resume)
2066 ti->type->resume(ti);
2069 return 0;
2072 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2074 list_add(&cb->list, &t->target_callbacks);
2076 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2078 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2080 struct dm_dev_internal *dd;
2081 struct list_head *devices = dm_table_get_devices(t);
2082 struct dm_target_callbacks *cb;
2083 int r = 0;
2085 list_for_each_entry(dd, devices, list) {
2086 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2087 char b[BDEVNAME_SIZE];
2089 if (likely(q))
2090 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2091 else
2092 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2093 dm_device_name(t->md),
2094 bdevname(dd->dm_dev->bdev, b));
2097 list_for_each_entry(cb, &t->target_callbacks, list)
2098 if (cb->congested_fn)
2099 r |= cb->congested_fn(cb, bdi_bits);
2101 return r;
2104 struct mapped_device *dm_table_get_md(struct dm_table *t)
2106 return t->md;
2108 EXPORT_SYMBOL(dm_table_get_md);
2110 const char *dm_table_device_name(struct dm_table *t)
2112 return dm_device_name(t->md);
2114 EXPORT_SYMBOL_GPL(dm_table_device_name);
2116 void dm_table_run_md_queue_async(struct dm_table *t)
2118 struct mapped_device *md;
2119 struct request_queue *queue;
2121 if (!dm_table_request_based(t))
2122 return;
2124 md = dm_table_get_md(t);
2125 queue = dm_get_md_queue(md);
2126 if (queue)
2127 blk_mq_run_hw_queues(queue, true);
2129 EXPORT_SYMBOL(dm_table_run_md_queue_async);