1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid10.c : Multiple Devices driver for Linux
5 * Copyright (C) 2000-2004 Neil Brown
7 * RAID-10 support for md.
9 * Base on code in raid1.c. See raid1.c for further copyright information.
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
24 #include "md-bitmap.h"
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
67 static void allow_barrier(struct r10conf
*conf
);
68 static void lower_barrier(struct r10conf
*conf
);
69 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
70 static int enough(struct r10conf
*conf
, int ignore
);
71 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
73 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
74 static void end_reshape_write(struct bio
*bio
);
75 static void end_reshape(struct r10conf
*conf
);
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
86 static inline struct r10bio
*get_resync_r10bio(struct bio
*bio
)
88 return get_resync_pages(bio
)->raid_bio
;
91 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
93 struct r10conf
*conf
= data
;
94 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
96 /* allocate a r10bio with room for raid_disks entries in the
98 return kzalloc(size
, gfp_flags
);
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
116 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
118 struct r10conf
*conf
= data
;
119 struct r10bio
*r10_bio
;
122 int nalloc
, nalloc_rp
;
123 struct resync_pages
*rps
;
125 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
129 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
130 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
131 nalloc
= conf
->copies
; /* resync */
133 nalloc
= 2; /* recovery */
135 /* allocate once for all bios */
136 if (!conf
->have_replacement
)
139 nalloc_rp
= nalloc
* 2;
140 rps
= kmalloc_array(nalloc_rp
, sizeof(struct resync_pages
), gfp_flags
);
142 goto out_free_r10bio
;
147 for (j
= nalloc
; j
-- ; ) {
148 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
151 r10_bio
->devs
[j
].bio
= bio
;
152 if (!conf
->have_replacement
)
154 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
157 r10_bio
->devs
[j
].repl_bio
= bio
;
160 * Allocate RESYNC_PAGES data pages and attach them
163 for (j
= 0; j
< nalloc
; j
++) {
164 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
165 struct resync_pages
*rp
, *rp_repl
;
169 rp_repl
= &rps
[nalloc
+ j
];
171 bio
= r10_bio
->devs
[j
].bio
;
173 if (!j
|| test_bit(MD_RECOVERY_SYNC
,
174 &conf
->mddev
->recovery
)) {
175 if (resync_alloc_pages(rp
, gfp_flags
))
178 memcpy(rp
, &rps
[0], sizeof(*rp
));
179 resync_get_all_pages(rp
);
182 rp
->raid_bio
= r10_bio
;
183 bio
->bi_private
= rp
;
185 memcpy(rp_repl
, rp
, sizeof(*rp
));
186 rbio
->bi_private
= rp_repl
;
194 resync_free_pages(&rps
[j
]);
198 for ( ; j
< nalloc
; j
++) {
199 if (r10_bio
->devs
[j
].bio
)
200 bio_put(r10_bio
->devs
[j
].bio
);
201 if (r10_bio
->devs
[j
].repl_bio
)
202 bio_put(r10_bio
->devs
[j
].repl_bio
);
206 rbio_pool_free(r10_bio
, conf
);
210 static void r10buf_pool_free(void *__r10_bio
, void *data
)
212 struct r10conf
*conf
= data
;
213 struct r10bio
*r10bio
= __r10_bio
;
215 struct resync_pages
*rp
= NULL
;
217 for (j
= conf
->copies
; j
--; ) {
218 struct bio
*bio
= r10bio
->devs
[j
].bio
;
221 rp
= get_resync_pages(bio
);
222 resync_free_pages(rp
);
226 bio
= r10bio
->devs
[j
].repl_bio
;
231 /* resync pages array stored in the 1st bio's .bi_private */
234 rbio_pool_free(r10bio
, conf
);
237 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
241 for (i
= 0; i
< conf
->copies
; i
++) {
242 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
243 if (!BIO_SPECIAL(*bio
))
246 bio
= &r10_bio
->devs
[i
].repl_bio
;
247 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
253 static void free_r10bio(struct r10bio
*r10_bio
)
255 struct r10conf
*conf
= r10_bio
->mddev
->private;
257 put_all_bios(conf
, r10_bio
);
258 mempool_free(r10_bio
, &conf
->r10bio_pool
);
261 static void put_buf(struct r10bio
*r10_bio
)
263 struct r10conf
*conf
= r10_bio
->mddev
->private;
265 mempool_free(r10_bio
, &conf
->r10buf_pool
);
270 static void reschedule_retry(struct r10bio
*r10_bio
)
273 struct mddev
*mddev
= r10_bio
->mddev
;
274 struct r10conf
*conf
= mddev
->private;
276 spin_lock_irqsave(&conf
->device_lock
, flags
);
277 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
279 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
281 /* wake up frozen array... */
282 wake_up(&conf
->wait_barrier
);
284 md_wakeup_thread(mddev
->thread
);
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
292 static void raid_end_bio_io(struct r10bio
*r10_bio
)
294 struct bio
*bio
= r10_bio
->master_bio
;
295 struct r10conf
*conf
= r10_bio
->mddev
->private;
297 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
298 bio
->bi_status
= BLK_STS_IOERR
;
302 * Wake up any possible resync thread that waits for the device
307 free_r10bio(r10_bio
);
311 * Update disk head position estimator based on IRQ completion info.
313 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
315 struct r10conf
*conf
= r10_bio
->mddev
->private;
317 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
318 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
322 * Find the disk number which triggered given bio
324 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
325 struct bio
*bio
, int *slotp
, int *replp
)
330 for (slot
= 0; slot
< conf
->copies
; slot
++) {
331 if (r10_bio
->devs
[slot
].bio
== bio
)
333 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
339 BUG_ON(slot
== conf
->copies
);
340 update_head_pos(slot
, r10_bio
);
346 return r10_bio
->devs
[slot
].devnum
;
349 static void raid10_end_read_request(struct bio
*bio
)
351 int uptodate
= !bio
->bi_status
;
352 struct r10bio
*r10_bio
= bio
->bi_private
;
354 struct md_rdev
*rdev
;
355 struct r10conf
*conf
= r10_bio
->mddev
->private;
357 slot
= r10_bio
->read_slot
;
358 rdev
= r10_bio
->devs
[slot
].rdev
;
360 * this branch is our 'one mirror IO has finished' event handler:
362 update_head_pos(slot
, r10_bio
);
366 * Set R10BIO_Uptodate in our master bio, so that
367 * we will return a good error code to the higher
368 * levels even if IO on some other mirrored buffer fails.
370 * The 'master' represents the composite IO operation to
371 * user-side. So if something waits for IO, then it will
372 * wait for the 'master' bio.
374 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
376 /* If all other devices that store this block have
377 * failed, we want to return the error upwards rather
378 * than fail the last device. Here we redefine
379 * "uptodate" to mean "Don't want to retry"
381 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
386 raid_end_bio_io(r10_bio
);
387 rdev_dec_pending(rdev
, conf
->mddev
);
390 * oops, read error - keep the refcount on the rdev
392 char b
[BDEVNAME_SIZE
];
393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395 bdevname(rdev
->bdev
, b
),
396 (unsigned long long)r10_bio
->sector
);
397 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
398 reschedule_retry(r10_bio
);
402 static void close_write(struct r10bio
*r10_bio
)
404 /* clear the bitmap if all writes complete successfully */
405 md_bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
407 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
409 md_write_end(r10_bio
->mddev
);
412 static void one_write_done(struct r10bio
*r10_bio
)
414 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
415 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
416 reschedule_retry(r10_bio
);
418 close_write(r10_bio
);
419 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
420 reschedule_retry(r10_bio
);
422 raid_end_bio_io(r10_bio
);
427 static void raid10_end_write_request(struct bio
*bio
)
429 struct r10bio
*r10_bio
= bio
->bi_private
;
432 struct r10conf
*conf
= r10_bio
->mddev
->private;
434 struct md_rdev
*rdev
= NULL
;
435 struct bio
*to_put
= NULL
;
438 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
440 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
443 rdev
= conf
->mirrors
[dev
].replacement
;
447 rdev
= conf
->mirrors
[dev
].rdev
;
450 * this branch is our 'one mirror IO has finished' event handler:
452 if (bio
->bi_status
&& !discard_error
) {
454 /* Never record new bad blocks to replacement,
457 md_error(rdev
->mddev
, rdev
);
459 set_bit(WriteErrorSeen
, &rdev
->flags
);
460 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
461 set_bit(MD_RECOVERY_NEEDED
,
462 &rdev
->mddev
->recovery
);
465 if (test_bit(FailFast
, &rdev
->flags
) &&
466 (bio
->bi_opf
& MD_FAILFAST
)) {
467 md_error(rdev
->mddev
, rdev
);
471 * When the device is faulty, it is not necessary to
472 * handle write error.
473 * For failfast, this is the only remaining device,
474 * We need to retry the write without FailFast.
476 if (!test_bit(Faulty
, &rdev
->flags
))
477 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
479 r10_bio
->devs
[slot
].bio
= NULL
;
486 * Set R10BIO_Uptodate in our master bio, so that
487 * we will return a good error code for to the higher
488 * levels even if IO on some other mirrored buffer fails.
490 * The 'master' represents the composite IO operation to
491 * user-side. So if something waits for IO, then it will
492 * wait for the 'master' bio.
498 * Do not set R10BIO_Uptodate if the current device is
499 * rebuilding or Faulty. This is because we cannot use
500 * such device for properly reading the data back (we could
501 * potentially use it, if the current write would have felt
502 * before rdev->recovery_offset, but for simplicity we don't
505 if (test_bit(In_sync
, &rdev
->flags
) &&
506 !test_bit(Faulty
, &rdev
->flags
))
507 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
509 /* Maybe we can clear some bad blocks. */
510 if (is_badblock(rdev
,
511 r10_bio
->devs
[slot
].addr
,
513 &first_bad
, &bad_sectors
) && !discard_error
) {
516 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
518 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
520 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
526 * Let's see if all mirrored write operations have finished
529 one_write_done(r10_bio
);
531 rdev_dec_pending(rdev
, conf
->mddev
);
537 * RAID10 layout manager
538 * As well as the chunksize and raid_disks count, there are two
539 * parameters: near_copies and far_copies.
540 * near_copies * far_copies must be <= raid_disks.
541 * Normally one of these will be 1.
542 * If both are 1, we get raid0.
543 * If near_copies == raid_disks, we get raid1.
545 * Chunks are laid out in raid0 style with near_copies copies of the
546 * first chunk, followed by near_copies copies of the next chunk and
548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
549 * as described above, we start again with a device offset of near_copies.
550 * So we effectively have another copy of the whole array further down all
551 * the drives, but with blocks on different drives.
552 * With this layout, and block is never stored twice on the one device.
554 * raid10_find_phys finds the sector offset of a given virtual sector
555 * on each device that it is on.
557 * raid10_find_virt does the reverse mapping, from a device and a
558 * sector offset to a virtual address
561 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
569 int last_far_set_start
, last_far_set_size
;
571 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
572 last_far_set_start
*= geo
->far_set_size
;
574 last_far_set_size
= geo
->far_set_size
;
575 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
577 /* now calculate first sector/dev */
578 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
579 sector
= r10bio
->sector
& geo
->chunk_mask
;
581 chunk
*= geo
->near_copies
;
583 dev
= sector_div(stripe
, geo
->raid_disks
);
585 stripe
*= geo
->far_copies
;
587 sector
+= stripe
<< geo
->chunk_shift
;
589 /* and calculate all the others */
590 for (n
= 0; n
< geo
->near_copies
; n
++) {
594 r10bio
->devs
[slot
].devnum
= d
;
595 r10bio
->devs
[slot
].addr
= s
;
598 for (f
= 1; f
< geo
->far_copies
; f
++) {
599 set
= d
/ geo
->far_set_size
;
600 d
+= geo
->near_copies
;
602 if ((geo
->raid_disks
% geo
->far_set_size
) &&
603 (d
> last_far_set_start
)) {
604 d
-= last_far_set_start
;
605 d
%= last_far_set_size
;
606 d
+= last_far_set_start
;
608 d
%= geo
->far_set_size
;
609 d
+= geo
->far_set_size
* set
;
612 r10bio
->devs
[slot
].devnum
= d
;
613 r10bio
->devs
[slot
].addr
= s
;
617 if (dev
>= geo
->raid_disks
) {
619 sector
+= (geo
->chunk_mask
+ 1);
624 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
626 struct geom
*geo
= &conf
->geo
;
628 if (conf
->reshape_progress
!= MaxSector
&&
629 ((r10bio
->sector
>= conf
->reshape_progress
) !=
630 conf
->mddev
->reshape_backwards
)) {
631 set_bit(R10BIO_Previous
, &r10bio
->state
);
634 clear_bit(R10BIO_Previous
, &r10bio
->state
);
636 __raid10_find_phys(geo
, r10bio
);
639 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
641 sector_t offset
, chunk
, vchunk
;
642 /* Never use conf->prev as this is only called during resync
643 * or recovery, so reshape isn't happening
645 struct geom
*geo
= &conf
->geo
;
646 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
647 int far_set_size
= geo
->far_set_size
;
648 int last_far_set_start
;
650 if (geo
->raid_disks
% geo
->far_set_size
) {
651 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
652 last_far_set_start
*= geo
->far_set_size
;
654 if (dev
>= last_far_set_start
) {
655 far_set_size
= geo
->far_set_size
;
656 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
657 far_set_start
= last_far_set_start
;
661 offset
= sector
& geo
->chunk_mask
;
662 if (geo
->far_offset
) {
664 chunk
= sector
>> geo
->chunk_shift
;
665 fc
= sector_div(chunk
, geo
->far_copies
);
666 dev
-= fc
* geo
->near_copies
;
667 if (dev
< far_set_start
)
670 while (sector
>= geo
->stride
) {
671 sector
-= geo
->stride
;
672 if (dev
< (geo
->near_copies
+ far_set_start
))
673 dev
+= far_set_size
- geo
->near_copies
;
675 dev
-= geo
->near_copies
;
677 chunk
= sector
>> geo
->chunk_shift
;
679 vchunk
= chunk
* geo
->raid_disks
+ dev
;
680 sector_div(vchunk
, geo
->near_copies
);
681 return (vchunk
<< geo
->chunk_shift
) + offset
;
685 * This routine returns the disk from which the requested read should
686 * be done. There is a per-array 'next expected sequential IO' sector
687 * number - if this matches on the next IO then we use the last disk.
688 * There is also a per-disk 'last know head position' sector that is
689 * maintained from IRQ contexts, both the normal and the resync IO
690 * completion handlers update this position correctly. If there is no
691 * perfect sequential match then we pick the disk whose head is closest.
693 * If there are 2 mirrors in the same 2 devices, performance degrades
694 * because position is mirror, not device based.
696 * The rdev for the device selected will have nr_pending incremented.
700 * FIXME: possibly should rethink readbalancing and do it differently
701 * depending on near_copies / far_copies geometry.
703 static struct md_rdev
*read_balance(struct r10conf
*conf
,
704 struct r10bio
*r10_bio
,
707 const sector_t this_sector
= r10_bio
->sector
;
709 int sectors
= r10_bio
->sectors
;
710 int best_good_sectors
;
711 sector_t new_distance
, best_dist
;
712 struct md_rdev
*best_dist_rdev
, *best_pending_rdev
, *rdev
= NULL
;
714 int best_dist_slot
, best_pending_slot
;
715 bool has_nonrot_disk
= false;
716 unsigned int min_pending
;
717 struct geom
*geo
= &conf
->geo
;
719 raid10_find_phys(conf
, r10_bio
);
722 min_pending
= UINT_MAX
;
723 best_dist_rdev
= NULL
;
724 best_pending_rdev
= NULL
;
725 best_dist
= MaxSector
;
726 best_good_sectors
= 0;
728 clear_bit(R10BIO_FailFast
, &r10_bio
->state
);
730 * Check if we can balance. We can balance on the whole
731 * device if no resync is going on (recovery is ok), or below
732 * the resync window. We take the first readable disk when
733 * above the resync window.
735 if ((conf
->mddev
->recovery_cp
< MaxSector
736 && (this_sector
+ sectors
>= conf
->next_resync
)) ||
737 (mddev_is_clustered(conf
->mddev
) &&
738 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
739 this_sector
+ sectors
)))
742 for (slot
= 0; slot
< conf
->copies
; slot
++) {
746 unsigned int pending
;
749 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
751 disk
= r10_bio
->devs
[slot
].devnum
;
752 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
753 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
754 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
755 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
757 test_bit(Faulty
, &rdev
->flags
))
759 if (!test_bit(In_sync
, &rdev
->flags
) &&
760 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
763 dev_sector
= r10_bio
->devs
[slot
].addr
;
764 if (is_badblock(rdev
, dev_sector
, sectors
,
765 &first_bad
, &bad_sectors
)) {
766 if (best_dist
< MaxSector
)
767 /* Already have a better slot */
769 if (first_bad
<= dev_sector
) {
770 /* Cannot read here. If this is the
771 * 'primary' device, then we must not read
772 * beyond 'bad_sectors' from another device.
774 bad_sectors
-= (dev_sector
- first_bad
);
775 if (!do_balance
&& sectors
> bad_sectors
)
776 sectors
= bad_sectors
;
777 if (best_good_sectors
> sectors
)
778 best_good_sectors
= sectors
;
780 sector_t good_sectors
=
781 first_bad
- dev_sector
;
782 if (good_sectors
> best_good_sectors
) {
783 best_good_sectors
= good_sectors
;
784 best_dist_slot
= slot
;
785 best_dist_rdev
= rdev
;
788 /* Must read from here */
793 best_good_sectors
= sectors
;
798 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
799 has_nonrot_disk
|= nonrot
;
800 pending
= atomic_read(&rdev
->nr_pending
);
801 if (min_pending
> pending
&& nonrot
) {
802 min_pending
= pending
;
803 best_pending_slot
= slot
;
804 best_pending_rdev
= rdev
;
807 if (best_dist_slot
>= 0)
808 /* At least 2 disks to choose from so failfast is OK */
809 set_bit(R10BIO_FailFast
, &r10_bio
->state
);
810 /* This optimisation is debatable, and completely destroys
811 * sequential read speed for 'far copies' arrays. So only
812 * keep it for 'near' arrays, and review those later.
814 if (geo
->near_copies
> 1 && !pending
)
817 /* for far > 1 always use the lowest address */
818 else if (geo
->far_copies
> 1)
819 new_distance
= r10_bio
->devs
[slot
].addr
;
821 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
822 conf
->mirrors
[disk
].head_position
);
824 if (new_distance
< best_dist
) {
825 best_dist
= new_distance
;
826 best_dist_slot
= slot
;
827 best_dist_rdev
= rdev
;
830 if (slot
>= conf
->copies
) {
831 if (has_nonrot_disk
) {
832 slot
= best_pending_slot
;
833 rdev
= best_pending_rdev
;
835 slot
= best_dist_slot
;
836 rdev
= best_dist_rdev
;
841 atomic_inc(&rdev
->nr_pending
);
842 r10_bio
->read_slot
= slot
;
846 *max_sectors
= best_good_sectors
;
851 static int raid10_congested(struct mddev
*mddev
, int bits
)
853 struct r10conf
*conf
= mddev
->private;
856 if ((bits
& (1 << WB_async_congested
)) &&
857 conf
->pending_count
>= max_queued_requests
)
862 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
865 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
866 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
867 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
869 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
876 static void flush_pending_writes(struct r10conf
*conf
)
878 /* Any writes that have been queued but are awaiting
879 * bitmap updates get flushed here.
881 spin_lock_irq(&conf
->device_lock
);
883 if (conf
->pending_bio_list
.head
) {
884 struct blk_plug plug
;
887 bio
= bio_list_get(&conf
->pending_bio_list
);
888 conf
->pending_count
= 0;
889 spin_unlock_irq(&conf
->device_lock
);
892 * As this is called in a wait_event() loop (see freeze_array),
893 * current->state might be TASK_UNINTERRUPTIBLE which will
894 * cause a warning when we prepare to wait again. As it is
895 * rare that this path is taken, it is perfectly safe to force
896 * us to go around the wait_event() loop again, so the warning
897 * is a false-positive. Silence the warning by resetting
900 __set_current_state(TASK_RUNNING
);
902 blk_start_plug(&plug
);
903 /* flush any pending bitmap writes to disk
904 * before proceeding w/ I/O */
905 md_bitmap_unplug(conf
->mddev
->bitmap
);
906 wake_up(&conf
->wait_barrier
);
908 while (bio
) { /* submit pending writes */
909 struct bio
*next
= bio
->bi_next
;
910 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
912 bio_set_dev(bio
, rdev
->bdev
);
913 if (test_bit(Faulty
, &rdev
->flags
)) {
915 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
916 !blk_queue_discard(bio
->bi_disk
->queue
)))
920 generic_make_request(bio
);
923 blk_finish_plug(&plug
);
925 spin_unlock_irq(&conf
->device_lock
);
929 * Sometimes we need to suspend IO while we do something else,
930 * either some resync/recovery, or reconfigure the array.
931 * To do this we raise a 'barrier'.
932 * The 'barrier' is a counter that can be raised multiple times
933 * to count how many activities are happening which preclude
935 * We can only raise the barrier if there is no pending IO.
936 * i.e. if nr_pending == 0.
937 * We choose only to raise the barrier if no-one is waiting for the
938 * barrier to go down. This means that as soon as an IO request
939 * is ready, no other operations which require a barrier will start
940 * until the IO request has had a chance.
942 * So: regular IO calls 'wait_barrier'. When that returns there
943 * is no backgroup IO happening, It must arrange to call
944 * allow_barrier when it has finished its IO.
945 * backgroup IO calls must call raise_barrier. Once that returns
946 * there is no normal IO happeing. It must arrange to call
947 * lower_barrier when the particular background IO completes.
950 static void raise_barrier(struct r10conf
*conf
, int force
)
952 BUG_ON(force
&& !conf
->barrier
);
953 spin_lock_irq(&conf
->resync_lock
);
955 /* Wait until no block IO is waiting (unless 'force') */
956 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
959 /* block any new IO from starting */
962 /* Now wait for all pending IO to complete */
963 wait_event_lock_irq(conf
->wait_barrier
,
964 !atomic_read(&conf
->nr_pending
) && conf
->barrier
< RESYNC_DEPTH
,
967 spin_unlock_irq(&conf
->resync_lock
);
970 static void lower_barrier(struct r10conf
*conf
)
973 spin_lock_irqsave(&conf
->resync_lock
, flags
);
975 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
976 wake_up(&conf
->wait_barrier
);
979 static void wait_barrier(struct r10conf
*conf
)
981 spin_lock_irq(&conf
->resync_lock
);
984 /* Wait for the barrier to drop.
985 * However if there are already pending
986 * requests (preventing the barrier from
987 * rising completely), and the
988 * pre-process bio queue isn't empty,
989 * then don't wait, as we need to empty
990 * that queue to get the nr_pending
993 raid10_log(conf
->mddev
, "wait barrier");
994 wait_event_lock_irq(conf
->wait_barrier
,
996 (atomic_read(&conf
->nr_pending
) &&
998 (!bio_list_empty(¤t
->bio_list
[0]) ||
999 !bio_list_empty(¤t
->bio_list
[1]))),
1002 if (!conf
->nr_waiting
)
1003 wake_up(&conf
->wait_barrier
);
1005 atomic_inc(&conf
->nr_pending
);
1006 spin_unlock_irq(&conf
->resync_lock
);
1009 static void allow_barrier(struct r10conf
*conf
)
1011 if ((atomic_dec_and_test(&conf
->nr_pending
)) ||
1012 (conf
->array_freeze_pending
))
1013 wake_up(&conf
->wait_barrier
);
1016 static void freeze_array(struct r10conf
*conf
, int extra
)
1018 /* stop syncio and normal IO and wait for everything to
1020 * We increment barrier and nr_waiting, and then
1021 * wait until nr_pending match nr_queued+extra
1022 * This is called in the context of one normal IO request
1023 * that has failed. Thus any sync request that might be pending
1024 * will be blocked by nr_pending, and we need to wait for
1025 * pending IO requests to complete or be queued for re-try.
1026 * Thus the number queued (nr_queued) plus this request (extra)
1027 * must match the number of pending IOs (nr_pending) before
1030 spin_lock_irq(&conf
->resync_lock
);
1031 conf
->array_freeze_pending
++;
1034 wait_event_lock_irq_cmd(conf
->wait_barrier
,
1035 atomic_read(&conf
->nr_pending
) == conf
->nr_queued
+extra
,
1037 flush_pending_writes(conf
));
1039 conf
->array_freeze_pending
--;
1040 spin_unlock_irq(&conf
->resync_lock
);
1043 static void unfreeze_array(struct r10conf
*conf
)
1045 /* reverse the effect of the freeze */
1046 spin_lock_irq(&conf
->resync_lock
);
1049 wake_up(&conf
->wait_barrier
);
1050 spin_unlock_irq(&conf
->resync_lock
);
1053 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1054 struct md_rdev
*rdev
)
1056 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1057 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1058 return rdev
->data_offset
;
1060 return rdev
->new_data_offset
;
1063 struct raid10_plug_cb
{
1064 struct blk_plug_cb cb
;
1065 struct bio_list pending
;
1069 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1071 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1073 struct mddev
*mddev
= plug
->cb
.data
;
1074 struct r10conf
*conf
= mddev
->private;
1077 if (from_schedule
|| current
->bio_list
) {
1078 spin_lock_irq(&conf
->device_lock
);
1079 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1080 conf
->pending_count
+= plug
->pending_cnt
;
1081 spin_unlock_irq(&conf
->device_lock
);
1082 wake_up(&conf
->wait_barrier
);
1083 md_wakeup_thread(mddev
->thread
);
1088 /* we aren't scheduling, so we can do the write-out directly. */
1089 bio
= bio_list_get(&plug
->pending
);
1090 md_bitmap_unplug(mddev
->bitmap
);
1091 wake_up(&conf
->wait_barrier
);
1093 while (bio
) { /* submit pending writes */
1094 struct bio
*next
= bio
->bi_next
;
1095 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
1096 bio
->bi_next
= NULL
;
1097 bio_set_dev(bio
, rdev
->bdev
);
1098 if (test_bit(Faulty
, &rdev
->flags
)) {
1100 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1101 !blk_queue_discard(bio
->bi_disk
->queue
)))
1102 /* Just ignore it */
1105 generic_make_request(bio
);
1112 * 1. Register the new request and wait if the reconstruction thread has put
1113 * up a bar for new requests. Continue immediately if no resync is active
1115 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1117 static void regular_request_wait(struct mddev
*mddev
, struct r10conf
*conf
,
1118 struct bio
*bio
, sector_t sectors
)
1121 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1122 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1123 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1124 raid10_log(conf
->mddev
, "wait reshape");
1125 allow_barrier(conf
);
1126 wait_event(conf
->wait_barrier
,
1127 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1128 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1134 static void raid10_read_request(struct mddev
*mddev
, struct bio
*bio
,
1135 struct r10bio
*r10_bio
)
1137 struct r10conf
*conf
= mddev
->private;
1138 struct bio
*read_bio
;
1139 const int op
= bio_op(bio
);
1140 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1142 struct md_rdev
*rdev
;
1143 char b
[BDEVNAME_SIZE
];
1144 int slot
= r10_bio
->read_slot
;
1145 struct md_rdev
*err_rdev
= NULL
;
1146 gfp_t gfp
= GFP_NOIO
;
1148 if (r10_bio
->devs
[slot
].rdev
) {
1150 * This is an error retry, but we cannot
1151 * safely dereference the rdev in the r10_bio,
1152 * we must use the one in conf.
1153 * If it has already been disconnected (unlikely)
1154 * we lose the device name in error messages.
1158 * As we are blocking raid10, it is a little safer to
1161 gfp
= GFP_NOIO
| __GFP_HIGH
;
1164 disk
= r10_bio
->devs
[slot
].devnum
;
1165 err_rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
1167 bdevname(err_rdev
->bdev
, b
);
1170 /* This never gets dereferenced */
1171 err_rdev
= r10_bio
->devs
[slot
].rdev
;
1176 regular_request_wait(mddev
, conf
, bio
, r10_bio
->sectors
);
1177 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1180 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1182 (unsigned long long)r10_bio
->sector
);
1184 raid_end_bio_io(r10_bio
);
1188 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1190 bdevname(rdev
->bdev
, b
),
1191 (unsigned long long)r10_bio
->sector
);
1192 if (max_sectors
< bio_sectors(bio
)) {
1193 struct bio
*split
= bio_split(bio
, max_sectors
,
1194 gfp
, &conf
->bio_split
);
1195 bio_chain(split
, bio
);
1196 allow_barrier(conf
);
1197 generic_make_request(bio
);
1200 r10_bio
->master_bio
= bio
;
1201 r10_bio
->sectors
= max_sectors
;
1203 slot
= r10_bio
->read_slot
;
1205 read_bio
= bio_clone_fast(bio
, gfp
, &mddev
->bio_set
);
1207 r10_bio
->devs
[slot
].bio
= read_bio
;
1208 r10_bio
->devs
[slot
].rdev
= rdev
;
1210 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1211 choose_data_offset(r10_bio
, rdev
);
1212 bio_set_dev(read_bio
, rdev
->bdev
);
1213 read_bio
->bi_end_io
= raid10_end_read_request
;
1214 bio_set_op_attrs(read_bio
, op
, do_sync
);
1215 if (test_bit(FailFast
, &rdev
->flags
) &&
1216 test_bit(R10BIO_FailFast
, &r10_bio
->state
))
1217 read_bio
->bi_opf
|= MD_FAILFAST
;
1218 read_bio
->bi_private
= r10_bio
;
1221 trace_block_bio_remap(read_bio
->bi_disk
->queue
,
1222 read_bio
, disk_devt(mddev
->gendisk
),
1224 generic_make_request(read_bio
);
1228 static void raid10_write_one_disk(struct mddev
*mddev
, struct r10bio
*r10_bio
,
1229 struct bio
*bio
, bool replacement
,
1232 const int op
= bio_op(bio
);
1233 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1234 const unsigned long do_fua
= (bio
->bi_opf
& REQ_FUA
);
1235 unsigned long flags
;
1236 struct blk_plug_cb
*cb
;
1237 struct raid10_plug_cb
*plug
= NULL
;
1238 struct r10conf
*conf
= mddev
->private;
1239 struct md_rdev
*rdev
;
1240 int devnum
= r10_bio
->devs
[n_copy
].devnum
;
1244 rdev
= conf
->mirrors
[devnum
].replacement
;
1246 /* Replacement just got moved to main 'rdev' */
1248 rdev
= conf
->mirrors
[devnum
].rdev
;
1251 rdev
= conf
->mirrors
[devnum
].rdev
;
1253 mbio
= bio_clone_fast(bio
, GFP_NOIO
, &mddev
->bio_set
);
1255 r10_bio
->devs
[n_copy
].repl_bio
= mbio
;
1257 r10_bio
->devs
[n_copy
].bio
= mbio
;
1259 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[n_copy
].addr
+
1260 choose_data_offset(r10_bio
, rdev
));
1261 bio_set_dev(mbio
, rdev
->bdev
);
1262 mbio
->bi_end_io
= raid10_end_write_request
;
1263 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1264 if (!replacement
&& test_bit(FailFast
,
1265 &conf
->mirrors
[devnum
].rdev
->flags
)
1266 && enough(conf
, devnum
))
1267 mbio
->bi_opf
|= MD_FAILFAST
;
1268 mbio
->bi_private
= r10_bio
;
1270 if (conf
->mddev
->gendisk
)
1271 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1272 mbio
, disk_devt(conf
->mddev
->gendisk
),
1274 /* flush_pending_writes() needs access to the rdev so...*/
1275 mbio
->bi_disk
= (void *)rdev
;
1277 atomic_inc(&r10_bio
->remaining
);
1279 cb
= blk_check_plugged(raid10_unplug
, mddev
, sizeof(*plug
));
1281 plug
= container_of(cb
, struct raid10_plug_cb
, cb
);
1285 bio_list_add(&plug
->pending
, mbio
);
1286 plug
->pending_cnt
++;
1288 spin_lock_irqsave(&conf
->device_lock
, flags
);
1289 bio_list_add(&conf
->pending_bio_list
, mbio
);
1290 conf
->pending_count
++;
1291 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1292 md_wakeup_thread(mddev
->thread
);
1296 static void raid10_write_request(struct mddev
*mddev
, struct bio
*bio
,
1297 struct r10bio
*r10_bio
)
1299 struct r10conf
*conf
= mddev
->private;
1301 struct md_rdev
*blocked_rdev
;
1305 if ((mddev_is_clustered(mddev
) &&
1306 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1307 bio
->bi_iter
.bi_sector
,
1308 bio_end_sector(bio
)))) {
1311 prepare_to_wait(&conf
->wait_barrier
,
1313 if (!md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1314 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
)))
1318 finish_wait(&conf
->wait_barrier
, &w
);
1321 sectors
= r10_bio
->sectors
;
1322 regular_request_wait(mddev
, conf
, bio
, sectors
);
1323 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1324 (mddev
->reshape_backwards
1325 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1326 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1327 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1328 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1329 /* Need to update reshape_position in metadata */
1330 mddev
->reshape_position
= conf
->reshape_progress
;
1331 set_mask_bits(&mddev
->sb_flags
, 0,
1332 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1333 md_wakeup_thread(mddev
->thread
);
1334 raid10_log(conf
->mddev
, "wait reshape metadata");
1335 wait_event(mddev
->sb_wait
,
1336 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
));
1338 conf
->reshape_safe
= mddev
->reshape_position
;
1341 if (conf
->pending_count
>= max_queued_requests
) {
1342 md_wakeup_thread(mddev
->thread
);
1343 raid10_log(mddev
, "wait queued");
1344 wait_event(conf
->wait_barrier
,
1345 conf
->pending_count
< max_queued_requests
);
1347 /* first select target devices under rcu_lock and
1348 * inc refcount on their rdev. Record them by setting
1350 * If there are known/acknowledged bad blocks on any device
1351 * on which we have seen a write error, we want to avoid
1352 * writing to those blocks. This potentially requires several
1353 * writes to write around the bad blocks. Each set of writes
1354 * gets its own r10_bio with a set of bios attached.
1357 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1358 raid10_find_phys(conf
, r10_bio
);
1360 blocked_rdev
= NULL
;
1362 max_sectors
= r10_bio
->sectors
;
1364 for (i
= 0; i
< conf
->copies
; i
++) {
1365 int d
= r10_bio
->devs
[i
].devnum
;
1366 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1367 struct md_rdev
*rrdev
= rcu_dereference(
1368 conf
->mirrors
[d
].replacement
);
1371 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1372 atomic_inc(&rdev
->nr_pending
);
1373 blocked_rdev
= rdev
;
1376 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1377 atomic_inc(&rrdev
->nr_pending
);
1378 blocked_rdev
= rrdev
;
1381 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1383 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1386 r10_bio
->devs
[i
].bio
= NULL
;
1387 r10_bio
->devs
[i
].repl_bio
= NULL
;
1389 if (!rdev
&& !rrdev
) {
1390 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1393 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1395 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1399 is_bad
= is_badblock(rdev
, dev_sector
, max_sectors
,
1400 &first_bad
, &bad_sectors
);
1402 /* Mustn't write here until the bad block
1405 atomic_inc(&rdev
->nr_pending
);
1406 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1407 blocked_rdev
= rdev
;
1410 if (is_bad
&& first_bad
<= dev_sector
) {
1411 /* Cannot write here at all */
1412 bad_sectors
-= (dev_sector
- first_bad
);
1413 if (bad_sectors
< max_sectors
)
1414 /* Mustn't write more than bad_sectors
1415 * to other devices yet
1417 max_sectors
= bad_sectors
;
1418 /* We don't set R10BIO_Degraded as that
1419 * only applies if the disk is missing,
1420 * so it might be re-added, and we want to
1421 * know to recover this chunk.
1422 * In this case the device is here, and the
1423 * fact that this chunk is not in-sync is
1424 * recorded in the bad block log.
1429 int good_sectors
= first_bad
- dev_sector
;
1430 if (good_sectors
< max_sectors
)
1431 max_sectors
= good_sectors
;
1435 r10_bio
->devs
[i
].bio
= bio
;
1436 atomic_inc(&rdev
->nr_pending
);
1439 r10_bio
->devs
[i
].repl_bio
= bio
;
1440 atomic_inc(&rrdev
->nr_pending
);
1445 if (unlikely(blocked_rdev
)) {
1446 /* Have to wait for this device to get unblocked, then retry */
1450 for (j
= 0; j
< i
; j
++) {
1451 if (r10_bio
->devs
[j
].bio
) {
1452 d
= r10_bio
->devs
[j
].devnum
;
1453 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1455 if (r10_bio
->devs
[j
].repl_bio
) {
1456 struct md_rdev
*rdev
;
1457 d
= r10_bio
->devs
[j
].devnum
;
1458 rdev
= conf
->mirrors
[d
].replacement
;
1460 /* Race with remove_disk */
1462 rdev
= conf
->mirrors
[d
].rdev
;
1464 rdev_dec_pending(rdev
, mddev
);
1467 allow_barrier(conf
);
1468 raid10_log(conf
->mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1469 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1474 if (max_sectors
< r10_bio
->sectors
)
1475 r10_bio
->sectors
= max_sectors
;
1477 if (r10_bio
->sectors
< bio_sectors(bio
)) {
1478 struct bio
*split
= bio_split(bio
, r10_bio
->sectors
,
1479 GFP_NOIO
, &conf
->bio_split
);
1480 bio_chain(split
, bio
);
1481 allow_barrier(conf
);
1482 generic_make_request(bio
);
1485 r10_bio
->master_bio
= bio
;
1488 atomic_set(&r10_bio
->remaining
, 1);
1489 md_bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1491 for (i
= 0; i
< conf
->copies
; i
++) {
1492 if (r10_bio
->devs
[i
].bio
)
1493 raid10_write_one_disk(mddev
, r10_bio
, bio
, false, i
);
1494 if (r10_bio
->devs
[i
].repl_bio
)
1495 raid10_write_one_disk(mddev
, r10_bio
, bio
, true, i
);
1497 one_write_done(r10_bio
);
1500 static void __make_request(struct mddev
*mddev
, struct bio
*bio
, int sectors
)
1502 struct r10conf
*conf
= mddev
->private;
1503 struct r10bio
*r10_bio
;
1505 r10_bio
= mempool_alloc(&conf
->r10bio_pool
, GFP_NOIO
);
1507 r10_bio
->master_bio
= bio
;
1508 r10_bio
->sectors
= sectors
;
1510 r10_bio
->mddev
= mddev
;
1511 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1513 memset(r10_bio
->devs
, 0, sizeof(r10_bio
->devs
[0]) * conf
->copies
);
1515 if (bio_data_dir(bio
) == READ
)
1516 raid10_read_request(mddev
, bio
, r10_bio
);
1518 raid10_write_request(mddev
, bio
, r10_bio
);
1521 static bool raid10_make_request(struct mddev
*mddev
, struct bio
*bio
)
1523 struct r10conf
*conf
= mddev
->private;
1524 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1525 int chunk_sects
= chunk_mask
+ 1;
1526 int sectors
= bio_sectors(bio
);
1528 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)
1529 && md_flush_request(mddev
, bio
))
1532 if (!md_write_start(mddev
, bio
))
1536 * If this request crosses a chunk boundary, we need to split
1539 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1540 sectors
> chunk_sects
1541 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1542 || conf
->prev
.near_copies
<
1543 conf
->prev
.raid_disks
)))
1544 sectors
= chunk_sects
-
1545 (bio
->bi_iter
.bi_sector
&
1547 __make_request(mddev
, bio
, sectors
);
1549 /* In case raid10d snuck in to freeze_array */
1550 wake_up(&conf
->wait_barrier
);
1554 static void raid10_status(struct seq_file
*seq
, struct mddev
*mddev
)
1556 struct r10conf
*conf
= mddev
->private;
1559 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1560 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1561 if (conf
->geo
.near_copies
> 1)
1562 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1563 if (conf
->geo
.far_copies
> 1) {
1564 if (conf
->geo
.far_offset
)
1565 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1567 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1568 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1569 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1571 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1572 conf
->geo
.raid_disks
- mddev
->degraded
);
1574 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1575 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1576 seq_printf(seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1579 seq_printf(seq
, "]");
1582 /* check if there are enough drives for
1583 * every block to appear on atleast one.
1584 * Don't consider the device numbered 'ignore'
1585 * as we might be about to remove it.
1587 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1593 disks
= conf
->prev
.raid_disks
;
1594 ncopies
= conf
->prev
.near_copies
;
1596 disks
= conf
->geo
.raid_disks
;
1597 ncopies
= conf
->geo
.near_copies
;
1602 int n
= conf
->copies
;
1606 struct md_rdev
*rdev
;
1607 if (this != ignore
&&
1608 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1609 test_bit(In_sync
, &rdev
->flags
))
1611 this = (this+1) % disks
;
1615 first
= (first
+ ncopies
) % disks
;
1616 } while (first
!= 0);
1623 static int enough(struct r10conf
*conf
, int ignore
)
1625 /* when calling 'enough', both 'prev' and 'geo' must
1627 * This is ensured if ->reconfig_mutex or ->device_lock
1630 return _enough(conf
, 0, ignore
) &&
1631 _enough(conf
, 1, ignore
);
1634 static void raid10_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1636 char b
[BDEVNAME_SIZE
];
1637 struct r10conf
*conf
= mddev
->private;
1638 unsigned long flags
;
1641 * If it is not operational, then we have already marked it as dead
1642 * else if it is the last working disks with "fail_last_dev == false",
1643 * ignore the error, let the next level up know.
1644 * else mark the drive as failed
1646 spin_lock_irqsave(&conf
->device_lock
, flags
);
1647 if (test_bit(In_sync
, &rdev
->flags
) && !mddev
->fail_last_dev
1648 && !enough(conf
, rdev
->raid_disk
)) {
1650 * Don't fail the drive, just return an IO error.
1652 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1655 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1658 * If recovery is running, make sure it aborts.
1660 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1661 set_bit(Blocked
, &rdev
->flags
);
1662 set_bit(Faulty
, &rdev
->flags
);
1663 set_mask_bits(&mddev
->sb_flags
, 0,
1664 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1665 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1666 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1667 "md/raid10:%s: Operation continuing on %d devices.\n",
1668 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1669 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1672 static void print_conf(struct r10conf
*conf
)
1675 struct md_rdev
*rdev
;
1677 pr_debug("RAID10 conf printout:\n");
1679 pr_debug("(!conf)\n");
1682 pr_debug(" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1683 conf
->geo
.raid_disks
);
1685 /* This is only called with ->reconfix_mutex held, so
1686 * rcu protection of rdev is not needed */
1687 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1688 char b
[BDEVNAME_SIZE
];
1689 rdev
= conf
->mirrors
[i
].rdev
;
1691 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1692 i
, !test_bit(In_sync
, &rdev
->flags
),
1693 !test_bit(Faulty
, &rdev
->flags
),
1694 bdevname(rdev
->bdev
,b
));
1698 static void close_sync(struct r10conf
*conf
)
1701 allow_barrier(conf
);
1703 mempool_exit(&conf
->r10buf_pool
);
1706 static int raid10_spare_active(struct mddev
*mddev
)
1709 struct r10conf
*conf
= mddev
->private;
1710 struct raid10_info
*tmp
;
1712 unsigned long flags
;
1715 * Find all non-in_sync disks within the RAID10 configuration
1716 * and mark them in_sync
1718 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1719 tmp
= conf
->mirrors
+ i
;
1720 if (tmp
->replacement
1721 && tmp
->replacement
->recovery_offset
== MaxSector
1722 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1723 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1724 /* Replacement has just become active */
1726 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1729 /* Replaced device not technically faulty,
1730 * but we need to be sure it gets removed
1731 * and never re-added.
1733 set_bit(Faulty
, &tmp
->rdev
->flags
);
1734 sysfs_notify_dirent_safe(
1735 tmp
->rdev
->sysfs_state
);
1737 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1738 } else if (tmp
->rdev
1739 && tmp
->rdev
->recovery_offset
== MaxSector
1740 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1741 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1743 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1746 spin_lock_irqsave(&conf
->device_lock
, flags
);
1747 mddev
->degraded
-= count
;
1748 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1754 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1756 struct r10conf
*conf
= mddev
->private;
1760 int last
= conf
->geo
.raid_disks
- 1;
1762 if (mddev
->recovery_cp
< MaxSector
)
1763 /* only hot-add to in-sync arrays, as recovery is
1764 * very different from resync
1767 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1770 if (md_integrity_add_rdev(rdev
, mddev
))
1773 if (rdev
->raid_disk
>= 0)
1774 first
= last
= rdev
->raid_disk
;
1776 if (rdev
->saved_raid_disk
>= first
&&
1777 rdev
->saved_raid_disk
< conf
->geo
.raid_disks
&&
1778 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1779 mirror
= rdev
->saved_raid_disk
;
1782 for ( ; mirror
<= last
; mirror
++) {
1783 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1784 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1787 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1788 p
->replacement
!= NULL
)
1790 clear_bit(In_sync
, &rdev
->flags
);
1791 set_bit(Replacement
, &rdev
->flags
);
1792 rdev
->raid_disk
= mirror
;
1795 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1796 rdev
->data_offset
<< 9);
1798 rcu_assign_pointer(p
->replacement
, rdev
);
1803 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1804 rdev
->data_offset
<< 9);
1806 p
->head_position
= 0;
1807 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1808 rdev
->raid_disk
= mirror
;
1810 if (rdev
->saved_raid_disk
!= mirror
)
1812 rcu_assign_pointer(p
->rdev
, rdev
);
1815 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1816 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1822 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1824 struct r10conf
*conf
= mddev
->private;
1826 int number
= rdev
->raid_disk
;
1827 struct md_rdev
**rdevp
;
1828 struct raid10_info
*p
= conf
->mirrors
+ number
;
1831 if (rdev
== p
->rdev
)
1833 else if (rdev
== p
->replacement
)
1834 rdevp
= &p
->replacement
;
1838 if (test_bit(In_sync
, &rdev
->flags
) ||
1839 atomic_read(&rdev
->nr_pending
)) {
1843 /* Only remove non-faulty devices if recovery
1846 if (!test_bit(Faulty
, &rdev
->flags
) &&
1847 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1848 (!p
->replacement
|| p
->replacement
== rdev
) &&
1849 number
< conf
->geo
.raid_disks
&&
1855 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1857 if (atomic_read(&rdev
->nr_pending
)) {
1858 /* lost the race, try later */
1864 if (p
->replacement
) {
1865 /* We must have just cleared 'rdev' */
1866 p
->rdev
= p
->replacement
;
1867 clear_bit(Replacement
, &p
->replacement
->flags
);
1868 smp_mb(); /* Make sure other CPUs may see both as identical
1869 * but will never see neither -- if they are careful.
1871 p
->replacement
= NULL
;
1874 clear_bit(WantReplacement
, &rdev
->flags
);
1875 err
= md_integrity_register(mddev
);
1883 static void __end_sync_read(struct r10bio
*r10_bio
, struct bio
*bio
, int d
)
1885 struct r10conf
*conf
= r10_bio
->mddev
->private;
1887 if (!bio
->bi_status
)
1888 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1890 /* The write handler will notice the lack of
1891 * R10BIO_Uptodate and record any errors etc
1893 atomic_add(r10_bio
->sectors
,
1894 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1896 /* for reconstruct, we always reschedule after a read.
1897 * for resync, only after all reads
1899 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1900 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1901 atomic_dec_and_test(&r10_bio
->remaining
)) {
1902 /* we have read all the blocks,
1903 * do the comparison in process context in raid10d
1905 reschedule_retry(r10_bio
);
1909 static void end_sync_read(struct bio
*bio
)
1911 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1912 struct r10conf
*conf
= r10_bio
->mddev
->private;
1913 int d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1915 __end_sync_read(r10_bio
, bio
, d
);
1918 static void end_reshape_read(struct bio
*bio
)
1920 /* reshape read bio isn't allocated from r10buf_pool */
1921 struct r10bio
*r10_bio
= bio
->bi_private
;
1923 __end_sync_read(r10_bio
, bio
, r10_bio
->read_slot
);
1926 static void end_sync_request(struct r10bio
*r10_bio
)
1928 struct mddev
*mddev
= r10_bio
->mddev
;
1930 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1931 if (r10_bio
->master_bio
== NULL
) {
1932 /* the primary of several recovery bios */
1933 sector_t s
= r10_bio
->sectors
;
1934 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1935 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1936 reschedule_retry(r10_bio
);
1939 md_done_sync(mddev
, s
, 1);
1942 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1943 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1944 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1945 reschedule_retry(r10_bio
);
1953 static void end_sync_write(struct bio
*bio
)
1955 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1956 struct mddev
*mddev
= r10_bio
->mddev
;
1957 struct r10conf
*conf
= mddev
->private;
1963 struct md_rdev
*rdev
= NULL
;
1965 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1967 rdev
= conf
->mirrors
[d
].replacement
;
1969 rdev
= conf
->mirrors
[d
].rdev
;
1971 if (bio
->bi_status
) {
1973 md_error(mddev
, rdev
);
1975 set_bit(WriteErrorSeen
, &rdev
->flags
);
1976 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1977 set_bit(MD_RECOVERY_NEEDED
,
1978 &rdev
->mddev
->recovery
);
1979 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1981 } else if (is_badblock(rdev
,
1982 r10_bio
->devs
[slot
].addr
,
1984 &first_bad
, &bad_sectors
))
1985 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1987 rdev_dec_pending(rdev
, mddev
);
1989 end_sync_request(r10_bio
);
1993 * Note: sync and recover and handled very differently for raid10
1994 * This code is for resync.
1995 * For resync, we read through virtual addresses and read all blocks.
1996 * If there is any error, we schedule a write. The lowest numbered
1997 * drive is authoritative.
1998 * However requests come for physical address, so we need to map.
1999 * For every physical address there are raid_disks/copies virtual addresses,
2000 * which is always are least one, but is not necessarly an integer.
2001 * This means that a physical address can span multiple chunks, so we may
2002 * have to submit multiple io requests for a single sync request.
2005 * We check if all blocks are in-sync and only write to blocks that
2008 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2010 struct r10conf
*conf
= mddev
->private;
2012 struct bio
*tbio
, *fbio
;
2014 struct page
**tpages
, **fpages
;
2016 atomic_set(&r10_bio
->remaining
, 1);
2018 /* find the first device with a block */
2019 for (i
=0; i
<conf
->copies
; i
++)
2020 if (!r10_bio
->devs
[i
].bio
->bi_status
)
2023 if (i
== conf
->copies
)
2027 fbio
= r10_bio
->devs
[i
].bio
;
2028 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
2029 fbio
->bi_iter
.bi_idx
= 0;
2030 fpages
= get_resync_pages(fbio
)->pages
;
2032 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
2033 /* now find blocks with errors */
2034 for (i
=0 ; i
< conf
->copies
; i
++) {
2036 struct md_rdev
*rdev
;
2037 struct resync_pages
*rp
;
2039 tbio
= r10_bio
->devs
[i
].bio
;
2041 if (tbio
->bi_end_io
!= end_sync_read
)
2046 tpages
= get_resync_pages(tbio
)->pages
;
2047 d
= r10_bio
->devs
[i
].devnum
;
2048 rdev
= conf
->mirrors
[d
].rdev
;
2049 if (!r10_bio
->devs
[i
].bio
->bi_status
) {
2050 /* We know that the bi_io_vec layout is the same for
2051 * both 'first' and 'i', so we just compare them.
2052 * All vec entries are PAGE_SIZE;
2054 int sectors
= r10_bio
->sectors
;
2055 for (j
= 0; j
< vcnt
; j
++) {
2056 int len
= PAGE_SIZE
;
2057 if (sectors
< (len
/ 512))
2058 len
= sectors
* 512;
2059 if (memcmp(page_address(fpages
[j
]),
2060 page_address(tpages
[j
]),
2067 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2068 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2069 /* Don't fix anything. */
2071 } else if (test_bit(FailFast
, &rdev
->flags
)) {
2072 /* Just give up on this device */
2073 md_error(rdev
->mddev
, rdev
);
2076 /* Ok, we need to write this bio, either to correct an
2077 * inconsistency or to correct an unreadable block.
2078 * First we need to fixup bv_offset, bv_len and
2079 * bi_vecs, as the read request might have corrupted these
2081 rp
= get_resync_pages(tbio
);
2084 md_bio_reset_resync_pages(tbio
, rp
, fbio
->bi_iter
.bi_size
);
2086 rp
->raid_bio
= r10_bio
;
2087 tbio
->bi_private
= rp
;
2088 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
2089 tbio
->bi_end_io
= end_sync_write
;
2090 bio_set_op_attrs(tbio
, REQ_OP_WRITE
, 0);
2092 bio_copy_data(tbio
, fbio
);
2094 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2095 atomic_inc(&r10_bio
->remaining
);
2096 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2098 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
2099 tbio
->bi_opf
|= MD_FAILFAST
;
2100 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2101 bio_set_dev(tbio
, conf
->mirrors
[d
].rdev
->bdev
);
2102 generic_make_request(tbio
);
2105 /* Now write out to any replacement devices
2108 for (i
= 0; i
< conf
->copies
; i
++) {
2111 tbio
= r10_bio
->devs
[i
].repl_bio
;
2112 if (!tbio
|| !tbio
->bi_end_io
)
2114 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2115 && r10_bio
->devs
[i
].bio
!= fbio
)
2116 bio_copy_data(tbio
, fbio
);
2117 d
= r10_bio
->devs
[i
].devnum
;
2118 atomic_inc(&r10_bio
->remaining
);
2119 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2121 generic_make_request(tbio
);
2125 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2126 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2132 * Now for the recovery code.
2133 * Recovery happens across physical sectors.
2134 * We recover all non-is_sync drives by finding the virtual address of
2135 * each, and then choose a working drive that also has that virt address.
2136 * There is a separate r10_bio for each non-in_sync drive.
2137 * Only the first two slots are in use. The first for reading,
2138 * The second for writing.
2141 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2143 /* We got a read error during recovery.
2144 * We repeat the read in smaller page-sized sections.
2145 * If a read succeeds, write it to the new device or record
2146 * a bad block if we cannot.
2147 * If a read fails, record a bad block on both old and
2150 struct mddev
*mddev
= r10_bio
->mddev
;
2151 struct r10conf
*conf
= mddev
->private;
2152 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2154 int sectors
= r10_bio
->sectors
;
2156 int dr
= r10_bio
->devs
[0].devnum
;
2157 int dw
= r10_bio
->devs
[1].devnum
;
2158 struct page
**pages
= get_resync_pages(bio
)->pages
;
2162 struct md_rdev
*rdev
;
2166 if (s
> (PAGE_SIZE
>>9))
2169 rdev
= conf
->mirrors
[dr
].rdev
;
2170 addr
= r10_bio
->devs
[0].addr
+ sect
,
2171 ok
= sync_page_io(rdev
,
2175 REQ_OP_READ
, 0, false);
2177 rdev
= conf
->mirrors
[dw
].rdev
;
2178 addr
= r10_bio
->devs
[1].addr
+ sect
;
2179 ok
= sync_page_io(rdev
,
2183 REQ_OP_WRITE
, 0, false);
2185 set_bit(WriteErrorSeen
, &rdev
->flags
);
2186 if (!test_and_set_bit(WantReplacement
,
2188 set_bit(MD_RECOVERY_NEEDED
,
2189 &rdev
->mddev
->recovery
);
2193 /* We don't worry if we cannot set a bad block -
2194 * it really is bad so there is no loss in not
2197 rdev_set_badblocks(rdev
, addr
, s
, 0);
2199 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2200 /* need bad block on destination too */
2201 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2202 addr
= r10_bio
->devs
[1].addr
+ sect
;
2203 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2205 /* just abort the recovery */
2206 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2209 conf
->mirrors
[dw
].recovery_disabled
2210 = mddev
->recovery_disabled
;
2211 set_bit(MD_RECOVERY_INTR
,
2224 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2226 struct r10conf
*conf
= mddev
->private;
2228 struct bio
*wbio
, *wbio2
;
2230 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2231 fix_recovery_read_error(r10_bio
);
2232 end_sync_request(r10_bio
);
2237 * share the pages with the first bio
2238 * and submit the write request
2240 d
= r10_bio
->devs
[1].devnum
;
2241 wbio
= r10_bio
->devs
[1].bio
;
2242 wbio2
= r10_bio
->devs
[1].repl_bio
;
2243 /* Need to test wbio2->bi_end_io before we call
2244 * generic_make_request as if the former is NULL,
2245 * the latter is free to free wbio2.
2247 if (wbio2
&& !wbio2
->bi_end_io
)
2249 if (wbio
->bi_end_io
) {
2250 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2251 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2252 generic_make_request(wbio
);
2255 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2256 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2257 bio_sectors(wbio2
));
2258 generic_make_request(wbio2
);
2263 * Used by fix_read_error() to decay the per rdev read_errors.
2264 * We halve the read error count for every hour that has elapsed
2265 * since the last recorded read error.
2268 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2271 unsigned long hours_since_last
;
2272 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2274 cur_time_mon
= ktime_get_seconds();
2276 if (rdev
->last_read_error
== 0) {
2277 /* first time we've seen a read error */
2278 rdev
->last_read_error
= cur_time_mon
;
2282 hours_since_last
= (long)(cur_time_mon
-
2283 rdev
->last_read_error
) / 3600;
2285 rdev
->last_read_error
= cur_time_mon
;
2288 * if hours_since_last is > the number of bits in read_errors
2289 * just set read errors to 0. We do this to avoid
2290 * overflowing the shift of read_errors by hours_since_last.
2292 if (hours_since_last
>= 8 * sizeof(read_errors
))
2293 atomic_set(&rdev
->read_errors
, 0);
2295 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2298 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2299 int sectors
, struct page
*page
, int rw
)
2304 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2305 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2307 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
2311 set_bit(WriteErrorSeen
, &rdev
->flags
);
2312 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2313 set_bit(MD_RECOVERY_NEEDED
,
2314 &rdev
->mddev
->recovery
);
2316 /* need to record an error - either for the block or the device */
2317 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2318 md_error(rdev
->mddev
, rdev
);
2323 * This is a kernel thread which:
2325 * 1. Retries failed read operations on working mirrors.
2326 * 2. Updates the raid superblock when problems encounter.
2327 * 3. Performs writes following reads for array synchronising.
2330 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2332 int sect
= 0; /* Offset from r10_bio->sector */
2333 int sectors
= r10_bio
->sectors
;
2334 struct md_rdev
*rdev
;
2335 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2336 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2338 /* still own a reference to this rdev, so it cannot
2339 * have been cleared recently.
2341 rdev
= conf
->mirrors
[d
].rdev
;
2343 if (test_bit(Faulty
, &rdev
->flags
))
2344 /* drive has already been failed, just ignore any
2345 more fix_read_error() attempts */
2348 check_decay_read_errors(mddev
, rdev
);
2349 atomic_inc(&rdev
->read_errors
);
2350 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2351 char b
[BDEVNAME_SIZE
];
2352 bdevname(rdev
->bdev
, b
);
2354 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2356 atomic_read(&rdev
->read_errors
), max_read_errors
);
2357 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2359 md_error(mddev
, rdev
);
2360 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2366 int sl
= r10_bio
->read_slot
;
2370 if (s
> (PAGE_SIZE
>>9))
2378 d
= r10_bio
->devs
[sl
].devnum
;
2379 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2381 test_bit(In_sync
, &rdev
->flags
) &&
2382 !test_bit(Faulty
, &rdev
->flags
) &&
2383 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2384 &first_bad
, &bad_sectors
) == 0) {
2385 atomic_inc(&rdev
->nr_pending
);
2387 success
= sync_page_io(rdev
,
2388 r10_bio
->devs
[sl
].addr
+
2392 REQ_OP_READ
, 0, false);
2393 rdev_dec_pending(rdev
, mddev
);
2399 if (sl
== conf
->copies
)
2401 } while (!success
&& sl
!= r10_bio
->read_slot
);
2405 /* Cannot read from anywhere, just mark the block
2406 * as bad on the first device to discourage future
2409 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2410 rdev
= conf
->mirrors
[dn
].rdev
;
2412 if (!rdev_set_badblocks(
2414 r10_bio
->devs
[r10_bio
->read_slot
].addr
2417 md_error(mddev
, rdev
);
2418 r10_bio
->devs
[r10_bio
->read_slot
].bio
2425 /* write it back and re-read */
2427 while (sl
!= r10_bio
->read_slot
) {
2428 char b
[BDEVNAME_SIZE
];
2433 d
= r10_bio
->devs
[sl
].devnum
;
2434 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2436 test_bit(Faulty
, &rdev
->flags
) ||
2437 !test_bit(In_sync
, &rdev
->flags
))
2440 atomic_inc(&rdev
->nr_pending
);
2442 if (r10_sync_page_io(rdev
,
2443 r10_bio
->devs
[sl
].addr
+
2445 s
, conf
->tmppage
, WRITE
)
2447 /* Well, this device is dead */
2448 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2450 (unsigned long long)(
2452 choose_data_offset(r10_bio
,
2454 bdevname(rdev
->bdev
, b
));
2455 pr_notice("md/raid10:%s: %s: failing drive\n",
2457 bdevname(rdev
->bdev
, b
));
2459 rdev_dec_pending(rdev
, mddev
);
2463 while (sl
!= r10_bio
->read_slot
) {
2464 char b
[BDEVNAME_SIZE
];
2469 d
= r10_bio
->devs
[sl
].devnum
;
2470 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2472 test_bit(Faulty
, &rdev
->flags
) ||
2473 !test_bit(In_sync
, &rdev
->flags
))
2476 atomic_inc(&rdev
->nr_pending
);
2478 switch (r10_sync_page_io(rdev
,
2479 r10_bio
->devs
[sl
].addr
+
2484 /* Well, this device is dead */
2485 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2487 (unsigned long long)(
2489 choose_data_offset(r10_bio
, rdev
)),
2490 bdevname(rdev
->bdev
, b
));
2491 pr_notice("md/raid10:%s: %s: failing drive\n",
2493 bdevname(rdev
->bdev
, b
));
2496 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2498 (unsigned long long)(
2500 choose_data_offset(r10_bio
, rdev
)),
2501 bdevname(rdev
->bdev
, b
));
2502 atomic_add(s
, &rdev
->corrected_errors
);
2505 rdev_dec_pending(rdev
, mddev
);
2515 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2517 struct bio
*bio
= r10_bio
->master_bio
;
2518 struct mddev
*mddev
= r10_bio
->mddev
;
2519 struct r10conf
*conf
= mddev
->private;
2520 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2521 /* bio has the data to be written to slot 'i' where
2522 * we just recently had a write error.
2523 * We repeatedly clone the bio and trim down to one block,
2524 * then try the write. Where the write fails we record
2526 * It is conceivable that the bio doesn't exactly align with
2527 * blocks. We must handle this.
2529 * We currently own a reference to the rdev.
2535 int sect_to_write
= r10_bio
->sectors
;
2538 if (rdev
->badblocks
.shift
< 0)
2541 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2542 bdev_logical_block_size(rdev
->bdev
) >> 9);
2543 sector
= r10_bio
->sector
;
2544 sectors
= ((r10_bio
->sector
+ block_sectors
)
2545 & ~(sector_t
)(block_sectors
- 1))
2548 while (sect_to_write
) {
2551 if (sectors
> sect_to_write
)
2552 sectors
= sect_to_write
;
2553 /* Write at 'sector' for 'sectors' */
2554 wbio
= bio_clone_fast(bio
, GFP_NOIO
, &mddev
->bio_set
);
2555 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2556 wsector
= r10_bio
->devs
[i
].addr
+ (sector
- r10_bio
->sector
);
2557 wbio
->bi_iter
.bi_sector
= wsector
+
2558 choose_data_offset(r10_bio
, rdev
);
2559 bio_set_dev(wbio
, rdev
->bdev
);
2560 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2562 if (submit_bio_wait(wbio
) < 0)
2564 ok
= rdev_set_badblocks(rdev
, wsector
,
2569 sect_to_write
-= sectors
;
2571 sectors
= block_sectors
;
2576 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2578 int slot
= r10_bio
->read_slot
;
2580 struct r10conf
*conf
= mddev
->private;
2581 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2583 /* we got a read error. Maybe the drive is bad. Maybe just
2584 * the block and we can fix it.
2585 * We freeze all other IO, and try reading the block from
2586 * other devices. When we find one, we re-write
2587 * and check it that fixes the read error.
2588 * This is all done synchronously while the array is
2591 bio
= r10_bio
->devs
[slot
].bio
;
2593 r10_bio
->devs
[slot
].bio
= NULL
;
2596 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2597 else if (!test_bit(FailFast
, &rdev
->flags
)) {
2598 freeze_array(conf
, 1);
2599 fix_read_error(conf
, mddev
, r10_bio
);
2600 unfreeze_array(conf
);
2602 md_error(mddev
, rdev
);
2604 rdev_dec_pending(rdev
, mddev
);
2605 allow_barrier(conf
);
2607 raid10_read_request(mddev
, r10_bio
->master_bio
, r10_bio
);
2610 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2612 /* Some sort of write request has finished and it
2613 * succeeded in writing where we thought there was a
2614 * bad block. So forget the bad block.
2615 * Or possibly if failed and we need to record
2619 struct md_rdev
*rdev
;
2621 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2622 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2623 for (m
= 0; m
< conf
->copies
; m
++) {
2624 int dev
= r10_bio
->devs
[m
].devnum
;
2625 rdev
= conf
->mirrors
[dev
].rdev
;
2626 if (r10_bio
->devs
[m
].bio
== NULL
||
2627 r10_bio
->devs
[m
].bio
->bi_end_io
== NULL
)
2629 if (!r10_bio
->devs
[m
].bio
->bi_status
) {
2630 rdev_clear_badblocks(
2632 r10_bio
->devs
[m
].addr
,
2633 r10_bio
->sectors
, 0);
2635 if (!rdev_set_badblocks(
2637 r10_bio
->devs
[m
].addr
,
2638 r10_bio
->sectors
, 0))
2639 md_error(conf
->mddev
, rdev
);
2641 rdev
= conf
->mirrors
[dev
].replacement
;
2642 if (r10_bio
->devs
[m
].repl_bio
== NULL
||
2643 r10_bio
->devs
[m
].repl_bio
->bi_end_io
== NULL
)
2646 if (!r10_bio
->devs
[m
].repl_bio
->bi_status
) {
2647 rdev_clear_badblocks(
2649 r10_bio
->devs
[m
].addr
,
2650 r10_bio
->sectors
, 0);
2652 if (!rdev_set_badblocks(
2654 r10_bio
->devs
[m
].addr
,
2655 r10_bio
->sectors
, 0))
2656 md_error(conf
->mddev
, rdev
);
2662 for (m
= 0; m
< conf
->copies
; m
++) {
2663 int dev
= r10_bio
->devs
[m
].devnum
;
2664 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2665 rdev
= conf
->mirrors
[dev
].rdev
;
2666 if (bio
== IO_MADE_GOOD
) {
2667 rdev_clear_badblocks(
2669 r10_bio
->devs
[m
].addr
,
2670 r10_bio
->sectors
, 0);
2671 rdev_dec_pending(rdev
, conf
->mddev
);
2672 } else if (bio
!= NULL
&& bio
->bi_status
) {
2674 if (!narrow_write_error(r10_bio
, m
)) {
2675 md_error(conf
->mddev
, rdev
);
2676 set_bit(R10BIO_Degraded
,
2679 rdev_dec_pending(rdev
, conf
->mddev
);
2681 bio
= r10_bio
->devs
[m
].repl_bio
;
2682 rdev
= conf
->mirrors
[dev
].replacement
;
2683 if (rdev
&& bio
== IO_MADE_GOOD
) {
2684 rdev_clear_badblocks(
2686 r10_bio
->devs
[m
].addr
,
2687 r10_bio
->sectors
, 0);
2688 rdev_dec_pending(rdev
, conf
->mddev
);
2692 spin_lock_irq(&conf
->device_lock
);
2693 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2695 spin_unlock_irq(&conf
->device_lock
);
2697 * In case freeze_array() is waiting for condition
2698 * nr_pending == nr_queued + extra to be true.
2700 wake_up(&conf
->wait_barrier
);
2701 md_wakeup_thread(conf
->mddev
->thread
);
2703 if (test_bit(R10BIO_WriteError
,
2705 close_write(r10_bio
);
2706 raid_end_bio_io(r10_bio
);
2711 static void raid10d(struct md_thread
*thread
)
2713 struct mddev
*mddev
= thread
->mddev
;
2714 struct r10bio
*r10_bio
;
2715 unsigned long flags
;
2716 struct r10conf
*conf
= mddev
->private;
2717 struct list_head
*head
= &conf
->retry_list
;
2718 struct blk_plug plug
;
2720 md_check_recovery(mddev
);
2722 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2723 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2725 spin_lock_irqsave(&conf
->device_lock
, flags
);
2726 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2727 while (!list_empty(&conf
->bio_end_io_list
)) {
2728 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2732 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2733 while (!list_empty(&tmp
)) {
2734 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2736 list_del(&r10_bio
->retry_list
);
2737 if (mddev
->degraded
)
2738 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2740 if (test_bit(R10BIO_WriteError
,
2742 close_write(r10_bio
);
2743 raid_end_bio_io(r10_bio
);
2747 blk_start_plug(&plug
);
2750 flush_pending_writes(conf
);
2752 spin_lock_irqsave(&conf
->device_lock
, flags
);
2753 if (list_empty(head
)) {
2754 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2757 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2758 list_del(head
->prev
);
2760 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2762 mddev
= r10_bio
->mddev
;
2763 conf
= mddev
->private;
2764 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2765 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2766 handle_write_completed(conf
, r10_bio
);
2767 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2768 reshape_request_write(mddev
, r10_bio
);
2769 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2770 sync_request_write(mddev
, r10_bio
);
2771 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2772 recovery_request_write(mddev
, r10_bio
);
2773 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2774 handle_read_error(mddev
, r10_bio
);
2779 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2780 md_check_recovery(mddev
);
2782 blk_finish_plug(&plug
);
2785 static int init_resync(struct r10conf
*conf
)
2789 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2790 BUG_ON(mempool_initialized(&conf
->r10buf_pool
));
2791 conf
->have_replacement
= 0;
2792 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2793 if (conf
->mirrors
[i
].replacement
)
2794 conf
->have_replacement
= 1;
2795 ret
= mempool_init(&conf
->r10buf_pool
, buffs
,
2796 r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2799 conf
->next_resync
= 0;
2803 static struct r10bio
*raid10_alloc_init_r10buf(struct r10conf
*conf
)
2805 struct r10bio
*r10bio
= mempool_alloc(&conf
->r10buf_pool
, GFP_NOIO
);
2806 struct rsync_pages
*rp
;
2811 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
2812 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
2813 nalloc
= conf
->copies
; /* resync */
2815 nalloc
= 2; /* recovery */
2817 for (i
= 0; i
< nalloc
; i
++) {
2818 bio
= r10bio
->devs
[i
].bio
;
2819 rp
= bio
->bi_private
;
2821 bio
->bi_private
= rp
;
2822 bio
= r10bio
->devs
[i
].repl_bio
;
2824 rp
= bio
->bi_private
;
2826 bio
->bi_private
= rp
;
2833 * Set cluster_sync_high since we need other nodes to add the
2834 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2836 static void raid10_set_cluster_sync_high(struct r10conf
*conf
)
2838 sector_t window_size
;
2839 int extra_chunk
, chunks
;
2842 * First, here we define "stripe" as a unit which across
2843 * all member devices one time, so we get chunks by use
2844 * raid_disks / near_copies. Otherwise, if near_copies is
2845 * close to raid_disks, then resync window could increases
2846 * linearly with the increase of raid_disks, which means
2847 * we will suspend a really large IO window while it is not
2848 * necessary. If raid_disks is not divisible by near_copies,
2849 * an extra chunk is needed to ensure the whole "stripe" is
2853 chunks
= conf
->geo
.raid_disks
/ conf
->geo
.near_copies
;
2854 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
== 0)
2858 window_size
= (chunks
+ extra_chunk
) * conf
->mddev
->chunk_sectors
;
2861 * At least use a 32M window to align with raid1's resync window
2863 window_size
= (CLUSTER_RESYNC_WINDOW_SECTORS
> window_size
) ?
2864 CLUSTER_RESYNC_WINDOW_SECTORS
: window_size
;
2866 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ window_size
;
2870 * perform a "sync" on one "block"
2872 * We need to make sure that no normal I/O request - particularly write
2873 * requests - conflict with active sync requests.
2875 * This is achieved by tracking pending requests and a 'barrier' concept
2876 * that can be installed to exclude normal IO requests.
2878 * Resync and recovery are handled very differently.
2879 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2881 * For resync, we iterate over virtual addresses, read all copies,
2882 * and update if there are differences. If only one copy is live,
2884 * For recovery, we iterate over physical addresses, read a good
2885 * value for each non-in_sync drive, and over-write.
2887 * So, for recovery we may have several outstanding complex requests for a
2888 * given address, one for each out-of-sync device. We model this by allocating
2889 * a number of r10_bio structures, one for each out-of-sync device.
2890 * As we setup these structures, we collect all bio's together into a list
2891 * which we then process collectively to add pages, and then process again
2892 * to pass to generic_make_request.
2894 * The r10_bio structures are linked using a borrowed master_bio pointer.
2895 * This link is counted in ->remaining. When the r10_bio that points to NULL
2896 * has its remaining count decremented to 0, the whole complex operation
2901 static sector_t
raid10_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2904 struct r10conf
*conf
= mddev
->private;
2905 struct r10bio
*r10_bio
;
2906 struct bio
*biolist
= NULL
, *bio
;
2907 sector_t max_sector
, nr_sectors
;
2910 sector_t sync_blocks
;
2911 sector_t sectors_skipped
= 0;
2912 int chunks_skipped
= 0;
2913 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2916 if (!mempool_initialized(&conf
->r10buf_pool
))
2917 if (init_resync(conf
))
2921 * Allow skipping a full rebuild for incremental assembly
2922 * of a clean array, like RAID1 does.
2924 if (mddev
->bitmap
== NULL
&&
2925 mddev
->recovery_cp
== MaxSector
&&
2926 mddev
->reshape_position
== MaxSector
&&
2927 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2928 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2929 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2930 conf
->fullsync
== 0) {
2932 return mddev
->dev_sectors
- sector_nr
;
2936 max_sector
= mddev
->dev_sectors
;
2937 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2938 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2939 max_sector
= mddev
->resync_max_sectors
;
2940 if (sector_nr
>= max_sector
) {
2941 conf
->cluster_sync_low
= 0;
2942 conf
->cluster_sync_high
= 0;
2944 /* If we aborted, we need to abort the
2945 * sync on the 'current' bitmap chucks (there can
2946 * be several when recovering multiple devices).
2947 * as we may have started syncing it but not finished.
2948 * We can find the current address in
2949 * mddev->curr_resync, but for recovery,
2950 * we need to convert that to several
2951 * virtual addresses.
2953 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2959 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2960 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2961 md_bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2963 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2965 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2966 md_bitmap_end_sync(mddev
->bitmap
, sect
,
2970 /* completed sync */
2971 if ((!mddev
->bitmap
|| conf
->fullsync
)
2972 && conf
->have_replacement
2973 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2974 /* Completed a full sync so the replacements
2975 * are now fully recovered.
2978 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2979 struct md_rdev
*rdev
=
2980 rcu_dereference(conf
->mirrors
[i
].replacement
);
2982 rdev
->recovery_offset
= MaxSector
;
2988 md_bitmap_close_sync(mddev
->bitmap
);
2991 return sectors_skipped
;
2994 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2995 return reshape_request(mddev
, sector_nr
, skipped
);
2997 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2998 /* if there has been nothing to do on any drive,
2999 * then there is nothing to do at all..
3002 return (max_sector
- sector_nr
) + sectors_skipped
;
3005 if (max_sector
> mddev
->resync_max
)
3006 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
3008 /* make sure whole request will fit in a chunk - if chunks
3011 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
3012 max_sector
> (sector_nr
| chunk_mask
))
3013 max_sector
= (sector_nr
| chunk_mask
) + 1;
3016 * If there is non-resync activity waiting for a turn, then let it
3017 * though before starting on this new sync request.
3019 if (conf
->nr_waiting
)
3020 schedule_timeout_uninterruptible(1);
3022 /* Again, very different code for resync and recovery.
3023 * Both must result in an r10bio with a list of bios that
3024 * have bi_end_io, bi_sector, bi_disk set,
3025 * and bi_private set to the r10bio.
3026 * For recovery, we may actually create several r10bios
3027 * with 2 bios in each, that correspond to the bios in the main one.
3028 * In this case, the subordinate r10bios link back through a
3029 * borrowed master_bio pointer, and the counter in the master
3030 * includes a ref from each subordinate.
3032 /* First, we decide what to do and set ->bi_end_io
3033 * To end_sync_read if we want to read, and
3034 * end_sync_write if we will want to write.
3037 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
3038 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3039 /* recovery... the complicated one */
3043 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
3049 int need_recover
= 0;
3050 int need_replace
= 0;
3051 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
3052 struct md_rdev
*mrdev
, *mreplace
;
3055 mrdev
= rcu_dereference(mirror
->rdev
);
3056 mreplace
= rcu_dereference(mirror
->replacement
);
3058 if (mrdev
!= NULL
&&
3059 !test_bit(Faulty
, &mrdev
->flags
) &&
3060 !test_bit(In_sync
, &mrdev
->flags
))
3062 if (mreplace
!= NULL
&&
3063 !test_bit(Faulty
, &mreplace
->flags
))
3066 if (!need_recover
&& !need_replace
) {
3072 /* want to reconstruct this device */
3074 sect
= raid10_find_virt(conf
, sector_nr
, i
);
3075 if (sect
>= mddev
->resync_max_sectors
) {
3076 /* last stripe is not complete - don't
3077 * try to recover this sector.
3082 if (mreplace
&& test_bit(Faulty
, &mreplace
->flags
))
3084 /* Unless we are doing a full sync, or a replacement
3085 * we only need to recover the block if it is set in
3088 must_sync
= md_bitmap_start_sync(mddev
->bitmap
, sect
,
3090 if (sync_blocks
< max_sync
)
3091 max_sync
= sync_blocks
;
3095 /* yep, skip the sync_blocks here, but don't assume
3096 * that there will never be anything to do here
3098 chunks_skipped
= -1;
3102 atomic_inc(&mrdev
->nr_pending
);
3104 atomic_inc(&mreplace
->nr_pending
);
3107 r10_bio
= raid10_alloc_init_r10buf(conf
);
3109 raise_barrier(conf
, rb2
!= NULL
);
3110 atomic_set(&r10_bio
->remaining
, 0);
3112 r10_bio
->master_bio
= (struct bio
*)rb2
;
3114 atomic_inc(&rb2
->remaining
);
3115 r10_bio
->mddev
= mddev
;
3116 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3117 r10_bio
->sector
= sect
;
3119 raid10_find_phys(conf
, r10_bio
);
3121 /* Need to check if the array will still be
3125 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++) {
3126 struct md_rdev
*rdev
= rcu_dereference(
3127 conf
->mirrors
[j
].rdev
);
3128 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3134 must_sync
= md_bitmap_start_sync(mddev
->bitmap
, sect
,
3135 &sync_blocks
, still_degraded
);
3138 for (j
=0; j
<conf
->copies
;j
++) {
3140 int d
= r10_bio
->devs
[j
].devnum
;
3141 sector_t from_addr
, to_addr
;
3142 struct md_rdev
*rdev
=
3143 rcu_dereference(conf
->mirrors
[d
].rdev
);
3144 sector_t sector
, first_bad
;
3147 !test_bit(In_sync
, &rdev
->flags
))
3149 /* This is where we read from */
3151 sector
= r10_bio
->devs
[j
].addr
;
3153 if (is_badblock(rdev
, sector
, max_sync
,
3154 &first_bad
, &bad_sectors
)) {
3155 if (first_bad
> sector
)
3156 max_sync
= first_bad
- sector
;
3158 bad_sectors
-= (sector
3160 if (max_sync
> bad_sectors
)
3161 max_sync
= bad_sectors
;
3165 bio
= r10_bio
->devs
[0].bio
;
3166 bio
->bi_next
= biolist
;
3168 bio
->bi_end_io
= end_sync_read
;
3169 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3170 if (test_bit(FailFast
, &rdev
->flags
))
3171 bio
->bi_opf
|= MD_FAILFAST
;
3172 from_addr
= r10_bio
->devs
[j
].addr
;
3173 bio
->bi_iter
.bi_sector
= from_addr
+
3175 bio_set_dev(bio
, rdev
->bdev
);
3176 atomic_inc(&rdev
->nr_pending
);
3177 /* and we write to 'i' (if not in_sync) */
3179 for (k
=0; k
<conf
->copies
; k
++)
3180 if (r10_bio
->devs
[k
].devnum
== i
)
3182 BUG_ON(k
== conf
->copies
);
3183 to_addr
= r10_bio
->devs
[k
].addr
;
3184 r10_bio
->devs
[0].devnum
= d
;
3185 r10_bio
->devs
[0].addr
= from_addr
;
3186 r10_bio
->devs
[1].devnum
= i
;
3187 r10_bio
->devs
[1].addr
= to_addr
;
3190 bio
= r10_bio
->devs
[1].bio
;
3191 bio
->bi_next
= biolist
;
3193 bio
->bi_end_io
= end_sync_write
;
3194 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3195 bio
->bi_iter
.bi_sector
= to_addr
3196 + mrdev
->data_offset
;
3197 bio_set_dev(bio
, mrdev
->bdev
);
3198 atomic_inc(&r10_bio
->remaining
);
3200 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3202 /* and maybe write to replacement */
3203 bio
= r10_bio
->devs
[1].repl_bio
;
3205 bio
->bi_end_io
= NULL
;
3206 /* Note: if need_replace, then bio
3207 * cannot be NULL as r10buf_pool_alloc will
3208 * have allocated it.
3212 bio
->bi_next
= biolist
;
3214 bio
->bi_end_io
= end_sync_write
;
3215 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3216 bio
->bi_iter
.bi_sector
= to_addr
+
3217 mreplace
->data_offset
;
3218 bio_set_dev(bio
, mreplace
->bdev
);
3219 atomic_inc(&r10_bio
->remaining
);
3223 if (j
== conf
->copies
) {
3224 /* Cannot recover, so abort the recovery or
3225 * record a bad block */
3227 /* problem is that there are bad blocks
3228 * on other device(s)
3231 for (k
= 0; k
< conf
->copies
; k
++)
3232 if (r10_bio
->devs
[k
].devnum
== i
)
3234 if (!test_bit(In_sync
,
3236 && !rdev_set_badblocks(
3238 r10_bio
->devs
[k
].addr
,
3242 !rdev_set_badblocks(
3244 r10_bio
->devs
[k
].addr
,
3249 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3251 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3253 mirror
->recovery_disabled
3254 = mddev
->recovery_disabled
;
3258 atomic_dec(&rb2
->remaining
);
3260 rdev_dec_pending(mrdev
, mddev
);
3262 rdev_dec_pending(mreplace
, mddev
);
3265 rdev_dec_pending(mrdev
, mddev
);
3267 rdev_dec_pending(mreplace
, mddev
);
3268 if (r10_bio
->devs
[0].bio
->bi_opf
& MD_FAILFAST
) {
3269 /* Only want this if there is elsewhere to
3270 * read from. 'j' is currently the first
3274 for (; j
< conf
->copies
; j
++) {
3275 int d
= r10_bio
->devs
[j
].devnum
;
3276 if (conf
->mirrors
[d
].rdev
&&
3278 &conf
->mirrors
[d
].rdev
->flags
))
3282 r10_bio
->devs
[0].bio
->bi_opf
3286 if (biolist
== NULL
) {
3288 struct r10bio
*rb2
= r10_bio
;
3289 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3290 rb2
->master_bio
= NULL
;
3296 /* resync. Schedule a read for every block at this virt offset */
3300 * Since curr_resync_completed could probably not update in
3301 * time, and we will set cluster_sync_low based on it.
3302 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3303 * safety reason, which ensures curr_resync_completed is
3304 * updated in bitmap_cond_end_sync.
3306 md_bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
3307 mddev_is_clustered(mddev
) &&
3308 (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
3310 if (!md_bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3311 &sync_blocks
, mddev
->degraded
) &&
3312 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3313 &mddev
->recovery
)) {
3314 /* We can skip this block */
3316 return sync_blocks
+ sectors_skipped
;
3318 if (sync_blocks
< max_sync
)
3319 max_sync
= sync_blocks
;
3320 r10_bio
= raid10_alloc_init_r10buf(conf
);
3323 r10_bio
->mddev
= mddev
;
3324 atomic_set(&r10_bio
->remaining
, 0);
3325 raise_barrier(conf
, 0);
3326 conf
->next_resync
= sector_nr
;
3328 r10_bio
->master_bio
= NULL
;
3329 r10_bio
->sector
= sector_nr
;
3330 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3331 raid10_find_phys(conf
, r10_bio
);
3332 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3334 for (i
= 0; i
< conf
->copies
; i
++) {
3335 int d
= r10_bio
->devs
[i
].devnum
;
3336 sector_t first_bad
, sector
;
3338 struct md_rdev
*rdev
;
3340 if (r10_bio
->devs
[i
].repl_bio
)
3341 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3343 bio
= r10_bio
->devs
[i
].bio
;
3344 bio
->bi_status
= BLK_STS_IOERR
;
3346 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
3347 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3351 sector
= r10_bio
->devs
[i
].addr
;
3352 if (is_badblock(rdev
, sector
, max_sync
,
3353 &first_bad
, &bad_sectors
)) {
3354 if (first_bad
> sector
)
3355 max_sync
= first_bad
- sector
;
3357 bad_sectors
-= (sector
- first_bad
);
3358 if (max_sync
> bad_sectors
)
3359 max_sync
= bad_sectors
;
3364 atomic_inc(&rdev
->nr_pending
);
3365 atomic_inc(&r10_bio
->remaining
);
3366 bio
->bi_next
= biolist
;
3368 bio
->bi_end_io
= end_sync_read
;
3369 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3370 if (test_bit(FailFast
, &rdev
->flags
))
3371 bio
->bi_opf
|= MD_FAILFAST
;
3372 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3373 bio_set_dev(bio
, rdev
->bdev
);
3376 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
3377 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3381 atomic_inc(&rdev
->nr_pending
);
3383 /* Need to set up for writing to the replacement */
3384 bio
= r10_bio
->devs
[i
].repl_bio
;
3385 bio
->bi_status
= BLK_STS_IOERR
;
3387 sector
= r10_bio
->devs
[i
].addr
;
3388 bio
->bi_next
= biolist
;
3390 bio
->bi_end_io
= end_sync_write
;
3391 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3392 if (test_bit(FailFast
, &rdev
->flags
))
3393 bio
->bi_opf
|= MD_FAILFAST
;
3394 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3395 bio_set_dev(bio
, rdev
->bdev
);
3401 for (i
=0; i
<conf
->copies
; i
++) {
3402 int d
= r10_bio
->devs
[i
].devnum
;
3403 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3404 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3406 if (r10_bio
->devs
[i
].repl_bio
&&
3407 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3409 conf
->mirrors
[d
].replacement
,
3419 if (sector_nr
+ max_sync
< max_sector
)
3420 max_sector
= sector_nr
+ max_sync
;
3423 int len
= PAGE_SIZE
;
3424 if (sector_nr
+ (len
>>9) > max_sector
)
3425 len
= (max_sector
- sector_nr
) << 9;
3428 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3429 struct resync_pages
*rp
= get_resync_pages(bio
);
3430 page
= resync_fetch_page(rp
, page_idx
);
3432 * won't fail because the vec table is big enough
3433 * to hold all these pages
3435 bio_add_page(bio
, page
, len
, 0);
3437 nr_sectors
+= len
>>9;
3438 sector_nr
+= len
>>9;
3439 } while (++page_idx
< RESYNC_PAGES
);
3440 r10_bio
->sectors
= nr_sectors
;
3442 if (mddev_is_clustered(mddev
) &&
3443 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3444 /* It is resync not recovery */
3445 if (conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
3446 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
3447 raid10_set_cluster_sync_high(conf
);
3448 /* Send resync message */
3449 md_cluster_ops
->resync_info_update(mddev
,
3450 conf
->cluster_sync_low
,
3451 conf
->cluster_sync_high
);
3453 } else if (mddev_is_clustered(mddev
)) {
3454 /* This is recovery not resync */
3455 sector_t sect_va1
, sect_va2
;
3456 bool broadcast_msg
= false;
3458 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3460 * sector_nr is a device address for recovery, so we
3461 * need translate it to array address before compare
3462 * with cluster_sync_high.
3464 sect_va1
= raid10_find_virt(conf
, sector_nr
, i
);
3466 if (conf
->cluster_sync_high
< sect_va1
+ nr_sectors
) {
3467 broadcast_msg
= true;
3469 * curr_resync_completed is similar as
3470 * sector_nr, so make the translation too.
3472 sect_va2
= raid10_find_virt(conf
,
3473 mddev
->curr_resync_completed
, i
);
3475 if (conf
->cluster_sync_low
== 0 ||
3476 conf
->cluster_sync_low
> sect_va2
)
3477 conf
->cluster_sync_low
= sect_va2
;
3480 if (broadcast_msg
) {
3481 raid10_set_cluster_sync_high(conf
);
3482 md_cluster_ops
->resync_info_update(mddev
,
3483 conf
->cluster_sync_low
,
3484 conf
->cluster_sync_high
);
3490 biolist
= biolist
->bi_next
;
3492 bio
->bi_next
= NULL
;
3493 r10_bio
= get_resync_r10bio(bio
);
3494 r10_bio
->sectors
= nr_sectors
;
3496 if (bio
->bi_end_io
== end_sync_read
) {
3497 md_sync_acct_bio(bio
, nr_sectors
);
3499 generic_make_request(bio
);
3503 if (sectors_skipped
)
3504 /* pretend they weren't skipped, it makes
3505 * no important difference in this case
3507 md_done_sync(mddev
, sectors_skipped
, 1);
3509 return sectors_skipped
+ nr_sectors
;
3511 /* There is nowhere to write, so all non-sync
3512 * drives must be failed or in resync, all drives
3513 * have a bad block, so try the next chunk...
3515 if (sector_nr
+ max_sync
< max_sector
)
3516 max_sector
= sector_nr
+ max_sync
;
3518 sectors_skipped
+= (max_sector
- sector_nr
);
3520 sector_nr
= max_sector
;
3525 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3528 struct r10conf
*conf
= mddev
->private;
3531 raid_disks
= min(conf
->geo
.raid_disks
,
3532 conf
->prev
.raid_disks
);
3534 sectors
= conf
->dev_sectors
;
3536 size
= sectors
>> conf
->geo
.chunk_shift
;
3537 sector_div(size
, conf
->geo
.far_copies
);
3538 size
= size
* raid_disks
;
3539 sector_div(size
, conf
->geo
.near_copies
);
3541 return size
<< conf
->geo
.chunk_shift
;
3544 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3546 /* Calculate the number of sectors-per-device that will
3547 * actually be used, and set conf->dev_sectors and
3551 size
= size
>> conf
->geo
.chunk_shift
;
3552 sector_div(size
, conf
->geo
.far_copies
);
3553 size
= size
* conf
->geo
.raid_disks
;
3554 sector_div(size
, conf
->geo
.near_copies
);
3555 /* 'size' is now the number of chunks in the array */
3556 /* calculate "used chunks per device" */
3557 size
= size
* conf
->copies
;
3559 /* We need to round up when dividing by raid_disks to
3560 * get the stride size.
3562 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3564 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3566 if (conf
->geo
.far_offset
)
3567 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3569 sector_div(size
, conf
->geo
.far_copies
);
3570 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3574 enum geo_type
{geo_new
, geo_old
, geo_start
};
3575 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3578 int layout
, chunk
, disks
;
3581 layout
= mddev
->layout
;
3582 chunk
= mddev
->chunk_sectors
;
3583 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3586 layout
= mddev
->new_layout
;
3587 chunk
= mddev
->new_chunk_sectors
;
3588 disks
= mddev
->raid_disks
;
3590 default: /* avoid 'may be unused' warnings */
3591 case geo_start
: /* new when starting reshape - raid_disks not
3593 layout
= mddev
->new_layout
;
3594 chunk
= mddev
->new_chunk_sectors
;
3595 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3600 if (chunk
< (PAGE_SIZE
>> 9) ||
3601 !is_power_of_2(chunk
))
3604 fc
= (layout
>> 8) & 255;
3605 fo
= layout
& (1<<16);
3606 geo
->raid_disks
= disks
;
3607 geo
->near_copies
= nc
;
3608 geo
->far_copies
= fc
;
3609 geo
->far_offset
= fo
;
3610 switch (layout
>> 17) {
3611 case 0: /* original layout. simple but not always optimal */
3612 geo
->far_set_size
= disks
;
3614 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3615 * actually using this, but leave code here just in case.*/
3616 geo
->far_set_size
= disks
/fc
;
3617 WARN(geo
->far_set_size
< fc
,
3618 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3620 case 2: /* "improved" layout fixed to match documentation */
3621 geo
->far_set_size
= fc
* nc
;
3623 default: /* Not a valid layout */
3626 geo
->chunk_mask
= chunk
- 1;
3627 geo
->chunk_shift
= ffz(~chunk
);
3631 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3633 struct r10conf
*conf
= NULL
;
3638 copies
= setup_geo(&geo
, mddev
, geo_new
);
3641 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3642 mdname(mddev
), PAGE_SIZE
);
3646 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3647 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3648 mdname(mddev
), mddev
->new_layout
);
3653 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3657 /* FIXME calc properly */
3658 conf
->mirrors
= kcalloc(mddev
->raid_disks
+ max(0, -mddev
->delta_disks
),
3659 sizeof(struct raid10_info
),
3664 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3669 conf
->copies
= copies
;
3670 err
= mempool_init(&conf
->r10bio_pool
, NR_RAID_BIOS
, r10bio_pool_alloc
,
3671 rbio_pool_free
, conf
);
3675 err
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
3679 calc_sectors(conf
, mddev
->dev_sectors
);
3680 if (mddev
->reshape_position
== MaxSector
) {
3681 conf
->prev
= conf
->geo
;
3682 conf
->reshape_progress
= MaxSector
;
3684 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3688 conf
->reshape_progress
= mddev
->reshape_position
;
3689 if (conf
->prev
.far_offset
)
3690 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3692 /* far_copies must be 1 */
3693 conf
->prev
.stride
= conf
->dev_sectors
;
3695 conf
->reshape_safe
= conf
->reshape_progress
;
3696 spin_lock_init(&conf
->device_lock
);
3697 INIT_LIST_HEAD(&conf
->retry_list
);
3698 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3700 spin_lock_init(&conf
->resync_lock
);
3701 init_waitqueue_head(&conf
->wait_barrier
);
3702 atomic_set(&conf
->nr_pending
, 0);
3705 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3709 conf
->mddev
= mddev
;
3714 mempool_exit(&conf
->r10bio_pool
);
3715 kfree(conf
->mirrors
);
3716 safe_put_page(conf
->tmppage
);
3717 bioset_exit(&conf
->bio_split
);
3720 return ERR_PTR(err
);
3723 static int raid10_run(struct mddev
*mddev
)
3725 struct r10conf
*conf
;
3726 int i
, disk_idx
, chunk_size
;
3727 struct raid10_info
*disk
;
3728 struct md_rdev
*rdev
;
3730 sector_t min_offset_diff
= 0;
3732 bool discard_supported
= false;
3734 if (mddev_init_writes_pending(mddev
) < 0)
3737 if (mddev
->private == NULL
) {
3738 conf
= setup_conf(mddev
);
3740 return PTR_ERR(conf
);
3741 mddev
->private = conf
;
3743 conf
= mddev
->private;
3747 if (mddev_is_clustered(conf
->mddev
)) {
3750 fc
= (mddev
->layout
>> 8) & 255;
3751 fo
= mddev
->layout
& (1<<16);
3752 if (fc
> 1 || fo
> 0) {
3753 pr_err("only near layout is supported by clustered"
3759 mddev
->thread
= conf
->thread
;
3760 conf
->thread
= NULL
;
3762 chunk_size
= mddev
->chunk_sectors
<< 9;
3764 blk_queue_max_discard_sectors(mddev
->queue
,
3765 mddev
->chunk_sectors
);
3766 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3767 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3768 blk_queue_io_min(mddev
->queue
, chunk_size
);
3769 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3770 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3772 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3773 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3776 rdev_for_each(rdev
, mddev
) {
3779 disk_idx
= rdev
->raid_disk
;
3782 if (disk_idx
>= conf
->geo
.raid_disks
&&
3783 disk_idx
>= conf
->prev
.raid_disks
)
3785 disk
= conf
->mirrors
+ disk_idx
;
3787 if (test_bit(Replacement
, &rdev
->flags
)) {
3788 if (disk
->replacement
)
3790 disk
->replacement
= rdev
;
3796 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3797 if (!mddev
->reshape_backwards
)
3801 if (first
|| diff
< min_offset_diff
)
3802 min_offset_diff
= diff
;
3805 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3806 rdev
->data_offset
<< 9);
3808 disk
->head_position
= 0;
3810 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3811 discard_supported
= true;
3816 if (discard_supported
)
3817 blk_queue_flag_set(QUEUE_FLAG_DISCARD
,
3820 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
,
3823 /* need to check that every block has at least one working mirror */
3824 if (!enough(conf
, -1)) {
3825 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3830 if (conf
->reshape_progress
!= MaxSector
) {
3831 /* must ensure that shape change is supported */
3832 if (conf
->geo
.far_copies
!= 1 &&
3833 conf
->geo
.far_offset
== 0)
3835 if (conf
->prev
.far_copies
!= 1 &&
3836 conf
->prev
.far_offset
== 0)
3840 mddev
->degraded
= 0;
3842 i
< conf
->geo
.raid_disks
3843 || i
< conf
->prev
.raid_disks
;
3846 disk
= conf
->mirrors
+ i
;
3848 if (!disk
->rdev
&& disk
->replacement
) {
3849 /* The replacement is all we have - use it */
3850 disk
->rdev
= disk
->replacement
;
3851 disk
->replacement
= NULL
;
3852 clear_bit(Replacement
, &disk
->rdev
->flags
);
3856 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3857 disk
->head_position
= 0;
3860 disk
->rdev
->saved_raid_disk
< 0)
3864 if (disk
->replacement
&&
3865 !test_bit(In_sync
, &disk
->replacement
->flags
) &&
3866 disk
->replacement
->saved_raid_disk
< 0) {
3870 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3873 if (mddev
->recovery_cp
!= MaxSector
)
3874 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3876 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3877 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3878 conf
->geo
.raid_disks
);
3880 * Ok, everything is just fine now
3882 mddev
->dev_sectors
= conf
->dev_sectors
;
3883 size
= raid10_size(mddev
, 0, 0);
3884 md_set_array_sectors(mddev
, size
);
3885 mddev
->resync_max_sectors
= size
;
3886 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3889 int stripe
= conf
->geo
.raid_disks
*
3890 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3892 /* Calculate max read-ahead size.
3893 * We need to readahead at least twice a whole stripe....
3896 stripe
/= conf
->geo
.near_copies
;
3897 if (mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
3898 mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
3901 if (md_integrity_register(mddev
))
3904 if (conf
->reshape_progress
!= MaxSector
) {
3905 unsigned long before_length
, after_length
;
3907 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3908 conf
->prev
.far_copies
);
3909 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3910 conf
->geo
.far_copies
);
3912 if (max(before_length
, after_length
) > min_offset_diff
) {
3913 /* This cannot work */
3914 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3917 conf
->offset_diff
= min_offset_diff
;
3919 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3920 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3921 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3922 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3923 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3925 if (!mddev
->sync_thread
)
3932 md_unregister_thread(&mddev
->thread
);
3933 mempool_exit(&conf
->r10bio_pool
);
3934 safe_put_page(conf
->tmppage
);
3935 kfree(conf
->mirrors
);
3937 mddev
->private = NULL
;
3942 static void raid10_free(struct mddev
*mddev
, void *priv
)
3944 struct r10conf
*conf
= priv
;
3946 mempool_exit(&conf
->r10bio_pool
);
3947 safe_put_page(conf
->tmppage
);
3948 kfree(conf
->mirrors
);
3949 kfree(conf
->mirrors_old
);
3950 kfree(conf
->mirrors_new
);
3951 bioset_exit(&conf
->bio_split
);
3955 static void raid10_quiesce(struct mddev
*mddev
, int quiesce
)
3957 struct r10conf
*conf
= mddev
->private;
3960 raise_barrier(conf
, 0);
3962 lower_barrier(conf
);
3965 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3967 /* Resize of 'far' arrays is not supported.
3968 * For 'near' and 'offset' arrays we can set the
3969 * number of sectors used to be an appropriate multiple
3970 * of the chunk size.
3971 * For 'offset', this is far_copies*chunksize.
3972 * For 'near' the multiplier is the LCM of
3973 * near_copies and raid_disks.
3974 * So if far_copies > 1 && !far_offset, fail.
3975 * Else find LCM(raid_disks, near_copy)*far_copies and
3976 * multiply by chunk_size. Then round to this number.
3977 * This is mostly done by raid10_size()
3979 struct r10conf
*conf
= mddev
->private;
3980 sector_t oldsize
, size
;
3982 if (mddev
->reshape_position
!= MaxSector
)
3985 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3988 oldsize
= raid10_size(mddev
, 0, 0);
3989 size
= raid10_size(mddev
, sectors
, 0);
3990 if (mddev
->external_size
&&
3991 mddev
->array_sectors
> size
)
3993 if (mddev
->bitmap
) {
3994 int ret
= md_bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3998 md_set_array_sectors(mddev
, size
);
3999 if (sectors
> mddev
->dev_sectors
&&
4000 mddev
->recovery_cp
> oldsize
) {
4001 mddev
->recovery_cp
= oldsize
;
4002 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4004 calc_sectors(conf
, sectors
);
4005 mddev
->dev_sectors
= conf
->dev_sectors
;
4006 mddev
->resync_max_sectors
= size
;
4010 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
4012 struct md_rdev
*rdev
;
4013 struct r10conf
*conf
;
4015 if (mddev
->degraded
> 0) {
4016 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4018 return ERR_PTR(-EINVAL
);
4020 sector_div(size
, devs
);
4022 /* Set new parameters */
4023 mddev
->new_level
= 10;
4024 /* new layout: far_copies = 1, near_copies = 2 */
4025 mddev
->new_layout
= (1<<8) + 2;
4026 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
4027 mddev
->delta_disks
= mddev
->raid_disks
;
4028 mddev
->raid_disks
*= 2;
4029 /* make sure it will be not marked as dirty */
4030 mddev
->recovery_cp
= MaxSector
;
4031 mddev
->dev_sectors
= size
;
4033 conf
= setup_conf(mddev
);
4034 if (!IS_ERR(conf
)) {
4035 rdev_for_each(rdev
, mddev
)
4036 if (rdev
->raid_disk
>= 0) {
4037 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
4038 rdev
->sectors
= size
;
4046 static void *raid10_takeover(struct mddev
*mddev
)
4048 struct r0conf
*raid0_conf
;
4050 /* raid10 can take over:
4051 * raid0 - providing it has only two drives
4053 if (mddev
->level
== 0) {
4054 /* for raid0 takeover only one zone is supported */
4055 raid0_conf
= mddev
->private;
4056 if (raid0_conf
->nr_strip_zones
> 1) {
4057 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4059 return ERR_PTR(-EINVAL
);
4061 return raid10_takeover_raid0(mddev
,
4062 raid0_conf
->strip_zone
->zone_end
,
4063 raid0_conf
->strip_zone
->nb_dev
);
4065 return ERR_PTR(-EINVAL
);
4068 static int raid10_check_reshape(struct mddev
*mddev
)
4070 /* Called when there is a request to change
4071 * - layout (to ->new_layout)
4072 * - chunk size (to ->new_chunk_sectors)
4073 * - raid_disks (by delta_disks)
4074 * or when trying to restart a reshape that was ongoing.
4076 * We need to validate the request and possibly allocate
4077 * space if that might be an issue later.
4079 * Currently we reject any reshape of a 'far' mode array,
4080 * allow chunk size to change if new is generally acceptable,
4081 * allow raid_disks to increase, and allow
4082 * a switch between 'near' mode and 'offset' mode.
4084 struct r10conf
*conf
= mddev
->private;
4087 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
4090 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
4091 /* mustn't change number of copies */
4093 if (geo
.far_copies
> 1 && !geo
.far_offset
)
4094 /* Cannot switch to 'far' mode */
4097 if (mddev
->array_sectors
& geo
.chunk_mask
)
4098 /* not factor of array size */
4101 if (!enough(conf
, -1))
4104 kfree(conf
->mirrors_new
);
4105 conf
->mirrors_new
= NULL
;
4106 if (mddev
->delta_disks
> 0) {
4107 /* allocate new 'mirrors' list */
4109 kcalloc(mddev
->raid_disks
+ mddev
->delta_disks
,
4110 sizeof(struct raid10_info
),
4112 if (!conf
->mirrors_new
)
4119 * Need to check if array has failed when deciding whether to:
4121 * - remove non-faulty devices
4124 * This determination is simple when no reshape is happening.
4125 * However if there is a reshape, we need to carefully check
4126 * both the before and after sections.
4127 * This is because some failed devices may only affect one
4128 * of the two sections, and some non-in_sync devices may
4129 * be insync in the section most affected by failed devices.
4131 static int calc_degraded(struct r10conf
*conf
)
4133 int degraded
, degraded2
;
4138 /* 'prev' section first */
4139 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
4140 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4141 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4143 else if (!test_bit(In_sync
, &rdev
->flags
))
4144 /* When we can reduce the number of devices in
4145 * an array, this might not contribute to
4146 * 'degraded'. It does now.
4151 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
4155 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
4156 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4157 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4159 else if (!test_bit(In_sync
, &rdev
->flags
)) {
4160 /* If reshape is increasing the number of devices,
4161 * this section has already been recovered, so
4162 * it doesn't contribute to degraded.
4165 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4170 if (degraded2
> degraded
)
4175 static int raid10_start_reshape(struct mddev
*mddev
)
4177 /* A 'reshape' has been requested. This commits
4178 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4179 * This also checks if there are enough spares and adds them
4181 * We currently require enough spares to make the final
4182 * array non-degraded. We also require that the difference
4183 * between old and new data_offset - on each device - is
4184 * enough that we never risk over-writing.
4187 unsigned long before_length
, after_length
;
4188 sector_t min_offset_diff
= 0;
4191 struct r10conf
*conf
= mddev
->private;
4192 struct md_rdev
*rdev
;
4196 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4199 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4202 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4203 conf
->prev
.far_copies
);
4204 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4205 conf
->geo
.far_copies
);
4207 rdev_for_each(rdev
, mddev
) {
4208 if (!test_bit(In_sync
, &rdev
->flags
)
4209 && !test_bit(Faulty
, &rdev
->flags
))
4211 if (rdev
->raid_disk
>= 0) {
4212 long long diff
= (rdev
->new_data_offset
4213 - rdev
->data_offset
);
4214 if (!mddev
->reshape_backwards
)
4218 if (first
|| diff
< min_offset_diff
)
4219 min_offset_diff
= diff
;
4224 if (max(before_length
, after_length
) > min_offset_diff
)
4227 if (spares
< mddev
->delta_disks
)
4230 conf
->offset_diff
= min_offset_diff
;
4231 spin_lock_irq(&conf
->device_lock
);
4232 if (conf
->mirrors_new
) {
4233 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4234 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4236 kfree(conf
->mirrors_old
);
4237 conf
->mirrors_old
= conf
->mirrors
;
4238 conf
->mirrors
= conf
->mirrors_new
;
4239 conf
->mirrors_new
= NULL
;
4241 setup_geo(&conf
->geo
, mddev
, geo_start
);
4243 if (mddev
->reshape_backwards
) {
4244 sector_t size
= raid10_size(mddev
, 0, 0);
4245 if (size
< mddev
->array_sectors
) {
4246 spin_unlock_irq(&conf
->device_lock
);
4247 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4251 mddev
->resync_max_sectors
= size
;
4252 conf
->reshape_progress
= size
;
4254 conf
->reshape_progress
= 0;
4255 conf
->reshape_safe
= conf
->reshape_progress
;
4256 spin_unlock_irq(&conf
->device_lock
);
4258 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4259 struct mdp_superblock_1
*sb
= NULL
;
4260 sector_t oldsize
, newsize
;
4262 oldsize
= raid10_size(mddev
, 0, 0);
4263 newsize
= raid10_size(mddev
, 0, conf
->geo
.raid_disks
);
4265 if (!mddev_is_clustered(mddev
)) {
4266 ret
= md_bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
4273 rdev_for_each(rdev
, mddev
) {
4274 if (rdev
->raid_disk
> -1 &&
4275 !test_bit(Faulty
, &rdev
->flags
))
4276 sb
= page_address(rdev
->sb_page
);
4280 * some node is already performing reshape, and no need to
4281 * call md_bitmap_resize again since it should be called when
4282 * receiving BITMAP_RESIZE msg
4284 if ((sb
&& (le32_to_cpu(sb
->feature_map
) &
4285 MD_FEATURE_RESHAPE_ACTIVE
)) || (oldsize
== newsize
))
4288 ret
= md_bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
4292 ret
= md_cluster_ops
->resize_bitmaps(mddev
, newsize
, oldsize
);
4294 md_bitmap_resize(mddev
->bitmap
, oldsize
, 0, 0);
4299 if (mddev
->delta_disks
> 0) {
4300 rdev_for_each(rdev
, mddev
)
4301 if (rdev
->raid_disk
< 0 &&
4302 !test_bit(Faulty
, &rdev
->flags
)) {
4303 if (raid10_add_disk(mddev
, rdev
) == 0) {
4304 if (rdev
->raid_disk
>=
4305 conf
->prev
.raid_disks
)
4306 set_bit(In_sync
, &rdev
->flags
);
4308 rdev
->recovery_offset
= 0;
4310 if (sysfs_link_rdev(mddev
, rdev
))
4311 /* Failure here is OK */;
4313 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4314 && !test_bit(Faulty
, &rdev
->flags
)) {
4315 /* This is a spare that was manually added */
4316 set_bit(In_sync
, &rdev
->flags
);
4319 /* When a reshape changes the number of devices,
4320 * ->degraded is measured against the larger of the
4321 * pre and post numbers.
4323 spin_lock_irq(&conf
->device_lock
);
4324 mddev
->degraded
= calc_degraded(conf
);
4325 spin_unlock_irq(&conf
->device_lock
);
4326 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4327 mddev
->reshape_position
= conf
->reshape_progress
;
4328 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4330 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4331 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4332 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4333 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4334 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4336 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4338 if (!mddev
->sync_thread
) {
4342 conf
->reshape_checkpoint
= jiffies
;
4343 md_wakeup_thread(mddev
->sync_thread
);
4344 md_new_event(mddev
);
4348 mddev
->recovery
= 0;
4349 spin_lock_irq(&conf
->device_lock
);
4350 conf
->geo
= conf
->prev
;
4351 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4352 rdev_for_each(rdev
, mddev
)
4353 rdev
->new_data_offset
= rdev
->data_offset
;
4355 conf
->reshape_progress
= MaxSector
;
4356 conf
->reshape_safe
= MaxSector
;
4357 mddev
->reshape_position
= MaxSector
;
4358 spin_unlock_irq(&conf
->device_lock
);
4362 /* Calculate the last device-address that could contain
4363 * any block from the chunk that includes the array-address 's'
4364 * and report the next address.
4365 * i.e. the address returned will be chunk-aligned and after
4366 * any data that is in the chunk containing 's'.
4368 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4370 s
= (s
| geo
->chunk_mask
) + 1;
4371 s
>>= geo
->chunk_shift
;
4372 s
*= geo
->near_copies
;
4373 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4374 s
*= geo
->far_copies
;
4375 s
<<= geo
->chunk_shift
;
4379 /* Calculate the first device-address that could contain
4380 * any block from the chunk that includes the array-address 's'.
4381 * This too will be the start of a chunk
4383 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4385 s
>>= geo
->chunk_shift
;
4386 s
*= geo
->near_copies
;
4387 sector_div(s
, geo
->raid_disks
);
4388 s
*= geo
->far_copies
;
4389 s
<<= geo
->chunk_shift
;
4393 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4396 /* We simply copy at most one chunk (smallest of old and new)
4397 * at a time, possibly less if that exceeds RESYNC_PAGES,
4398 * or we hit a bad block or something.
4399 * This might mean we pause for normal IO in the middle of
4400 * a chunk, but that is not a problem as mddev->reshape_position
4401 * can record any location.
4403 * If we will want to write to a location that isn't
4404 * yet recorded as 'safe' (i.e. in metadata on disk) then
4405 * we need to flush all reshape requests and update the metadata.
4407 * When reshaping forwards (e.g. to more devices), we interpret
4408 * 'safe' as the earliest block which might not have been copied
4409 * down yet. We divide this by previous stripe size and multiply
4410 * by previous stripe length to get lowest device offset that we
4411 * cannot write to yet.
4412 * We interpret 'sector_nr' as an address that we want to write to.
4413 * From this we use last_device_address() to find where we might
4414 * write to, and first_device_address on the 'safe' position.
4415 * If this 'next' write position is after the 'safe' position,
4416 * we must update the metadata to increase the 'safe' position.
4418 * When reshaping backwards, we round in the opposite direction
4419 * and perform the reverse test: next write position must not be
4420 * less than current safe position.
4422 * In all this the minimum difference in data offsets
4423 * (conf->offset_diff - always positive) allows a bit of slack,
4424 * so next can be after 'safe', but not by more than offset_diff
4426 * We need to prepare all the bios here before we start any IO
4427 * to ensure the size we choose is acceptable to all devices.
4428 * The means one for each copy for write-out and an extra one for
4430 * We store the read-in bio in ->master_bio and the others in
4431 * ->devs[x].bio and ->devs[x].repl_bio.
4433 struct r10conf
*conf
= mddev
->private;
4434 struct r10bio
*r10_bio
;
4435 sector_t next
, safe
, last
;
4439 struct md_rdev
*rdev
;
4442 struct bio
*bio
, *read_bio
;
4443 int sectors_done
= 0;
4444 struct page
**pages
;
4446 if (sector_nr
== 0) {
4447 /* If restarting in the middle, skip the initial sectors */
4448 if (mddev
->reshape_backwards
&&
4449 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4450 sector_nr
= (raid10_size(mddev
, 0, 0)
4451 - conf
->reshape_progress
);
4452 } else if (!mddev
->reshape_backwards
&&
4453 conf
->reshape_progress
> 0)
4454 sector_nr
= conf
->reshape_progress
;
4456 mddev
->curr_resync_completed
= sector_nr
;
4457 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4463 /* We don't use sector_nr to track where we are up to
4464 * as that doesn't work well for ->reshape_backwards.
4465 * So just use ->reshape_progress.
4467 if (mddev
->reshape_backwards
) {
4468 /* 'next' is the earliest device address that we might
4469 * write to for this chunk in the new layout
4471 next
= first_dev_address(conf
->reshape_progress
- 1,
4474 /* 'safe' is the last device address that we might read from
4475 * in the old layout after a restart
4477 safe
= last_dev_address(conf
->reshape_safe
- 1,
4480 if (next
+ conf
->offset_diff
< safe
)
4483 last
= conf
->reshape_progress
- 1;
4484 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4485 & conf
->prev
.chunk_mask
);
4486 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4487 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4489 /* 'next' is after the last device address that we
4490 * might write to for this chunk in the new layout
4492 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4494 /* 'safe' is the earliest device address that we might
4495 * read from in the old layout after a restart
4497 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4499 /* Need to update metadata if 'next' might be beyond 'safe'
4500 * as that would possibly corrupt data
4502 if (next
> safe
+ conf
->offset_diff
)
4505 sector_nr
= conf
->reshape_progress
;
4506 last
= sector_nr
| (conf
->geo
.chunk_mask
4507 & conf
->prev
.chunk_mask
);
4509 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4510 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4514 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4515 /* Need to update reshape_position in metadata */
4517 mddev
->reshape_position
= conf
->reshape_progress
;
4518 if (mddev
->reshape_backwards
)
4519 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4520 - conf
->reshape_progress
;
4522 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4523 conf
->reshape_checkpoint
= jiffies
;
4524 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4525 md_wakeup_thread(mddev
->thread
);
4526 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
4527 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4528 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4529 allow_barrier(conf
);
4530 return sectors_done
;
4532 conf
->reshape_safe
= mddev
->reshape_position
;
4533 allow_barrier(conf
);
4536 raise_barrier(conf
, 0);
4538 /* Now schedule reads for blocks from sector_nr to last */
4539 r10_bio
= raid10_alloc_init_r10buf(conf
);
4541 raise_barrier(conf
, 1);
4542 atomic_set(&r10_bio
->remaining
, 0);
4543 r10_bio
->mddev
= mddev
;
4544 r10_bio
->sector
= sector_nr
;
4545 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4546 r10_bio
->sectors
= last
- sector_nr
+ 1;
4547 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4548 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4551 /* Cannot read from here, so need to record bad blocks
4552 * on all the target devices.
4555 mempool_free(r10_bio
, &conf
->r10buf_pool
);
4556 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4557 return sectors_done
;
4560 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4562 bio_set_dev(read_bio
, rdev
->bdev
);
4563 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4564 + rdev
->data_offset
);
4565 read_bio
->bi_private
= r10_bio
;
4566 read_bio
->bi_end_io
= end_reshape_read
;
4567 bio_set_op_attrs(read_bio
, REQ_OP_READ
, 0);
4568 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4569 read_bio
->bi_status
= 0;
4570 read_bio
->bi_vcnt
= 0;
4571 read_bio
->bi_iter
.bi_size
= 0;
4572 r10_bio
->master_bio
= read_bio
;
4573 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4576 * Broadcast RESYNC message to other nodes, so all nodes would not
4577 * write to the region to avoid conflict.
4579 if (mddev_is_clustered(mddev
) && conf
->cluster_sync_high
<= sector_nr
) {
4580 struct mdp_superblock_1
*sb
= NULL
;
4581 int sb_reshape_pos
= 0;
4583 conf
->cluster_sync_low
= sector_nr
;
4584 conf
->cluster_sync_high
= sector_nr
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
4585 sb
= page_address(rdev
->sb_page
);
4587 sb_reshape_pos
= le64_to_cpu(sb
->reshape_position
);
4589 * Set cluster_sync_low again if next address for array
4590 * reshape is less than cluster_sync_low. Since we can't
4591 * update cluster_sync_low until it has finished reshape.
4593 if (sb_reshape_pos
< conf
->cluster_sync_low
)
4594 conf
->cluster_sync_low
= sb_reshape_pos
;
4597 md_cluster_ops
->resync_info_update(mddev
, conf
->cluster_sync_low
,
4598 conf
->cluster_sync_high
);
4601 /* Now find the locations in the new layout */
4602 __raid10_find_phys(&conf
->geo
, r10_bio
);
4605 read_bio
->bi_next
= NULL
;
4608 for (s
= 0; s
< conf
->copies
*2; s
++) {
4610 int d
= r10_bio
->devs
[s
/2].devnum
;
4611 struct md_rdev
*rdev2
;
4613 rdev2
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4614 b
= r10_bio
->devs
[s
/2].repl_bio
;
4616 rdev2
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4617 b
= r10_bio
->devs
[s
/2].bio
;
4619 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4622 bio_set_dev(b
, rdev2
->bdev
);
4623 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4624 rdev2
->new_data_offset
;
4625 b
->bi_end_io
= end_reshape_write
;
4626 bio_set_op_attrs(b
, REQ_OP_WRITE
, 0);
4631 /* Now add as many pages as possible to all of these bios. */
4634 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4635 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4636 struct page
*page
= pages
[s
/ (PAGE_SIZE
>> 9)];
4637 int len
= (max_sectors
- s
) << 9;
4638 if (len
> PAGE_SIZE
)
4640 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4642 * won't fail because the vec table is big enough
4643 * to hold all these pages
4645 bio_add_page(bio
, page
, len
, 0);
4647 sector_nr
+= len
>> 9;
4648 nr_sectors
+= len
>> 9;
4651 r10_bio
->sectors
= nr_sectors
;
4653 /* Now submit the read */
4654 md_sync_acct_bio(read_bio
, r10_bio
->sectors
);
4655 atomic_inc(&r10_bio
->remaining
);
4656 read_bio
->bi_next
= NULL
;
4657 generic_make_request(read_bio
);
4658 sectors_done
+= nr_sectors
;
4659 if (sector_nr
<= last
)
4662 lower_barrier(conf
);
4664 /* Now that we have done the whole section we can
4665 * update reshape_progress
4667 if (mddev
->reshape_backwards
)
4668 conf
->reshape_progress
-= sectors_done
;
4670 conf
->reshape_progress
+= sectors_done
;
4672 return sectors_done
;
4675 static void end_reshape_request(struct r10bio
*r10_bio
);
4676 static int handle_reshape_read_error(struct mddev
*mddev
,
4677 struct r10bio
*r10_bio
);
4678 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4680 /* Reshape read completed. Hopefully we have a block
4682 * If we got a read error then we do sync 1-page reads from
4683 * elsewhere until we find the data - or give up.
4685 struct r10conf
*conf
= mddev
->private;
4688 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4689 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4690 /* Reshape has been aborted */
4691 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4695 /* We definitely have the data in the pages, schedule the
4698 atomic_set(&r10_bio
->remaining
, 1);
4699 for (s
= 0; s
< conf
->copies
*2; s
++) {
4701 int d
= r10_bio
->devs
[s
/2].devnum
;
4702 struct md_rdev
*rdev
;
4705 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4706 b
= r10_bio
->devs
[s
/2].repl_bio
;
4708 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4709 b
= r10_bio
->devs
[s
/2].bio
;
4711 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
4715 atomic_inc(&rdev
->nr_pending
);
4717 md_sync_acct_bio(b
, r10_bio
->sectors
);
4718 atomic_inc(&r10_bio
->remaining
);
4720 generic_make_request(b
);
4722 end_reshape_request(r10_bio
);
4725 static void end_reshape(struct r10conf
*conf
)
4727 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4730 spin_lock_irq(&conf
->device_lock
);
4731 conf
->prev
= conf
->geo
;
4732 md_finish_reshape(conf
->mddev
);
4734 conf
->reshape_progress
= MaxSector
;
4735 conf
->reshape_safe
= MaxSector
;
4736 spin_unlock_irq(&conf
->device_lock
);
4738 /* read-ahead size must cover two whole stripes, which is
4739 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4741 if (conf
->mddev
->queue
) {
4742 int stripe
= conf
->geo
.raid_disks
*
4743 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4744 stripe
/= conf
->geo
.near_copies
;
4745 if (conf
->mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
4746 conf
->mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
4751 static void raid10_update_reshape_pos(struct mddev
*mddev
)
4753 struct r10conf
*conf
= mddev
->private;
4756 md_cluster_ops
->resync_info_get(mddev
, &lo
, &hi
);
4757 if (((mddev
->reshape_position
<= hi
) && (mddev
->reshape_position
>= lo
))
4758 || mddev
->reshape_position
== MaxSector
)
4759 conf
->reshape_progress
= mddev
->reshape_position
;
4764 static int handle_reshape_read_error(struct mddev
*mddev
,
4765 struct r10bio
*r10_bio
)
4767 /* Use sync reads to get the blocks from somewhere else */
4768 int sectors
= r10_bio
->sectors
;
4769 struct r10conf
*conf
= mddev
->private;
4770 struct r10bio
*r10b
;
4773 struct page
**pages
;
4775 r10b
= kmalloc(struct_size(r10b
, devs
, conf
->copies
), GFP_NOIO
);
4777 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4781 /* reshape IOs share pages from .devs[0].bio */
4782 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4784 r10b
->sector
= r10_bio
->sector
;
4785 __raid10_find_phys(&conf
->prev
, r10b
);
4790 int first_slot
= slot
;
4792 if (s
> (PAGE_SIZE
>> 9))
4797 int d
= r10b
->devs
[slot
].devnum
;
4798 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4801 test_bit(Faulty
, &rdev
->flags
) ||
4802 !test_bit(In_sync
, &rdev
->flags
))
4805 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4806 atomic_inc(&rdev
->nr_pending
);
4808 success
= sync_page_io(rdev
,
4812 REQ_OP_READ
, 0, false);
4813 rdev_dec_pending(rdev
, mddev
);
4819 if (slot
>= conf
->copies
)
4821 if (slot
== first_slot
)
4826 /* couldn't read this block, must give up */
4827 set_bit(MD_RECOVERY_INTR
,
4839 static void end_reshape_write(struct bio
*bio
)
4841 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
4842 struct mddev
*mddev
= r10_bio
->mddev
;
4843 struct r10conf
*conf
= mddev
->private;
4847 struct md_rdev
*rdev
= NULL
;
4849 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4851 rdev
= conf
->mirrors
[d
].replacement
;
4854 rdev
= conf
->mirrors
[d
].rdev
;
4857 if (bio
->bi_status
) {
4858 /* FIXME should record badblock */
4859 md_error(mddev
, rdev
);
4862 rdev_dec_pending(rdev
, mddev
);
4863 end_reshape_request(r10_bio
);
4866 static void end_reshape_request(struct r10bio
*r10_bio
)
4868 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4870 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4871 bio_put(r10_bio
->master_bio
);
4875 static void raid10_finish_reshape(struct mddev
*mddev
)
4877 struct r10conf
*conf
= mddev
->private;
4879 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4882 if (mddev
->delta_disks
> 0) {
4883 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4884 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4885 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4887 mddev
->resync_max_sectors
= mddev
->array_sectors
;
4891 for (d
= conf
->geo
.raid_disks
;
4892 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4894 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4896 clear_bit(In_sync
, &rdev
->flags
);
4897 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4899 clear_bit(In_sync
, &rdev
->flags
);
4903 mddev
->layout
= mddev
->new_layout
;
4904 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4905 mddev
->reshape_position
= MaxSector
;
4906 mddev
->delta_disks
= 0;
4907 mddev
->reshape_backwards
= 0;
4910 static struct md_personality raid10_personality
=
4914 .owner
= THIS_MODULE
,
4915 .make_request
= raid10_make_request
,
4917 .free
= raid10_free
,
4918 .status
= raid10_status
,
4919 .error_handler
= raid10_error
,
4920 .hot_add_disk
= raid10_add_disk
,
4921 .hot_remove_disk
= raid10_remove_disk
,
4922 .spare_active
= raid10_spare_active
,
4923 .sync_request
= raid10_sync_request
,
4924 .quiesce
= raid10_quiesce
,
4925 .size
= raid10_size
,
4926 .resize
= raid10_resize
,
4927 .takeover
= raid10_takeover
,
4928 .check_reshape
= raid10_check_reshape
,
4929 .start_reshape
= raid10_start_reshape
,
4930 .finish_reshape
= raid10_finish_reshape
,
4931 .update_reshape_pos
= raid10_update_reshape_pos
,
4932 .congested
= raid10_congested
,
4935 static int __init
raid_init(void)
4937 return register_md_personality(&raid10_personality
);
4940 static void raid_exit(void)
4942 unregister_md_personality(&raid10_personality
);
4945 module_init(raid_init
);
4946 module_exit(raid_exit
);
4947 MODULE_LICENSE("GPL");
4948 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4949 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4950 MODULE_ALIAS("md-raid10");
4951 MODULE_ALIAS("md-level-10");
4953 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);