2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device
*td
, enum lock_space ls
,
121 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
123 key
->virtual = (ls
== VIRTUAL
);
124 key
->dev
= dm_thin_dev_id(td
);
125 key
->block_begin
= b
;
129 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
130 struct dm_cell_key
*key
)
132 build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
135 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
136 struct dm_cell_key
*key
)
138 build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock
;
147 unsigned long threshold
;
148 bool throttle_applied
;
151 static void throttle_init(struct throttle
*t
)
153 init_rwsem(&t
->lock
);
154 t
->throttle_applied
= false;
157 static void throttle_work_start(struct throttle
*t
)
159 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
162 static void throttle_work_update(struct throttle
*t
)
164 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
165 down_write(&t
->lock
);
166 t
->throttle_applied
= true;
170 static void throttle_work_complete(struct throttle
*t
)
172 if (t
->throttle_applied
) {
173 t
->throttle_applied
= false;
178 static void throttle_lock(struct throttle
*t
)
183 static void throttle_unlock(struct throttle
*t
)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping
;
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
201 PM_WRITE
, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207 PM_OUT_OF_METADATA_SPACE
,
208 PM_READ_ONLY
, /* metadata may not be changed */
210 PM_FAIL
, /* all I/O fails */
213 struct pool_features
{
216 bool zero_new_blocks
:1;
217 bool discard_enabled
:1;
218 bool discard_passdown
:1;
219 bool error_if_no_space
:1;
223 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
224 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
225 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
227 #define CELL_SORT_ARRAY_SIZE 8192
230 struct list_head list
;
231 struct dm_target
*ti
; /* Only set if a pool target is bound */
233 struct mapped_device
*pool_md
;
234 struct block_device
*md_dev
;
235 struct dm_pool_metadata
*pmd
;
237 dm_block_t low_water_blocks
;
238 uint32_t sectors_per_block
;
239 int sectors_per_block_shift
;
241 struct pool_features pf
;
242 bool low_water_triggered
:1; /* A dm event has been sent */
244 bool out_of_data_space
:1;
246 struct dm_bio_prison
*prison
;
247 struct dm_kcopyd_client
*copier
;
249 struct work_struct worker
;
250 struct workqueue_struct
*wq
;
251 struct throttle throttle
;
252 struct delayed_work waker
;
253 struct delayed_work no_space_timeout
;
255 unsigned long last_commit_jiffies
;
259 struct bio_list deferred_flush_bios
;
260 struct bio_list deferred_flush_completions
;
261 struct list_head prepared_mappings
;
262 struct list_head prepared_discards
;
263 struct list_head prepared_discards_pt2
;
264 struct list_head active_thins
;
266 struct dm_deferred_set
*shared_read_ds
;
267 struct dm_deferred_set
*all_io_ds
;
269 struct dm_thin_new_mapping
*next_mapping
;
271 process_bio_fn process_bio
;
272 process_bio_fn process_discard
;
274 process_cell_fn process_cell
;
275 process_cell_fn process_discard_cell
;
277 process_mapping_fn process_prepared_mapping
;
278 process_mapping_fn process_prepared_discard
;
279 process_mapping_fn process_prepared_discard_pt2
;
281 struct dm_bio_prison_cell
**cell_sort_array
;
283 mempool_t mapping_pool
;
286 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
288 static enum pool_mode
get_pool_mode(struct pool
*pool
)
290 return pool
->pf
.mode
;
293 static void notify_of_pool_mode_change(struct pool
*pool
)
295 const char *descs
[] = {
302 const char *extra_desc
= NULL
;
303 enum pool_mode mode
= get_pool_mode(pool
);
305 if (mode
== PM_OUT_OF_DATA_SPACE
) {
306 if (!pool
->pf
.error_if_no_space
)
307 extra_desc
= " (queue IO)";
309 extra_desc
= " (error IO)";
312 dm_table_event(pool
->ti
->table
);
313 DMINFO("%s: switching pool to %s%s mode",
314 dm_device_name(pool
->pool_md
),
315 descs
[(int)mode
], extra_desc
? : "");
319 * Target context for a pool.
322 struct dm_target
*ti
;
324 struct dm_dev
*data_dev
;
325 struct dm_dev
*metadata_dev
;
326 struct dm_target_callbacks callbacks
;
328 dm_block_t low_water_blocks
;
329 struct pool_features requested_pf
; /* Features requested during table load */
330 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
331 struct bio flush_bio
;
335 * Target context for a thin.
338 struct list_head list
;
339 struct dm_dev
*pool_dev
;
340 struct dm_dev
*origin_dev
;
341 sector_t origin_size
;
345 struct dm_thin_device
*td
;
346 struct mapped_device
*thin_md
;
350 struct list_head deferred_cells
;
351 struct bio_list deferred_bio_list
;
352 struct bio_list retry_on_resume_list
;
353 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
356 * Ensures the thin is not destroyed until the worker has finished
357 * iterating the active_thins list.
360 struct completion can_destroy
;
363 /*----------------------------------------------------------------*/
365 static bool block_size_is_power_of_two(struct pool
*pool
)
367 return pool
->sectors_per_block_shift
>= 0;
370 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
372 return block_size_is_power_of_two(pool
) ?
373 (b
<< pool
->sectors_per_block_shift
) :
374 (b
* pool
->sectors_per_block
);
377 /*----------------------------------------------------------------*/
381 struct blk_plug plug
;
382 struct bio
*parent_bio
;
386 static void begin_discard(struct discard_op
*op
, struct thin_c
*tc
, struct bio
*parent
)
391 blk_start_plug(&op
->plug
);
392 op
->parent_bio
= parent
;
396 static int issue_discard(struct discard_op
*op
, dm_block_t data_b
, dm_block_t data_e
)
398 struct thin_c
*tc
= op
->tc
;
399 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
400 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
402 return __blkdev_issue_discard(tc
->pool_dev
->bdev
, s
, len
,
403 GFP_NOWAIT
, 0, &op
->bio
);
406 static void end_discard(struct discard_op
*op
, int r
)
410 * Even if one of the calls to issue_discard failed, we
411 * need to wait for the chain to complete.
413 bio_chain(op
->bio
, op
->parent_bio
);
414 bio_set_op_attrs(op
->bio
, REQ_OP_DISCARD
, 0);
418 blk_finish_plug(&op
->plug
);
421 * Even if r is set, there could be sub discards in flight that we
424 if (r
&& !op
->parent_bio
->bi_status
)
425 op
->parent_bio
->bi_status
= errno_to_blk_status(r
);
426 bio_endio(op
->parent_bio
);
429 /*----------------------------------------------------------------*/
432 * wake_worker() is used when new work is queued and when pool_resume is
433 * ready to continue deferred IO processing.
435 static void wake_worker(struct pool
*pool
)
437 queue_work(pool
->wq
, &pool
->worker
);
440 /*----------------------------------------------------------------*/
442 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
443 struct dm_bio_prison_cell
**cell_result
)
446 struct dm_bio_prison_cell
*cell_prealloc
;
449 * Allocate a cell from the prison's mempool.
450 * This might block but it can't fail.
452 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
454 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
457 * We reused an old cell; we can get rid of
460 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
465 static void cell_release(struct pool
*pool
,
466 struct dm_bio_prison_cell
*cell
,
467 struct bio_list
*bios
)
469 dm_cell_release(pool
->prison
, cell
, bios
);
470 dm_bio_prison_free_cell(pool
->prison
, cell
);
473 static void cell_visit_release(struct pool
*pool
,
474 void (*fn
)(void *, struct dm_bio_prison_cell
*),
476 struct dm_bio_prison_cell
*cell
)
478 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
479 dm_bio_prison_free_cell(pool
->prison
, cell
);
482 static void cell_release_no_holder(struct pool
*pool
,
483 struct dm_bio_prison_cell
*cell
,
484 struct bio_list
*bios
)
486 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
487 dm_bio_prison_free_cell(pool
->prison
, cell
);
490 static void cell_error_with_code(struct pool
*pool
,
491 struct dm_bio_prison_cell
*cell
, blk_status_t error_code
)
493 dm_cell_error(pool
->prison
, cell
, error_code
);
494 dm_bio_prison_free_cell(pool
->prison
, cell
);
497 static blk_status_t
get_pool_io_error_code(struct pool
*pool
)
499 return pool
->out_of_data_space
? BLK_STS_NOSPC
: BLK_STS_IOERR
;
502 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
504 cell_error_with_code(pool
, cell
, get_pool_io_error_code(pool
));
507 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
509 cell_error_with_code(pool
, cell
, 0);
512 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
514 cell_error_with_code(pool
, cell
, BLK_STS_DM_REQUEUE
);
517 /*----------------------------------------------------------------*/
520 * A global list of pools that uses a struct mapped_device as a key.
522 static struct dm_thin_pool_table
{
524 struct list_head pools
;
525 } dm_thin_pool_table
;
527 static void pool_table_init(void)
529 mutex_init(&dm_thin_pool_table
.mutex
);
530 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
533 static void pool_table_exit(void)
535 mutex_destroy(&dm_thin_pool_table
.mutex
);
538 static void __pool_table_insert(struct pool
*pool
)
540 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
541 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
544 static void __pool_table_remove(struct pool
*pool
)
546 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
547 list_del(&pool
->list
);
550 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
552 struct pool
*pool
= NULL
, *tmp
;
554 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
556 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
557 if (tmp
->pool_md
== md
) {
566 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
568 struct pool
*pool
= NULL
, *tmp
;
570 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
572 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
573 if (tmp
->md_dev
== md_dev
) {
582 /*----------------------------------------------------------------*/
584 struct dm_thin_endio_hook
{
586 struct dm_deferred_entry
*shared_read_entry
;
587 struct dm_deferred_entry
*all_io_entry
;
588 struct dm_thin_new_mapping
*overwrite_mapping
;
589 struct rb_node rb_node
;
590 struct dm_bio_prison_cell
*cell
;
593 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
595 bio_list_merge(bios
, master
);
596 bio_list_init(master
);
599 static void error_bio_list(struct bio_list
*bios
, blk_status_t error
)
603 while ((bio
= bio_list_pop(bios
))) {
604 bio
->bi_status
= error
;
609 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
,
612 struct bio_list bios
;
614 bio_list_init(&bios
);
616 spin_lock_irq(&tc
->lock
);
617 __merge_bio_list(&bios
, master
);
618 spin_unlock_irq(&tc
->lock
);
620 error_bio_list(&bios
, error
);
623 static void requeue_deferred_cells(struct thin_c
*tc
)
625 struct pool
*pool
= tc
->pool
;
626 struct list_head cells
;
627 struct dm_bio_prison_cell
*cell
, *tmp
;
629 INIT_LIST_HEAD(&cells
);
631 spin_lock_irq(&tc
->lock
);
632 list_splice_init(&tc
->deferred_cells
, &cells
);
633 spin_unlock_irq(&tc
->lock
);
635 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
636 cell_requeue(pool
, cell
);
639 static void requeue_io(struct thin_c
*tc
)
641 struct bio_list bios
;
643 bio_list_init(&bios
);
645 spin_lock_irq(&tc
->lock
);
646 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
647 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
648 spin_unlock_irq(&tc
->lock
);
650 error_bio_list(&bios
, BLK_STS_DM_REQUEUE
);
651 requeue_deferred_cells(tc
);
654 static void error_retry_list_with_code(struct pool
*pool
, blk_status_t error
)
659 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
660 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
664 static void error_retry_list(struct pool
*pool
)
666 error_retry_list_with_code(pool
, get_pool_io_error_code(pool
));
670 * This section of code contains the logic for processing a thin device's IO.
671 * Much of the code depends on pool object resources (lists, workqueues, etc)
672 * but most is exclusively called from the thin target rather than the thin-pool
676 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
678 struct pool
*pool
= tc
->pool
;
679 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
681 if (block_size_is_power_of_two(pool
))
682 block_nr
>>= pool
->sectors_per_block_shift
;
684 (void) sector_div(block_nr
, pool
->sectors_per_block
);
690 * Returns the _complete_ blocks that this bio covers.
692 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
693 dm_block_t
*begin
, dm_block_t
*end
)
695 struct pool
*pool
= tc
->pool
;
696 sector_t b
= bio
->bi_iter
.bi_sector
;
697 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
699 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
701 if (block_size_is_power_of_two(pool
)) {
702 b
>>= pool
->sectors_per_block_shift
;
703 e
>>= pool
->sectors_per_block_shift
;
705 (void) sector_div(b
, pool
->sectors_per_block
);
706 (void) sector_div(e
, pool
->sectors_per_block
);
710 /* Can happen if the bio is within a single block. */
717 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
719 struct pool
*pool
= tc
->pool
;
720 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
722 bio_set_dev(bio
, tc
->pool_dev
->bdev
);
723 if (block_size_is_power_of_two(pool
))
724 bio
->bi_iter
.bi_sector
=
725 (block
<< pool
->sectors_per_block_shift
) |
726 (bi_sector
& (pool
->sectors_per_block
- 1));
728 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
729 sector_div(bi_sector
, pool
->sectors_per_block
);
732 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
734 bio_set_dev(bio
, tc
->origin_dev
->bdev
);
737 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
739 return op_is_flush(bio
->bi_opf
) &&
740 dm_thin_changed_this_transaction(tc
->td
);
743 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
745 struct dm_thin_endio_hook
*h
;
747 if (bio_op(bio
) == REQ_OP_DISCARD
)
750 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
751 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
754 static void issue(struct thin_c
*tc
, struct bio
*bio
)
756 struct pool
*pool
= tc
->pool
;
758 if (!bio_triggers_commit(tc
, bio
)) {
759 generic_make_request(bio
);
764 * Complete bio with an error if earlier I/O caused changes to
765 * the metadata that can't be committed e.g, due to I/O errors
766 * on the metadata device.
768 if (dm_thin_aborted_changes(tc
->td
)) {
774 * Batch together any bios that trigger commits and then issue a
775 * single commit for them in process_deferred_bios().
777 spin_lock_irq(&pool
->lock
);
778 bio_list_add(&pool
->deferred_flush_bios
, bio
);
779 spin_unlock_irq(&pool
->lock
);
782 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
784 remap_to_origin(tc
, bio
);
788 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
791 remap(tc
, bio
, block
);
795 /*----------------------------------------------------------------*/
798 * Bio endio functions.
800 struct dm_thin_new_mapping
{
801 struct list_head list
;
807 * Track quiescing, copying and zeroing preparation actions. When this
808 * counter hits zero the block is prepared and can be inserted into the
811 atomic_t prepare_actions
;
815 dm_block_t virt_begin
, virt_end
;
816 dm_block_t data_block
;
817 struct dm_bio_prison_cell
*cell
;
820 * If the bio covers the whole area of a block then we can avoid
821 * zeroing or copying. Instead this bio is hooked. The bio will
822 * still be in the cell, so care has to be taken to avoid issuing
826 bio_end_io_t
*saved_bi_end_io
;
829 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
831 struct pool
*pool
= m
->tc
->pool
;
833 if (atomic_dec_and_test(&m
->prepare_actions
)) {
834 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
839 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
842 struct pool
*pool
= m
->tc
->pool
;
844 spin_lock_irqsave(&pool
->lock
, flags
);
845 __complete_mapping_preparation(m
);
846 spin_unlock_irqrestore(&pool
->lock
, flags
);
849 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
851 struct dm_thin_new_mapping
*m
= context
;
853 m
->status
= read_err
|| write_err
? BLK_STS_IOERR
: 0;
854 complete_mapping_preparation(m
);
857 static void overwrite_endio(struct bio
*bio
)
859 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
860 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
862 bio
->bi_end_io
= m
->saved_bi_end_io
;
864 m
->status
= bio
->bi_status
;
865 complete_mapping_preparation(m
);
868 /*----------------------------------------------------------------*/
875 * Prepared mapping jobs.
879 * This sends the bios in the cell, except the original holder, back
880 * to the deferred_bios list.
882 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
884 struct pool
*pool
= tc
->pool
;
888 spin_lock_irqsave(&tc
->lock
, flags
);
889 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
890 has_work
= !bio_list_empty(&tc
->deferred_bio_list
);
891 spin_unlock_irqrestore(&tc
->lock
, flags
);
897 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
901 struct bio_list defer_bios
;
902 struct bio_list issue_bios
;
905 static void __inc_remap_and_issue_cell(void *context
,
906 struct dm_bio_prison_cell
*cell
)
908 struct remap_info
*info
= context
;
911 while ((bio
= bio_list_pop(&cell
->bios
))) {
912 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
)
913 bio_list_add(&info
->defer_bios
, bio
);
915 inc_all_io_entry(info
->tc
->pool
, bio
);
918 * We can't issue the bios with the bio prison lock
919 * held, so we add them to a list to issue on
920 * return from this function.
922 bio_list_add(&info
->issue_bios
, bio
);
927 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
928 struct dm_bio_prison_cell
*cell
,
932 struct remap_info info
;
935 bio_list_init(&info
.defer_bios
);
936 bio_list_init(&info
.issue_bios
);
939 * We have to be careful to inc any bios we're about to issue
940 * before the cell is released, and avoid a race with new bios
941 * being added to the cell.
943 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
946 while ((bio
= bio_list_pop(&info
.defer_bios
)))
947 thin_defer_bio(tc
, bio
);
949 while ((bio
= bio_list_pop(&info
.issue_bios
)))
950 remap_and_issue(info
.tc
, bio
, block
);
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
955 cell_error(m
->tc
->pool
, m
->cell
);
957 mempool_free(m
, &m
->tc
->pool
->mapping_pool
);
960 static void complete_overwrite_bio(struct thin_c
*tc
, struct bio
*bio
)
962 struct pool
*pool
= tc
->pool
;
965 * If the bio has the REQ_FUA flag set we must commit the metadata
966 * before signaling its completion.
968 if (!bio_triggers_commit(tc
, bio
)) {
974 * Complete bio with an error if earlier I/O caused changes to the
975 * metadata that can't be committed, e.g, due to I/O errors on the
978 if (dm_thin_aborted_changes(tc
->td
)) {
984 * Batch together any bios that trigger commits and then issue a
985 * single commit for them in process_deferred_bios().
987 spin_lock_irq(&pool
->lock
);
988 bio_list_add(&pool
->deferred_flush_completions
, bio
);
989 spin_unlock_irq(&pool
->lock
);
992 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
994 struct thin_c
*tc
= m
->tc
;
995 struct pool
*pool
= tc
->pool
;
996 struct bio
*bio
= m
->bio
;
1000 cell_error(pool
, m
->cell
);
1005 * Commit the prepared block into the mapping btree.
1006 * Any I/O for this block arriving after this point will get
1007 * remapped to it directly.
1009 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
1011 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
1012 cell_error(pool
, m
->cell
);
1017 * Release any bios held while the block was being provisioned.
1018 * If we are processing a write bio that completely covers the block,
1019 * we already processed it so can ignore it now when processing
1020 * the bios in the cell.
1023 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1024 complete_overwrite_bio(tc
, bio
);
1026 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
1027 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
1028 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1033 mempool_free(m
, &pool
->mapping_pool
);
1036 /*----------------------------------------------------------------*/
1038 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
1040 struct thin_c
*tc
= m
->tc
;
1042 cell_defer_no_holder(tc
, m
->cell
);
1043 mempool_free(m
, &tc
->pool
->mapping_pool
);
1046 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
1048 bio_io_error(m
->bio
);
1049 free_discard_mapping(m
);
1052 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
1055 free_discard_mapping(m
);
1058 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
1061 struct thin_c
*tc
= m
->tc
;
1063 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
1065 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
1066 bio_io_error(m
->bio
);
1070 cell_defer_no_holder(tc
, m
->cell
);
1071 mempool_free(m
, &tc
->pool
->mapping_pool
);
1074 /*----------------------------------------------------------------*/
1076 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
,
1077 struct bio
*discard_parent
)
1080 * We've already unmapped this range of blocks, but before we
1081 * passdown we have to check that these blocks are now unused.
1085 struct thin_c
*tc
= m
->tc
;
1086 struct pool
*pool
= tc
->pool
;
1087 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1088 struct discard_op op
;
1090 begin_discard(&op
, tc
, discard_parent
);
1092 /* find start of unmapped run */
1093 for (; b
< end
; b
++) {
1094 r
= dm_pool_block_is_shared(pool
->pmd
, b
, &shared
);
1105 /* find end of run */
1106 for (e
= b
+ 1; e
!= end
; e
++) {
1107 r
= dm_pool_block_is_shared(pool
->pmd
, e
, &shared
);
1115 r
= issue_discard(&op
, b
, e
);
1122 end_discard(&op
, r
);
1125 static void queue_passdown_pt2(struct dm_thin_new_mapping
*m
)
1127 unsigned long flags
;
1128 struct pool
*pool
= m
->tc
->pool
;
1130 spin_lock_irqsave(&pool
->lock
, flags
);
1131 list_add_tail(&m
->list
, &pool
->prepared_discards_pt2
);
1132 spin_unlock_irqrestore(&pool
->lock
, flags
);
1136 static void passdown_endio(struct bio
*bio
)
1139 * It doesn't matter if the passdown discard failed, we still want
1140 * to unmap (we ignore err).
1142 queue_passdown_pt2(bio
->bi_private
);
1146 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping
*m
)
1149 struct thin_c
*tc
= m
->tc
;
1150 struct pool
*pool
= tc
->pool
;
1151 struct bio
*discard_parent
;
1152 dm_block_t data_end
= m
->data_block
+ (m
->virt_end
- m
->virt_begin
);
1155 * Only this thread allocates blocks, so we can be sure that the
1156 * newly unmapped blocks will not be allocated before the end of
1159 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1161 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1162 bio_io_error(m
->bio
);
1163 cell_defer_no_holder(tc
, m
->cell
);
1164 mempool_free(m
, &pool
->mapping_pool
);
1169 * Increment the unmapped blocks. This prevents a race between the
1170 * passdown io and reallocation of freed blocks.
1172 r
= dm_pool_inc_data_range(pool
->pmd
, m
->data_block
, data_end
);
1174 metadata_operation_failed(pool
, "dm_pool_inc_data_range", r
);
1175 bio_io_error(m
->bio
);
1176 cell_defer_no_holder(tc
, m
->cell
);
1177 mempool_free(m
, &pool
->mapping_pool
);
1181 discard_parent
= bio_alloc(GFP_NOIO
, 1);
1182 if (!discard_parent
) {
1183 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1184 dm_device_name(tc
->pool
->pool_md
));
1185 queue_passdown_pt2(m
);
1188 discard_parent
->bi_end_io
= passdown_endio
;
1189 discard_parent
->bi_private
= m
;
1191 if (m
->maybe_shared
)
1192 passdown_double_checking_shared_status(m
, discard_parent
);
1194 struct discard_op op
;
1196 begin_discard(&op
, tc
, discard_parent
);
1197 r
= issue_discard(&op
, m
->data_block
, data_end
);
1198 end_discard(&op
, r
);
1203 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping
*m
)
1206 struct thin_c
*tc
= m
->tc
;
1207 struct pool
*pool
= tc
->pool
;
1210 * The passdown has completed, so now we can decrement all those
1213 r
= dm_pool_dec_data_range(pool
->pmd
, m
->data_block
,
1214 m
->data_block
+ (m
->virt_end
- m
->virt_begin
));
1216 metadata_operation_failed(pool
, "dm_pool_dec_data_range", r
);
1217 bio_io_error(m
->bio
);
1221 cell_defer_no_holder(tc
, m
->cell
);
1222 mempool_free(m
, &pool
->mapping_pool
);
1225 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1226 process_mapping_fn
*fn
)
1228 struct list_head maps
;
1229 struct dm_thin_new_mapping
*m
, *tmp
;
1231 INIT_LIST_HEAD(&maps
);
1232 spin_lock_irq(&pool
->lock
);
1233 list_splice_init(head
, &maps
);
1234 spin_unlock_irq(&pool
->lock
);
1236 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1241 * Deferred bio jobs.
1243 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1245 return bio
->bi_iter
.bi_size
==
1246 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1249 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1251 return (bio_data_dir(bio
) == WRITE
) &&
1252 io_overlaps_block(pool
, bio
);
1255 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1258 *save
= bio
->bi_end_io
;
1259 bio
->bi_end_io
= fn
;
1262 static int ensure_next_mapping(struct pool
*pool
)
1264 if (pool
->next_mapping
)
1267 pool
->next_mapping
= mempool_alloc(&pool
->mapping_pool
, GFP_ATOMIC
);
1269 return pool
->next_mapping
? 0 : -ENOMEM
;
1272 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1274 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1276 BUG_ON(!pool
->next_mapping
);
1278 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1279 INIT_LIST_HEAD(&m
->list
);
1282 pool
->next_mapping
= NULL
;
1287 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1288 sector_t begin
, sector_t end
)
1290 struct dm_io_region to
;
1292 to
.bdev
= tc
->pool_dev
->bdev
;
1294 to
.count
= end
- begin
;
1296 dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1299 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1300 dm_block_t data_begin
,
1301 struct dm_thin_new_mapping
*m
)
1303 struct pool
*pool
= tc
->pool
;
1304 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1306 h
->overwrite_mapping
= m
;
1308 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1309 inc_all_io_entry(pool
, bio
);
1310 remap_and_issue(tc
, bio
, data_begin
);
1314 * A partial copy also needs to zero the uncopied region.
1316 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1317 struct dm_dev
*origin
, dm_block_t data_origin
,
1318 dm_block_t data_dest
,
1319 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1322 struct pool
*pool
= tc
->pool
;
1323 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1326 m
->virt_begin
= virt_block
;
1327 m
->virt_end
= virt_block
+ 1u;
1328 m
->data_block
= data_dest
;
1332 * quiesce action + copy action + an extra reference held for the
1333 * duration of this function (we may need to inc later for a
1336 atomic_set(&m
->prepare_actions
, 3);
1338 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1339 complete_mapping_preparation(m
); /* already quiesced */
1342 * IO to pool_dev remaps to the pool target's data_dev.
1344 * If the whole block of data is being overwritten, we can issue the
1345 * bio immediately. Otherwise we use kcopyd to clone the data first.
1347 if (io_overwrites_block(pool
, bio
))
1348 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1350 struct dm_io_region from
, to
;
1352 from
.bdev
= origin
->bdev
;
1353 from
.sector
= data_origin
* pool
->sectors_per_block
;
1356 to
.bdev
= tc
->pool_dev
->bdev
;
1357 to
.sector
= data_dest
* pool
->sectors_per_block
;
1360 dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1361 0, copy_complete
, m
);
1364 * Do we need to zero a tail region?
1366 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1367 atomic_inc(&m
->prepare_actions
);
1369 data_dest
* pool
->sectors_per_block
+ len
,
1370 (data_dest
+ 1) * pool
->sectors_per_block
);
1374 complete_mapping_preparation(m
); /* drop our ref */
1377 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1378 dm_block_t data_origin
, dm_block_t data_dest
,
1379 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1381 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1382 data_origin
, data_dest
, cell
, bio
,
1383 tc
->pool
->sectors_per_block
);
1386 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1387 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1390 struct pool
*pool
= tc
->pool
;
1391 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1393 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1395 m
->virt_begin
= virt_block
;
1396 m
->virt_end
= virt_block
+ 1u;
1397 m
->data_block
= data_block
;
1401 * If the whole block of data is being overwritten or we are not
1402 * zeroing pre-existing data, we can issue the bio immediately.
1403 * Otherwise we use kcopyd to zero the data first.
1405 if (pool
->pf
.zero_new_blocks
) {
1406 if (io_overwrites_block(pool
, bio
))
1407 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1409 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1410 (data_block
+ 1) * pool
->sectors_per_block
);
1412 process_prepared_mapping(m
);
1415 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1416 dm_block_t data_dest
,
1417 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1419 struct pool
*pool
= tc
->pool
;
1420 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1421 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1423 if (virt_block_end
<= tc
->origin_size
)
1424 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1425 virt_block
, data_dest
, cell
, bio
,
1426 pool
->sectors_per_block
);
1428 else if (virt_block_begin
< tc
->origin_size
)
1429 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1430 virt_block
, data_dest
, cell
, bio
,
1431 tc
->origin_size
- virt_block_begin
);
1434 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1437 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1439 static void requeue_bios(struct pool
*pool
);
1441 static bool is_read_only_pool_mode(enum pool_mode mode
)
1443 return (mode
== PM_OUT_OF_METADATA_SPACE
|| mode
== PM_READ_ONLY
);
1446 static bool is_read_only(struct pool
*pool
)
1448 return is_read_only_pool_mode(get_pool_mode(pool
));
1451 static void check_for_metadata_space(struct pool
*pool
)
1454 const char *ooms_reason
= NULL
;
1457 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free
);
1459 ooms_reason
= "Could not get free metadata blocks";
1461 ooms_reason
= "No free metadata blocks";
1463 if (ooms_reason
&& !is_read_only(pool
)) {
1464 DMERR("%s", ooms_reason
);
1465 set_pool_mode(pool
, PM_OUT_OF_METADATA_SPACE
);
1469 static void check_for_data_space(struct pool
*pool
)
1474 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1477 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1482 set_pool_mode(pool
, PM_WRITE
);
1488 * A non-zero return indicates read_only or fail_io mode.
1489 * Many callers don't care about the return value.
1491 static int commit(struct pool
*pool
)
1495 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
)
1498 r
= dm_pool_commit_metadata(pool
->pmd
);
1500 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1502 check_for_metadata_space(pool
);
1503 check_for_data_space(pool
);
1509 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1511 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1512 DMWARN("%s: reached low water mark for data device: sending event.",
1513 dm_device_name(pool
->pool_md
));
1514 spin_lock_irq(&pool
->lock
);
1515 pool
->low_water_triggered
= true;
1516 spin_unlock_irq(&pool
->lock
);
1517 dm_table_event(pool
->ti
->table
);
1521 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1524 dm_block_t free_blocks
;
1525 struct pool
*pool
= tc
->pool
;
1527 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1530 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1532 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1536 check_low_water_mark(pool
, free_blocks
);
1540 * Try to commit to see if that will free up some
1547 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1549 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1554 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1559 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1562 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1564 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1568 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &free_blocks
);
1570 metadata_operation_failed(pool
, "dm_pool_get_free_metadata_block_count", r
);
1575 /* Let's commit before we use up the metadata reserve. */
1585 * If we have run out of space, queue bios until the device is
1586 * resumed, presumably after having been reloaded with more space.
1588 static void retry_on_resume(struct bio
*bio
)
1590 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1591 struct thin_c
*tc
= h
->tc
;
1593 spin_lock_irq(&tc
->lock
);
1594 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1595 spin_unlock_irq(&tc
->lock
);
1598 static blk_status_t
should_error_unserviceable_bio(struct pool
*pool
)
1600 enum pool_mode m
= get_pool_mode(pool
);
1604 /* Shouldn't get here */
1605 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1606 return BLK_STS_IOERR
;
1608 case PM_OUT_OF_DATA_SPACE
:
1609 return pool
->pf
.error_if_no_space
? BLK_STS_NOSPC
: 0;
1611 case PM_OUT_OF_METADATA_SPACE
:
1614 return BLK_STS_IOERR
;
1616 /* Shouldn't get here */
1617 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1618 return BLK_STS_IOERR
;
1622 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1624 blk_status_t error
= should_error_unserviceable_bio(pool
);
1627 bio
->bi_status
= error
;
1630 retry_on_resume(bio
);
1633 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1636 struct bio_list bios
;
1639 error
= should_error_unserviceable_bio(pool
);
1641 cell_error_with_code(pool
, cell
, error
);
1645 bio_list_init(&bios
);
1646 cell_release(pool
, cell
, &bios
);
1648 while ((bio
= bio_list_pop(&bios
)))
1649 retry_on_resume(bio
);
1652 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1653 struct dm_bio_prison_cell
*virt_cell
)
1655 struct pool
*pool
= tc
->pool
;
1656 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1659 * We don't need to lock the data blocks, since there's no
1660 * passdown. We only lock data blocks for allocation and breaking sharing.
1663 m
->virt_begin
= virt_cell
->key
.block_begin
;
1664 m
->virt_end
= virt_cell
->key
.block_end
;
1665 m
->cell
= virt_cell
;
1666 m
->bio
= virt_cell
->holder
;
1668 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1669 pool
->process_prepared_discard(m
);
1672 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1675 struct pool
*pool
= tc
->pool
;
1679 struct dm_cell_key data_key
;
1680 struct dm_bio_prison_cell
*data_cell
;
1681 struct dm_thin_new_mapping
*m
;
1682 dm_block_t virt_begin
, virt_end
, data_begin
;
1684 while (begin
!= end
) {
1685 r
= ensure_next_mapping(pool
);
1687 /* we did our best */
1690 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1691 &data_begin
, &maybe_shared
);
1694 * Silently fail, letting any mappings we've
1699 build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ (virt_end
- virt_begin
), &data_key
);
1700 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1701 /* contention, we'll give up with this range */
1707 * IO may still be going to the destination block. We must
1708 * quiesce before we can do the removal.
1710 m
= get_next_mapping(pool
);
1712 m
->maybe_shared
= maybe_shared
;
1713 m
->virt_begin
= virt_begin
;
1714 m
->virt_end
= virt_end
;
1715 m
->data_block
= data_begin
;
1716 m
->cell
= data_cell
;
1720 * The parent bio must not complete before sub discard bios are
1721 * chained to it (see end_discard's bio_chain)!
1723 * This per-mapping bi_remaining increment is paired with
1724 * the implicit decrement that occurs via bio_endio() in
1727 bio_inc_remaining(bio
);
1728 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1729 pool
->process_prepared_discard(m
);
1735 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1737 struct bio
*bio
= virt_cell
->holder
;
1738 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1741 * The virt_cell will only get freed once the origin bio completes.
1742 * This means it will remain locked while all the individual
1743 * passdown bios are in flight.
1745 h
->cell
= virt_cell
;
1746 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1749 * We complete the bio now, knowing that the bi_remaining field
1750 * will prevent completion until the sub range discards have
1756 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1758 dm_block_t begin
, end
;
1759 struct dm_cell_key virt_key
;
1760 struct dm_bio_prison_cell
*virt_cell
;
1762 get_bio_block_range(tc
, bio
, &begin
, &end
);
1765 * The discard covers less than a block.
1771 build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
);
1772 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
))
1774 * Potential starvation issue: We're relying on the
1775 * fs/application being well behaved, and not trying to
1776 * send IO to a region at the same time as discarding it.
1777 * If they do this persistently then it's possible this
1778 * cell will never be granted.
1782 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1785 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1786 struct dm_cell_key
*key
,
1787 struct dm_thin_lookup_result
*lookup_result
,
1788 struct dm_bio_prison_cell
*cell
)
1791 dm_block_t data_block
;
1792 struct pool
*pool
= tc
->pool
;
1794 r
= alloc_data_block(tc
, &data_block
);
1797 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1798 data_block
, cell
, bio
);
1802 retry_bios_on_resume(pool
, cell
);
1806 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1808 cell_error(pool
, cell
);
1813 static void __remap_and_issue_shared_cell(void *context
,
1814 struct dm_bio_prison_cell
*cell
)
1816 struct remap_info
*info
= context
;
1819 while ((bio
= bio_list_pop(&cell
->bios
))) {
1820 if (bio_data_dir(bio
) == WRITE
|| op_is_flush(bio
->bi_opf
) ||
1821 bio_op(bio
) == REQ_OP_DISCARD
)
1822 bio_list_add(&info
->defer_bios
, bio
);
1824 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1826 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1827 inc_all_io_entry(info
->tc
->pool
, bio
);
1828 bio_list_add(&info
->issue_bios
, bio
);
1833 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1834 struct dm_bio_prison_cell
*cell
,
1838 struct remap_info info
;
1841 bio_list_init(&info
.defer_bios
);
1842 bio_list_init(&info
.issue_bios
);
1844 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1847 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1848 thin_defer_bio(tc
, bio
);
1850 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1851 remap_and_issue(tc
, bio
, block
);
1854 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1856 struct dm_thin_lookup_result
*lookup_result
,
1857 struct dm_bio_prison_cell
*virt_cell
)
1859 struct dm_bio_prison_cell
*data_cell
;
1860 struct pool
*pool
= tc
->pool
;
1861 struct dm_cell_key key
;
1864 * If cell is already occupied, then sharing is already in the process
1865 * of being broken so we have nothing further to do here.
1867 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1868 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1869 cell_defer_no_holder(tc
, virt_cell
);
1873 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1874 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1875 cell_defer_no_holder(tc
, virt_cell
);
1877 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1879 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1880 inc_all_io_entry(pool
, bio
);
1881 remap_and_issue(tc
, bio
, lookup_result
->block
);
1883 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1884 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1888 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1889 struct dm_bio_prison_cell
*cell
)
1892 dm_block_t data_block
;
1893 struct pool
*pool
= tc
->pool
;
1896 * Remap empty bios (flushes) immediately, without provisioning.
1898 if (!bio
->bi_iter
.bi_size
) {
1899 inc_all_io_entry(pool
, bio
);
1900 cell_defer_no_holder(tc
, cell
);
1902 remap_and_issue(tc
, bio
, 0);
1907 * Fill read bios with zeroes and complete them immediately.
1909 if (bio_data_dir(bio
) == READ
) {
1911 cell_defer_no_holder(tc
, cell
);
1916 r
= alloc_data_block(tc
, &data_block
);
1920 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1922 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1926 retry_bios_on_resume(pool
, cell
);
1930 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1932 cell_error(pool
, cell
);
1937 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1940 struct pool
*pool
= tc
->pool
;
1941 struct bio
*bio
= cell
->holder
;
1942 dm_block_t block
= get_bio_block(tc
, bio
);
1943 struct dm_thin_lookup_result lookup_result
;
1945 if (tc
->requeue_mode
) {
1946 cell_requeue(pool
, cell
);
1950 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1953 if (lookup_result
.shared
)
1954 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1956 inc_all_io_entry(pool
, bio
);
1957 remap_and_issue(tc
, bio
, lookup_result
.block
);
1958 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1963 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1964 inc_all_io_entry(pool
, bio
);
1965 cell_defer_no_holder(tc
, cell
);
1967 if (bio_end_sector(bio
) <= tc
->origin_size
)
1968 remap_to_origin_and_issue(tc
, bio
);
1970 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1972 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1973 remap_to_origin_and_issue(tc
, bio
);
1980 provision_block(tc
, bio
, block
, cell
);
1984 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1986 cell_defer_no_holder(tc
, cell
);
1992 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1994 struct pool
*pool
= tc
->pool
;
1995 dm_block_t block
= get_bio_block(tc
, bio
);
1996 struct dm_bio_prison_cell
*cell
;
1997 struct dm_cell_key key
;
2000 * If cell is already occupied, then the block is already
2001 * being provisioned so we have nothing further to do here.
2003 build_virtual_key(tc
->td
, block
, &key
);
2004 if (bio_detain(pool
, &key
, bio
, &cell
))
2007 process_cell(tc
, cell
);
2010 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
2011 struct dm_bio_prison_cell
*cell
)
2014 int rw
= bio_data_dir(bio
);
2015 dm_block_t block
= get_bio_block(tc
, bio
);
2016 struct dm_thin_lookup_result lookup_result
;
2018 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
2021 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
2022 handle_unserviceable_bio(tc
->pool
, bio
);
2024 cell_defer_no_holder(tc
, cell
);
2026 inc_all_io_entry(tc
->pool
, bio
);
2027 remap_and_issue(tc
, bio
, lookup_result
.block
);
2029 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
2035 cell_defer_no_holder(tc
, cell
);
2037 handle_unserviceable_bio(tc
->pool
, bio
);
2041 if (tc
->origin_dev
) {
2042 inc_all_io_entry(tc
->pool
, bio
);
2043 remap_to_origin_and_issue(tc
, bio
);
2052 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2055 cell_defer_no_holder(tc
, cell
);
2061 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
2063 __process_bio_read_only(tc
, bio
, NULL
);
2066 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2068 __process_bio_read_only(tc
, cell
->holder
, cell
);
2071 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
2076 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
2081 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2083 cell_success(tc
->pool
, cell
);
2086 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2088 cell_error(tc
->pool
, cell
);
2092 * FIXME: should we also commit due to size of transaction, measured in
2095 static int need_commit_due_to_time(struct pool
*pool
)
2097 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
2098 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
2101 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2102 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2104 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
2106 struct rb_node
**rbp
, *parent
;
2107 struct dm_thin_endio_hook
*pbd
;
2108 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
2110 rbp
= &tc
->sort_bio_list
.rb_node
;
2114 pbd
= thin_pbd(parent
);
2116 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
2117 rbp
= &(*rbp
)->rb_left
;
2119 rbp
= &(*rbp
)->rb_right
;
2122 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2123 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
2124 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
2127 static void __extract_sorted_bios(struct thin_c
*tc
)
2129 struct rb_node
*node
;
2130 struct dm_thin_endio_hook
*pbd
;
2133 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
2134 pbd
= thin_pbd(node
);
2135 bio
= thin_bio(pbd
);
2137 bio_list_add(&tc
->deferred_bio_list
, bio
);
2138 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
2141 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
2144 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
2147 struct bio_list bios
;
2149 bio_list_init(&bios
);
2150 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2151 bio_list_init(&tc
->deferred_bio_list
);
2153 /* Sort deferred_bio_list using rb-tree */
2154 while ((bio
= bio_list_pop(&bios
)))
2155 __thin_bio_rb_add(tc
, bio
);
2158 * Transfer the sorted bios in sort_bio_list back to
2159 * deferred_bio_list to allow lockless submission of
2162 __extract_sorted_bios(tc
);
2165 static void process_thin_deferred_bios(struct thin_c
*tc
)
2167 struct pool
*pool
= tc
->pool
;
2169 struct bio_list bios
;
2170 struct blk_plug plug
;
2173 if (tc
->requeue_mode
) {
2174 error_thin_bio_list(tc
, &tc
->deferred_bio_list
,
2175 BLK_STS_DM_REQUEUE
);
2179 bio_list_init(&bios
);
2181 spin_lock_irq(&tc
->lock
);
2183 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2184 spin_unlock_irq(&tc
->lock
);
2188 __sort_thin_deferred_bios(tc
);
2190 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2191 bio_list_init(&tc
->deferred_bio_list
);
2193 spin_unlock_irq(&tc
->lock
);
2195 blk_start_plug(&plug
);
2196 while ((bio
= bio_list_pop(&bios
))) {
2198 * If we've got no free new_mapping structs, and processing
2199 * this bio might require one, we pause until there are some
2200 * prepared mappings to process.
2202 if (ensure_next_mapping(pool
)) {
2203 spin_lock_irq(&tc
->lock
);
2204 bio_list_add(&tc
->deferred_bio_list
, bio
);
2205 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2206 spin_unlock_irq(&tc
->lock
);
2210 if (bio_op(bio
) == REQ_OP_DISCARD
)
2211 pool
->process_discard(tc
, bio
);
2213 pool
->process_bio(tc
, bio
);
2215 if ((count
++ & 127) == 0) {
2216 throttle_work_update(&pool
->throttle
);
2217 dm_pool_issue_prefetches(pool
->pmd
);
2220 blk_finish_plug(&plug
);
2223 static int cmp_cells(const void *lhs
, const void *rhs
)
2225 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2226 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2228 BUG_ON(!lhs_cell
->holder
);
2229 BUG_ON(!rhs_cell
->holder
);
2231 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2234 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2240 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
2243 struct dm_bio_prison_cell
*cell
, *tmp
;
2245 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2246 if (count
>= CELL_SORT_ARRAY_SIZE
)
2249 pool
->cell_sort_array
[count
++] = cell
;
2250 list_del(&cell
->user_list
);
2253 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2258 static void process_thin_deferred_cells(struct thin_c
*tc
)
2260 struct pool
*pool
= tc
->pool
;
2261 struct list_head cells
;
2262 struct dm_bio_prison_cell
*cell
;
2263 unsigned i
, j
, count
;
2265 INIT_LIST_HEAD(&cells
);
2267 spin_lock_irq(&tc
->lock
);
2268 list_splice_init(&tc
->deferred_cells
, &cells
);
2269 spin_unlock_irq(&tc
->lock
);
2271 if (list_empty(&cells
))
2275 count
= sort_cells(tc
->pool
, &cells
);
2277 for (i
= 0; i
< count
; i
++) {
2278 cell
= pool
->cell_sort_array
[i
];
2279 BUG_ON(!cell
->holder
);
2282 * If we've got no free new_mapping structs, and processing
2283 * this bio might require one, we pause until there are some
2284 * prepared mappings to process.
2286 if (ensure_next_mapping(pool
)) {
2287 for (j
= i
; j
< count
; j
++)
2288 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2290 spin_lock_irq(&tc
->lock
);
2291 list_splice(&cells
, &tc
->deferred_cells
);
2292 spin_unlock_irq(&tc
->lock
);
2296 if (bio_op(cell
->holder
) == REQ_OP_DISCARD
)
2297 pool
->process_discard_cell(tc
, cell
);
2299 pool
->process_cell(tc
, cell
);
2301 } while (!list_empty(&cells
));
2304 static void thin_get(struct thin_c
*tc
);
2305 static void thin_put(struct thin_c
*tc
);
2308 * We can't hold rcu_read_lock() around code that can block. So we
2309 * find a thin with the rcu lock held; bump a refcount; then drop
2312 static struct thin_c
*get_first_thin(struct pool
*pool
)
2314 struct thin_c
*tc
= NULL
;
2317 if (!list_empty(&pool
->active_thins
)) {
2318 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2326 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2328 struct thin_c
*old_tc
= tc
;
2331 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2343 static void process_deferred_bios(struct pool
*pool
)
2346 struct bio_list bios
, bio_completions
;
2349 tc
= get_first_thin(pool
);
2351 process_thin_deferred_cells(tc
);
2352 process_thin_deferred_bios(tc
);
2353 tc
= get_next_thin(pool
, tc
);
2357 * If there are any deferred flush bios, we must commit the metadata
2358 * before issuing them or signaling their completion.
2360 bio_list_init(&bios
);
2361 bio_list_init(&bio_completions
);
2363 spin_lock_irq(&pool
->lock
);
2364 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2365 bio_list_init(&pool
->deferred_flush_bios
);
2367 bio_list_merge(&bio_completions
, &pool
->deferred_flush_completions
);
2368 bio_list_init(&pool
->deferred_flush_completions
);
2369 spin_unlock_irq(&pool
->lock
);
2371 if (bio_list_empty(&bios
) && bio_list_empty(&bio_completions
) &&
2372 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2376 bio_list_merge(&bios
, &bio_completions
);
2378 while ((bio
= bio_list_pop(&bios
)))
2382 pool
->last_commit_jiffies
= jiffies
;
2384 while ((bio
= bio_list_pop(&bio_completions
)))
2387 while ((bio
= bio_list_pop(&bios
))) {
2389 * The data device was flushed as part of metadata commit,
2390 * so complete redundant flushes immediately.
2392 if (bio
->bi_opf
& REQ_PREFLUSH
)
2395 generic_make_request(bio
);
2399 static void do_worker(struct work_struct
*ws
)
2401 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2403 throttle_work_start(&pool
->throttle
);
2404 dm_pool_issue_prefetches(pool
->pmd
);
2405 throttle_work_update(&pool
->throttle
);
2406 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2407 throttle_work_update(&pool
->throttle
);
2408 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2409 throttle_work_update(&pool
->throttle
);
2410 process_prepared(pool
, &pool
->prepared_discards_pt2
, &pool
->process_prepared_discard_pt2
);
2411 throttle_work_update(&pool
->throttle
);
2412 process_deferred_bios(pool
);
2413 throttle_work_complete(&pool
->throttle
);
2417 * We want to commit periodically so that not too much
2418 * unwritten data builds up.
2420 static void do_waker(struct work_struct
*ws
)
2422 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2424 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2428 * We're holding onto IO to allow userland time to react. After the
2429 * timeout either the pool will have been resized (and thus back in
2430 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2432 static void do_no_space_timeout(struct work_struct
*ws
)
2434 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2437 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2438 pool
->pf
.error_if_no_space
= true;
2439 notify_of_pool_mode_change(pool
);
2440 error_retry_list_with_code(pool
, BLK_STS_NOSPC
);
2444 /*----------------------------------------------------------------*/
2447 struct work_struct worker
;
2448 struct completion complete
;
2451 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2453 return container_of(ws
, struct pool_work
, worker
);
2456 static void pool_work_complete(struct pool_work
*pw
)
2458 complete(&pw
->complete
);
2461 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2462 void (*fn
)(struct work_struct
*))
2464 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2465 init_completion(&pw
->complete
);
2466 queue_work(pool
->wq
, &pw
->worker
);
2467 wait_for_completion(&pw
->complete
);
2470 /*----------------------------------------------------------------*/
2472 struct noflush_work
{
2473 struct pool_work pw
;
2477 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2479 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2482 static void do_noflush_start(struct work_struct
*ws
)
2484 struct noflush_work
*w
= to_noflush(ws
);
2485 w
->tc
->requeue_mode
= true;
2487 pool_work_complete(&w
->pw
);
2490 static void do_noflush_stop(struct work_struct
*ws
)
2492 struct noflush_work
*w
= to_noflush(ws
);
2493 w
->tc
->requeue_mode
= false;
2494 pool_work_complete(&w
->pw
);
2497 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2499 struct noflush_work w
;
2502 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2505 /*----------------------------------------------------------------*/
2507 static bool passdown_enabled(struct pool_c
*pt
)
2509 return pt
->adjusted_pf
.discard_passdown
;
2512 static void set_discard_callbacks(struct pool
*pool
)
2514 struct pool_c
*pt
= pool
->ti
->private;
2516 if (passdown_enabled(pt
)) {
2517 pool
->process_discard_cell
= process_discard_cell_passdown
;
2518 pool
->process_prepared_discard
= process_prepared_discard_passdown_pt1
;
2519 pool
->process_prepared_discard_pt2
= process_prepared_discard_passdown_pt2
;
2521 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2522 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2526 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2528 struct pool_c
*pt
= pool
->ti
->private;
2529 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2530 enum pool_mode old_mode
= get_pool_mode(pool
);
2531 unsigned long no_space_timeout
= READ_ONCE(no_space_timeout_secs
) * HZ
;
2534 * Never allow the pool to transition to PM_WRITE mode if user
2535 * intervention is required to verify metadata and data consistency.
2537 if (new_mode
== PM_WRITE
&& needs_check
) {
2538 DMERR("%s: unable to switch pool to write mode until repaired.",
2539 dm_device_name(pool
->pool_md
));
2540 if (old_mode
!= new_mode
)
2541 new_mode
= old_mode
;
2543 new_mode
= PM_READ_ONLY
;
2546 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2547 * not going to recover without a thin_repair. So we never let the
2548 * pool move out of the old mode.
2550 if (old_mode
== PM_FAIL
)
2551 new_mode
= old_mode
;
2555 dm_pool_metadata_read_only(pool
->pmd
);
2556 pool
->process_bio
= process_bio_fail
;
2557 pool
->process_discard
= process_bio_fail
;
2558 pool
->process_cell
= process_cell_fail
;
2559 pool
->process_discard_cell
= process_cell_fail
;
2560 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2561 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2563 error_retry_list(pool
);
2566 case PM_OUT_OF_METADATA_SPACE
:
2568 dm_pool_metadata_read_only(pool
->pmd
);
2569 pool
->process_bio
= process_bio_read_only
;
2570 pool
->process_discard
= process_bio_success
;
2571 pool
->process_cell
= process_cell_read_only
;
2572 pool
->process_discard_cell
= process_cell_success
;
2573 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2574 pool
->process_prepared_discard
= process_prepared_discard_success
;
2576 error_retry_list(pool
);
2579 case PM_OUT_OF_DATA_SPACE
:
2581 * Ideally we'd never hit this state; the low water mark
2582 * would trigger userland to extend the pool before we
2583 * completely run out of data space. However, many small
2584 * IOs to unprovisioned space can consume data space at an
2585 * alarming rate. Adjust your low water mark if you're
2586 * frequently seeing this mode.
2588 pool
->out_of_data_space
= true;
2589 pool
->process_bio
= process_bio_read_only
;
2590 pool
->process_discard
= process_discard_bio
;
2591 pool
->process_cell
= process_cell_read_only
;
2592 pool
->process_prepared_mapping
= process_prepared_mapping
;
2593 set_discard_callbacks(pool
);
2595 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2596 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2600 if (old_mode
== PM_OUT_OF_DATA_SPACE
)
2601 cancel_delayed_work_sync(&pool
->no_space_timeout
);
2602 pool
->out_of_data_space
= false;
2603 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2604 dm_pool_metadata_read_write(pool
->pmd
);
2605 pool
->process_bio
= process_bio
;
2606 pool
->process_discard
= process_discard_bio
;
2607 pool
->process_cell
= process_cell
;
2608 pool
->process_prepared_mapping
= process_prepared_mapping
;
2609 set_discard_callbacks(pool
);
2613 pool
->pf
.mode
= new_mode
;
2615 * The pool mode may have changed, sync it so bind_control_target()
2616 * doesn't cause an unexpected mode transition on resume.
2618 pt
->adjusted_pf
.mode
= new_mode
;
2620 if (old_mode
!= new_mode
)
2621 notify_of_pool_mode_change(pool
);
2624 static void abort_transaction(struct pool
*pool
)
2626 const char *dev_name
= dm_device_name(pool
->pool_md
);
2628 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2629 if (dm_pool_abort_metadata(pool
->pmd
)) {
2630 DMERR("%s: failed to abort metadata transaction", dev_name
);
2631 set_pool_mode(pool
, PM_FAIL
);
2634 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2635 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2636 set_pool_mode(pool
, PM_FAIL
);
2640 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2642 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2643 dm_device_name(pool
->pool_md
), op
, r
);
2645 abort_transaction(pool
);
2646 set_pool_mode(pool
, PM_READ_ONLY
);
2649 /*----------------------------------------------------------------*/
2652 * Mapping functions.
2656 * Called only while mapping a thin bio to hand it over to the workqueue.
2658 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2660 struct pool
*pool
= tc
->pool
;
2662 spin_lock_irq(&tc
->lock
);
2663 bio_list_add(&tc
->deferred_bio_list
, bio
);
2664 spin_unlock_irq(&tc
->lock
);
2669 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2671 struct pool
*pool
= tc
->pool
;
2673 throttle_lock(&pool
->throttle
);
2674 thin_defer_bio(tc
, bio
);
2675 throttle_unlock(&pool
->throttle
);
2678 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2680 struct pool
*pool
= tc
->pool
;
2682 throttle_lock(&pool
->throttle
);
2683 spin_lock_irq(&tc
->lock
);
2684 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2685 spin_unlock_irq(&tc
->lock
);
2686 throttle_unlock(&pool
->throttle
);
2691 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2693 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2696 h
->shared_read_entry
= NULL
;
2697 h
->all_io_entry
= NULL
;
2698 h
->overwrite_mapping
= NULL
;
2703 * Non-blocking function called from the thin target's map function.
2705 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2708 struct thin_c
*tc
= ti
->private;
2709 dm_block_t block
= get_bio_block(tc
, bio
);
2710 struct dm_thin_device
*td
= tc
->td
;
2711 struct dm_thin_lookup_result result
;
2712 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2713 struct dm_cell_key key
;
2715 thin_hook_bio(tc
, bio
);
2717 if (tc
->requeue_mode
) {
2718 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
2720 return DM_MAPIO_SUBMITTED
;
2723 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2725 return DM_MAPIO_SUBMITTED
;
2728 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
) {
2729 thin_defer_bio_with_throttle(tc
, bio
);
2730 return DM_MAPIO_SUBMITTED
;
2734 * We must hold the virtual cell before doing the lookup, otherwise
2735 * there's a race with discard.
2737 build_virtual_key(tc
->td
, block
, &key
);
2738 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2739 return DM_MAPIO_SUBMITTED
;
2741 r
= dm_thin_find_block(td
, block
, 0, &result
);
2744 * Note that we defer readahead too.
2748 if (unlikely(result
.shared
)) {
2750 * We have a race condition here between the
2751 * result.shared value returned by the lookup and
2752 * snapshot creation, which may cause new
2755 * To avoid this always quiesce the origin before
2756 * taking the snap. You want to do this anyway to
2757 * ensure a consistent application view
2760 * More distant ancestors are irrelevant. The
2761 * shared flag will be set in their case.
2763 thin_defer_cell(tc
, virt_cell
);
2764 return DM_MAPIO_SUBMITTED
;
2767 build_data_key(tc
->td
, result
.block
, &key
);
2768 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2769 cell_defer_no_holder(tc
, virt_cell
);
2770 return DM_MAPIO_SUBMITTED
;
2773 inc_all_io_entry(tc
->pool
, bio
);
2774 cell_defer_no_holder(tc
, data_cell
);
2775 cell_defer_no_holder(tc
, virt_cell
);
2777 remap(tc
, bio
, result
.block
);
2778 return DM_MAPIO_REMAPPED
;
2782 thin_defer_cell(tc
, virt_cell
);
2783 return DM_MAPIO_SUBMITTED
;
2787 * Must always call bio_io_error on failure.
2788 * dm_thin_find_block can fail with -EINVAL if the
2789 * pool is switched to fail-io mode.
2792 cell_defer_no_holder(tc
, virt_cell
);
2793 return DM_MAPIO_SUBMITTED
;
2797 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2799 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
2800 struct request_queue
*q
;
2802 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
2805 q
= bdev_get_queue(pt
->data_dev
->bdev
);
2806 return bdi_congested(q
->backing_dev_info
, bdi_bits
);
2809 static void requeue_bios(struct pool
*pool
)
2814 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2815 spin_lock_irq(&tc
->lock
);
2816 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2817 bio_list_init(&tc
->retry_on_resume_list
);
2818 spin_unlock_irq(&tc
->lock
);
2823 /*----------------------------------------------------------------
2824 * Binding of control targets to a pool object
2825 *--------------------------------------------------------------*/
2826 static bool data_dev_supports_discard(struct pool_c
*pt
)
2828 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2830 return q
&& blk_queue_discard(q
);
2833 static bool is_factor(sector_t block_size
, uint32_t n
)
2835 return !sector_div(block_size
, n
);
2839 * If discard_passdown was enabled verify that the data device
2840 * supports discards. Disable discard_passdown if not.
2842 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2844 struct pool
*pool
= pt
->pool
;
2845 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2846 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2847 const char *reason
= NULL
;
2848 char buf
[BDEVNAME_SIZE
];
2850 if (!pt
->adjusted_pf
.discard_passdown
)
2853 if (!data_dev_supports_discard(pt
))
2854 reason
= "discard unsupported";
2856 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2857 reason
= "max discard sectors smaller than a block";
2860 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2861 pt
->adjusted_pf
.discard_passdown
= false;
2865 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2867 struct pool_c
*pt
= ti
->private;
2870 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2872 enum pool_mode old_mode
= get_pool_mode(pool
);
2873 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2876 * Don't change the pool's mode until set_pool_mode() below.
2877 * Otherwise the pool's process_* function pointers may
2878 * not match the desired pool mode.
2880 pt
->adjusted_pf
.mode
= old_mode
;
2883 pool
->pf
= pt
->adjusted_pf
;
2884 pool
->low_water_blocks
= pt
->low_water_blocks
;
2886 set_pool_mode(pool
, new_mode
);
2891 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2897 /*----------------------------------------------------------------
2899 *--------------------------------------------------------------*/
2900 /* Initialize pool features. */
2901 static void pool_features_init(struct pool_features
*pf
)
2903 pf
->mode
= PM_WRITE
;
2904 pf
->zero_new_blocks
= true;
2905 pf
->discard_enabled
= true;
2906 pf
->discard_passdown
= true;
2907 pf
->error_if_no_space
= false;
2910 static void __pool_destroy(struct pool
*pool
)
2912 __pool_table_remove(pool
);
2914 vfree(pool
->cell_sort_array
);
2915 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2916 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2918 dm_bio_prison_destroy(pool
->prison
);
2919 dm_kcopyd_client_destroy(pool
->copier
);
2922 destroy_workqueue(pool
->wq
);
2924 if (pool
->next_mapping
)
2925 mempool_free(pool
->next_mapping
, &pool
->mapping_pool
);
2926 mempool_exit(&pool
->mapping_pool
);
2927 dm_deferred_set_destroy(pool
->shared_read_ds
);
2928 dm_deferred_set_destroy(pool
->all_io_ds
);
2932 static struct kmem_cache
*_new_mapping_cache
;
2934 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2935 struct block_device
*metadata_dev
,
2936 unsigned long block_size
,
2937 int read_only
, char **error
)
2942 struct dm_pool_metadata
*pmd
;
2943 bool format_device
= read_only
? false : true;
2945 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2947 *error
= "Error creating metadata object";
2948 return (struct pool
*)pmd
;
2951 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2953 *error
= "Error allocating memory for pool";
2954 err_p
= ERR_PTR(-ENOMEM
);
2959 pool
->sectors_per_block
= block_size
;
2960 if (block_size
& (block_size
- 1))
2961 pool
->sectors_per_block_shift
= -1;
2963 pool
->sectors_per_block_shift
= __ffs(block_size
);
2964 pool
->low_water_blocks
= 0;
2965 pool_features_init(&pool
->pf
);
2966 pool
->prison
= dm_bio_prison_create();
2967 if (!pool
->prison
) {
2968 *error
= "Error creating pool's bio prison";
2969 err_p
= ERR_PTR(-ENOMEM
);
2973 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2974 if (IS_ERR(pool
->copier
)) {
2975 r
= PTR_ERR(pool
->copier
);
2976 *error
= "Error creating pool's kcopyd client";
2978 goto bad_kcopyd_client
;
2982 * Create singlethreaded workqueue that will service all devices
2983 * that use this metadata.
2985 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2987 *error
= "Error creating pool's workqueue";
2988 err_p
= ERR_PTR(-ENOMEM
);
2992 throttle_init(&pool
->throttle
);
2993 INIT_WORK(&pool
->worker
, do_worker
);
2994 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2995 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2996 spin_lock_init(&pool
->lock
);
2997 bio_list_init(&pool
->deferred_flush_bios
);
2998 bio_list_init(&pool
->deferred_flush_completions
);
2999 INIT_LIST_HEAD(&pool
->prepared_mappings
);
3000 INIT_LIST_HEAD(&pool
->prepared_discards
);
3001 INIT_LIST_HEAD(&pool
->prepared_discards_pt2
);
3002 INIT_LIST_HEAD(&pool
->active_thins
);
3003 pool
->low_water_triggered
= false;
3004 pool
->suspended
= true;
3005 pool
->out_of_data_space
= false;
3007 pool
->shared_read_ds
= dm_deferred_set_create();
3008 if (!pool
->shared_read_ds
) {
3009 *error
= "Error creating pool's shared read deferred set";
3010 err_p
= ERR_PTR(-ENOMEM
);
3011 goto bad_shared_read_ds
;
3014 pool
->all_io_ds
= dm_deferred_set_create();
3015 if (!pool
->all_io_ds
) {
3016 *error
= "Error creating pool's all io deferred set";
3017 err_p
= ERR_PTR(-ENOMEM
);
3021 pool
->next_mapping
= NULL
;
3022 r
= mempool_init_slab_pool(&pool
->mapping_pool
, MAPPING_POOL_SIZE
,
3023 _new_mapping_cache
);
3025 *error
= "Error creating pool's mapping mempool";
3027 goto bad_mapping_pool
;
3030 pool
->cell_sort_array
=
3031 vmalloc(array_size(CELL_SORT_ARRAY_SIZE
,
3032 sizeof(*pool
->cell_sort_array
)));
3033 if (!pool
->cell_sort_array
) {
3034 *error
= "Error allocating cell sort array";
3035 err_p
= ERR_PTR(-ENOMEM
);
3036 goto bad_sort_array
;
3039 pool
->ref_count
= 1;
3040 pool
->last_commit_jiffies
= jiffies
;
3041 pool
->pool_md
= pool_md
;
3042 pool
->md_dev
= metadata_dev
;
3043 __pool_table_insert(pool
);
3048 mempool_exit(&pool
->mapping_pool
);
3050 dm_deferred_set_destroy(pool
->all_io_ds
);
3052 dm_deferred_set_destroy(pool
->shared_read_ds
);
3054 destroy_workqueue(pool
->wq
);
3056 dm_kcopyd_client_destroy(pool
->copier
);
3058 dm_bio_prison_destroy(pool
->prison
);
3062 if (dm_pool_metadata_close(pmd
))
3063 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
3068 static void __pool_inc(struct pool
*pool
)
3070 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3074 static void __pool_dec(struct pool
*pool
)
3076 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3077 BUG_ON(!pool
->ref_count
);
3078 if (!--pool
->ref_count
)
3079 __pool_destroy(pool
);
3082 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
3083 struct block_device
*metadata_dev
,
3084 unsigned long block_size
, int read_only
,
3085 char **error
, int *created
)
3087 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
3090 if (pool
->pool_md
!= pool_md
) {
3091 *error
= "metadata device already in use by a pool";
3092 return ERR_PTR(-EBUSY
);
3097 pool
= __pool_table_lookup(pool_md
);
3099 if (pool
->md_dev
!= metadata_dev
) {
3100 *error
= "different pool cannot replace a pool";
3101 return ERR_PTR(-EINVAL
);
3106 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
3114 /*----------------------------------------------------------------
3115 * Pool target methods
3116 *--------------------------------------------------------------*/
3117 static void pool_dtr(struct dm_target
*ti
)
3119 struct pool_c
*pt
= ti
->private;
3121 mutex_lock(&dm_thin_pool_table
.mutex
);
3123 unbind_control_target(pt
->pool
, ti
);
3124 __pool_dec(pt
->pool
);
3125 dm_put_device(ti
, pt
->metadata_dev
);
3126 dm_put_device(ti
, pt
->data_dev
);
3127 bio_uninit(&pt
->flush_bio
);
3130 mutex_unlock(&dm_thin_pool_table
.mutex
);
3133 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
3134 struct dm_target
*ti
)
3138 const char *arg_name
;
3140 static const struct dm_arg _args
[] = {
3141 {0, 4, "Invalid number of pool feature arguments"},
3145 * No feature arguments supplied.
3150 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
3154 while (argc
&& !r
) {
3155 arg_name
= dm_shift_arg(as
);
3158 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
3159 pf
->zero_new_blocks
= false;
3161 else if (!strcasecmp(arg_name
, "ignore_discard"))
3162 pf
->discard_enabled
= false;
3164 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
3165 pf
->discard_passdown
= false;
3167 else if (!strcasecmp(arg_name
, "read_only"))
3168 pf
->mode
= PM_READ_ONLY
;
3170 else if (!strcasecmp(arg_name
, "error_if_no_space"))
3171 pf
->error_if_no_space
= true;
3174 ti
->error
= "Unrecognised pool feature requested";
3183 static void metadata_low_callback(void *context
)
3185 struct pool
*pool
= context
;
3187 DMWARN("%s: reached low water mark for metadata device: sending event.",
3188 dm_device_name(pool
->pool_md
));
3190 dm_table_event(pool
->ti
->table
);
3194 * We need to flush the data device **before** committing the metadata.
3196 * This ensures that the data blocks of any newly inserted mappings are
3197 * properly written to non-volatile storage and won't be lost in case of a
3200 * Failure to do so can result in data corruption in the case of internal or
3201 * external snapshots and in the case of newly provisioned blocks, when block
3202 * zeroing is enabled.
3204 static int metadata_pre_commit_callback(void *context
)
3206 struct pool_c
*pt
= context
;
3207 struct bio
*flush_bio
= &pt
->flush_bio
;
3209 bio_reset(flush_bio
);
3210 bio_set_dev(flush_bio
, pt
->data_dev
->bdev
);
3211 flush_bio
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
3213 return submit_bio_wait(flush_bio
);
3216 static sector_t
get_dev_size(struct block_device
*bdev
)
3218 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
3221 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3223 sector_t metadata_dev_size
= get_dev_size(bdev
);
3224 char buffer
[BDEVNAME_SIZE
];
3226 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3227 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3228 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
3231 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3233 sector_t metadata_dev_size
= get_dev_size(bdev
);
3235 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3236 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3238 return metadata_dev_size
;
3241 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3243 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3245 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3247 return metadata_dev_size
;
3251 * When a metadata threshold is crossed a dm event is triggered, and
3252 * userland should respond by growing the metadata device. We could let
3253 * userland set the threshold, like we do with the data threshold, but I'm
3254 * not sure they know enough to do this well.
3256 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3259 * 4M is ample for all ops with the possible exception of thin
3260 * device deletion which is harmless if it fails (just retry the
3261 * delete after you've grown the device).
3263 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3264 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3268 * thin-pool <metadata dev> <data dev>
3269 * <data block size (sectors)>
3270 * <low water mark (blocks)>
3271 * [<#feature args> [<arg>]*]
3273 * Optional feature arguments are:
3274 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3275 * ignore_discard: disable discard
3276 * no_discard_passdown: don't pass discards down to the data device
3277 * read_only: Don't allow any changes to be made to the pool metadata.
3278 * error_if_no_space: error IOs, instead of queueing, if no space.
3280 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3282 int r
, pool_created
= 0;
3285 struct pool_features pf
;
3286 struct dm_arg_set as
;
3287 struct dm_dev
*data_dev
;
3288 unsigned long block_size
;
3289 dm_block_t low_water_blocks
;
3290 struct dm_dev
*metadata_dev
;
3291 fmode_t metadata_mode
;
3294 * FIXME Remove validation from scope of lock.
3296 mutex_lock(&dm_thin_pool_table
.mutex
);
3299 ti
->error
= "Invalid argument count";
3307 /* make sure metadata and data are different devices */
3308 if (!strcmp(argv
[0], argv
[1])) {
3309 ti
->error
= "Error setting metadata or data device";
3315 * Set default pool features.
3317 pool_features_init(&pf
);
3319 dm_consume_args(&as
, 4);
3320 r
= parse_pool_features(&as
, &pf
, ti
);
3324 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
3325 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3327 ti
->error
= "Error opening metadata block device";
3330 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3332 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
3334 ti
->error
= "Error getting data device";
3338 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3339 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3340 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3341 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3342 ti
->error
= "Invalid block size";
3347 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3348 ti
->error
= "Invalid low water mark";
3353 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3359 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
3360 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3367 * 'pool_created' reflects whether this is the first table load.
3368 * Top level discard support is not allowed to be changed after
3369 * initial load. This would require a pool reload to trigger thin
3372 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3373 ti
->error
= "Discard support cannot be disabled once enabled";
3375 goto out_flags_changed
;
3380 pt
->metadata_dev
= metadata_dev
;
3381 pt
->data_dev
= data_dev
;
3382 pt
->low_water_blocks
= low_water_blocks
;
3383 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3384 bio_init(&pt
->flush_bio
, NULL
, 0);
3385 ti
->num_flush_bios
= 1;
3388 * Only need to enable discards if the pool should pass
3389 * them down to the data device. The thin device's discard
3390 * processing will cause mappings to be removed from the btree.
3392 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3393 ti
->num_discard_bios
= 1;
3396 * Setting 'discards_supported' circumvents the normal
3397 * stacking of discard limits (this keeps the pool and
3398 * thin devices' discard limits consistent).
3400 ti
->discards_supported
= true;
3404 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3405 calc_metadata_threshold(pt
),
3406 metadata_low_callback
,
3409 goto out_flags_changed
;
3411 dm_pool_register_pre_commit_callback(pt
->pool
->pmd
,
3412 metadata_pre_commit_callback
,
3415 pt
->callbacks
.congested_fn
= pool_is_congested
;
3416 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
3418 mutex_unlock(&dm_thin_pool_table
.mutex
);
3427 dm_put_device(ti
, data_dev
);
3429 dm_put_device(ti
, metadata_dev
);
3431 mutex_unlock(&dm_thin_pool_table
.mutex
);
3436 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3439 struct pool_c
*pt
= ti
->private;
3440 struct pool
*pool
= pt
->pool
;
3443 * As this is a singleton target, ti->begin is always zero.
3445 spin_lock_irq(&pool
->lock
);
3446 bio_set_dev(bio
, pt
->data_dev
->bdev
);
3447 r
= DM_MAPIO_REMAPPED
;
3448 spin_unlock_irq(&pool
->lock
);
3453 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3456 struct pool_c
*pt
= ti
->private;
3457 struct pool
*pool
= pt
->pool
;
3458 sector_t data_size
= ti
->len
;
3459 dm_block_t sb_data_size
;
3461 *need_commit
= false;
3463 (void) sector_div(data_size
, pool
->sectors_per_block
);
3465 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3467 DMERR("%s: failed to retrieve data device size",
3468 dm_device_name(pool
->pool_md
));
3472 if (data_size
< sb_data_size
) {
3473 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3474 dm_device_name(pool
->pool_md
),
3475 (unsigned long long)data_size
, sb_data_size
);
3478 } else if (data_size
> sb_data_size
) {
3479 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3480 DMERR("%s: unable to grow the data device until repaired.",
3481 dm_device_name(pool
->pool_md
));
3486 DMINFO("%s: growing the data device from %llu to %llu blocks",
3487 dm_device_name(pool
->pool_md
),
3488 sb_data_size
, (unsigned long long)data_size
);
3489 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3491 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3495 *need_commit
= true;
3501 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3504 struct pool_c
*pt
= ti
->private;
3505 struct pool
*pool
= pt
->pool
;
3506 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3508 *need_commit
= false;
3510 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3512 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3514 DMERR("%s: failed to retrieve metadata device size",
3515 dm_device_name(pool
->pool_md
));
3519 if (metadata_dev_size
< sb_metadata_dev_size
) {
3520 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3521 dm_device_name(pool
->pool_md
),
3522 metadata_dev_size
, sb_metadata_dev_size
);
3525 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3526 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3527 DMERR("%s: unable to grow the metadata device until repaired.",
3528 dm_device_name(pool
->pool_md
));
3532 warn_if_metadata_device_too_big(pool
->md_dev
);
3533 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3534 dm_device_name(pool
->pool_md
),
3535 sb_metadata_dev_size
, metadata_dev_size
);
3537 if (get_pool_mode(pool
) == PM_OUT_OF_METADATA_SPACE
)
3538 set_pool_mode(pool
, PM_WRITE
);
3540 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3542 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3546 *need_commit
= true;
3553 * Retrieves the number of blocks of the data device from
3554 * the superblock and compares it to the actual device size,
3555 * thus resizing the data device in case it has grown.
3557 * This both copes with opening preallocated data devices in the ctr
3558 * being followed by a resume
3560 * calling the resume method individually after userspace has
3561 * grown the data device in reaction to a table event.
3563 static int pool_preresume(struct dm_target
*ti
)
3566 bool need_commit1
, need_commit2
;
3567 struct pool_c
*pt
= ti
->private;
3568 struct pool
*pool
= pt
->pool
;
3571 * Take control of the pool object.
3573 r
= bind_control_target(pool
, ti
);
3577 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3581 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3585 if (need_commit1
|| need_commit2
)
3586 (void) commit(pool
);
3591 static void pool_suspend_active_thins(struct pool
*pool
)
3595 /* Suspend all active thin devices */
3596 tc
= get_first_thin(pool
);
3598 dm_internal_suspend_noflush(tc
->thin_md
);
3599 tc
= get_next_thin(pool
, tc
);
3603 static void pool_resume_active_thins(struct pool
*pool
)
3607 /* Resume all active thin devices */
3608 tc
= get_first_thin(pool
);
3610 dm_internal_resume(tc
->thin_md
);
3611 tc
= get_next_thin(pool
, tc
);
3615 static void pool_resume(struct dm_target
*ti
)
3617 struct pool_c
*pt
= ti
->private;
3618 struct pool
*pool
= pt
->pool
;
3621 * Must requeue active_thins' bios and then resume
3622 * active_thins _before_ clearing 'suspend' flag.
3625 pool_resume_active_thins(pool
);
3627 spin_lock_irq(&pool
->lock
);
3628 pool
->low_water_triggered
= false;
3629 pool
->suspended
= false;
3630 spin_unlock_irq(&pool
->lock
);
3632 do_waker(&pool
->waker
.work
);
3635 static void pool_presuspend(struct dm_target
*ti
)
3637 struct pool_c
*pt
= ti
->private;
3638 struct pool
*pool
= pt
->pool
;
3640 spin_lock_irq(&pool
->lock
);
3641 pool
->suspended
= true;
3642 spin_unlock_irq(&pool
->lock
);
3644 pool_suspend_active_thins(pool
);
3647 static void pool_presuspend_undo(struct dm_target
*ti
)
3649 struct pool_c
*pt
= ti
->private;
3650 struct pool
*pool
= pt
->pool
;
3652 pool_resume_active_thins(pool
);
3654 spin_lock_irq(&pool
->lock
);
3655 pool
->suspended
= false;
3656 spin_unlock_irq(&pool
->lock
);
3659 static void pool_postsuspend(struct dm_target
*ti
)
3661 struct pool_c
*pt
= ti
->private;
3662 struct pool
*pool
= pt
->pool
;
3664 cancel_delayed_work_sync(&pool
->waker
);
3665 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3666 flush_workqueue(pool
->wq
);
3667 (void) commit(pool
);
3670 static int check_arg_count(unsigned argc
, unsigned args_required
)
3672 if (argc
!= args_required
) {
3673 DMWARN("Message received with %u arguments instead of %u.",
3674 argc
, args_required
);
3681 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3683 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3684 *dev_id
<= MAX_DEV_ID
)
3688 DMWARN("Message received with invalid device id: %s", arg
);
3693 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3698 r
= check_arg_count(argc
, 2);
3702 r
= read_dev_id(argv
[1], &dev_id
, 1);
3706 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3708 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3716 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3719 dm_thin_id origin_dev_id
;
3722 r
= check_arg_count(argc
, 3);
3726 r
= read_dev_id(argv
[1], &dev_id
, 1);
3730 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3734 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3736 DMWARN("Creation of new snapshot %s of device %s failed.",
3744 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3749 r
= check_arg_count(argc
, 2);
3753 r
= read_dev_id(argv
[1], &dev_id
, 1);
3757 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3759 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3764 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3766 dm_thin_id old_id
, new_id
;
3769 r
= check_arg_count(argc
, 3);
3773 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3774 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3778 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3779 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3783 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3785 DMWARN("Failed to change transaction id from %s to %s.",
3793 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3797 r
= check_arg_count(argc
, 1);
3801 (void) commit(pool
);
3803 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3805 DMWARN("reserve_metadata_snap message failed.");
3810 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3814 r
= check_arg_count(argc
, 1);
3818 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3820 DMWARN("release_metadata_snap message failed.");
3826 * Messages supported:
3827 * create_thin <dev_id>
3828 * create_snap <dev_id> <origin_id>
3830 * set_transaction_id <current_trans_id> <new_trans_id>
3831 * reserve_metadata_snap
3832 * release_metadata_snap
3834 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
,
3835 char *result
, unsigned maxlen
)
3838 struct pool_c
*pt
= ti
->private;
3839 struct pool
*pool
= pt
->pool
;
3841 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
) {
3842 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3843 dm_device_name(pool
->pool_md
));
3847 if (!strcasecmp(argv
[0], "create_thin"))
3848 r
= process_create_thin_mesg(argc
, argv
, pool
);
3850 else if (!strcasecmp(argv
[0], "create_snap"))
3851 r
= process_create_snap_mesg(argc
, argv
, pool
);
3853 else if (!strcasecmp(argv
[0], "delete"))
3854 r
= process_delete_mesg(argc
, argv
, pool
);
3856 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3857 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3859 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3860 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3862 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3863 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3866 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3869 (void) commit(pool
);
3874 static void emit_flags(struct pool_features
*pf
, char *result
,
3875 unsigned sz
, unsigned maxlen
)
3877 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3878 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3879 pf
->error_if_no_space
;
3880 DMEMIT("%u ", count
);
3882 if (!pf
->zero_new_blocks
)
3883 DMEMIT("skip_block_zeroing ");
3885 if (!pf
->discard_enabled
)
3886 DMEMIT("ignore_discard ");
3888 if (!pf
->discard_passdown
)
3889 DMEMIT("no_discard_passdown ");
3891 if (pf
->mode
== PM_READ_ONLY
)
3892 DMEMIT("read_only ");
3894 if (pf
->error_if_no_space
)
3895 DMEMIT("error_if_no_space ");
3900 * <transaction id> <used metadata sectors>/<total metadata sectors>
3901 * <used data sectors>/<total data sectors> <held metadata root>
3902 * <pool mode> <discard config> <no space config> <needs_check>
3904 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3905 unsigned status_flags
, char *result
, unsigned maxlen
)
3909 uint64_t transaction_id
;
3910 dm_block_t nr_free_blocks_data
;
3911 dm_block_t nr_free_blocks_metadata
;
3912 dm_block_t nr_blocks_data
;
3913 dm_block_t nr_blocks_metadata
;
3914 dm_block_t held_root
;
3915 enum pool_mode mode
;
3916 char buf
[BDEVNAME_SIZE
];
3917 char buf2
[BDEVNAME_SIZE
];
3918 struct pool_c
*pt
= ti
->private;
3919 struct pool
*pool
= pt
->pool
;
3922 case STATUSTYPE_INFO
:
3923 if (get_pool_mode(pool
) == PM_FAIL
) {
3928 /* Commit to ensure statistics aren't out-of-date */
3929 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3930 (void) commit(pool
);
3932 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3934 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3935 dm_device_name(pool
->pool_md
), r
);
3939 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3941 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3942 dm_device_name(pool
->pool_md
), r
);
3946 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3948 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3949 dm_device_name(pool
->pool_md
), r
);
3953 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3955 DMERR("%s: dm_pool_get_free_block_count returned %d",
3956 dm_device_name(pool
->pool_md
), r
);
3960 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3962 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3963 dm_device_name(pool
->pool_md
), r
);
3967 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3969 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3970 dm_device_name(pool
->pool_md
), r
);
3974 DMEMIT("%llu %llu/%llu %llu/%llu ",
3975 (unsigned long long)transaction_id
,
3976 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3977 (unsigned long long)nr_blocks_metadata
,
3978 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3979 (unsigned long long)nr_blocks_data
);
3982 DMEMIT("%llu ", held_root
);
3986 mode
= get_pool_mode(pool
);
3987 if (mode
== PM_OUT_OF_DATA_SPACE
)
3988 DMEMIT("out_of_data_space ");
3989 else if (is_read_only_pool_mode(mode
))
3994 if (!pool
->pf
.discard_enabled
)
3995 DMEMIT("ignore_discard ");
3996 else if (pool
->pf
.discard_passdown
)
3997 DMEMIT("discard_passdown ");
3999 DMEMIT("no_discard_passdown ");
4001 if (pool
->pf
.error_if_no_space
)
4002 DMEMIT("error_if_no_space ");
4004 DMEMIT("queue_if_no_space ");
4006 if (dm_pool_metadata_needs_check(pool
->pmd
))
4007 DMEMIT("needs_check ");
4011 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt
));
4015 case STATUSTYPE_TABLE
:
4016 DMEMIT("%s %s %lu %llu ",
4017 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
4018 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
4019 (unsigned long)pool
->sectors_per_block
,
4020 (unsigned long long)pt
->low_water_blocks
);
4021 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
4030 static int pool_iterate_devices(struct dm_target
*ti
,
4031 iterate_devices_callout_fn fn
, void *data
)
4033 struct pool_c
*pt
= ti
->private;
4035 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
4038 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4040 struct pool_c
*pt
= ti
->private;
4041 struct pool
*pool
= pt
->pool
;
4042 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
4045 * If max_sectors is smaller than pool->sectors_per_block adjust it
4046 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4047 * This is especially beneficial when the pool's data device is a RAID
4048 * device that has a full stripe width that matches pool->sectors_per_block
4049 * -- because even though partial RAID stripe-sized IOs will be issued to a
4050 * single RAID stripe; when aggregated they will end on a full RAID stripe
4051 * boundary.. which avoids additional partial RAID stripe writes cascading
4053 if (limits
->max_sectors
< pool
->sectors_per_block
) {
4054 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
4055 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
4056 limits
->max_sectors
--;
4057 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
4062 * If the system-determined stacked limits are compatible with the
4063 * pool's blocksize (io_opt is a factor) do not override them.
4065 if (io_opt_sectors
< pool
->sectors_per_block
||
4066 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
4067 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
4068 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
4070 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
4071 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
4075 * pt->adjusted_pf is a staging area for the actual features to use.
4076 * They get transferred to the live pool in bind_control_target()
4077 * called from pool_preresume().
4079 if (!pt
->adjusted_pf
.discard_enabled
) {
4081 * Must explicitly disallow stacking discard limits otherwise the
4082 * block layer will stack them if pool's data device has support.
4083 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4084 * user to see that, so make sure to set all discard limits to 0.
4086 limits
->discard_granularity
= 0;
4090 disable_passdown_if_not_supported(pt
);
4093 * The pool uses the same discard limits as the underlying data
4094 * device. DM core has already set this up.
4098 static struct target_type pool_target
= {
4099 .name
= "thin-pool",
4100 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
4101 DM_TARGET_IMMUTABLE
,
4102 .version
= {1, 21, 0},
4103 .module
= THIS_MODULE
,
4107 .presuspend
= pool_presuspend
,
4108 .presuspend_undo
= pool_presuspend_undo
,
4109 .postsuspend
= pool_postsuspend
,
4110 .preresume
= pool_preresume
,
4111 .resume
= pool_resume
,
4112 .message
= pool_message
,
4113 .status
= pool_status
,
4114 .iterate_devices
= pool_iterate_devices
,
4115 .io_hints
= pool_io_hints
,
4118 /*----------------------------------------------------------------
4119 * Thin target methods
4120 *--------------------------------------------------------------*/
4121 static void thin_get(struct thin_c
*tc
)
4123 refcount_inc(&tc
->refcount
);
4126 static void thin_put(struct thin_c
*tc
)
4128 if (refcount_dec_and_test(&tc
->refcount
))
4129 complete(&tc
->can_destroy
);
4132 static void thin_dtr(struct dm_target
*ti
)
4134 struct thin_c
*tc
= ti
->private;
4136 spin_lock_irq(&tc
->pool
->lock
);
4137 list_del_rcu(&tc
->list
);
4138 spin_unlock_irq(&tc
->pool
->lock
);
4142 wait_for_completion(&tc
->can_destroy
);
4144 mutex_lock(&dm_thin_pool_table
.mutex
);
4146 __pool_dec(tc
->pool
);
4147 dm_pool_close_thin_device(tc
->td
);
4148 dm_put_device(ti
, tc
->pool_dev
);
4150 dm_put_device(ti
, tc
->origin_dev
);
4153 mutex_unlock(&dm_thin_pool_table
.mutex
);
4157 * Thin target parameters:
4159 * <pool_dev> <dev_id> [origin_dev]
4161 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4162 * dev_id: the internal device identifier
4163 * origin_dev: a device external to the pool that should act as the origin
4165 * If the pool device has discards disabled, they get disabled for the thin
4168 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
4172 struct dm_dev
*pool_dev
, *origin_dev
;
4173 struct mapped_device
*pool_md
;
4175 mutex_lock(&dm_thin_pool_table
.mutex
);
4177 if (argc
!= 2 && argc
!= 3) {
4178 ti
->error
= "Invalid argument count";
4183 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
4185 ti
->error
= "Out of memory";
4189 tc
->thin_md
= dm_table_get_md(ti
->table
);
4190 spin_lock_init(&tc
->lock
);
4191 INIT_LIST_HEAD(&tc
->deferred_cells
);
4192 bio_list_init(&tc
->deferred_bio_list
);
4193 bio_list_init(&tc
->retry_on_resume_list
);
4194 tc
->sort_bio_list
= RB_ROOT
;
4197 if (!strcmp(argv
[0], argv
[2])) {
4198 ti
->error
= "Error setting origin device";
4200 goto bad_origin_dev
;
4203 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
4205 ti
->error
= "Error opening origin device";
4206 goto bad_origin_dev
;
4208 tc
->origin_dev
= origin_dev
;
4211 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
4213 ti
->error
= "Error opening pool device";
4216 tc
->pool_dev
= pool_dev
;
4218 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4219 ti
->error
= "Invalid device id";
4224 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4226 ti
->error
= "Couldn't get pool mapped device";
4231 tc
->pool
= __pool_table_lookup(pool_md
);
4233 ti
->error
= "Couldn't find pool object";
4235 goto bad_pool_lookup
;
4237 __pool_inc(tc
->pool
);
4239 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4240 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4245 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4247 ti
->error
= "Couldn't open thin internal device";
4251 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4255 ti
->num_flush_bios
= 1;
4256 ti
->flush_supported
= true;
4257 ti
->per_io_data_size
= sizeof(struct dm_thin_endio_hook
);
4259 /* In case the pool supports discards, pass them on. */
4260 if (tc
->pool
->pf
.discard_enabled
) {
4261 ti
->discards_supported
= true;
4262 ti
->num_discard_bios
= 1;
4265 mutex_unlock(&dm_thin_pool_table
.mutex
);
4267 spin_lock_irq(&tc
->pool
->lock
);
4268 if (tc
->pool
->suspended
) {
4269 spin_unlock_irq(&tc
->pool
->lock
);
4270 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4271 ti
->error
= "Unable to activate thin device while pool is suspended";
4275 refcount_set(&tc
->refcount
, 1);
4276 init_completion(&tc
->can_destroy
);
4277 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4278 spin_unlock_irq(&tc
->pool
->lock
);
4280 * This synchronize_rcu() call is needed here otherwise we risk a
4281 * wake_worker() call finding no bios to process (because the newly
4282 * added tc isn't yet visible). So this reduces latency since we
4283 * aren't then dependent on the periodic commit to wake_worker().
4292 dm_pool_close_thin_device(tc
->td
);
4294 __pool_dec(tc
->pool
);
4298 dm_put_device(ti
, tc
->pool_dev
);
4301 dm_put_device(ti
, tc
->origin_dev
);
4305 mutex_unlock(&dm_thin_pool_table
.mutex
);
4310 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4312 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4314 return thin_bio_map(ti
, bio
);
4317 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
,
4320 unsigned long flags
;
4321 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4322 struct list_head work
;
4323 struct dm_thin_new_mapping
*m
, *tmp
;
4324 struct pool
*pool
= h
->tc
->pool
;
4326 if (h
->shared_read_entry
) {
4327 INIT_LIST_HEAD(&work
);
4328 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4330 spin_lock_irqsave(&pool
->lock
, flags
);
4331 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4333 __complete_mapping_preparation(m
);
4335 spin_unlock_irqrestore(&pool
->lock
, flags
);
4338 if (h
->all_io_entry
) {
4339 INIT_LIST_HEAD(&work
);
4340 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4341 if (!list_empty(&work
)) {
4342 spin_lock_irqsave(&pool
->lock
, flags
);
4343 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4344 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4345 spin_unlock_irqrestore(&pool
->lock
, flags
);
4351 cell_defer_no_holder(h
->tc
, h
->cell
);
4353 return DM_ENDIO_DONE
;
4356 static void thin_presuspend(struct dm_target
*ti
)
4358 struct thin_c
*tc
= ti
->private;
4360 if (dm_noflush_suspending(ti
))
4361 noflush_work(tc
, do_noflush_start
);
4364 static void thin_postsuspend(struct dm_target
*ti
)
4366 struct thin_c
*tc
= ti
->private;
4369 * The dm_noflush_suspending flag has been cleared by now, so
4370 * unfortunately we must always run this.
4372 noflush_work(tc
, do_noflush_stop
);
4375 static int thin_preresume(struct dm_target
*ti
)
4377 struct thin_c
*tc
= ti
->private;
4380 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4386 * <nr mapped sectors> <highest mapped sector>
4388 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4389 unsigned status_flags
, char *result
, unsigned maxlen
)
4393 dm_block_t mapped
, highest
;
4394 char buf
[BDEVNAME_SIZE
];
4395 struct thin_c
*tc
= ti
->private;
4397 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4406 case STATUSTYPE_INFO
:
4407 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4409 DMERR("dm_thin_get_mapped_count returned %d", r
);
4413 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4415 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4419 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4421 DMEMIT("%llu", ((highest
+ 1) *
4422 tc
->pool
->sectors_per_block
) - 1);
4427 case STATUSTYPE_TABLE
:
4429 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4430 (unsigned long) tc
->dev_id
);
4432 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4443 static int thin_iterate_devices(struct dm_target
*ti
,
4444 iterate_devices_callout_fn fn
, void *data
)
4447 struct thin_c
*tc
= ti
->private;
4448 struct pool
*pool
= tc
->pool
;
4451 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4452 * we follow a more convoluted path through to the pool's target.
4455 return 0; /* nothing is bound */
4457 blocks
= pool
->ti
->len
;
4458 (void) sector_div(blocks
, pool
->sectors_per_block
);
4460 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4465 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4467 struct thin_c
*tc
= ti
->private;
4468 struct pool
*pool
= tc
->pool
;
4470 if (!pool
->pf
.discard_enabled
)
4473 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4474 limits
->max_discard_sectors
= 2048 * 1024 * 16; /* 16G */
4477 static struct target_type thin_target
= {
4479 .version
= {1, 21, 0},
4480 .module
= THIS_MODULE
,
4484 .end_io
= thin_endio
,
4485 .preresume
= thin_preresume
,
4486 .presuspend
= thin_presuspend
,
4487 .postsuspend
= thin_postsuspend
,
4488 .status
= thin_status
,
4489 .iterate_devices
= thin_iterate_devices
,
4490 .io_hints
= thin_io_hints
,
4493 /*----------------------------------------------------------------*/
4495 static int __init
dm_thin_init(void)
4501 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4502 if (!_new_mapping_cache
)
4505 r
= dm_register_target(&thin_target
);
4507 goto bad_new_mapping_cache
;
4509 r
= dm_register_target(&pool_target
);
4511 goto bad_thin_target
;
4516 dm_unregister_target(&thin_target
);
4517 bad_new_mapping_cache
:
4518 kmem_cache_destroy(_new_mapping_cache
);
4523 static void dm_thin_exit(void)
4525 dm_unregister_target(&thin_target
);
4526 dm_unregister_target(&pool_target
);
4528 kmem_cache_destroy(_new_mapping_cache
);
4533 module_init(dm_thin_init
);
4534 module_exit(dm_thin_exit
);
4536 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4537 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4539 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4540 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4541 MODULE_LICENSE("GPL");