1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2006, 2007
6 * Author: Artem Bityutskiy (Битюцкий Артём)
10 * UBI input/output sub-system.
12 * This sub-system provides a uniform way to work with all kinds of the
13 * underlying MTD devices. It also implements handy functions for reading and
14 * writing UBI headers.
16 * We are trying to have a paranoid mindset and not to trust to what we read
17 * from the flash media in order to be more secure and robust. So this
18 * sub-system validates every single header it reads from the flash media.
20 * Some words about how the eraseblock headers are stored.
22 * The erase counter header is always stored at offset zero. By default, the
23 * VID header is stored after the EC header at the closest aligned offset
24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25 * header at the closest aligned offset. But this default layout may be
26 * changed. For example, for different reasons (e.g., optimization) UBI may be
27 * asked to put the VID header at further offset, and even at an unaligned
28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29 * proper padding in front of it. Data offset may also be changed but it has to
32 * About minimal I/O units. In general, UBI assumes flash device model where
33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37 * to do different optimizations.
39 * This is extremely useful in case of NAND flashes which admit of several
40 * write operations to one NAND page. In this case UBI can fit EC and VID
41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51 * device, e.g., make @ubi->min_io_size = 512 in the example above?
53 * A: because when writing a sub-page, MTD still writes a full 2K page but the
54 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56 * Thus, we prefer to use sub-pages only for EC and VID headers.
58 * As it was noted above, the VID header may start at a non-aligned offset.
59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60 * the VID header may reside at offset 1984 which is the last 64 bytes of the
61 * last sub-page (EC header is always at offset zero). This causes some
62 * difficulties when reading and writing VID headers.
64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65 * the data and want to write this VID header out. As we can only write in
66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67 * to offset 448 of this buffer.
69 * The I/O sub-system does the following trick in order to avoid this extra
70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72 * When the VID header is being written out, it shifts the VID header pointer
73 * back and writes the whole sub-page.
76 #include <linux/crc32.h>
77 #include <linux/err.h>
78 #include <linux/slab.h>
81 static int self_check_not_bad(const struct ubi_device
*ubi
, int pnum
);
82 static int self_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
);
83 static int self_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
84 const struct ubi_ec_hdr
*ec_hdr
);
85 static int self_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
);
86 static int self_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
87 const struct ubi_vid_hdr
*vid_hdr
);
88 static int self_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
92 * ubi_io_read - read data from a physical eraseblock.
93 * @ubi: UBI device description object
94 * @buf: buffer where to store the read data
95 * @pnum: physical eraseblock number to read from
96 * @offset: offset within the physical eraseblock from where to read
97 * @len: how many bytes to read
99 * This function reads data from offset @offset of physical eraseblock @pnum
100 * and stores the read data in the @buf buffer. The following return codes are
103 * o %0 if all the requested data were successfully read;
104 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
105 * correctable bit-flips were detected; this is harmless but may indicate
106 * that this eraseblock may become bad soon (but do not have to);
107 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
108 * example it can be an ECC error in case of NAND; this most probably means
109 * that the data is corrupted;
110 * o %-EIO if some I/O error occurred;
111 * o other negative error codes in case of other errors.
113 int ubi_io_read(const struct ubi_device
*ubi
, void *buf
, int pnum
, int offset
,
116 int err
, retries
= 0;
120 dbg_io("read %d bytes from PEB %d:%d", len
, pnum
, offset
);
122 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
123 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
126 err
= self_check_not_bad(ubi
, pnum
);
131 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
132 * do not do this, the following may happen:
133 * 1. The buffer contains data from previous operation, e.g., read from
134 * another PEB previously. The data looks like expected, e.g., if we
135 * just do not read anything and return - the caller would not
136 * notice this. E.g., if we are reading a VID header, the buffer may
137 * contain a valid VID header from another PEB.
138 * 2. The driver is buggy and returns us success or -EBADMSG or
139 * -EUCLEAN, but it does not actually put any data to the buffer.
141 * This may confuse UBI or upper layers - they may think the buffer
142 * contains valid data while in fact it is just old data. This is
143 * especially possible because UBI (and UBIFS) relies on CRC, and
144 * treats data as correct even in case of ECC errors if the CRC is
147 * Try to prevent this situation by changing the first byte of the
150 *((uint8_t *)buf
) ^= 0xFF;
152 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
154 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf
);
156 const char *errstr
= mtd_is_eccerr(err
) ? " (ECC error)" : "";
158 if (mtd_is_bitflip(err
)) {
160 * -EUCLEAN is reported if there was a bit-flip which
161 * was corrected, so this is harmless.
163 * We do not report about it here unless debugging is
164 * enabled. A corresponding message will be printed
165 * later, when it is has been scrubbed.
167 ubi_msg(ubi
, "fixable bit-flip detected at PEB %d",
169 ubi_assert(len
== read
);
170 return UBI_IO_BITFLIPS
;
173 if (retries
++ < UBI_IO_RETRIES
) {
174 ubi_warn(ubi
, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
175 err
, errstr
, len
, pnum
, offset
, read
);
180 ubi_err(ubi
, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
181 err
, errstr
, len
, pnum
, offset
, read
);
185 * The driver should never return -EBADMSG if it failed to read
186 * all the requested data. But some buggy drivers might do
187 * this, so we change it to -EIO.
189 if (read
!= len
&& mtd_is_eccerr(err
)) {
194 ubi_assert(len
== read
);
196 if (ubi_dbg_is_bitflip(ubi
)) {
197 dbg_gen("bit-flip (emulated)");
198 err
= UBI_IO_BITFLIPS
;
206 * ubi_io_write - write data to a physical eraseblock.
207 * @ubi: UBI device description object
208 * @buf: buffer with the data to write
209 * @pnum: physical eraseblock number to write to
210 * @offset: offset within the physical eraseblock where to write
211 * @len: how many bytes to write
213 * This function writes @len bytes of data from buffer @buf to offset @offset
214 * of physical eraseblock @pnum. If all the data were successfully written,
215 * zero is returned. If an error occurred, this function returns a negative
216 * error code. If %-EIO is returned, the physical eraseblock most probably went
219 * Note, in case of an error, it is possible that something was still written
220 * to the flash media, but may be some garbage.
222 int ubi_io_write(struct ubi_device
*ubi
, const void *buf
, int pnum
, int offset
,
229 dbg_io("write %d bytes to PEB %d:%d", len
, pnum
, offset
);
231 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
232 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
233 ubi_assert(offset
% ubi
->hdrs_min_io_size
== 0);
234 ubi_assert(len
> 0 && len
% ubi
->hdrs_min_io_size
== 0);
237 ubi_err(ubi
, "read-only mode");
241 err
= self_check_not_bad(ubi
, pnum
);
245 /* The area we are writing to has to contain all 0xFF bytes */
246 err
= ubi_self_check_all_ff(ubi
, pnum
, offset
, len
);
250 if (offset
>= ubi
->leb_start
) {
252 * We write to the data area of the physical eraseblock. Make
253 * sure it has valid EC and VID headers.
255 err
= self_check_peb_ec_hdr(ubi
, pnum
);
258 err
= self_check_peb_vid_hdr(ubi
, pnum
);
263 if (ubi_dbg_is_write_failure(ubi
)) {
264 ubi_err(ubi
, "cannot write %d bytes to PEB %d:%d (emulated)",
270 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
271 err
= mtd_write(ubi
->mtd
, addr
, len
, &written
, buf
);
273 ubi_err(ubi
, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
274 err
, len
, pnum
, offset
, written
);
276 ubi_dump_flash(ubi
, pnum
, offset
, len
);
278 ubi_assert(written
== len
);
281 err
= self_check_write(ubi
, buf
, pnum
, offset
, len
);
286 * Since we always write sequentially, the rest of the PEB has
287 * to contain only 0xFF bytes.
290 len
= ubi
->peb_size
- offset
;
292 err
= ubi_self_check_all_ff(ubi
, pnum
, offset
, len
);
299 * do_sync_erase - synchronously erase a physical eraseblock.
300 * @ubi: UBI device description object
301 * @pnum: the physical eraseblock number to erase
303 * This function synchronously erases physical eraseblock @pnum and returns
304 * zero in case of success and a negative error code in case of failure. If
305 * %-EIO is returned, the physical eraseblock most probably went bad.
307 static int do_sync_erase(struct ubi_device
*ubi
, int pnum
)
309 int err
, retries
= 0;
310 struct erase_info ei
;
312 dbg_io("erase PEB %d", pnum
);
313 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
316 ubi_err(ubi
, "read-only mode");
321 memset(&ei
, 0, sizeof(struct erase_info
));
323 ei
.addr
= (loff_t
)pnum
* ubi
->peb_size
;
324 ei
.len
= ubi
->peb_size
;
326 err
= mtd_erase(ubi
->mtd
, &ei
);
328 if (retries
++ < UBI_IO_RETRIES
) {
329 ubi_warn(ubi
, "error %d while erasing PEB %d, retry",
334 ubi_err(ubi
, "cannot erase PEB %d, error %d", pnum
, err
);
339 err
= ubi_self_check_all_ff(ubi
, pnum
, 0, ubi
->peb_size
);
343 if (ubi_dbg_is_erase_failure(ubi
)) {
344 ubi_err(ubi
, "cannot erase PEB %d (emulated)", pnum
);
351 /* Patterns to write to a physical eraseblock when torturing it */
352 static uint8_t patterns
[] = {0xa5, 0x5a, 0x0};
355 * torture_peb - test a supposedly bad physical eraseblock.
356 * @ubi: UBI device description object
357 * @pnum: the physical eraseblock number to test
359 * This function returns %-EIO if the physical eraseblock did not pass the
360 * test, a positive number of erase operations done if the test was
361 * successfully passed, and other negative error codes in case of other errors.
363 static int torture_peb(struct ubi_device
*ubi
, int pnum
)
365 int err
, i
, patt_count
;
367 ubi_msg(ubi
, "run torture test for PEB %d", pnum
);
368 patt_count
= ARRAY_SIZE(patterns
);
369 ubi_assert(patt_count
> 0);
371 mutex_lock(&ubi
->buf_mutex
);
372 for (i
= 0; i
< patt_count
; i
++) {
373 err
= do_sync_erase(ubi
, pnum
);
377 /* Make sure the PEB contains only 0xFF bytes */
378 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
382 err
= ubi_check_pattern(ubi
->peb_buf
, 0xFF, ubi
->peb_size
);
384 ubi_err(ubi
, "erased PEB %d, but a non-0xFF byte found",
390 /* Write a pattern and check it */
391 memset(ubi
->peb_buf
, patterns
[i
], ubi
->peb_size
);
392 err
= ubi_io_write(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
396 memset(ubi
->peb_buf
, ~patterns
[i
], ubi
->peb_size
);
397 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
401 err
= ubi_check_pattern(ubi
->peb_buf
, patterns
[i
],
404 ubi_err(ubi
, "pattern %x checking failed for PEB %d",
412 ubi_msg(ubi
, "PEB %d passed torture test, do not mark it as bad", pnum
);
415 mutex_unlock(&ubi
->buf_mutex
);
416 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
)) {
418 * If a bit-flip or data integrity error was detected, the test
419 * has not passed because it happened on a freshly erased
420 * physical eraseblock which means something is wrong with it.
422 ubi_err(ubi
, "read problems on freshly erased PEB %d, must be bad",
430 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
431 * @ubi: UBI device description object
432 * @pnum: physical eraseblock number to prepare
434 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
435 * algorithm: the PEB is first filled with zeroes, then it is erased. And
436 * filling with zeroes starts from the end of the PEB. This was observed with
437 * Spansion S29GL512N NOR flash.
439 * This means that in case of a power cut we may end up with intact data at the
440 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
441 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
442 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
443 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
445 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
446 * magic numbers in order to invalidate them and prevent the failures. Returns
447 * zero in case of success and a negative error code in case of failure.
449 static int nor_erase_prepare(struct ubi_device
*ubi
, int pnum
)
455 struct ubi_ec_hdr ec_hdr
;
456 struct ubi_vid_io_buf vidb
;
459 * Note, we cannot generally define VID header buffers on stack,
460 * because of the way we deal with these buffers (see the header
461 * comment in this file). But we know this is a NOR-specific piece of
462 * code, so we can do this. But yes, this is error-prone and we should
463 * (pre-)allocate VID header buffer instead.
465 struct ubi_vid_hdr vid_hdr
;
468 * If VID or EC is valid, we have to corrupt them before erasing.
469 * It is important to first invalidate the EC header, and then the VID
470 * header. Otherwise a power cut may lead to valid EC header and
471 * invalid VID header, in which case UBI will treat this PEB as
472 * corrupted and will try to preserve it, and print scary warnings.
474 addr
= (loff_t
)pnum
* ubi
->peb_size
;
475 err
= ubi_io_read_ec_hdr(ubi
, pnum
, &ec_hdr
, 0);
476 if (err
!= UBI_IO_BAD_HDR_EBADMSG
&& err
!= UBI_IO_BAD_HDR
&&
478 err
= mtd_write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
483 ubi_init_vid_buf(ubi
, &vidb
, &vid_hdr
);
484 ubi_assert(&vid_hdr
== ubi_get_vid_hdr(&vidb
));
486 err
= ubi_io_read_vid_hdr(ubi
, pnum
, &vidb
, 0);
487 if (err
!= UBI_IO_BAD_HDR_EBADMSG
&& err
!= UBI_IO_BAD_HDR
&&
489 addr
+= ubi
->vid_hdr_aloffset
;
490 err
= mtd_write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
498 * The PEB contains a valid VID or EC header, but we cannot invalidate
499 * it. Supposedly the flash media or the driver is screwed up, so
502 ubi_err(ubi
, "cannot invalidate PEB %d, write returned %d", pnum
, err
);
503 ubi_dump_flash(ubi
, pnum
, 0, ubi
->peb_size
);
508 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
509 * @ubi: UBI device description object
510 * @pnum: physical eraseblock number to erase
511 * @torture: if this physical eraseblock has to be tortured
513 * This function synchronously erases physical eraseblock @pnum. If @torture
514 * flag is not zero, the physical eraseblock is checked by means of writing
515 * different patterns to it and reading them back. If the torturing is enabled,
516 * the physical eraseblock is erased more than once.
518 * This function returns the number of erasures made in case of success, %-EIO
519 * if the erasure failed or the torturing test failed, and other negative error
520 * codes in case of other errors. Note, %-EIO means that the physical
523 int ubi_io_sync_erase(struct ubi_device
*ubi
, int pnum
, int torture
)
527 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
529 err
= self_check_not_bad(ubi
, pnum
);
534 ubi_err(ubi
, "read-only mode");
538 if (ubi
->nor_flash
) {
539 err
= nor_erase_prepare(ubi
, pnum
);
545 ret
= torture_peb(ubi
, pnum
);
550 err
= do_sync_erase(ubi
, pnum
);
558 * ubi_io_is_bad - check if a physical eraseblock is bad.
559 * @ubi: UBI device description object
560 * @pnum: the physical eraseblock number to check
562 * This function returns a positive number if the physical eraseblock is bad,
563 * zero if not, and a negative error code if an error occurred.
565 int ubi_io_is_bad(const struct ubi_device
*ubi
, int pnum
)
567 struct mtd_info
*mtd
= ubi
->mtd
;
569 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
571 if (ubi
->bad_allowed
) {
574 ret
= mtd_block_isbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
576 ubi_err(ubi
, "error %d while checking if PEB %d is bad",
579 dbg_io("PEB %d is bad", pnum
);
587 * ubi_io_mark_bad - mark a physical eraseblock as bad.
588 * @ubi: UBI device description object
589 * @pnum: the physical eraseblock number to mark
591 * This function returns zero in case of success and a negative error code in
594 int ubi_io_mark_bad(const struct ubi_device
*ubi
, int pnum
)
597 struct mtd_info
*mtd
= ubi
->mtd
;
599 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
602 ubi_err(ubi
, "read-only mode");
606 if (!ubi
->bad_allowed
)
609 err
= mtd_block_markbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
611 ubi_err(ubi
, "cannot mark PEB %d bad, error %d", pnum
, err
);
616 * validate_ec_hdr - validate an erase counter header.
617 * @ubi: UBI device description object
618 * @ec_hdr: the erase counter header to check
620 * This function returns zero if the erase counter header is OK, and %1 if
623 static int validate_ec_hdr(const struct ubi_device
*ubi
,
624 const struct ubi_ec_hdr
*ec_hdr
)
627 int vid_hdr_offset
, leb_start
;
629 ec
= be64_to_cpu(ec_hdr
->ec
);
630 vid_hdr_offset
= be32_to_cpu(ec_hdr
->vid_hdr_offset
);
631 leb_start
= be32_to_cpu(ec_hdr
->data_offset
);
633 if (ec_hdr
->version
!= UBI_VERSION
) {
634 ubi_err(ubi
, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
635 UBI_VERSION
, (int)ec_hdr
->version
);
639 if (vid_hdr_offset
!= ubi
->vid_hdr_offset
) {
640 ubi_err(ubi
, "bad VID header offset %d, expected %d",
641 vid_hdr_offset
, ubi
->vid_hdr_offset
);
645 if (leb_start
!= ubi
->leb_start
) {
646 ubi_err(ubi
, "bad data offset %d, expected %d",
647 leb_start
, ubi
->leb_start
);
651 if (ec
< 0 || ec
> UBI_MAX_ERASECOUNTER
) {
652 ubi_err(ubi
, "bad erase counter %lld", ec
);
659 ubi_err(ubi
, "bad EC header");
660 ubi_dump_ec_hdr(ec_hdr
);
666 * ubi_io_read_ec_hdr - read and check an erase counter header.
667 * @ubi: UBI device description object
668 * @pnum: physical eraseblock to read from
669 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
671 * @verbose: be verbose if the header is corrupted or was not found
673 * This function reads erase counter header from physical eraseblock @pnum and
674 * stores it in @ec_hdr. This function also checks CRC checksum of the read
675 * erase counter header. The following codes may be returned:
677 * o %0 if the CRC checksum is correct and the header was successfully read;
678 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
679 * and corrected by the flash driver; this is harmless but may indicate that
680 * this eraseblock may become bad soon (but may be not);
681 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
682 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
683 * a data integrity error (uncorrectable ECC error in case of NAND);
684 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
685 * o a negative error code in case of failure.
687 int ubi_io_read_ec_hdr(struct ubi_device
*ubi
, int pnum
,
688 struct ubi_ec_hdr
*ec_hdr
, int verbose
)
691 uint32_t crc
, magic
, hdr_crc
;
693 dbg_io("read EC header from PEB %d", pnum
);
694 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
696 read_err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
698 if (read_err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(read_err
))
702 * We read all the data, but either a correctable bit-flip
703 * occurred, or MTD reported a data integrity error
704 * (uncorrectable ECC error in case of NAND). The former is
705 * harmless, the later may mean that the read data is
706 * corrupted. But we have a CRC check-sum and we will detect
707 * this. If the EC header is still OK, we just report this as
708 * there was a bit-flip, to force scrubbing.
712 magic
= be32_to_cpu(ec_hdr
->magic
);
713 if (magic
!= UBI_EC_HDR_MAGIC
) {
714 if (mtd_is_eccerr(read_err
))
715 return UBI_IO_BAD_HDR_EBADMSG
;
718 * The magic field is wrong. Let's check if we have read all
719 * 0xFF. If yes, this physical eraseblock is assumed to be
722 if (ubi_check_pattern(ec_hdr
, 0xFF, UBI_EC_HDR_SIZE
)) {
723 /* The physical eraseblock is supposedly empty */
725 ubi_warn(ubi
, "no EC header found at PEB %d, only 0xFF bytes",
727 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
732 return UBI_IO_FF_BITFLIPS
;
736 * This is not a valid erase counter header, and these are not
737 * 0xFF bytes. Report that the header is corrupted.
740 ubi_warn(ubi
, "bad magic number at PEB %d: %08x instead of %08x",
741 pnum
, magic
, UBI_EC_HDR_MAGIC
);
742 ubi_dump_ec_hdr(ec_hdr
);
744 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
745 pnum
, magic
, UBI_EC_HDR_MAGIC
);
746 return UBI_IO_BAD_HDR
;
749 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
750 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
752 if (hdr_crc
!= crc
) {
754 ubi_warn(ubi
, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
756 ubi_dump_ec_hdr(ec_hdr
);
758 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
762 return UBI_IO_BAD_HDR
;
764 return UBI_IO_BAD_HDR_EBADMSG
;
767 /* And of course validate what has just been read from the media */
768 err
= validate_ec_hdr(ubi
, ec_hdr
);
770 ubi_err(ubi
, "validation failed for PEB %d", pnum
);
775 * If there was %-EBADMSG, but the header CRC is still OK, report about
776 * a bit-flip to force scrubbing on this PEB.
778 return read_err
? UBI_IO_BITFLIPS
: 0;
782 * ubi_io_write_ec_hdr - write an erase counter header.
783 * @ubi: UBI device description object
784 * @pnum: physical eraseblock to write to
785 * @ec_hdr: the erase counter header to write
787 * This function writes erase counter header described by @ec_hdr to physical
788 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
789 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
792 * This function returns zero in case of success and a negative error code in
793 * case of failure. If %-EIO is returned, the physical eraseblock most probably
796 int ubi_io_write_ec_hdr(struct ubi_device
*ubi
, int pnum
,
797 struct ubi_ec_hdr
*ec_hdr
)
802 dbg_io("write EC header to PEB %d", pnum
);
803 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
805 ec_hdr
->magic
= cpu_to_be32(UBI_EC_HDR_MAGIC
);
806 ec_hdr
->version
= UBI_VERSION
;
807 ec_hdr
->vid_hdr_offset
= cpu_to_be32(ubi
->vid_hdr_offset
);
808 ec_hdr
->data_offset
= cpu_to_be32(ubi
->leb_start
);
809 ec_hdr
->image_seq
= cpu_to_be32(ubi
->image_seq
);
810 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
811 ec_hdr
->hdr_crc
= cpu_to_be32(crc
);
813 err
= self_check_ec_hdr(ubi
, pnum
, ec_hdr
);
817 if (ubi_dbg_power_cut(ubi
, POWER_CUT_EC_WRITE
))
820 err
= ubi_io_write(ubi
, ec_hdr
, pnum
, 0, ubi
->ec_hdr_alsize
);
825 * validate_vid_hdr - validate a volume identifier header.
826 * @ubi: UBI device description object
827 * @vid_hdr: the volume identifier header to check
829 * This function checks that data stored in the volume identifier header
830 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
832 static int validate_vid_hdr(const struct ubi_device
*ubi
,
833 const struct ubi_vid_hdr
*vid_hdr
)
835 int vol_type
= vid_hdr
->vol_type
;
836 int copy_flag
= vid_hdr
->copy_flag
;
837 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
838 int lnum
= be32_to_cpu(vid_hdr
->lnum
);
839 int compat
= vid_hdr
->compat
;
840 int data_size
= be32_to_cpu(vid_hdr
->data_size
);
841 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
842 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
843 int data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
844 int usable_leb_size
= ubi
->leb_size
- data_pad
;
846 if (copy_flag
!= 0 && copy_flag
!= 1) {
847 ubi_err(ubi
, "bad copy_flag");
851 if (vol_id
< 0 || lnum
< 0 || data_size
< 0 || used_ebs
< 0 ||
853 ubi_err(ubi
, "negative values");
857 if (vol_id
>= UBI_MAX_VOLUMES
&& vol_id
< UBI_INTERNAL_VOL_START
) {
858 ubi_err(ubi
, "bad vol_id");
862 if (vol_id
< UBI_INTERNAL_VOL_START
&& compat
!= 0) {
863 ubi_err(ubi
, "bad compat");
867 if (vol_id
>= UBI_INTERNAL_VOL_START
&& compat
!= UBI_COMPAT_DELETE
&&
868 compat
!= UBI_COMPAT_RO
&& compat
!= UBI_COMPAT_PRESERVE
&&
869 compat
!= UBI_COMPAT_REJECT
) {
870 ubi_err(ubi
, "bad compat");
874 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
875 ubi_err(ubi
, "bad vol_type");
879 if (data_pad
>= ubi
->leb_size
/ 2) {
880 ubi_err(ubi
, "bad data_pad");
884 if (data_size
> ubi
->leb_size
) {
885 ubi_err(ubi
, "bad data_size");
889 if (vol_type
== UBI_VID_STATIC
) {
891 * Although from high-level point of view static volumes may
892 * contain zero bytes of data, but no VID headers can contain
893 * zero at these fields, because they empty volumes do not have
894 * mapped logical eraseblocks.
897 ubi_err(ubi
, "zero used_ebs");
900 if (data_size
== 0) {
901 ubi_err(ubi
, "zero data_size");
904 if (lnum
< used_ebs
- 1) {
905 if (data_size
!= usable_leb_size
) {
906 ubi_err(ubi
, "bad data_size");
909 } else if (lnum
== used_ebs
- 1) {
910 if (data_size
== 0) {
911 ubi_err(ubi
, "bad data_size at last LEB");
915 ubi_err(ubi
, "too high lnum");
919 if (copy_flag
== 0) {
921 ubi_err(ubi
, "non-zero data CRC");
924 if (data_size
!= 0) {
925 ubi_err(ubi
, "non-zero data_size");
929 if (data_size
== 0) {
930 ubi_err(ubi
, "zero data_size of copy");
935 ubi_err(ubi
, "bad used_ebs");
943 ubi_err(ubi
, "bad VID header");
944 ubi_dump_vid_hdr(vid_hdr
);
950 * ubi_io_read_vid_hdr - read and check a volume identifier header.
951 * @ubi: UBI device description object
952 * @pnum: physical eraseblock number to read from
953 * @vidb: the volume identifier buffer to store data in
954 * @verbose: be verbose if the header is corrupted or wasn't found
956 * This function reads the volume identifier header from physical eraseblock
957 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
958 * volume identifier header. The error codes are the same as in
959 * 'ubi_io_read_ec_hdr()'.
961 * Note, the implementation of this function is also very similar to
962 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
964 int ubi_io_read_vid_hdr(struct ubi_device
*ubi
, int pnum
,
965 struct ubi_vid_io_buf
*vidb
, int verbose
)
968 uint32_t crc
, magic
, hdr_crc
;
969 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
970 void *p
= vidb
->buffer
;
972 dbg_io("read VID header from PEB %d", pnum
);
973 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
975 read_err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
976 ubi
->vid_hdr_shift
+ UBI_VID_HDR_SIZE
);
977 if (read_err
&& read_err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(read_err
))
980 magic
= be32_to_cpu(vid_hdr
->magic
);
981 if (magic
!= UBI_VID_HDR_MAGIC
) {
982 if (mtd_is_eccerr(read_err
))
983 return UBI_IO_BAD_HDR_EBADMSG
;
985 if (ubi_check_pattern(vid_hdr
, 0xFF, UBI_VID_HDR_SIZE
)) {
987 ubi_warn(ubi
, "no VID header found at PEB %d, only 0xFF bytes",
989 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
994 return UBI_IO_FF_BITFLIPS
;
998 ubi_warn(ubi
, "bad magic number at PEB %d: %08x instead of %08x",
999 pnum
, magic
, UBI_VID_HDR_MAGIC
);
1000 ubi_dump_vid_hdr(vid_hdr
);
1002 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1003 pnum
, magic
, UBI_VID_HDR_MAGIC
);
1004 return UBI_IO_BAD_HDR
;
1007 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1008 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1010 if (hdr_crc
!= crc
) {
1012 ubi_warn(ubi
, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1013 pnum
, crc
, hdr_crc
);
1014 ubi_dump_vid_hdr(vid_hdr
);
1016 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1017 pnum
, crc
, hdr_crc
);
1019 return UBI_IO_BAD_HDR
;
1021 return UBI_IO_BAD_HDR_EBADMSG
;
1024 err
= validate_vid_hdr(ubi
, vid_hdr
);
1026 ubi_err(ubi
, "validation failed for PEB %d", pnum
);
1030 return read_err
? UBI_IO_BITFLIPS
: 0;
1034 * ubi_io_write_vid_hdr - write a volume identifier header.
1035 * @ubi: UBI device description object
1036 * @pnum: the physical eraseblock number to write to
1037 * @vidb: the volume identifier buffer to write
1039 * This function writes the volume identifier header described by @vid_hdr to
1040 * physical eraseblock @pnum. This function automatically fills the
1041 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1042 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1044 * This function returns zero in case of success and a negative error code in
1045 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1048 int ubi_io_write_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1049 struct ubi_vid_io_buf
*vidb
)
1051 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1054 void *p
= vidb
->buffer
;
1056 dbg_io("write VID header to PEB %d", pnum
);
1057 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1059 err
= self_check_peb_ec_hdr(ubi
, pnum
);
1063 vid_hdr
->magic
= cpu_to_be32(UBI_VID_HDR_MAGIC
);
1064 vid_hdr
->version
= UBI_VERSION
;
1065 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1066 vid_hdr
->hdr_crc
= cpu_to_be32(crc
);
1068 err
= self_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1072 if (ubi_dbg_power_cut(ubi
, POWER_CUT_VID_WRITE
))
1075 err
= ubi_io_write(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1076 ubi
->vid_hdr_alsize
);
1081 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1082 * @ubi: UBI device description object
1083 * @pnum: physical eraseblock number to check
1085 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1086 * it is bad and a negative error code if an error occurred.
1088 static int self_check_not_bad(const struct ubi_device
*ubi
, int pnum
)
1092 if (!ubi_dbg_chk_io(ubi
))
1095 err
= ubi_io_is_bad(ubi
, pnum
);
1099 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1101 return err
> 0 ? -EINVAL
: err
;
1105 * self_check_ec_hdr - check if an erase counter header is all right.
1106 * @ubi: UBI device description object
1107 * @pnum: physical eraseblock number the erase counter header belongs to
1108 * @ec_hdr: the erase counter header to check
1110 * This function returns zero if the erase counter header contains valid
1111 * values, and %-EINVAL if not.
1113 static int self_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
1114 const struct ubi_ec_hdr
*ec_hdr
)
1119 if (!ubi_dbg_chk_io(ubi
))
1122 magic
= be32_to_cpu(ec_hdr
->magic
);
1123 if (magic
!= UBI_EC_HDR_MAGIC
) {
1124 ubi_err(ubi
, "bad magic %#08x, must be %#08x",
1125 magic
, UBI_EC_HDR_MAGIC
);
1129 err
= validate_ec_hdr(ubi
, ec_hdr
);
1131 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1138 ubi_dump_ec_hdr(ec_hdr
);
1144 * self_check_peb_ec_hdr - check erase counter header.
1145 * @ubi: UBI device description object
1146 * @pnum: the physical eraseblock number to check
1148 * This function returns zero if the erase counter header is all right and and
1149 * a negative error code if not or if an error occurred.
1151 static int self_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
)
1154 uint32_t crc
, hdr_crc
;
1155 struct ubi_ec_hdr
*ec_hdr
;
1157 if (!ubi_dbg_chk_io(ubi
))
1160 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1164 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
1165 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
1168 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
1169 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
1170 if (hdr_crc
!= crc
) {
1171 ubi_err(ubi
, "bad CRC, calculated %#08x, read %#08x",
1173 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1174 ubi_dump_ec_hdr(ec_hdr
);
1180 err
= self_check_ec_hdr(ubi
, pnum
, ec_hdr
);
1188 * self_check_vid_hdr - check that a volume identifier header is all right.
1189 * @ubi: UBI device description object
1190 * @pnum: physical eraseblock number the volume identifier header belongs to
1191 * @vid_hdr: the volume identifier header to check
1193 * This function returns zero if the volume identifier header is all right, and
1196 static int self_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
1197 const struct ubi_vid_hdr
*vid_hdr
)
1202 if (!ubi_dbg_chk_io(ubi
))
1205 magic
= be32_to_cpu(vid_hdr
->magic
);
1206 if (magic
!= UBI_VID_HDR_MAGIC
) {
1207 ubi_err(ubi
, "bad VID header magic %#08x at PEB %d, must be %#08x",
1208 magic
, pnum
, UBI_VID_HDR_MAGIC
);
1212 err
= validate_vid_hdr(ubi
, vid_hdr
);
1214 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1221 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1222 ubi_dump_vid_hdr(vid_hdr
);
1229 * self_check_peb_vid_hdr - check volume identifier header.
1230 * @ubi: UBI device description object
1231 * @pnum: the physical eraseblock number to check
1233 * This function returns zero if the volume identifier header is all right,
1234 * and a negative error code if not or if an error occurred.
1236 static int self_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
)
1239 uint32_t crc
, hdr_crc
;
1240 struct ubi_vid_io_buf
*vidb
;
1241 struct ubi_vid_hdr
*vid_hdr
;
1244 if (!ubi_dbg_chk_io(ubi
))
1247 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1251 vid_hdr
= ubi_get_vid_hdr(vidb
);
1253 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1254 ubi
->vid_hdr_alsize
);
1255 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
1258 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1259 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1260 if (hdr_crc
!= crc
) {
1261 ubi_err(ubi
, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1262 pnum
, crc
, hdr_crc
);
1263 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1264 ubi_dump_vid_hdr(vid_hdr
);
1270 err
= self_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1273 ubi_free_vid_buf(vidb
);
1278 * self_check_write - make sure write succeeded.
1279 * @ubi: UBI device description object
1280 * @buf: buffer with data which were written
1281 * @pnum: physical eraseblock number the data were written to
1282 * @offset: offset within the physical eraseblock the data were written to
1283 * @len: how many bytes were written
1285 * This functions reads data which were recently written and compares it with
1286 * the original data buffer - the data have to match. Returns zero if the data
1287 * match and a negative error code if not or in case of failure.
1289 static int self_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
1290 int offset
, int len
)
1295 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1297 if (!ubi_dbg_chk_io(ubi
))
1300 buf1
= __vmalloc(len
, GFP_NOFS
, PAGE_KERNEL
);
1302 ubi_err(ubi
, "cannot allocate memory to check writes");
1306 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf1
);
1307 if (err
&& !mtd_is_bitflip(err
))
1310 for (i
= 0; i
< len
; i
++) {
1311 uint8_t c
= ((uint8_t *)buf
)[i
];
1312 uint8_t c1
= ((uint8_t *)buf1
)[i
];
1318 ubi_err(ubi
, "self-check failed for PEB %d:%d, len %d",
1320 ubi_msg(ubi
, "data differ at position %d", i
);
1321 dump_len
= max_t(int, 128, len
- i
);
1322 ubi_msg(ubi
, "hex dump of the original buffer from %d to %d",
1324 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1325 buf
+ i
, dump_len
, 1);
1326 ubi_msg(ubi
, "hex dump of the read buffer from %d to %d",
1328 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1329 buf1
+ i
, dump_len
, 1);
1344 * ubi_self_check_all_ff - check that a region of flash is empty.
1345 * @ubi: UBI device description object
1346 * @pnum: the physical eraseblock number to check
1347 * @offset: the starting offset within the physical eraseblock to check
1348 * @len: the length of the region to check
1350 * This function returns zero if only 0xFF bytes are present at offset
1351 * @offset of the physical eraseblock @pnum, and a negative error code if not
1352 * or if an error occurred.
1354 int ubi_self_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
, int len
)
1359 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1361 if (!ubi_dbg_chk_io(ubi
))
1364 buf
= __vmalloc(len
, GFP_NOFS
, PAGE_KERNEL
);
1366 ubi_err(ubi
, "cannot allocate memory to check for 0xFFs");
1370 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf
);
1371 if (err
&& !mtd_is_bitflip(err
)) {
1372 ubi_err(ubi
, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1373 err
, len
, pnum
, offset
, read
);
1377 err
= ubi_check_pattern(buf
, 0xFF, len
);
1379 ubi_err(ubi
, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1388 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1389 ubi_msg(ubi
, "hex dump of the %d-%d region", offset
, offset
+ len
);
1390 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1, buf
, len
, 1);