usb: xhci: Fix build warning seen with CONFIG_PM=n
[linux/fpc-iii.git] / drivers / md / dm-thin.c
blob57626c27a54bb5bc66be7c3832dc05059b2851d7
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
28 * Tunable constants
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
113 * Key building.
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
132 build_key(td, PHYSICAL, b, b + 1llu, key);
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
138 build_key(td, VIRTUAL, b, b + 1llu, key);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
151 static void throttle_init(struct throttle *t)
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
157 static void throttle_work_start(struct throttle *t)
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
162 static void throttle_work_update(struct throttle *t)
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
170 static void throttle_work_complete(struct throttle *t)
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
178 static void throttle_lock(struct throttle *t)
180 down_read(&t->lock);
183 static void throttle_unlock(struct throttle *t)
185 up_read(&t->lock);
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
195 struct dm_thin_new_mapping;
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207 PM_OUT_OF_METADATA_SPACE,
208 PM_READ_ONLY, /* metadata may not be changed */
210 PM_FAIL, /* all I/O fails */
213 struct pool_features {
214 enum pool_mode mode;
216 bool zero_new_blocks:1;
217 bool discard_enabled:1;
218 bool discard_passdown:1;
219 bool error_if_no_space:1;
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
227 #define CELL_SORT_ARRAY_SIZE 8192
229 struct pool {
230 struct list_head list;
231 struct dm_target *ti; /* Only set if a pool target is bound */
233 struct mapped_device *pool_md;
234 struct block_device *md_dev;
235 struct dm_pool_metadata *pmd;
237 dm_block_t low_water_blocks;
238 uint32_t sectors_per_block;
239 int sectors_per_block_shift;
241 struct pool_features pf;
242 bool low_water_triggered:1; /* A dm event has been sent */
243 bool suspended:1;
244 bool out_of_data_space:1;
246 struct dm_bio_prison *prison;
247 struct dm_kcopyd_client *copier;
249 struct work_struct worker;
250 struct workqueue_struct *wq;
251 struct throttle throttle;
252 struct delayed_work waker;
253 struct delayed_work no_space_timeout;
255 unsigned long last_commit_jiffies;
256 unsigned ref_count;
258 spinlock_t lock;
259 struct bio_list deferred_flush_bios;
260 struct bio_list deferred_flush_completions;
261 struct list_head prepared_mappings;
262 struct list_head prepared_discards;
263 struct list_head prepared_discards_pt2;
264 struct list_head active_thins;
266 struct dm_deferred_set *shared_read_ds;
267 struct dm_deferred_set *all_io_ds;
269 struct dm_thin_new_mapping *next_mapping;
271 process_bio_fn process_bio;
272 process_bio_fn process_discard;
274 process_cell_fn process_cell;
275 process_cell_fn process_discard_cell;
277 process_mapping_fn process_prepared_mapping;
278 process_mapping_fn process_prepared_discard;
279 process_mapping_fn process_prepared_discard_pt2;
281 struct dm_bio_prison_cell **cell_sort_array;
283 mempool_t mapping_pool;
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
288 static enum pool_mode get_pool_mode(struct pool *pool)
290 return pool->pf.mode;
293 static void notify_of_pool_mode_change(struct pool *pool)
295 const char *descs[] = {
296 "write",
297 "out-of-data-space",
298 "read-only",
299 "read-only",
300 "fail"
302 const char *extra_desc = NULL;
303 enum pool_mode mode = get_pool_mode(pool);
305 if (mode == PM_OUT_OF_DATA_SPACE) {
306 if (!pool->pf.error_if_no_space)
307 extra_desc = " (queue IO)";
308 else
309 extra_desc = " (error IO)";
312 dm_table_event(pool->ti->table);
313 DMINFO("%s: switching pool to %s%s mode",
314 dm_device_name(pool->pool_md),
315 descs[(int)mode], extra_desc ? : "");
319 * Target context for a pool.
321 struct pool_c {
322 struct dm_target *ti;
323 struct pool *pool;
324 struct dm_dev *data_dev;
325 struct dm_dev *metadata_dev;
326 struct dm_target_callbacks callbacks;
328 dm_block_t low_water_blocks;
329 struct pool_features requested_pf; /* Features requested during table load */
330 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
331 struct bio flush_bio;
335 * Target context for a thin.
337 struct thin_c {
338 struct list_head list;
339 struct dm_dev *pool_dev;
340 struct dm_dev *origin_dev;
341 sector_t origin_size;
342 dm_thin_id dev_id;
344 struct pool *pool;
345 struct dm_thin_device *td;
346 struct mapped_device *thin_md;
348 bool requeue_mode:1;
349 spinlock_t lock;
350 struct list_head deferred_cells;
351 struct bio_list deferred_bio_list;
352 struct bio_list retry_on_resume_list;
353 struct rb_root sort_bio_list; /* sorted list of deferred bios */
356 * Ensures the thin is not destroyed until the worker has finished
357 * iterating the active_thins list.
359 refcount_t refcount;
360 struct completion can_destroy;
363 /*----------------------------------------------------------------*/
365 static bool block_size_is_power_of_two(struct pool *pool)
367 return pool->sectors_per_block_shift >= 0;
370 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
372 return block_size_is_power_of_two(pool) ?
373 (b << pool->sectors_per_block_shift) :
374 (b * pool->sectors_per_block);
377 /*----------------------------------------------------------------*/
379 struct discard_op {
380 struct thin_c *tc;
381 struct blk_plug plug;
382 struct bio *parent_bio;
383 struct bio *bio;
386 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
388 BUG_ON(!parent);
390 op->tc = tc;
391 blk_start_plug(&op->plug);
392 op->parent_bio = parent;
393 op->bio = NULL;
396 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
398 struct thin_c *tc = op->tc;
399 sector_t s = block_to_sectors(tc->pool, data_b);
400 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
402 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
403 GFP_NOWAIT, 0, &op->bio);
406 static void end_discard(struct discard_op *op, int r)
408 if (op->bio) {
410 * Even if one of the calls to issue_discard failed, we
411 * need to wait for the chain to complete.
413 bio_chain(op->bio, op->parent_bio);
414 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
415 submit_bio(op->bio);
418 blk_finish_plug(&op->plug);
421 * Even if r is set, there could be sub discards in flight that we
422 * need to wait for.
424 if (r && !op->parent_bio->bi_status)
425 op->parent_bio->bi_status = errno_to_blk_status(r);
426 bio_endio(op->parent_bio);
429 /*----------------------------------------------------------------*/
432 * wake_worker() is used when new work is queued and when pool_resume is
433 * ready to continue deferred IO processing.
435 static void wake_worker(struct pool *pool)
437 queue_work(pool->wq, &pool->worker);
440 /*----------------------------------------------------------------*/
442 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
443 struct dm_bio_prison_cell **cell_result)
445 int r;
446 struct dm_bio_prison_cell *cell_prealloc;
449 * Allocate a cell from the prison's mempool.
450 * This might block but it can't fail.
452 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
455 if (r)
457 * We reused an old cell; we can get rid of
458 * the new one.
460 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462 return r;
465 static void cell_release(struct pool *pool,
466 struct dm_bio_prison_cell *cell,
467 struct bio_list *bios)
469 dm_cell_release(pool->prison, cell, bios);
470 dm_bio_prison_free_cell(pool->prison, cell);
473 static void cell_visit_release(struct pool *pool,
474 void (*fn)(void *, struct dm_bio_prison_cell *),
475 void *context,
476 struct dm_bio_prison_cell *cell)
478 dm_cell_visit_release(pool->prison, fn, context, cell);
479 dm_bio_prison_free_cell(pool->prison, cell);
482 static void cell_release_no_holder(struct pool *pool,
483 struct dm_bio_prison_cell *cell,
484 struct bio_list *bios)
486 dm_cell_release_no_holder(pool->prison, cell, bios);
487 dm_bio_prison_free_cell(pool->prison, cell);
490 static void cell_error_with_code(struct pool *pool,
491 struct dm_bio_prison_cell *cell, blk_status_t error_code)
493 dm_cell_error(pool->prison, cell, error_code);
494 dm_bio_prison_free_cell(pool->prison, cell);
497 static blk_status_t get_pool_io_error_code(struct pool *pool)
499 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509 cell_error_with_code(pool, cell, 0);
512 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 /*----------------------------------------------------------------*/
520 * A global list of pools that uses a struct mapped_device as a key.
522 static struct dm_thin_pool_table {
523 struct mutex mutex;
524 struct list_head pools;
525 } dm_thin_pool_table;
527 static void pool_table_init(void)
529 mutex_init(&dm_thin_pool_table.mutex);
530 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 static void pool_table_exit(void)
535 mutex_destroy(&dm_thin_pool_table.mutex);
538 static void __pool_table_insert(struct pool *pool)
540 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
541 list_add(&pool->list, &dm_thin_pool_table.pools);
544 static void __pool_table_remove(struct pool *pool)
546 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
547 list_del(&pool->list);
550 static struct pool *__pool_table_lookup(struct mapped_device *md)
552 struct pool *pool = NULL, *tmp;
554 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
557 if (tmp->pool_md == md) {
558 pool = tmp;
559 break;
563 return pool;
566 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568 struct pool *pool = NULL, *tmp;
570 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
573 if (tmp->md_dev == md_dev) {
574 pool = tmp;
575 break;
579 return pool;
582 /*----------------------------------------------------------------*/
584 struct dm_thin_endio_hook {
585 struct thin_c *tc;
586 struct dm_deferred_entry *shared_read_entry;
587 struct dm_deferred_entry *all_io_entry;
588 struct dm_thin_new_mapping *overwrite_mapping;
589 struct rb_node rb_node;
590 struct dm_bio_prison_cell *cell;
593 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595 bio_list_merge(bios, master);
596 bio_list_init(master);
599 static void error_bio_list(struct bio_list *bios, blk_status_t error)
601 struct bio *bio;
603 while ((bio = bio_list_pop(bios))) {
604 bio->bi_status = error;
605 bio_endio(bio);
609 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
610 blk_status_t error)
612 struct bio_list bios;
614 bio_list_init(&bios);
616 spin_lock_irq(&tc->lock);
617 __merge_bio_list(&bios, master);
618 spin_unlock_irq(&tc->lock);
620 error_bio_list(&bios, error);
623 static void requeue_deferred_cells(struct thin_c *tc)
625 struct pool *pool = tc->pool;
626 struct list_head cells;
627 struct dm_bio_prison_cell *cell, *tmp;
629 INIT_LIST_HEAD(&cells);
631 spin_lock_irq(&tc->lock);
632 list_splice_init(&tc->deferred_cells, &cells);
633 spin_unlock_irq(&tc->lock);
635 list_for_each_entry_safe(cell, tmp, &cells, user_list)
636 cell_requeue(pool, cell);
639 static void requeue_io(struct thin_c *tc)
641 struct bio_list bios;
643 bio_list_init(&bios);
645 spin_lock_irq(&tc->lock);
646 __merge_bio_list(&bios, &tc->deferred_bio_list);
647 __merge_bio_list(&bios, &tc->retry_on_resume_list);
648 spin_unlock_irq(&tc->lock);
650 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
651 requeue_deferred_cells(tc);
654 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
656 struct thin_c *tc;
658 rcu_read_lock();
659 list_for_each_entry_rcu(tc, &pool->active_thins, list)
660 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
661 rcu_read_unlock();
664 static void error_retry_list(struct pool *pool)
666 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
670 * This section of code contains the logic for processing a thin device's IO.
671 * Much of the code depends on pool object resources (lists, workqueues, etc)
672 * but most is exclusively called from the thin target rather than the thin-pool
673 * target.
676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
678 struct pool *pool = tc->pool;
679 sector_t block_nr = bio->bi_iter.bi_sector;
681 if (block_size_is_power_of_two(pool))
682 block_nr >>= pool->sectors_per_block_shift;
683 else
684 (void) sector_div(block_nr, pool->sectors_per_block);
686 return block_nr;
690 * Returns the _complete_ blocks that this bio covers.
692 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
693 dm_block_t *begin, dm_block_t *end)
695 struct pool *pool = tc->pool;
696 sector_t b = bio->bi_iter.bi_sector;
697 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
699 b += pool->sectors_per_block - 1ull; /* so we round up */
701 if (block_size_is_power_of_two(pool)) {
702 b >>= pool->sectors_per_block_shift;
703 e >>= pool->sectors_per_block_shift;
704 } else {
705 (void) sector_div(b, pool->sectors_per_block);
706 (void) sector_div(e, pool->sectors_per_block);
709 if (e < b)
710 /* Can happen if the bio is within a single block. */
711 e = b;
713 *begin = b;
714 *end = e;
717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
719 struct pool *pool = tc->pool;
720 sector_t bi_sector = bio->bi_iter.bi_sector;
722 bio_set_dev(bio, tc->pool_dev->bdev);
723 if (block_size_is_power_of_two(pool))
724 bio->bi_iter.bi_sector =
725 (block << pool->sectors_per_block_shift) |
726 (bi_sector & (pool->sectors_per_block - 1));
727 else
728 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
729 sector_div(bi_sector, pool->sectors_per_block);
732 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
734 bio_set_dev(bio, tc->origin_dev->bdev);
737 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
739 return op_is_flush(bio->bi_opf) &&
740 dm_thin_changed_this_transaction(tc->td);
743 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
745 struct dm_thin_endio_hook *h;
747 if (bio_op(bio) == REQ_OP_DISCARD)
748 return;
750 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
751 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
754 static void issue(struct thin_c *tc, struct bio *bio)
756 struct pool *pool = tc->pool;
758 if (!bio_triggers_commit(tc, bio)) {
759 generic_make_request(bio);
760 return;
764 * Complete bio with an error if earlier I/O caused changes to
765 * the metadata that can't be committed e.g, due to I/O errors
766 * on the metadata device.
768 if (dm_thin_aborted_changes(tc->td)) {
769 bio_io_error(bio);
770 return;
774 * Batch together any bios that trigger commits and then issue a
775 * single commit for them in process_deferred_bios().
777 spin_lock_irq(&pool->lock);
778 bio_list_add(&pool->deferred_flush_bios, bio);
779 spin_unlock_irq(&pool->lock);
782 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
784 remap_to_origin(tc, bio);
785 issue(tc, bio);
788 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
789 dm_block_t block)
791 remap(tc, bio, block);
792 issue(tc, bio);
795 /*----------------------------------------------------------------*/
798 * Bio endio functions.
800 struct dm_thin_new_mapping {
801 struct list_head list;
803 bool pass_discard:1;
804 bool maybe_shared:1;
807 * Track quiescing, copying and zeroing preparation actions. When this
808 * counter hits zero the block is prepared and can be inserted into the
809 * btree.
811 atomic_t prepare_actions;
813 blk_status_t status;
814 struct thin_c *tc;
815 dm_block_t virt_begin, virt_end;
816 dm_block_t data_block;
817 struct dm_bio_prison_cell *cell;
820 * If the bio covers the whole area of a block then we can avoid
821 * zeroing or copying. Instead this bio is hooked. The bio will
822 * still be in the cell, so care has to be taken to avoid issuing
823 * the bio twice.
825 struct bio *bio;
826 bio_end_io_t *saved_bi_end_io;
829 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
831 struct pool *pool = m->tc->pool;
833 if (atomic_dec_and_test(&m->prepare_actions)) {
834 list_add_tail(&m->list, &pool->prepared_mappings);
835 wake_worker(pool);
839 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
841 unsigned long flags;
842 struct pool *pool = m->tc->pool;
844 spin_lock_irqsave(&pool->lock, flags);
845 __complete_mapping_preparation(m);
846 spin_unlock_irqrestore(&pool->lock, flags);
849 static void copy_complete(int read_err, unsigned long write_err, void *context)
851 struct dm_thin_new_mapping *m = context;
853 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
854 complete_mapping_preparation(m);
857 static void overwrite_endio(struct bio *bio)
859 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
860 struct dm_thin_new_mapping *m = h->overwrite_mapping;
862 bio->bi_end_io = m->saved_bi_end_io;
864 m->status = bio->bi_status;
865 complete_mapping_preparation(m);
868 /*----------------------------------------------------------------*/
871 * Workqueue.
875 * Prepared mapping jobs.
879 * This sends the bios in the cell, except the original holder, back
880 * to the deferred_bios list.
882 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
884 struct pool *pool = tc->pool;
885 unsigned long flags;
886 int has_work;
888 spin_lock_irqsave(&tc->lock, flags);
889 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
890 has_work = !bio_list_empty(&tc->deferred_bio_list);
891 spin_unlock_irqrestore(&tc->lock, flags);
893 if (has_work)
894 wake_worker(pool);
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
899 struct remap_info {
900 struct thin_c *tc;
901 struct bio_list defer_bios;
902 struct bio_list issue_bios;
905 static void __inc_remap_and_issue_cell(void *context,
906 struct dm_bio_prison_cell *cell)
908 struct remap_info *info = context;
909 struct bio *bio;
911 while ((bio = bio_list_pop(&cell->bios))) {
912 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913 bio_list_add(&info->defer_bios, bio);
914 else {
915 inc_all_io_entry(info->tc->pool, bio);
918 * We can't issue the bios with the bio prison lock
919 * held, so we add them to a list to issue on
920 * return from this function.
922 bio_list_add(&info->issue_bios, bio);
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928 struct dm_bio_prison_cell *cell,
929 dm_block_t block)
931 struct bio *bio;
932 struct remap_info info;
934 info.tc = tc;
935 bio_list_init(&info.defer_bios);
936 bio_list_init(&info.issue_bios);
939 * We have to be careful to inc any bios we're about to issue
940 * before the cell is released, and avoid a race with new bios
941 * being added to the cell.
943 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944 &info, cell);
946 while ((bio = bio_list_pop(&info.defer_bios)))
947 thin_defer_bio(tc, bio);
949 while ((bio = bio_list_pop(&info.issue_bios)))
950 remap_and_issue(info.tc, bio, block);
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
955 cell_error(m->tc->pool, m->cell);
956 list_del(&m->list);
957 mempool_free(m, &m->tc->pool->mapping_pool);
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
962 struct pool *pool = tc->pool;
965 * If the bio has the REQ_FUA flag set we must commit the metadata
966 * before signaling its completion.
968 if (!bio_triggers_commit(tc, bio)) {
969 bio_endio(bio);
970 return;
974 * Complete bio with an error if earlier I/O caused changes to the
975 * metadata that can't be committed, e.g, due to I/O errors on the
976 * metadata device.
978 if (dm_thin_aborted_changes(tc->td)) {
979 bio_io_error(bio);
980 return;
984 * Batch together any bios that trigger commits and then issue a
985 * single commit for them in process_deferred_bios().
987 spin_lock_irq(&pool->lock);
988 bio_list_add(&pool->deferred_flush_completions, bio);
989 spin_unlock_irq(&pool->lock);
992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994 struct thin_c *tc = m->tc;
995 struct pool *pool = tc->pool;
996 struct bio *bio = m->bio;
997 int r;
999 if (m->status) {
1000 cell_error(pool, m->cell);
1001 goto out;
1005 * Commit the prepared block into the mapping btree.
1006 * Any I/O for this block arriving after this point will get
1007 * remapped to it directly.
1009 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010 if (r) {
1011 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012 cell_error(pool, m->cell);
1013 goto out;
1017 * Release any bios held while the block was being provisioned.
1018 * If we are processing a write bio that completely covers the block,
1019 * we already processed it so can ignore it now when processing
1020 * the bios in the cell.
1022 if (bio) {
1023 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024 complete_overwrite_bio(tc, bio);
1025 } else {
1026 inc_all_io_entry(tc->pool, m->cell->holder);
1027 remap_and_issue(tc, m->cell->holder, m->data_block);
1028 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1031 out:
1032 list_del(&m->list);
1033 mempool_free(m, &pool->mapping_pool);
1036 /*----------------------------------------------------------------*/
1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040 struct thin_c *tc = m->tc;
1041 if (m->cell)
1042 cell_defer_no_holder(tc, m->cell);
1043 mempool_free(m, &tc->pool->mapping_pool);
1046 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 bio_io_error(m->bio);
1049 free_discard_mapping(m);
1052 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 bio_endio(m->bio);
1055 free_discard_mapping(m);
1058 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 int r;
1061 struct thin_c *tc = m->tc;
1063 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1064 if (r) {
1065 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1066 bio_io_error(m->bio);
1067 } else
1068 bio_endio(m->bio);
1070 cell_defer_no_holder(tc, m->cell);
1071 mempool_free(m, &tc->pool->mapping_pool);
1074 /*----------------------------------------------------------------*/
1076 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1077 struct bio *discard_parent)
1080 * We've already unmapped this range of blocks, but before we
1081 * passdown we have to check that these blocks are now unused.
1083 int r = 0;
1084 bool shared = true;
1085 struct thin_c *tc = m->tc;
1086 struct pool *pool = tc->pool;
1087 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1088 struct discard_op op;
1090 begin_discard(&op, tc, discard_parent);
1091 while (b != end) {
1092 /* find start of unmapped run */
1093 for (; b < end; b++) {
1094 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1095 if (r)
1096 goto out;
1098 if (!shared)
1099 break;
1102 if (b == end)
1103 break;
1105 /* find end of run */
1106 for (e = b + 1; e != end; e++) {
1107 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1108 if (r)
1109 goto out;
1111 if (shared)
1112 break;
1115 r = issue_discard(&op, b, e);
1116 if (r)
1117 goto out;
1119 b = e;
1121 out:
1122 end_discard(&op, r);
1125 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 unsigned long flags;
1128 struct pool *pool = m->tc->pool;
1130 spin_lock_irqsave(&pool->lock, flags);
1131 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1132 spin_unlock_irqrestore(&pool->lock, flags);
1133 wake_worker(pool);
1136 static void passdown_endio(struct bio *bio)
1139 * It doesn't matter if the passdown discard failed, we still want
1140 * to unmap (we ignore err).
1142 queue_passdown_pt2(bio->bi_private);
1143 bio_put(bio);
1146 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 int r;
1149 struct thin_c *tc = m->tc;
1150 struct pool *pool = tc->pool;
1151 struct bio *discard_parent;
1152 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1155 * Only this thread allocates blocks, so we can be sure that the
1156 * newly unmapped blocks will not be allocated before the end of
1157 * the function.
1159 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1160 if (r) {
1161 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1162 bio_io_error(m->bio);
1163 cell_defer_no_holder(tc, m->cell);
1164 mempool_free(m, &pool->mapping_pool);
1165 return;
1169 * Increment the unmapped blocks. This prevents a race between the
1170 * passdown io and reallocation of freed blocks.
1172 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1173 if (r) {
1174 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1175 bio_io_error(m->bio);
1176 cell_defer_no_holder(tc, m->cell);
1177 mempool_free(m, &pool->mapping_pool);
1178 return;
1181 discard_parent = bio_alloc(GFP_NOIO, 1);
1182 if (!discard_parent) {
1183 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1184 dm_device_name(tc->pool->pool_md));
1185 queue_passdown_pt2(m);
1187 } else {
1188 discard_parent->bi_end_io = passdown_endio;
1189 discard_parent->bi_private = m;
1191 if (m->maybe_shared)
1192 passdown_double_checking_shared_status(m, discard_parent);
1193 else {
1194 struct discard_op op;
1196 begin_discard(&op, tc, discard_parent);
1197 r = issue_discard(&op, m->data_block, data_end);
1198 end_discard(&op, r);
1203 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205 int r;
1206 struct thin_c *tc = m->tc;
1207 struct pool *pool = tc->pool;
1210 * The passdown has completed, so now we can decrement all those
1211 * unmapped blocks.
1213 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1214 m->data_block + (m->virt_end - m->virt_begin));
1215 if (r) {
1216 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1217 bio_io_error(m->bio);
1218 } else
1219 bio_endio(m->bio);
1221 cell_defer_no_holder(tc, m->cell);
1222 mempool_free(m, &pool->mapping_pool);
1225 static void process_prepared(struct pool *pool, struct list_head *head,
1226 process_mapping_fn *fn)
1228 struct list_head maps;
1229 struct dm_thin_new_mapping *m, *tmp;
1231 INIT_LIST_HEAD(&maps);
1232 spin_lock_irq(&pool->lock);
1233 list_splice_init(head, &maps);
1234 spin_unlock_irq(&pool->lock);
1236 list_for_each_entry_safe(m, tmp, &maps, list)
1237 (*fn)(m);
1241 * Deferred bio jobs.
1243 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1245 return bio->bi_iter.bi_size ==
1246 (pool->sectors_per_block << SECTOR_SHIFT);
1249 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1251 return (bio_data_dir(bio) == WRITE) &&
1252 io_overlaps_block(pool, bio);
1255 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1256 bio_end_io_t *fn)
1258 *save = bio->bi_end_io;
1259 bio->bi_end_io = fn;
1262 static int ensure_next_mapping(struct pool *pool)
1264 if (pool->next_mapping)
1265 return 0;
1267 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1269 return pool->next_mapping ? 0 : -ENOMEM;
1272 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1274 struct dm_thin_new_mapping *m = pool->next_mapping;
1276 BUG_ON(!pool->next_mapping);
1278 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1279 INIT_LIST_HEAD(&m->list);
1280 m->bio = NULL;
1282 pool->next_mapping = NULL;
1284 return m;
1287 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1288 sector_t begin, sector_t end)
1290 struct dm_io_region to;
1292 to.bdev = tc->pool_dev->bdev;
1293 to.sector = begin;
1294 to.count = end - begin;
1296 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1299 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1300 dm_block_t data_begin,
1301 struct dm_thin_new_mapping *m)
1303 struct pool *pool = tc->pool;
1304 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1306 h->overwrite_mapping = m;
1307 m->bio = bio;
1308 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1309 inc_all_io_entry(pool, bio);
1310 remap_and_issue(tc, bio, data_begin);
1314 * A partial copy also needs to zero the uncopied region.
1316 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1317 struct dm_dev *origin, dm_block_t data_origin,
1318 dm_block_t data_dest,
1319 struct dm_bio_prison_cell *cell, struct bio *bio,
1320 sector_t len)
1322 struct pool *pool = tc->pool;
1323 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325 m->tc = tc;
1326 m->virt_begin = virt_block;
1327 m->virt_end = virt_block + 1u;
1328 m->data_block = data_dest;
1329 m->cell = cell;
1332 * quiesce action + copy action + an extra reference held for the
1333 * duration of this function (we may need to inc later for a
1334 * partial zero).
1336 atomic_set(&m->prepare_actions, 3);
1338 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1339 complete_mapping_preparation(m); /* already quiesced */
1342 * IO to pool_dev remaps to the pool target's data_dev.
1344 * If the whole block of data is being overwritten, we can issue the
1345 * bio immediately. Otherwise we use kcopyd to clone the data first.
1347 if (io_overwrites_block(pool, bio))
1348 remap_and_issue_overwrite(tc, bio, data_dest, m);
1349 else {
1350 struct dm_io_region from, to;
1352 from.bdev = origin->bdev;
1353 from.sector = data_origin * pool->sectors_per_block;
1354 from.count = len;
1356 to.bdev = tc->pool_dev->bdev;
1357 to.sector = data_dest * pool->sectors_per_block;
1358 to.count = len;
1360 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1361 0, copy_complete, m);
1364 * Do we need to zero a tail region?
1366 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1367 atomic_inc(&m->prepare_actions);
1368 ll_zero(tc, m,
1369 data_dest * pool->sectors_per_block + len,
1370 (data_dest + 1) * pool->sectors_per_block);
1374 complete_mapping_preparation(m); /* drop our ref */
1377 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1378 dm_block_t data_origin, dm_block_t data_dest,
1379 struct dm_bio_prison_cell *cell, struct bio *bio)
1381 schedule_copy(tc, virt_block, tc->pool_dev,
1382 data_origin, data_dest, cell, bio,
1383 tc->pool->sectors_per_block);
1386 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1387 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1388 struct bio *bio)
1390 struct pool *pool = tc->pool;
1391 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1393 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1394 m->tc = tc;
1395 m->virt_begin = virt_block;
1396 m->virt_end = virt_block + 1u;
1397 m->data_block = data_block;
1398 m->cell = cell;
1401 * If the whole block of data is being overwritten or we are not
1402 * zeroing pre-existing data, we can issue the bio immediately.
1403 * Otherwise we use kcopyd to zero the data first.
1405 if (pool->pf.zero_new_blocks) {
1406 if (io_overwrites_block(pool, bio))
1407 remap_and_issue_overwrite(tc, bio, data_block, m);
1408 else
1409 ll_zero(tc, m, data_block * pool->sectors_per_block,
1410 (data_block + 1) * pool->sectors_per_block);
1411 } else
1412 process_prepared_mapping(m);
1415 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1416 dm_block_t data_dest,
1417 struct dm_bio_prison_cell *cell, struct bio *bio)
1419 struct pool *pool = tc->pool;
1420 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1421 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1423 if (virt_block_end <= tc->origin_size)
1424 schedule_copy(tc, virt_block, tc->origin_dev,
1425 virt_block, data_dest, cell, bio,
1426 pool->sectors_per_block);
1428 else if (virt_block_begin < tc->origin_size)
1429 schedule_copy(tc, virt_block, tc->origin_dev,
1430 virt_block, data_dest, cell, bio,
1431 tc->origin_size - virt_block_begin);
1433 else
1434 schedule_zero(tc, virt_block, data_dest, cell, bio);
1437 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1439 static void requeue_bios(struct pool *pool);
1441 static bool is_read_only_pool_mode(enum pool_mode mode)
1443 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1446 static bool is_read_only(struct pool *pool)
1448 return is_read_only_pool_mode(get_pool_mode(pool));
1451 static void check_for_metadata_space(struct pool *pool)
1453 int r;
1454 const char *ooms_reason = NULL;
1455 dm_block_t nr_free;
1457 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1458 if (r)
1459 ooms_reason = "Could not get free metadata blocks";
1460 else if (!nr_free)
1461 ooms_reason = "No free metadata blocks";
1463 if (ooms_reason && !is_read_only(pool)) {
1464 DMERR("%s", ooms_reason);
1465 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1469 static void check_for_data_space(struct pool *pool)
1471 int r;
1472 dm_block_t nr_free;
1474 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1475 return;
1477 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1478 if (r)
1479 return;
1481 if (nr_free) {
1482 set_pool_mode(pool, PM_WRITE);
1483 requeue_bios(pool);
1488 * A non-zero return indicates read_only or fail_io mode.
1489 * Many callers don't care about the return value.
1491 static int commit(struct pool *pool)
1493 int r;
1495 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1496 return -EINVAL;
1498 r = dm_pool_commit_metadata(pool->pmd);
1499 if (r)
1500 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1501 else {
1502 check_for_metadata_space(pool);
1503 check_for_data_space(pool);
1506 return r;
1509 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1511 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1512 DMWARN("%s: reached low water mark for data device: sending event.",
1513 dm_device_name(pool->pool_md));
1514 spin_lock_irq(&pool->lock);
1515 pool->low_water_triggered = true;
1516 spin_unlock_irq(&pool->lock);
1517 dm_table_event(pool->ti->table);
1521 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1523 int r;
1524 dm_block_t free_blocks;
1525 struct pool *pool = tc->pool;
1527 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1528 return -EINVAL;
1530 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1531 if (r) {
1532 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1533 return r;
1536 check_low_water_mark(pool, free_blocks);
1538 if (!free_blocks) {
1540 * Try to commit to see if that will free up some
1541 * more space.
1543 r = commit(pool);
1544 if (r)
1545 return r;
1547 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1548 if (r) {
1549 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1550 return r;
1553 if (!free_blocks) {
1554 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1555 return -ENOSPC;
1559 r = dm_pool_alloc_data_block(pool->pmd, result);
1560 if (r) {
1561 if (r == -ENOSPC)
1562 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1563 else
1564 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1565 return r;
1568 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1569 if (r) {
1570 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1571 return r;
1574 if (!free_blocks) {
1575 /* Let's commit before we use up the metadata reserve. */
1576 r = commit(pool);
1577 if (r)
1578 return r;
1581 return 0;
1585 * If we have run out of space, queue bios until the device is
1586 * resumed, presumably after having been reloaded with more space.
1588 static void retry_on_resume(struct bio *bio)
1590 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1591 struct thin_c *tc = h->tc;
1593 spin_lock_irq(&tc->lock);
1594 bio_list_add(&tc->retry_on_resume_list, bio);
1595 spin_unlock_irq(&tc->lock);
1598 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1600 enum pool_mode m = get_pool_mode(pool);
1602 switch (m) {
1603 case PM_WRITE:
1604 /* Shouldn't get here */
1605 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1606 return BLK_STS_IOERR;
1608 case PM_OUT_OF_DATA_SPACE:
1609 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1611 case PM_OUT_OF_METADATA_SPACE:
1612 case PM_READ_ONLY:
1613 case PM_FAIL:
1614 return BLK_STS_IOERR;
1615 default:
1616 /* Shouldn't get here */
1617 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1618 return BLK_STS_IOERR;
1622 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1624 blk_status_t error = should_error_unserviceable_bio(pool);
1626 if (error) {
1627 bio->bi_status = error;
1628 bio_endio(bio);
1629 } else
1630 retry_on_resume(bio);
1633 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1635 struct bio *bio;
1636 struct bio_list bios;
1637 blk_status_t error;
1639 error = should_error_unserviceable_bio(pool);
1640 if (error) {
1641 cell_error_with_code(pool, cell, error);
1642 return;
1645 bio_list_init(&bios);
1646 cell_release(pool, cell, &bios);
1648 while ((bio = bio_list_pop(&bios)))
1649 retry_on_resume(bio);
1652 static void process_discard_cell_no_passdown(struct thin_c *tc,
1653 struct dm_bio_prison_cell *virt_cell)
1655 struct pool *pool = tc->pool;
1656 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1659 * We don't need to lock the data blocks, since there's no
1660 * passdown. We only lock data blocks for allocation and breaking sharing.
1662 m->tc = tc;
1663 m->virt_begin = virt_cell->key.block_begin;
1664 m->virt_end = virt_cell->key.block_end;
1665 m->cell = virt_cell;
1666 m->bio = virt_cell->holder;
1668 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1669 pool->process_prepared_discard(m);
1672 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1673 struct bio *bio)
1675 struct pool *pool = tc->pool;
1677 int r;
1678 bool maybe_shared;
1679 struct dm_cell_key data_key;
1680 struct dm_bio_prison_cell *data_cell;
1681 struct dm_thin_new_mapping *m;
1682 dm_block_t virt_begin, virt_end, data_begin;
1684 while (begin != end) {
1685 r = ensure_next_mapping(pool);
1686 if (r)
1687 /* we did our best */
1688 return;
1690 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1691 &data_begin, &maybe_shared);
1692 if (r)
1694 * Silently fail, letting any mappings we've
1695 * created complete.
1697 break;
1699 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1700 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1701 /* contention, we'll give up with this range */
1702 begin = virt_end;
1703 continue;
1707 * IO may still be going to the destination block. We must
1708 * quiesce before we can do the removal.
1710 m = get_next_mapping(pool);
1711 m->tc = tc;
1712 m->maybe_shared = maybe_shared;
1713 m->virt_begin = virt_begin;
1714 m->virt_end = virt_end;
1715 m->data_block = data_begin;
1716 m->cell = data_cell;
1717 m->bio = bio;
1720 * The parent bio must not complete before sub discard bios are
1721 * chained to it (see end_discard's bio_chain)!
1723 * This per-mapping bi_remaining increment is paired with
1724 * the implicit decrement that occurs via bio_endio() in
1725 * end_discard().
1727 bio_inc_remaining(bio);
1728 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1729 pool->process_prepared_discard(m);
1731 begin = virt_end;
1735 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1737 struct bio *bio = virt_cell->holder;
1738 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1741 * The virt_cell will only get freed once the origin bio completes.
1742 * This means it will remain locked while all the individual
1743 * passdown bios are in flight.
1745 h->cell = virt_cell;
1746 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1749 * We complete the bio now, knowing that the bi_remaining field
1750 * will prevent completion until the sub range discards have
1751 * completed.
1753 bio_endio(bio);
1756 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1758 dm_block_t begin, end;
1759 struct dm_cell_key virt_key;
1760 struct dm_bio_prison_cell *virt_cell;
1762 get_bio_block_range(tc, bio, &begin, &end);
1763 if (begin == end) {
1765 * The discard covers less than a block.
1767 bio_endio(bio);
1768 return;
1771 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1772 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1774 * Potential starvation issue: We're relying on the
1775 * fs/application being well behaved, and not trying to
1776 * send IO to a region at the same time as discarding it.
1777 * If they do this persistently then it's possible this
1778 * cell will never be granted.
1780 return;
1782 tc->pool->process_discard_cell(tc, virt_cell);
1785 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1786 struct dm_cell_key *key,
1787 struct dm_thin_lookup_result *lookup_result,
1788 struct dm_bio_prison_cell *cell)
1790 int r;
1791 dm_block_t data_block;
1792 struct pool *pool = tc->pool;
1794 r = alloc_data_block(tc, &data_block);
1795 switch (r) {
1796 case 0:
1797 schedule_internal_copy(tc, block, lookup_result->block,
1798 data_block, cell, bio);
1799 break;
1801 case -ENOSPC:
1802 retry_bios_on_resume(pool, cell);
1803 break;
1805 default:
1806 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1807 __func__, r);
1808 cell_error(pool, cell);
1809 break;
1813 static void __remap_and_issue_shared_cell(void *context,
1814 struct dm_bio_prison_cell *cell)
1816 struct remap_info *info = context;
1817 struct bio *bio;
1819 while ((bio = bio_list_pop(&cell->bios))) {
1820 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1821 bio_op(bio) == REQ_OP_DISCARD)
1822 bio_list_add(&info->defer_bios, bio);
1823 else {
1824 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1826 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1827 inc_all_io_entry(info->tc->pool, bio);
1828 bio_list_add(&info->issue_bios, bio);
1833 static void remap_and_issue_shared_cell(struct thin_c *tc,
1834 struct dm_bio_prison_cell *cell,
1835 dm_block_t block)
1837 struct bio *bio;
1838 struct remap_info info;
1840 info.tc = tc;
1841 bio_list_init(&info.defer_bios);
1842 bio_list_init(&info.issue_bios);
1844 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1845 &info, cell);
1847 while ((bio = bio_list_pop(&info.defer_bios)))
1848 thin_defer_bio(tc, bio);
1850 while ((bio = bio_list_pop(&info.issue_bios)))
1851 remap_and_issue(tc, bio, block);
1854 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1855 dm_block_t block,
1856 struct dm_thin_lookup_result *lookup_result,
1857 struct dm_bio_prison_cell *virt_cell)
1859 struct dm_bio_prison_cell *data_cell;
1860 struct pool *pool = tc->pool;
1861 struct dm_cell_key key;
1864 * If cell is already occupied, then sharing is already in the process
1865 * of being broken so we have nothing further to do here.
1867 build_data_key(tc->td, lookup_result->block, &key);
1868 if (bio_detain(pool, &key, bio, &data_cell)) {
1869 cell_defer_no_holder(tc, virt_cell);
1870 return;
1873 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1874 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1875 cell_defer_no_holder(tc, virt_cell);
1876 } else {
1877 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1879 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1880 inc_all_io_entry(pool, bio);
1881 remap_and_issue(tc, bio, lookup_result->block);
1883 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1884 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1888 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1889 struct dm_bio_prison_cell *cell)
1891 int r;
1892 dm_block_t data_block;
1893 struct pool *pool = tc->pool;
1896 * Remap empty bios (flushes) immediately, without provisioning.
1898 if (!bio->bi_iter.bi_size) {
1899 inc_all_io_entry(pool, bio);
1900 cell_defer_no_holder(tc, cell);
1902 remap_and_issue(tc, bio, 0);
1903 return;
1907 * Fill read bios with zeroes and complete them immediately.
1909 if (bio_data_dir(bio) == READ) {
1910 zero_fill_bio(bio);
1911 cell_defer_no_holder(tc, cell);
1912 bio_endio(bio);
1913 return;
1916 r = alloc_data_block(tc, &data_block);
1917 switch (r) {
1918 case 0:
1919 if (tc->origin_dev)
1920 schedule_external_copy(tc, block, data_block, cell, bio);
1921 else
1922 schedule_zero(tc, block, data_block, cell, bio);
1923 break;
1925 case -ENOSPC:
1926 retry_bios_on_resume(pool, cell);
1927 break;
1929 default:
1930 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1931 __func__, r);
1932 cell_error(pool, cell);
1933 break;
1937 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1939 int r;
1940 struct pool *pool = tc->pool;
1941 struct bio *bio = cell->holder;
1942 dm_block_t block = get_bio_block(tc, bio);
1943 struct dm_thin_lookup_result lookup_result;
1945 if (tc->requeue_mode) {
1946 cell_requeue(pool, cell);
1947 return;
1950 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1951 switch (r) {
1952 case 0:
1953 if (lookup_result.shared)
1954 process_shared_bio(tc, bio, block, &lookup_result, cell);
1955 else {
1956 inc_all_io_entry(pool, bio);
1957 remap_and_issue(tc, bio, lookup_result.block);
1958 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1960 break;
1962 case -ENODATA:
1963 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1964 inc_all_io_entry(pool, bio);
1965 cell_defer_no_holder(tc, cell);
1967 if (bio_end_sector(bio) <= tc->origin_size)
1968 remap_to_origin_and_issue(tc, bio);
1970 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1971 zero_fill_bio(bio);
1972 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1973 remap_to_origin_and_issue(tc, bio);
1975 } else {
1976 zero_fill_bio(bio);
1977 bio_endio(bio);
1979 } else
1980 provision_block(tc, bio, block, cell);
1981 break;
1983 default:
1984 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1985 __func__, r);
1986 cell_defer_no_holder(tc, cell);
1987 bio_io_error(bio);
1988 break;
1992 static void process_bio(struct thin_c *tc, struct bio *bio)
1994 struct pool *pool = tc->pool;
1995 dm_block_t block = get_bio_block(tc, bio);
1996 struct dm_bio_prison_cell *cell;
1997 struct dm_cell_key key;
2000 * If cell is already occupied, then the block is already
2001 * being provisioned so we have nothing further to do here.
2003 build_virtual_key(tc->td, block, &key);
2004 if (bio_detain(pool, &key, bio, &cell))
2005 return;
2007 process_cell(tc, cell);
2010 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2011 struct dm_bio_prison_cell *cell)
2013 int r;
2014 int rw = bio_data_dir(bio);
2015 dm_block_t block = get_bio_block(tc, bio);
2016 struct dm_thin_lookup_result lookup_result;
2018 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2019 switch (r) {
2020 case 0:
2021 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2022 handle_unserviceable_bio(tc->pool, bio);
2023 if (cell)
2024 cell_defer_no_holder(tc, cell);
2025 } else {
2026 inc_all_io_entry(tc->pool, bio);
2027 remap_and_issue(tc, bio, lookup_result.block);
2028 if (cell)
2029 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2031 break;
2033 case -ENODATA:
2034 if (cell)
2035 cell_defer_no_holder(tc, cell);
2036 if (rw != READ) {
2037 handle_unserviceable_bio(tc->pool, bio);
2038 break;
2041 if (tc->origin_dev) {
2042 inc_all_io_entry(tc->pool, bio);
2043 remap_to_origin_and_issue(tc, bio);
2044 break;
2047 zero_fill_bio(bio);
2048 bio_endio(bio);
2049 break;
2051 default:
2052 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2053 __func__, r);
2054 if (cell)
2055 cell_defer_no_holder(tc, cell);
2056 bio_io_error(bio);
2057 break;
2061 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2063 __process_bio_read_only(tc, bio, NULL);
2066 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2068 __process_bio_read_only(tc, cell->holder, cell);
2071 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2073 bio_endio(bio);
2076 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2078 bio_io_error(bio);
2081 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083 cell_success(tc->pool, cell);
2086 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2088 cell_error(tc->pool, cell);
2092 * FIXME: should we also commit due to size of transaction, measured in
2093 * metadata blocks?
2095 static int need_commit_due_to_time(struct pool *pool)
2097 return !time_in_range(jiffies, pool->last_commit_jiffies,
2098 pool->last_commit_jiffies + COMMIT_PERIOD);
2101 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2102 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2104 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2106 struct rb_node **rbp, *parent;
2107 struct dm_thin_endio_hook *pbd;
2108 sector_t bi_sector = bio->bi_iter.bi_sector;
2110 rbp = &tc->sort_bio_list.rb_node;
2111 parent = NULL;
2112 while (*rbp) {
2113 parent = *rbp;
2114 pbd = thin_pbd(parent);
2116 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2117 rbp = &(*rbp)->rb_left;
2118 else
2119 rbp = &(*rbp)->rb_right;
2122 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2123 rb_link_node(&pbd->rb_node, parent, rbp);
2124 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2127 static void __extract_sorted_bios(struct thin_c *tc)
2129 struct rb_node *node;
2130 struct dm_thin_endio_hook *pbd;
2131 struct bio *bio;
2133 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2134 pbd = thin_pbd(node);
2135 bio = thin_bio(pbd);
2137 bio_list_add(&tc->deferred_bio_list, bio);
2138 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2141 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2144 static void __sort_thin_deferred_bios(struct thin_c *tc)
2146 struct bio *bio;
2147 struct bio_list bios;
2149 bio_list_init(&bios);
2150 bio_list_merge(&bios, &tc->deferred_bio_list);
2151 bio_list_init(&tc->deferred_bio_list);
2153 /* Sort deferred_bio_list using rb-tree */
2154 while ((bio = bio_list_pop(&bios)))
2155 __thin_bio_rb_add(tc, bio);
2158 * Transfer the sorted bios in sort_bio_list back to
2159 * deferred_bio_list to allow lockless submission of
2160 * all bios.
2162 __extract_sorted_bios(tc);
2165 static void process_thin_deferred_bios(struct thin_c *tc)
2167 struct pool *pool = tc->pool;
2168 struct bio *bio;
2169 struct bio_list bios;
2170 struct blk_plug plug;
2171 unsigned count = 0;
2173 if (tc->requeue_mode) {
2174 error_thin_bio_list(tc, &tc->deferred_bio_list,
2175 BLK_STS_DM_REQUEUE);
2176 return;
2179 bio_list_init(&bios);
2181 spin_lock_irq(&tc->lock);
2183 if (bio_list_empty(&tc->deferred_bio_list)) {
2184 spin_unlock_irq(&tc->lock);
2185 return;
2188 __sort_thin_deferred_bios(tc);
2190 bio_list_merge(&bios, &tc->deferred_bio_list);
2191 bio_list_init(&tc->deferred_bio_list);
2193 spin_unlock_irq(&tc->lock);
2195 blk_start_plug(&plug);
2196 while ((bio = bio_list_pop(&bios))) {
2198 * If we've got no free new_mapping structs, and processing
2199 * this bio might require one, we pause until there are some
2200 * prepared mappings to process.
2202 if (ensure_next_mapping(pool)) {
2203 spin_lock_irq(&tc->lock);
2204 bio_list_add(&tc->deferred_bio_list, bio);
2205 bio_list_merge(&tc->deferred_bio_list, &bios);
2206 spin_unlock_irq(&tc->lock);
2207 break;
2210 if (bio_op(bio) == REQ_OP_DISCARD)
2211 pool->process_discard(tc, bio);
2212 else
2213 pool->process_bio(tc, bio);
2215 if ((count++ & 127) == 0) {
2216 throttle_work_update(&pool->throttle);
2217 dm_pool_issue_prefetches(pool->pmd);
2220 blk_finish_plug(&plug);
2223 static int cmp_cells(const void *lhs, const void *rhs)
2225 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2226 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2228 BUG_ON(!lhs_cell->holder);
2229 BUG_ON(!rhs_cell->holder);
2231 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2232 return -1;
2234 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2235 return 1;
2237 return 0;
2240 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2242 unsigned count = 0;
2243 struct dm_bio_prison_cell *cell, *tmp;
2245 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2246 if (count >= CELL_SORT_ARRAY_SIZE)
2247 break;
2249 pool->cell_sort_array[count++] = cell;
2250 list_del(&cell->user_list);
2253 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2255 return count;
2258 static void process_thin_deferred_cells(struct thin_c *tc)
2260 struct pool *pool = tc->pool;
2261 struct list_head cells;
2262 struct dm_bio_prison_cell *cell;
2263 unsigned i, j, count;
2265 INIT_LIST_HEAD(&cells);
2267 spin_lock_irq(&tc->lock);
2268 list_splice_init(&tc->deferred_cells, &cells);
2269 spin_unlock_irq(&tc->lock);
2271 if (list_empty(&cells))
2272 return;
2274 do {
2275 count = sort_cells(tc->pool, &cells);
2277 for (i = 0; i < count; i++) {
2278 cell = pool->cell_sort_array[i];
2279 BUG_ON(!cell->holder);
2282 * If we've got no free new_mapping structs, and processing
2283 * this bio might require one, we pause until there are some
2284 * prepared mappings to process.
2286 if (ensure_next_mapping(pool)) {
2287 for (j = i; j < count; j++)
2288 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2290 spin_lock_irq(&tc->lock);
2291 list_splice(&cells, &tc->deferred_cells);
2292 spin_unlock_irq(&tc->lock);
2293 return;
2296 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2297 pool->process_discard_cell(tc, cell);
2298 else
2299 pool->process_cell(tc, cell);
2301 } while (!list_empty(&cells));
2304 static void thin_get(struct thin_c *tc);
2305 static void thin_put(struct thin_c *tc);
2308 * We can't hold rcu_read_lock() around code that can block. So we
2309 * find a thin with the rcu lock held; bump a refcount; then drop
2310 * the lock.
2312 static struct thin_c *get_first_thin(struct pool *pool)
2314 struct thin_c *tc = NULL;
2316 rcu_read_lock();
2317 if (!list_empty(&pool->active_thins)) {
2318 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2319 thin_get(tc);
2321 rcu_read_unlock();
2323 return tc;
2326 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2328 struct thin_c *old_tc = tc;
2330 rcu_read_lock();
2331 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2332 thin_get(tc);
2333 thin_put(old_tc);
2334 rcu_read_unlock();
2335 return tc;
2337 thin_put(old_tc);
2338 rcu_read_unlock();
2340 return NULL;
2343 static void process_deferred_bios(struct pool *pool)
2345 struct bio *bio;
2346 struct bio_list bios, bio_completions;
2347 struct thin_c *tc;
2349 tc = get_first_thin(pool);
2350 while (tc) {
2351 process_thin_deferred_cells(tc);
2352 process_thin_deferred_bios(tc);
2353 tc = get_next_thin(pool, tc);
2357 * If there are any deferred flush bios, we must commit the metadata
2358 * before issuing them or signaling their completion.
2360 bio_list_init(&bios);
2361 bio_list_init(&bio_completions);
2363 spin_lock_irq(&pool->lock);
2364 bio_list_merge(&bios, &pool->deferred_flush_bios);
2365 bio_list_init(&pool->deferred_flush_bios);
2367 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2368 bio_list_init(&pool->deferred_flush_completions);
2369 spin_unlock_irq(&pool->lock);
2371 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2372 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2373 return;
2375 if (commit(pool)) {
2376 bio_list_merge(&bios, &bio_completions);
2378 while ((bio = bio_list_pop(&bios)))
2379 bio_io_error(bio);
2380 return;
2382 pool->last_commit_jiffies = jiffies;
2384 while ((bio = bio_list_pop(&bio_completions)))
2385 bio_endio(bio);
2387 while ((bio = bio_list_pop(&bios))) {
2389 * The data device was flushed as part of metadata commit,
2390 * so complete redundant flushes immediately.
2392 if (bio->bi_opf & REQ_PREFLUSH)
2393 bio_endio(bio);
2394 else
2395 generic_make_request(bio);
2399 static void do_worker(struct work_struct *ws)
2401 struct pool *pool = container_of(ws, struct pool, worker);
2403 throttle_work_start(&pool->throttle);
2404 dm_pool_issue_prefetches(pool->pmd);
2405 throttle_work_update(&pool->throttle);
2406 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2407 throttle_work_update(&pool->throttle);
2408 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2409 throttle_work_update(&pool->throttle);
2410 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2411 throttle_work_update(&pool->throttle);
2412 process_deferred_bios(pool);
2413 throttle_work_complete(&pool->throttle);
2417 * We want to commit periodically so that not too much
2418 * unwritten data builds up.
2420 static void do_waker(struct work_struct *ws)
2422 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2423 wake_worker(pool);
2424 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2428 * We're holding onto IO to allow userland time to react. After the
2429 * timeout either the pool will have been resized (and thus back in
2430 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2432 static void do_no_space_timeout(struct work_struct *ws)
2434 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2435 no_space_timeout);
2437 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2438 pool->pf.error_if_no_space = true;
2439 notify_of_pool_mode_change(pool);
2440 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2444 /*----------------------------------------------------------------*/
2446 struct pool_work {
2447 struct work_struct worker;
2448 struct completion complete;
2451 static struct pool_work *to_pool_work(struct work_struct *ws)
2453 return container_of(ws, struct pool_work, worker);
2456 static void pool_work_complete(struct pool_work *pw)
2458 complete(&pw->complete);
2461 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2462 void (*fn)(struct work_struct *))
2464 INIT_WORK_ONSTACK(&pw->worker, fn);
2465 init_completion(&pw->complete);
2466 queue_work(pool->wq, &pw->worker);
2467 wait_for_completion(&pw->complete);
2470 /*----------------------------------------------------------------*/
2472 struct noflush_work {
2473 struct pool_work pw;
2474 struct thin_c *tc;
2477 static struct noflush_work *to_noflush(struct work_struct *ws)
2479 return container_of(to_pool_work(ws), struct noflush_work, pw);
2482 static void do_noflush_start(struct work_struct *ws)
2484 struct noflush_work *w = to_noflush(ws);
2485 w->tc->requeue_mode = true;
2486 requeue_io(w->tc);
2487 pool_work_complete(&w->pw);
2490 static void do_noflush_stop(struct work_struct *ws)
2492 struct noflush_work *w = to_noflush(ws);
2493 w->tc->requeue_mode = false;
2494 pool_work_complete(&w->pw);
2497 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2499 struct noflush_work w;
2501 w.tc = tc;
2502 pool_work_wait(&w.pw, tc->pool, fn);
2505 /*----------------------------------------------------------------*/
2507 static bool passdown_enabled(struct pool_c *pt)
2509 return pt->adjusted_pf.discard_passdown;
2512 static void set_discard_callbacks(struct pool *pool)
2514 struct pool_c *pt = pool->ti->private;
2516 if (passdown_enabled(pt)) {
2517 pool->process_discard_cell = process_discard_cell_passdown;
2518 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2519 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2520 } else {
2521 pool->process_discard_cell = process_discard_cell_no_passdown;
2522 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2526 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2528 struct pool_c *pt = pool->ti->private;
2529 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2530 enum pool_mode old_mode = get_pool_mode(pool);
2531 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2534 * Never allow the pool to transition to PM_WRITE mode if user
2535 * intervention is required to verify metadata and data consistency.
2537 if (new_mode == PM_WRITE && needs_check) {
2538 DMERR("%s: unable to switch pool to write mode until repaired.",
2539 dm_device_name(pool->pool_md));
2540 if (old_mode != new_mode)
2541 new_mode = old_mode;
2542 else
2543 new_mode = PM_READ_ONLY;
2546 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2547 * not going to recover without a thin_repair. So we never let the
2548 * pool move out of the old mode.
2550 if (old_mode == PM_FAIL)
2551 new_mode = old_mode;
2553 switch (new_mode) {
2554 case PM_FAIL:
2555 dm_pool_metadata_read_only(pool->pmd);
2556 pool->process_bio = process_bio_fail;
2557 pool->process_discard = process_bio_fail;
2558 pool->process_cell = process_cell_fail;
2559 pool->process_discard_cell = process_cell_fail;
2560 pool->process_prepared_mapping = process_prepared_mapping_fail;
2561 pool->process_prepared_discard = process_prepared_discard_fail;
2563 error_retry_list(pool);
2564 break;
2566 case PM_OUT_OF_METADATA_SPACE:
2567 case PM_READ_ONLY:
2568 dm_pool_metadata_read_only(pool->pmd);
2569 pool->process_bio = process_bio_read_only;
2570 pool->process_discard = process_bio_success;
2571 pool->process_cell = process_cell_read_only;
2572 pool->process_discard_cell = process_cell_success;
2573 pool->process_prepared_mapping = process_prepared_mapping_fail;
2574 pool->process_prepared_discard = process_prepared_discard_success;
2576 error_retry_list(pool);
2577 break;
2579 case PM_OUT_OF_DATA_SPACE:
2581 * Ideally we'd never hit this state; the low water mark
2582 * would trigger userland to extend the pool before we
2583 * completely run out of data space. However, many small
2584 * IOs to unprovisioned space can consume data space at an
2585 * alarming rate. Adjust your low water mark if you're
2586 * frequently seeing this mode.
2588 pool->out_of_data_space = true;
2589 pool->process_bio = process_bio_read_only;
2590 pool->process_discard = process_discard_bio;
2591 pool->process_cell = process_cell_read_only;
2592 pool->process_prepared_mapping = process_prepared_mapping;
2593 set_discard_callbacks(pool);
2595 if (!pool->pf.error_if_no_space && no_space_timeout)
2596 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2597 break;
2599 case PM_WRITE:
2600 if (old_mode == PM_OUT_OF_DATA_SPACE)
2601 cancel_delayed_work_sync(&pool->no_space_timeout);
2602 pool->out_of_data_space = false;
2603 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2604 dm_pool_metadata_read_write(pool->pmd);
2605 pool->process_bio = process_bio;
2606 pool->process_discard = process_discard_bio;
2607 pool->process_cell = process_cell;
2608 pool->process_prepared_mapping = process_prepared_mapping;
2609 set_discard_callbacks(pool);
2610 break;
2613 pool->pf.mode = new_mode;
2615 * The pool mode may have changed, sync it so bind_control_target()
2616 * doesn't cause an unexpected mode transition on resume.
2618 pt->adjusted_pf.mode = new_mode;
2620 if (old_mode != new_mode)
2621 notify_of_pool_mode_change(pool);
2624 static void abort_transaction(struct pool *pool)
2626 const char *dev_name = dm_device_name(pool->pool_md);
2628 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2629 if (dm_pool_abort_metadata(pool->pmd)) {
2630 DMERR("%s: failed to abort metadata transaction", dev_name);
2631 set_pool_mode(pool, PM_FAIL);
2634 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2635 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2636 set_pool_mode(pool, PM_FAIL);
2640 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2642 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2643 dm_device_name(pool->pool_md), op, r);
2645 abort_transaction(pool);
2646 set_pool_mode(pool, PM_READ_ONLY);
2649 /*----------------------------------------------------------------*/
2652 * Mapping functions.
2656 * Called only while mapping a thin bio to hand it over to the workqueue.
2658 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2660 struct pool *pool = tc->pool;
2662 spin_lock_irq(&tc->lock);
2663 bio_list_add(&tc->deferred_bio_list, bio);
2664 spin_unlock_irq(&tc->lock);
2666 wake_worker(pool);
2669 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2671 struct pool *pool = tc->pool;
2673 throttle_lock(&pool->throttle);
2674 thin_defer_bio(tc, bio);
2675 throttle_unlock(&pool->throttle);
2678 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2680 struct pool *pool = tc->pool;
2682 throttle_lock(&pool->throttle);
2683 spin_lock_irq(&tc->lock);
2684 list_add_tail(&cell->user_list, &tc->deferred_cells);
2685 spin_unlock_irq(&tc->lock);
2686 throttle_unlock(&pool->throttle);
2688 wake_worker(pool);
2691 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2693 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2695 h->tc = tc;
2696 h->shared_read_entry = NULL;
2697 h->all_io_entry = NULL;
2698 h->overwrite_mapping = NULL;
2699 h->cell = NULL;
2703 * Non-blocking function called from the thin target's map function.
2705 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2707 int r;
2708 struct thin_c *tc = ti->private;
2709 dm_block_t block = get_bio_block(tc, bio);
2710 struct dm_thin_device *td = tc->td;
2711 struct dm_thin_lookup_result result;
2712 struct dm_bio_prison_cell *virt_cell, *data_cell;
2713 struct dm_cell_key key;
2715 thin_hook_bio(tc, bio);
2717 if (tc->requeue_mode) {
2718 bio->bi_status = BLK_STS_DM_REQUEUE;
2719 bio_endio(bio);
2720 return DM_MAPIO_SUBMITTED;
2723 if (get_pool_mode(tc->pool) == PM_FAIL) {
2724 bio_io_error(bio);
2725 return DM_MAPIO_SUBMITTED;
2728 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2729 thin_defer_bio_with_throttle(tc, bio);
2730 return DM_MAPIO_SUBMITTED;
2734 * We must hold the virtual cell before doing the lookup, otherwise
2735 * there's a race with discard.
2737 build_virtual_key(tc->td, block, &key);
2738 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2739 return DM_MAPIO_SUBMITTED;
2741 r = dm_thin_find_block(td, block, 0, &result);
2744 * Note that we defer readahead too.
2746 switch (r) {
2747 case 0:
2748 if (unlikely(result.shared)) {
2750 * We have a race condition here between the
2751 * result.shared value returned by the lookup and
2752 * snapshot creation, which may cause new
2753 * sharing.
2755 * To avoid this always quiesce the origin before
2756 * taking the snap. You want to do this anyway to
2757 * ensure a consistent application view
2758 * (i.e. lockfs).
2760 * More distant ancestors are irrelevant. The
2761 * shared flag will be set in their case.
2763 thin_defer_cell(tc, virt_cell);
2764 return DM_MAPIO_SUBMITTED;
2767 build_data_key(tc->td, result.block, &key);
2768 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2769 cell_defer_no_holder(tc, virt_cell);
2770 return DM_MAPIO_SUBMITTED;
2773 inc_all_io_entry(tc->pool, bio);
2774 cell_defer_no_holder(tc, data_cell);
2775 cell_defer_no_holder(tc, virt_cell);
2777 remap(tc, bio, result.block);
2778 return DM_MAPIO_REMAPPED;
2780 case -ENODATA:
2781 case -EWOULDBLOCK:
2782 thin_defer_cell(tc, virt_cell);
2783 return DM_MAPIO_SUBMITTED;
2785 default:
2787 * Must always call bio_io_error on failure.
2788 * dm_thin_find_block can fail with -EINVAL if the
2789 * pool is switched to fail-io mode.
2791 bio_io_error(bio);
2792 cell_defer_no_holder(tc, virt_cell);
2793 return DM_MAPIO_SUBMITTED;
2797 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2799 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2800 struct request_queue *q;
2802 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2803 return 1;
2805 q = bdev_get_queue(pt->data_dev->bdev);
2806 return bdi_congested(q->backing_dev_info, bdi_bits);
2809 static void requeue_bios(struct pool *pool)
2811 struct thin_c *tc;
2813 rcu_read_lock();
2814 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2815 spin_lock_irq(&tc->lock);
2816 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2817 bio_list_init(&tc->retry_on_resume_list);
2818 spin_unlock_irq(&tc->lock);
2820 rcu_read_unlock();
2823 /*----------------------------------------------------------------
2824 * Binding of control targets to a pool object
2825 *--------------------------------------------------------------*/
2826 static bool data_dev_supports_discard(struct pool_c *pt)
2828 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2830 return q && blk_queue_discard(q);
2833 static bool is_factor(sector_t block_size, uint32_t n)
2835 return !sector_div(block_size, n);
2839 * If discard_passdown was enabled verify that the data device
2840 * supports discards. Disable discard_passdown if not.
2842 static void disable_passdown_if_not_supported(struct pool_c *pt)
2844 struct pool *pool = pt->pool;
2845 struct block_device *data_bdev = pt->data_dev->bdev;
2846 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2847 const char *reason = NULL;
2848 char buf[BDEVNAME_SIZE];
2850 if (!pt->adjusted_pf.discard_passdown)
2851 return;
2853 if (!data_dev_supports_discard(pt))
2854 reason = "discard unsupported";
2856 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2857 reason = "max discard sectors smaller than a block";
2859 if (reason) {
2860 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2861 pt->adjusted_pf.discard_passdown = false;
2865 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2867 struct pool_c *pt = ti->private;
2870 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2872 enum pool_mode old_mode = get_pool_mode(pool);
2873 enum pool_mode new_mode = pt->adjusted_pf.mode;
2876 * Don't change the pool's mode until set_pool_mode() below.
2877 * Otherwise the pool's process_* function pointers may
2878 * not match the desired pool mode.
2880 pt->adjusted_pf.mode = old_mode;
2882 pool->ti = ti;
2883 pool->pf = pt->adjusted_pf;
2884 pool->low_water_blocks = pt->low_water_blocks;
2886 set_pool_mode(pool, new_mode);
2888 return 0;
2891 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2893 if (pool->ti == ti)
2894 pool->ti = NULL;
2897 /*----------------------------------------------------------------
2898 * Pool creation
2899 *--------------------------------------------------------------*/
2900 /* Initialize pool features. */
2901 static void pool_features_init(struct pool_features *pf)
2903 pf->mode = PM_WRITE;
2904 pf->zero_new_blocks = true;
2905 pf->discard_enabled = true;
2906 pf->discard_passdown = true;
2907 pf->error_if_no_space = false;
2910 static void __pool_destroy(struct pool *pool)
2912 __pool_table_remove(pool);
2914 vfree(pool->cell_sort_array);
2915 if (dm_pool_metadata_close(pool->pmd) < 0)
2916 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2918 dm_bio_prison_destroy(pool->prison);
2919 dm_kcopyd_client_destroy(pool->copier);
2921 if (pool->wq)
2922 destroy_workqueue(pool->wq);
2924 if (pool->next_mapping)
2925 mempool_free(pool->next_mapping, &pool->mapping_pool);
2926 mempool_exit(&pool->mapping_pool);
2927 dm_deferred_set_destroy(pool->shared_read_ds);
2928 dm_deferred_set_destroy(pool->all_io_ds);
2929 kfree(pool);
2932 static struct kmem_cache *_new_mapping_cache;
2934 static struct pool *pool_create(struct mapped_device *pool_md,
2935 struct block_device *metadata_dev,
2936 unsigned long block_size,
2937 int read_only, char **error)
2939 int r;
2940 void *err_p;
2941 struct pool *pool;
2942 struct dm_pool_metadata *pmd;
2943 bool format_device = read_only ? false : true;
2945 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2946 if (IS_ERR(pmd)) {
2947 *error = "Error creating metadata object";
2948 return (struct pool *)pmd;
2951 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2952 if (!pool) {
2953 *error = "Error allocating memory for pool";
2954 err_p = ERR_PTR(-ENOMEM);
2955 goto bad_pool;
2958 pool->pmd = pmd;
2959 pool->sectors_per_block = block_size;
2960 if (block_size & (block_size - 1))
2961 pool->sectors_per_block_shift = -1;
2962 else
2963 pool->sectors_per_block_shift = __ffs(block_size);
2964 pool->low_water_blocks = 0;
2965 pool_features_init(&pool->pf);
2966 pool->prison = dm_bio_prison_create();
2967 if (!pool->prison) {
2968 *error = "Error creating pool's bio prison";
2969 err_p = ERR_PTR(-ENOMEM);
2970 goto bad_prison;
2973 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2974 if (IS_ERR(pool->copier)) {
2975 r = PTR_ERR(pool->copier);
2976 *error = "Error creating pool's kcopyd client";
2977 err_p = ERR_PTR(r);
2978 goto bad_kcopyd_client;
2982 * Create singlethreaded workqueue that will service all devices
2983 * that use this metadata.
2985 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2986 if (!pool->wq) {
2987 *error = "Error creating pool's workqueue";
2988 err_p = ERR_PTR(-ENOMEM);
2989 goto bad_wq;
2992 throttle_init(&pool->throttle);
2993 INIT_WORK(&pool->worker, do_worker);
2994 INIT_DELAYED_WORK(&pool->waker, do_waker);
2995 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2996 spin_lock_init(&pool->lock);
2997 bio_list_init(&pool->deferred_flush_bios);
2998 bio_list_init(&pool->deferred_flush_completions);
2999 INIT_LIST_HEAD(&pool->prepared_mappings);
3000 INIT_LIST_HEAD(&pool->prepared_discards);
3001 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3002 INIT_LIST_HEAD(&pool->active_thins);
3003 pool->low_water_triggered = false;
3004 pool->suspended = true;
3005 pool->out_of_data_space = false;
3007 pool->shared_read_ds = dm_deferred_set_create();
3008 if (!pool->shared_read_ds) {
3009 *error = "Error creating pool's shared read deferred set";
3010 err_p = ERR_PTR(-ENOMEM);
3011 goto bad_shared_read_ds;
3014 pool->all_io_ds = dm_deferred_set_create();
3015 if (!pool->all_io_ds) {
3016 *error = "Error creating pool's all io deferred set";
3017 err_p = ERR_PTR(-ENOMEM);
3018 goto bad_all_io_ds;
3021 pool->next_mapping = NULL;
3022 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3023 _new_mapping_cache);
3024 if (r) {
3025 *error = "Error creating pool's mapping mempool";
3026 err_p = ERR_PTR(r);
3027 goto bad_mapping_pool;
3030 pool->cell_sort_array =
3031 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3032 sizeof(*pool->cell_sort_array)));
3033 if (!pool->cell_sort_array) {
3034 *error = "Error allocating cell sort array";
3035 err_p = ERR_PTR(-ENOMEM);
3036 goto bad_sort_array;
3039 pool->ref_count = 1;
3040 pool->last_commit_jiffies = jiffies;
3041 pool->pool_md = pool_md;
3042 pool->md_dev = metadata_dev;
3043 __pool_table_insert(pool);
3045 return pool;
3047 bad_sort_array:
3048 mempool_exit(&pool->mapping_pool);
3049 bad_mapping_pool:
3050 dm_deferred_set_destroy(pool->all_io_ds);
3051 bad_all_io_ds:
3052 dm_deferred_set_destroy(pool->shared_read_ds);
3053 bad_shared_read_ds:
3054 destroy_workqueue(pool->wq);
3055 bad_wq:
3056 dm_kcopyd_client_destroy(pool->copier);
3057 bad_kcopyd_client:
3058 dm_bio_prison_destroy(pool->prison);
3059 bad_prison:
3060 kfree(pool);
3061 bad_pool:
3062 if (dm_pool_metadata_close(pmd))
3063 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3065 return err_p;
3068 static void __pool_inc(struct pool *pool)
3070 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3071 pool->ref_count++;
3074 static void __pool_dec(struct pool *pool)
3076 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3077 BUG_ON(!pool->ref_count);
3078 if (!--pool->ref_count)
3079 __pool_destroy(pool);
3082 static struct pool *__pool_find(struct mapped_device *pool_md,
3083 struct block_device *metadata_dev,
3084 unsigned long block_size, int read_only,
3085 char **error, int *created)
3087 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3089 if (pool) {
3090 if (pool->pool_md != pool_md) {
3091 *error = "metadata device already in use by a pool";
3092 return ERR_PTR(-EBUSY);
3094 __pool_inc(pool);
3096 } else {
3097 pool = __pool_table_lookup(pool_md);
3098 if (pool) {
3099 if (pool->md_dev != metadata_dev) {
3100 *error = "different pool cannot replace a pool";
3101 return ERR_PTR(-EINVAL);
3103 __pool_inc(pool);
3105 } else {
3106 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3107 *created = 1;
3111 return pool;
3114 /*----------------------------------------------------------------
3115 * Pool target methods
3116 *--------------------------------------------------------------*/
3117 static void pool_dtr(struct dm_target *ti)
3119 struct pool_c *pt = ti->private;
3121 mutex_lock(&dm_thin_pool_table.mutex);
3123 unbind_control_target(pt->pool, ti);
3124 __pool_dec(pt->pool);
3125 dm_put_device(ti, pt->metadata_dev);
3126 dm_put_device(ti, pt->data_dev);
3127 bio_uninit(&pt->flush_bio);
3128 kfree(pt);
3130 mutex_unlock(&dm_thin_pool_table.mutex);
3133 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3134 struct dm_target *ti)
3136 int r;
3137 unsigned argc;
3138 const char *arg_name;
3140 static const struct dm_arg _args[] = {
3141 {0, 4, "Invalid number of pool feature arguments"},
3145 * No feature arguments supplied.
3147 if (!as->argc)
3148 return 0;
3150 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3151 if (r)
3152 return -EINVAL;
3154 while (argc && !r) {
3155 arg_name = dm_shift_arg(as);
3156 argc--;
3158 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3159 pf->zero_new_blocks = false;
3161 else if (!strcasecmp(arg_name, "ignore_discard"))
3162 pf->discard_enabled = false;
3164 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3165 pf->discard_passdown = false;
3167 else if (!strcasecmp(arg_name, "read_only"))
3168 pf->mode = PM_READ_ONLY;
3170 else if (!strcasecmp(arg_name, "error_if_no_space"))
3171 pf->error_if_no_space = true;
3173 else {
3174 ti->error = "Unrecognised pool feature requested";
3175 r = -EINVAL;
3176 break;
3180 return r;
3183 static void metadata_low_callback(void *context)
3185 struct pool *pool = context;
3187 DMWARN("%s: reached low water mark for metadata device: sending event.",
3188 dm_device_name(pool->pool_md));
3190 dm_table_event(pool->ti->table);
3194 * We need to flush the data device **before** committing the metadata.
3196 * This ensures that the data blocks of any newly inserted mappings are
3197 * properly written to non-volatile storage and won't be lost in case of a
3198 * crash.
3200 * Failure to do so can result in data corruption in the case of internal or
3201 * external snapshots and in the case of newly provisioned blocks, when block
3202 * zeroing is enabled.
3204 static int metadata_pre_commit_callback(void *context)
3206 struct pool_c *pt = context;
3207 struct bio *flush_bio = &pt->flush_bio;
3209 bio_reset(flush_bio);
3210 bio_set_dev(flush_bio, pt->data_dev->bdev);
3211 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3213 return submit_bio_wait(flush_bio);
3216 static sector_t get_dev_size(struct block_device *bdev)
3218 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3221 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3223 sector_t metadata_dev_size = get_dev_size(bdev);
3224 char buffer[BDEVNAME_SIZE];
3226 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3227 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3228 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3231 static sector_t get_metadata_dev_size(struct block_device *bdev)
3233 sector_t metadata_dev_size = get_dev_size(bdev);
3235 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3236 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3238 return metadata_dev_size;
3241 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3243 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3245 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3247 return metadata_dev_size;
3251 * When a metadata threshold is crossed a dm event is triggered, and
3252 * userland should respond by growing the metadata device. We could let
3253 * userland set the threshold, like we do with the data threshold, but I'm
3254 * not sure they know enough to do this well.
3256 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3259 * 4M is ample for all ops with the possible exception of thin
3260 * device deletion which is harmless if it fails (just retry the
3261 * delete after you've grown the device).
3263 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3264 return min((dm_block_t)1024ULL /* 4M */, quarter);
3268 * thin-pool <metadata dev> <data dev>
3269 * <data block size (sectors)>
3270 * <low water mark (blocks)>
3271 * [<#feature args> [<arg>]*]
3273 * Optional feature arguments are:
3274 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3275 * ignore_discard: disable discard
3276 * no_discard_passdown: don't pass discards down to the data device
3277 * read_only: Don't allow any changes to be made to the pool metadata.
3278 * error_if_no_space: error IOs, instead of queueing, if no space.
3280 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3282 int r, pool_created = 0;
3283 struct pool_c *pt;
3284 struct pool *pool;
3285 struct pool_features pf;
3286 struct dm_arg_set as;
3287 struct dm_dev *data_dev;
3288 unsigned long block_size;
3289 dm_block_t low_water_blocks;
3290 struct dm_dev *metadata_dev;
3291 fmode_t metadata_mode;
3294 * FIXME Remove validation from scope of lock.
3296 mutex_lock(&dm_thin_pool_table.mutex);
3298 if (argc < 4) {
3299 ti->error = "Invalid argument count";
3300 r = -EINVAL;
3301 goto out_unlock;
3304 as.argc = argc;
3305 as.argv = argv;
3307 /* make sure metadata and data are different devices */
3308 if (!strcmp(argv[0], argv[1])) {
3309 ti->error = "Error setting metadata or data device";
3310 r = -EINVAL;
3311 goto out_unlock;
3315 * Set default pool features.
3317 pool_features_init(&pf);
3319 dm_consume_args(&as, 4);
3320 r = parse_pool_features(&as, &pf, ti);
3321 if (r)
3322 goto out_unlock;
3324 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3325 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3326 if (r) {
3327 ti->error = "Error opening metadata block device";
3328 goto out_unlock;
3330 warn_if_metadata_device_too_big(metadata_dev->bdev);
3332 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3333 if (r) {
3334 ti->error = "Error getting data device";
3335 goto out_metadata;
3338 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3339 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3340 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3341 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3342 ti->error = "Invalid block size";
3343 r = -EINVAL;
3344 goto out;
3347 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3348 ti->error = "Invalid low water mark";
3349 r = -EINVAL;
3350 goto out;
3353 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3354 if (!pt) {
3355 r = -ENOMEM;
3356 goto out;
3359 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3360 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3361 if (IS_ERR(pool)) {
3362 r = PTR_ERR(pool);
3363 goto out_free_pt;
3367 * 'pool_created' reflects whether this is the first table load.
3368 * Top level discard support is not allowed to be changed after
3369 * initial load. This would require a pool reload to trigger thin
3370 * device changes.
3372 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3373 ti->error = "Discard support cannot be disabled once enabled";
3374 r = -EINVAL;
3375 goto out_flags_changed;
3378 pt->pool = pool;
3379 pt->ti = ti;
3380 pt->metadata_dev = metadata_dev;
3381 pt->data_dev = data_dev;
3382 pt->low_water_blocks = low_water_blocks;
3383 pt->adjusted_pf = pt->requested_pf = pf;
3384 bio_init(&pt->flush_bio, NULL, 0);
3385 ti->num_flush_bios = 1;
3388 * Only need to enable discards if the pool should pass
3389 * them down to the data device. The thin device's discard
3390 * processing will cause mappings to be removed from the btree.
3392 if (pf.discard_enabled && pf.discard_passdown) {
3393 ti->num_discard_bios = 1;
3396 * Setting 'discards_supported' circumvents the normal
3397 * stacking of discard limits (this keeps the pool and
3398 * thin devices' discard limits consistent).
3400 ti->discards_supported = true;
3402 ti->private = pt;
3404 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3405 calc_metadata_threshold(pt),
3406 metadata_low_callback,
3407 pool);
3408 if (r)
3409 goto out_flags_changed;
3411 dm_pool_register_pre_commit_callback(pt->pool->pmd,
3412 metadata_pre_commit_callback,
3413 pt);
3415 pt->callbacks.congested_fn = pool_is_congested;
3416 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3418 mutex_unlock(&dm_thin_pool_table.mutex);
3420 return 0;
3422 out_flags_changed:
3423 __pool_dec(pool);
3424 out_free_pt:
3425 kfree(pt);
3426 out:
3427 dm_put_device(ti, data_dev);
3428 out_metadata:
3429 dm_put_device(ti, metadata_dev);
3430 out_unlock:
3431 mutex_unlock(&dm_thin_pool_table.mutex);
3433 return r;
3436 static int pool_map(struct dm_target *ti, struct bio *bio)
3438 int r;
3439 struct pool_c *pt = ti->private;
3440 struct pool *pool = pt->pool;
3443 * As this is a singleton target, ti->begin is always zero.
3445 spin_lock_irq(&pool->lock);
3446 bio_set_dev(bio, pt->data_dev->bdev);
3447 r = DM_MAPIO_REMAPPED;
3448 spin_unlock_irq(&pool->lock);
3450 return r;
3453 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3455 int r;
3456 struct pool_c *pt = ti->private;
3457 struct pool *pool = pt->pool;
3458 sector_t data_size = ti->len;
3459 dm_block_t sb_data_size;
3461 *need_commit = false;
3463 (void) sector_div(data_size, pool->sectors_per_block);
3465 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3466 if (r) {
3467 DMERR("%s: failed to retrieve data device size",
3468 dm_device_name(pool->pool_md));
3469 return r;
3472 if (data_size < sb_data_size) {
3473 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3474 dm_device_name(pool->pool_md),
3475 (unsigned long long)data_size, sb_data_size);
3476 return -EINVAL;
3478 } else if (data_size > sb_data_size) {
3479 if (dm_pool_metadata_needs_check(pool->pmd)) {
3480 DMERR("%s: unable to grow the data device until repaired.",
3481 dm_device_name(pool->pool_md));
3482 return 0;
3485 if (sb_data_size)
3486 DMINFO("%s: growing the data device from %llu to %llu blocks",
3487 dm_device_name(pool->pool_md),
3488 sb_data_size, (unsigned long long)data_size);
3489 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3490 if (r) {
3491 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3492 return r;
3495 *need_commit = true;
3498 return 0;
3501 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3503 int r;
3504 struct pool_c *pt = ti->private;
3505 struct pool *pool = pt->pool;
3506 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3508 *need_commit = false;
3510 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3512 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3513 if (r) {
3514 DMERR("%s: failed to retrieve metadata device size",
3515 dm_device_name(pool->pool_md));
3516 return r;
3519 if (metadata_dev_size < sb_metadata_dev_size) {
3520 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3521 dm_device_name(pool->pool_md),
3522 metadata_dev_size, sb_metadata_dev_size);
3523 return -EINVAL;
3525 } else if (metadata_dev_size > sb_metadata_dev_size) {
3526 if (dm_pool_metadata_needs_check(pool->pmd)) {
3527 DMERR("%s: unable to grow the metadata device until repaired.",
3528 dm_device_name(pool->pool_md));
3529 return 0;
3532 warn_if_metadata_device_too_big(pool->md_dev);
3533 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3534 dm_device_name(pool->pool_md),
3535 sb_metadata_dev_size, metadata_dev_size);
3537 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3538 set_pool_mode(pool, PM_WRITE);
3540 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3541 if (r) {
3542 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3543 return r;
3546 *need_commit = true;
3549 return 0;
3553 * Retrieves the number of blocks of the data device from
3554 * the superblock and compares it to the actual device size,
3555 * thus resizing the data device in case it has grown.
3557 * This both copes with opening preallocated data devices in the ctr
3558 * being followed by a resume
3559 * -and-
3560 * calling the resume method individually after userspace has
3561 * grown the data device in reaction to a table event.
3563 static int pool_preresume(struct dm_target *ti)
3565 int r;
3566 bool need_commit1, need_commit2;
3567 struct pool_c *pt = ti->private;
3568 struct pool *pool = pt->pool;
3571 * Take control of the pool object.
3573 r = bind_control_target(pool, ti);
3574 if (r)
3575 return r;
3577 r = maybe_resize_data_dev(ti, &need_commit1);
3578 if (r)
3579 return r;
3581 r = maybe_resize_metadata_dev(ti, &need_commit2);
3582 if (r)
3583 return r;
3585 if (need_commit1 || need_commit2)
3586 (void) commit(pool);
3588 return 0;
3591 static void pool_suspend_active_thins(struct pool *pool)
3593 struct thin_c *tc;
3595 /* Suspend all active thin devices */
3596 tc = get_first_thin(pool);
3597 while (tc) {
3598 dm_internal_suspend_noflush(tc->thin_md);
3599 tc = get_next_thin(pool, tc);
3603 static void pool_resume_active_thins(struct pool *pool)
3605 struct thin_c *tc;
3607 /* Resume all active thin devices */
3608 tc = get_first_thin(pool);
3609 while (tc) {
3610 dm_internal_resume(tc->thin_md);
3611 tc = get_next_thin(pool, tc);
3615 static void pool_resume(struct dm_target *ti)
3617 struct pool_c *pt = ti->private;
3618 struct pool *pool = pt->pool;
3621 * Must requeue active_thins' bios and then resume
3622 * active_thins _before_ clearing 'suspend' flag.
3624 requeue_bios(pool);
3625 pool_resume_active_thins(pool);
3627 spin_lock_irq(&pool->lock);
3628 pool->low_water_triggered = false;
3629 pool->suspended = false;
3630 spin_unlock_irq(&pool->lock);
3632 do_waker(&pool->waker.work);
3635 static void pool_presuspend(struct dm_target *ti)
3637 struct pool_c *pt = ti->private;
3638 struct pool *pool = pt->pool;
3640 spin_lock_irq(&pool->lock);
3641 pool->suspended = true;
3642 spin_unlock_irq(&pool->lock);
3644 pool_suspend_active_thins(pool);
3647 static void pool_presuspend_undo(struct dm_target *ti)
3649 struct pool_c *pt = ti->private;
3650 struct pool *pool = pt->pool;
3652 pool_resume_active_thins(pool);
3654 spin_lock_irq(&pool->lock);
3655 pool->suspended = false;
3656 spin_unlock_irq(&pool->lock);
3659 static void pool_postsuspend(struct dm_target *ti)
3661 struct pool_c *pt = ti->private;
3662 struct pool *pool = pt->pool;
3664 cancel_delayed_work_sync(&pool->waker);
3665 cancel_delayed_work_sync(&pool->no_space_timeout);
3666 flush_workqueue(pool->wq);
3667 (void) commit(pool);
3670 static int check_arg_count(unsigned argc, unsigned args_required)
3672 if (argc != args_required) {
3673 DMWARN("Message received with %u arguments instead of %u.",
3674 argc, args_required);
3675 return -EINVAL;
3678 return 0;
3681 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3683 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3684 *dev_id <= MAX_DEV_ID)
3685 return 0;
3687 if (warning)
3688 DMWARN("Message received with invalid device id: %s", arg);
3690 return -EINVAL;
3693 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3695 dm_thin_id dev_id;
3696 int r;
3698 r = check_arg_count(argc, 2);
3699 if (r)
3700 return r;
3702 r = read_dev_id(argv[1], &dev_id, 1);
3703 if (r)
3704 return r;
3706 r = dm_pool_create_thin(pool->pmd, dev_id);
3707 if (r) {
3708 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3709 argv[1]);
3710 return r;
3713 return 0;
3716 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3718 dm_thin_id dev_id;
3719 dm_thin_id origin_dev_id;
3720 int r;
3722 r = check_arg_count(argc, 3);
3723 if (r)
3724 return r;
3726 r = read_dev_id(argv[1], &dev_id, 1);
3727 if (r)
3728 return r;
3730 r = read_dev_id(argv[2], &origin_dev_id, 1);
3731 if (r)
3732 return r;
3734 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3735 if (r) {
3736 DMWARN("Creation of new snapshot %s of device %s failed.",
3737 argv[1], argv[2]);
3738 return r;
3741 return 0;
3744 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3746 dm_thin_id dev_id;
3747 int r;
3749 r = check_arg_count(argc, 2);
3750 if (r)
3751 return r;
3753 r = read_dev_id(argv[1], &dev_id, 1);
3754 if (r)
3755 return r;
3757 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3758 if (r)
3759 DMWARN("Deletion of thin device %s failed.", argv[1]);
3761 return r;
3764 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3766 dm_thin_id old_id, new_id;
3767 int r;
3769 r = check_arg_count(argc, 3);
3770 if (r)
3771 return r;
3773 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3774 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3775 return -EINVAL;
3778 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3779 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3780 return -EINVAL;
3783 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3784 if (r) {
3785 DMWARN("Failed to change transaction id from %s to %s.",
3786 argv[1], argv[2]);
3787 return r;
3790 return 0;
3793 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3795 int r;
3797 r = check_arg_count(argc, 1);
3798 if (r)
3799 return r;
3801 (void) commit(pool);
3803 r = dm_pool_reserve_metadata_snap(pool->pmd);
3804 if (r)
3805 DMWARN("reserve_metadata_snap message failed.");
3807 return r;
3810 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3812 int r;
3814 r = check_arg_count(argc, 1);
3815 if (r)
3816 return r;
3818 r = dm_pool_release_metadata_snap(pool->pmd);
3819 if (r)
3820 DMWARN("release_metadata_snap message failed.");
3822 return r;
3826 * Messages supported:
3827 * create_thin <dev_id>
3828 * create_snap <dev_id> <origin_id>
3829 * delete <dev_id>
3830 * set_transaction_id <current_trans_id> <new_trans_id>
3831 * reserve_metadata_snap
3832 * release_metadata_snap
3834 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3835 char *result, unsigned maxlen)
3837 int r = -EINVAL;
3838 struct pool_c *pt = ti->private;
3839 struct pool *pool = pt->pool;
3841 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3842 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3843 dm_device_name(pool->pool_md));
3844 return -EOPNOTSUPP;
3847 if (!strcasecmp(argv[0], "create_thin"))
3848 r = process_create_thin_mesg(argc, argv, pool);
3850 else if (!strcasecmp(argv[0], "create_snap"))
3851 r = process_create_snap_mesg(argc, argv, pool);
3853 else if (!strcasecmp(argv[0], "delete"))
3854 r = process_delete_mesg(argc, argv, pool);
3856 else if (!strcasecmp(argv[0], "set_transaction_id"))
3857 r = process_set_transaction_id_mesg(argc, argv, pool);
3859 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3860 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3862 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3863 r = process_release_metadata_snap_mesg(argc, argv, pool);
3865 else
3866 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3868 if (!r)
3869 (void) commit(pool);
3871 return r;
3874 static void emit_flags(struct pool_features *pf, char *result,
3875 unsigned sz, unsigned maxlen)
3877 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3878 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3879 pf->error_if_no_space;
3880 DMEMIT("%u ", count);
3882 if (!pf->zero_new_blocks)
3883 DMEMIT("skip_block_zeroing ");
3885 if (!pf->discard_enabled)
3886 DMEMIT("ignore_discard ");
3888 if (!pf->discard_passdown)
3889 DMEMIT("no_discard_passdown ");
3891 if (pf->mode == PM_READ_ONLY)
3892 DMEMIT("read_only ");
3894 if (pf->error_if_no_space)
3895 DMEMIT("error_if_no_space ");
3899 * Status line is:
3900 * <transaction id> <used metadata sectors>/<total metadata sectors>
3901 * <used data sectors>/<total data sectors> <held metadata root>
3902 * <pool mode> <discard config> <no space config> <needs_check>
3904 static void pool_status(struct dm_target *ti, status_type_t type,
3905 unsigned status_flags, char *result, unsigned maxlen)
3907 int r;
3908 unsigned sz = 0;
3909 uint64_t transaction_id;
3910 dm_block_t nr_free_blocks_data;
3911 dm_block_t nr_free_blocks_metadata;
3912 dm_block_t nr_blocks_data;
3913 dm_block_t nr_blocks_metadata;
3914 dm_block_t held_root;
3915 enum pool_mode mode;
3916 char buf[BDEVNAME_SIZE];
3917 char buf2[BDEVNAME_SIZE];
3918 struct pool_c *pt = ti->private;
3919 struct pool *pool = pt->pool;
3921 switch (type) {
3922 case STATUSTYPE_INFO:
3923 if (get_pool_mode(pool) == PM_FAIL) {
3924 DMEMIT("Fail");
3925 break;
3928 /* Commit to ensure statistics aren't out-of-date */
3929 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3930 (void) commit(pool);
3932 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3933 if (r) {
3934 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3935 dm_device_name(pool->pool_md), r);
3936 goto err;
3939 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3940 if (r) {
3941 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3942 dm_device_name(pool->pool_md), r);
3943 goto err;
3946 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3947 if (r) {
3948 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3949 dm_device_name(pool->pool_md), r);
3950 goto err;
3953 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3954 if (r) {
3955 DMERR("%s: dm_pool_get_free_block_count returned %d",
3956 dm_device_name(pool->pool_md), r);
3957 goto err;
3960 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3961 if (r) {
3962 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3963 dm_device_name(pool->pool_md), r);
3964 goto err;
3967 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3968 if (r) {
3969 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3970 dm_device_name(pool->pool_md), r);
3971 goto err;
3974 DMEMIT("%llu %llu/%llu %llu/%llu ",
3975 (unsigned long long)transaction_id,
3976 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3977 (unsigned long long)nr_blocks_metadata,
3978 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3979 (unsigned long long)nr_blocks_data);
3981 if (held_root)
3982 DMEMIT("%llu ", held_root);
3983 else
3984 DMEMIT("- ");
3986 mode = get_pool_mode(pool);
3987 if (mode == PM_OUT_OF_DATA_SPACE)
3988 DMEMIT("out_of_data_space ");
3989 else if (is_read_only_pool_mode(mode))
3990 DMEMIT("ro ");
3991 else
3992 DMEMIT("rw ");
3994 if (!pool->pf.discard_enabled)
3995 DMEMIT("ignore_discard ");
3996 else if (pool->pf.discard_passdown)
3997 DMEMIT("discard_passdown ");
3998 else
3999 DMEMIT("no_discard_passdown ");
4001 if (pool->pf.error_if_no_space)
4002 DMEMIT("error_if_no_space ");
4003 else
4004 DMEMIT("queue_if_no_space ");
4006 if (dm_pool_metadata_needs_check(pool->pmd))
4007 DMEMIT("needs_check ");
4008 else
4009 DMEMIT("- ");
4011 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4013 break;
4015 case STATUSTYPE_TABLE:
4016 DMEMIT("%s %s %lu %llu ",
4017 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4018 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4019 (unsigned long)pool->sectors_per_block,
4020 (unsigned long long)pt->low_water_blocks);
4021 emit_flags(&pt->requested_pf, result, sz, maxlen);
4022 break;
4024 return;
4026 err:
4027 DMEMIT("Error");
4030 static int pool_iterate_devices(struct dm_target *ti,
4031 iterate_devices_callout_fn fn, void *data)
4033 struct pool_c *pt = ti->private;
4035 return fn(ti, pt->data_dev, 0, ti->len, data);
4038 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4040 struct pool_c *pt = ti->private;
4041 struct pool *pool = pt->pool;
4042 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4045 * If max_sectors is smaller than pool->sectors_per_block adjust it
4046 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4047 * This is especially beneficial when the pool's data device is a RAID
4048 * device that has a full stripe width that matches pool->sectors_per_block
4049 * -- because even though partial RAID stripe-sized IOs will be issued to a
4050 * single RAID stripe; when aggregated they will end on a full RAID stripe
4051 * boundary.. which avoids additional partial RAID stripe writes cascading
4053 if (limits->max_sectors < pool->sectors_per_block) {
4054 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4055 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4056 limits->max_sectors--;
4057 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4062 * If the system-determined stacked limits are compatible with the
4063 * pool's blocksize (io_opt is a factor) do not override them.
4065 if (io_opt_sectors < pool->sectors_per_block ||
4066 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4067 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4068 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4069 else
4070 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4071 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4075 * pt->adjusted_pf is a staging area for the actual features to use.
4076 * They get transferred to the live pool in bind_control_target()
4077 * called from pool_preresume().
4079 if (!pt->adjusted_pf.discard_enabled) {
4081 * Must explicitly disallow stacking discard limits otherwise the
4082 * block layer will stack them if pool's data device has support.
4083 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4084 * user to see that, so make sure to set all discard limits to 0.
4086 limits->discard_granularity = 0;
4087 return;
4090 disable_passdown_if_not_supported(pt);
4093 * The pool uses the same discard limits as the underlying data
4094 * device. DM core has already set this up.
4098 static struct target_type pool_target = {
4099 .name = "thin-pool",
4100 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4101 DM_TARGET_IMMUTABLE,
4102 .version = {1, 21, 0},
4103 .module = THIS_MODULE,
4104 .ctr = pool_ctr,
4105 .dtr = pool_dtr,
4106 .map = pool_map,
4107 .presuspend = pool_presuspend,
4108 .presuspend_undo = pool_presuspend_undo,
4109 .postsuspend = pool_postsuspend,
4110 .preresume = pool_preresume,
4111 .resume = pool_resume,
4112 .message = pool_message,
4113 .status = pool_status,
4114 .iterate_devices = pool_iterate_devices,
4115 .io_hints = pool_io_hints,
4118 /*----------------------------------------------------------------
4119 * Thin target methods
4120 *--------------------------------------------------------------*/
4121 static void thin_get(struct thin_c *tc)
4123 refcount_inc(&tc->refcount);
4126 static void thin_put(struct thin_c *tc)
4128 if (refcount_dec_and_test(&tc->refcount))
4129 complete(&tc->can_destroy);
4132 static void thin_dtr(struct dm_target *ti)
4134 struct thin_c *tc = ti->private;
4136 spin_lock_irq(&tc->pool->lock);
4137 list_del_rcu(&tc->list);
4138 spin_unlock_irq(&tc->pool->lock);
4139 synchronize_rcu();
4141 thin_put(tc);
4142 wait_for_completion(&tc->can_destroy);
4144 mutex_lock(&dm_thin_pool_table.mutex);
4146 __pool_dec(tc->pool);
4147 dm_pool_close_thin_device(tc->td);
4148 dm_put_device(ti, tc->pool_dev);
4149 if (tc->origin_dev)
4150 dm_put_device(ti, tc->origin_dev);
4151 kfree(tc);
4153 mutex_unlock(&dm_thin_pool_table.mutex);
4157 * Thin target parameters:
4159 * <pool_dev> <dev_id> [origin_dev]
4161 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4162 * dev_id: the internal device identifier
4163 * origin_dev: a device external to the pool that should act as the origin
4165 * If the pool device has discards disabled, they get disabled for the thin
4166 * device as well.
4168 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4170 int r;
4171 struct thin_c *tc;
4172 struct dm_dev *pool_dev, *origin_dev;
4173 struct mapped_device *pool_md;
4175 mutex_lock(&dm_thin_pool_table.mutex);
4177 if (argc != 2 && argc != 3) {
4178 ti->error = "Invalid argument count";
4179 r = -EINVAL;
4180 goto out_unlock;
4183 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4184 if (!tc) {
4185 ti->error = "Out of memory";
4186 r = -ENOMEM;
4187 goto out_unlock;
4189 tc->thin_md = dm_table_get_md(ti->table);
4190 spin_lock_init(&tc->lock);
4191 INIT_LIST_HEAD(&tc->deferred_cells);
4192 bio_list_init(&tc->deferred_bio_list);
4193 bio_list_init(&tc->retry_on_resume_list);
4194 tc->sort_bio_list = RB_ROOT;
4196 if (argc == 3) {
4197 if (!strcmp(argv[0], argv[2])) {
4198 ti->error = "Error setting origin device";
4199 r = -EINVAL;
4200 goto bad_origin_dev;
4203 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4204 if (r) {
4205 ti->error = "Error opening origin device";
4206 goto bad_origin_dev;
4208 tc->origin_dev = origin_dev;
4211 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4212 if (r) {
4213 ti->error = "Error opening pool device";
4214 goto bad_pool_dev;
4216 tc->pool_dev = pool_dev;
4218 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4219 ti->error = "Invalid device id";
4220 r = -EINVAL;
4221 goto bad_common;
4224 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4225 if (!pool_md) {
4226 ti->error = "Couldn't get pool mapped device";
4227 r = -EINVAL;
4228 goto bad_common;
4231 tc->pool = __pool_table_lookup(pool_md);
4232 if (!tc->pool) {
4233 ti->error = "Couldn't find pool object";
4234 r = -EINVAL;
4235 goto bad_pool_lookup;
4237 __pool_inc(tc->pool);
4239 if (get_pool_mode(tc->pool) == PM_FAIL) {
4240 ti->error = "Couldn't open thin device, Pool is in fail mode";
4241 r = -EINVAL;
4242 goto bad_pool;
4245 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4246 if (r) {
4247 ti->error = "Couldn't open thin internal device";
4248 goto bad_pool;
4251 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4252 if (r)
4253 goto bad;
4255 ti->num_flush_bios = 1;
4256 ti->flush_supported = true;
4257 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4259 /* In case the pool supports discards, pass them on. */
4260 if (tc->pool->pf.discard_enabled) {
4261 ti->discards_supported = true;
4262 ti->num_discard_bios = 1;
4265 mutex_unlock(&dm_thin_pool_table.mutex);
4267 spin_lock_irq(&tc->pool->lock);
4268 if (tc->pool->suspended) {
4269 spin_unlock_irq(&tc->pool->lock);
4270 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4271 ti->error = "Unable to activate thin device while pool is suspended";
4272 r = -EINVAL;
4273 goto bad;
4275 refcount_set(&tc->refcount, 1);
4276 init_completion(&tc->can_destroy);
4277 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4278 spin_unlock_irq(&tc->pool->lock);
4280 * This synchronize_rcu() call is needed here otherwise we risk a
4281 * wake_worker() call finding no bios to process (because the newly
4282 * added tc isn't yet visible). So this reduces latency since we
4283 * aren't then dependent on the periodic commit to wake_worker().
4285 synchronize_rcu();
4287 dm_put(pool_md);
4289 return 0;
4291 bad:
4292 dm_pool_close_thin_device(tc->td);
4293 bad_pool:
4294 __pool_dec(tc->pool);
4295 bad_pool_lookup:
4296 dm_put(pool_md);
4297 bad_common:
4298 dm_put_device(ti, tc->pool_dev);
4299 bad_pool_dev:
4300 if (tc->origin_dev)
4301 dm_put_device(ti, tc->origin_dev);
4302 bad_origin_dev:
4303 kfree(tc);
4304 out_unlock:
4305 mutex_unlock(&dm_thin_pool_table.mutex);
4307 return r;
4310 static int thin_map(struct dm_target *ti, struct bio *bio)
4312 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4314 return thin_bio_map(ti, bio);
4317 static int thin_endio(struct dm_target *ti, struct bio *bio,
4318 blk_status_t *err)
4320 unsigned long flags;
4321 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4322 struct list_head work;
4323 struct dm_thin_new_mapping *m, *tmp;
4324 struct pool *pool = h->tc->pool;
4326 if (h->shared_read_entry) {
4327 INIT_LIST_HEAD(&work);
4328 dm_deferred_entry_dec(h->shared_read_entry, &work);
4330 spin_lock_irqsave(&pool->lock, flags);
4331 list_for_each_entry_safe(m, tmp, &work, list) {
4332 list_del(&m->list);
4333 __complete_mapping_preparation(m);
4335 spin_unlock_irqrestore(&pool->lock, flags);
4338 if (h->all_io_entry) {
4339 INIT_LIST_HEAD(&work);
4340 dm_deferred_entry_dec(h->all_io_entry, &work);
4341 if (!list_empty(&work)) {
4342 spin_lock_irqsave(&pool->lock, flags);
4343 list_for_each_entry_safe(m, tmp, &work, list)
4344 list_add_tail(&m->list, &pool->prepared_discards);
4345 spin_unlock_irqrestore(&pool->lock, flags);
4346 wake_worker(pool);
4350 if (h->cell)
4351 cell_defer_no_holder(h->tc, h->cell);
4353 return DM_ENDIO_DONE;
4356 static void thin_presuspend(struct dm_target *ti)
4358 struct thin_c *tc = ti->private;
4360 if (dm_noflush_suspending(ti))
4361 noflush_work(tc, do_noflush_start);
4364 static void thin_postsuspend(struct dm_target *ti)
4366 struct thin_c *tc = ti->private;
4369 * The dm_noflush_suspending flag has been cleared by now, so
4370 * unfortunately we must always run this.
4372 noflush_work(tc, do_noflush_stop);
4375 static int thin_preresume(struct dm_target *ti)
4377 struct thin_c *tc = ti->private;
4379 if (tc->origin_dev)
4380 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4382 return 0;
4386 * <nr mapped sectors> <highest mapped sector>
4388 static void thin_status(struct dm_target *ti, status_type_t type,
4389 unsigned status_flags, char *result, unsigned maxlen)
4391 int r;
4392 ssize_t sz = 0;
4393 dm_block_t mapped, highest;
4394 char buf[BDEVNAME_SIZE];
4395 struct thin_c *tc = ti->private;
4397 if (get_pool_mode(tc->pool) == PM_FAIL) {
4398 DMEMIT("Fail");
4399 return;
4402 if (!tc->td)
4403 DMEMIT("-");
4404 else {
4405 switch (type) {
4406 case STATUSTYPE_INFO:
4407 r = dm_thin_get_mapped_count(tc->td, &mapped);
4408 if (r) {
4409 DMERR("dm_thin_get_mapped_count returned %d", r);
4410 goto err;
4413 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4414 if (r < 0) {
4415 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4416 goto err;
4419 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4420 if (r)
4421 DMEMIT("%llu", ((highest + 1) *
4422 tc->pool->sectors_per_block) - 1);
4423 else
4424 DMEMIT("-");
4425 break;
4427 case STATUSTYPE_TABLE:
4428 DMEMIT("%s %lu",
4429 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4430 (unsigned long) tc->dev_id);
4431 if (tc->origin_dev)
4432 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4433 break;
4437 return;
4439 err:
4440 DMEMIT("Error");
4443 static int thin_iterate_devices(struct dm_target *ti,
4444 iterate_devices_callout_fn fn, void *data)
4446 sector_t blocks;
4447 struct thin_c *tc = ti->private;
4448 struct pool *pool = tc->pool;
4451 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4452 * we follow a more convoluted path through to the pool's target.
4454 if (!pool->ti)
4455 return 0; /* nothing is bound */
4457 blocks = pool->ti->len;
4458 (void) sector_div(blocks, pool->sectors_per_block);
4459 if (blocks)
4460 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4462 return 0;
4465 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4467 struct thin_c *tc = ti->private;
4468 struct pool *pool = tc->pool;
4470 if (!pool->pf.discard_enabled)
4471 return;
4473 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4474 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4477 static struct target_type thin_target = {
4478 .name = "thin",
4479 .version = {1, 21, 0},
4480 .module = THIS_MODULE,
4481 .ctr = thin_ctr,
4482 .dtr = thin_dtr,
4483 .map = thin_map,
4484 .end_io = thin_endio,
4485 .preresume = thin_preresume,
4486 .presuspend = thin_presuspend,
4487 .postsuspend = thin_postsuspend,
4488 .status = thin_status,
4489 .iterate_devices = thin_iterate_devices,
4490 .io_hints = thin_io_hints,
4493 /*----------------------------------------------------------------*/
4495 static int __init dm_thin_init(void)
4497 int r = -ENOMEM;
4499 pool_table_init();
4501 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4502 if (!_new_mapping_cache)
4503 return r;
4505 r = dm_register_target(&thin_target);
4506 if (r)
4507 goto bad_new_mapping_cache;
4509 r = dm_register_target(&pool_target);
4510 if (r)
4511 goto bad_thin_target;
4513 return 0;
4515 bad_thin_target:
4516 dm_unregister_target(&thin_target);
4517 bad_new_mapping_cache:
4518 kmem_cache_destroy(_new_mapping_cache);
4520 return r;
4523 static void dm_thin_exit(void)
4525 dm_unregister_target(&thin_target);
4526 dm_unregister_target(&pool_target);
4528 kmem_cache_destroy(_new_mapping_cache);
4530 pool_table_exit();
4533 module_init(dm_thin_init);
4534 module_exit(dm_thin_exit);
4536 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4537 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4539 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4540 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4541 MODULE_LICENSE("GPL");