1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
9 * UBI wear-leveling sub-system.
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
123 #define WL_MAX_FAILURES 32
125 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
126 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
127 struct ubi_wl_entry
*e
, struct rb_root
*root
);
128 static int self_check_in_pq(const struct ubi_device
*ubi
,
129 struct ubi_wl_entry
*e
);
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
139 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
141 struct rb_node
**p
, *parent
= NULL
;
145 struct ubi_wl_entry
*e1
;
148 e1
= rb_entry(parent
, struct ubi_wl_entry
, u
.rb
);
152 else if (e
->ec
> e1
->ec
)
155 ubi_assert(e
->pnum
!= e1
->pnum
);
156 if (e
->pnum
< e1
->pnum
)
163 rb_link_node(&e
->u
.rb
, parent
, p
);
164 rb_insert_color(&e
->u
.rb
, root
);
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
175 static void wl_entry_destroy(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
177 ubi
->lookuptbl
[e
->pnum
] = NULL
;
178 kmem_cache_free(ubi_wl_entry_slab
, e
);
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
185 * This function returns zero in case of success and a negative error code in
188 static int do_work(struct ubi_device
*ubi
)
191 struct ubi_work
*wrk
;
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
201 down_read(&ubi
->work_sem
);
202 spin_lock(&ubi
->wl_lock
);
203 if (list_empty(&ubi
->works
)) {
204 spin_unlock(&ubi
->wl_lock
);
205 up_read(&ubi
->work_sem
);
209 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
210 list_del(&wrk
->list
);
211 ubi
->works_count
-= 1;
212 ubi_assert(ubi
->works_count
>= 0);
213 spin_unlock(&ubi
->wl_lock
);
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
220 err
= wrk
->func(ubi
, wrk
, 0);
222 ubi_err(ubi
, "work failed with error code %d", err
);
223 up_read(&ubi
->work_sem
);
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
236 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
242 struct ubi_wl_entry
*e1
;
244 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
246 if (e
->pnum
== e1
->pnum
) {
253 else if (e
->ec
> e1
->ec
)
256 ubi_assert(e
->pnum
!= e1
->pnum
);
257 if (e
->pnum
< e1
->pnum
)
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
272 * This function returns non-zero if @e is in the protection queue and zero
275 static inline int in_pq(const struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
277 struct ubi_wl_entry
*p
;
280 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
)
281 list_for_each_entry(p
, &ubi
->pq
[i
], u
.list
)
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
298 static void prot_queue_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
300 int pq_tail
= ubi
->pq_head
- 1;
303 pq_tail
= UBI_PROT_QUEUE_LEN
- 1;
304 ubi_assert(pq_tail
>= 0 && pq_tail
< UBI_PROT_QUEUE_LEN
);
305 list_add_tail(&e
->u
.list
, &ubi
->pq
[pq_tail
]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e
->pnum
, e
->ec
);
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
318 static struct ubi_wl_entry
*find_wl_entry(struct ubi_device
*ubi
,
319 struct rb_root
*root
, int diff
)
322 struct ubi_wl_entry
*e
, *prev_e
= NULL
;
325 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
330 struct ubi_wl_entry
*e1
;
332 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
346 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
347 * @ubi: UBI device description object
348 * @root: the RB-tree where to look for
350 * This function looks for a wear leveling entry with medium erase counter,
351 * but not greater or equivalent than the lowest erase counter plus
352 * %WL_FREE_MAX_DIFF/2.
354 static struct ubi_wl_entry
*find_mean_wl_entry(struct ubi_device
*ubi
,
355 struct rb_root
*root
)
357 struct ubi_wl_entry
*e
, *first
, *last
;
359 first
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
360 last
= rb_entry(rb_last(root
), struct ubi_wl_entry
, u
.rb
);
362 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
) {
363 e
= rb_entry(root
->rb_node
, struct ubi_wl_entry
, u
.rb
);
365 /* If no fastmap has been written and this WL entry can be used
366 * as anchor PEB, hold it back and return the second best
367 * WL entry such that fastmap can use the anchor PEB later. */
368 e
= may_reserve_for_fm(ubi
, e
, root
);
370 e
= find_wl_entry(ubi
, root
, WL_FREE_MAX_DIFF
/2);
376 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
377 * refill_wl_user_pool().
378 * @ubi: UBI device description object
380 * This function returns a a wear leveling entry in case of success and
381 * NULL in case of failure.
383 static struct ubi_wl_entry
*wl_get_wle(struct ubi_device
*ubi
)
385 struct ubi_wl_entry
*e
;
387 e
= find_mean_wl_entry(ubi
, &ubi
->free
);
389 ubi_err(ubi
, "no free eraseblocks");
393 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
396 * Move the physical eraseblock to the protection queue where it will
397 * be protected from being moved for some time.
399 rb_erase(&e
->u
.rb
, &ubi
->free
);
401 dbg_wl("PEB %d EC %d", e
->pnum
, e
->ec
);
407 * prot_queue_del - remove a physical eraseblock from the protection queue.
408 * @ubi: UBI device description object
409 * @pnum: the physical eraseblock to remove
411 * This function deletes PEB @pnum from the protection queue and returns zero
412 * in case of success and %-ENODEV if the PEB was not found.
414 static int prot_queue_del(struct ubi_device
*ubi
, int pnum
)
416 struct ubi_wl_entry
*e
;
418 e
= ubi
->lookuptbl
[pnum
];
422 if (self_check_in_pq(ubi
, e
))
425 list_del(&e
->u
.list
);
426 dbg_wl("deleted PEB %d from the protection queue", e
->pnum
);
431 * sync_erase - synchronously erase a physical eraseblock.
432 * @ubi: UBI device description object
433 * @e: the the physical eraseblock to erase
434 * @torture: if the physical eraseblock has to be tortured
436 * This function returns zero in case of success and a negative error code in
439 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
443 struct ubi_ec_hdr
*ec_hdr
;
444 unsigned long long ec
= e
->ec
;
446 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
448 err
= self_check_ec(ubi
, e
->pnum
, e
->ec
);
452 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
456 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
461 if (ec
> UBI_MAX_ERASECOUNTER
) {
463 * Erase counter overflow. Upgrade UBI and use 64-bit
464 * erase counters internally.
466 ubi_err(ubi
, "erase counter overflow at PEB %d, EC %llu",
472 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
474 ec_hdr
->ec
= cpu_to_be64(ec
);
476 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
481 spin_lock(&ubi
->wl_lock
);
482 if (e
->ec
> ubi
->max_ec
)
484 spin_unlock(&ubi
->wl_lock
);
492 * serve_prot_queue - check if it is time to stop protecting PEBs.
493 * @ubi: UBI device description object
495 * This function is called after each erase operation and removes PEBs from the
496 * tail of the protection queue. These PEBs have been protected for long enough
497 * and should be moved to the used tree.
499 static void serve_prot_queue(struct ubi_device
*ubi
)
501 struct ubi_wl_entry
*e
, *tmp
;
505 * There may be several protected physical eraseblock to remove,
510 spin_lock(&ubi
->wl_lock
);
511 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[ubi
->pq_head
], u
.list
) {
512 dbg_wl("PEB %d EC %d protection over, move to used tree",
515 list_del(&e
->u
.list
);
516 wl_tree_add(e
, &ubi
->used
);
519 * Let's be nice and avoid holding the spinlock for
522 spin_unlock(&ubi
->wl_lock
);
529 if (ubi
->pq_head
== UBI_PROT_QUEUE_LEN
)
531 ubi_assert(ubi
->pq_head
>= 0 && ubi
->pq_head
< UBI_PROT_QUEUE_LEN
);
532 spin_unlock(&ubi
->wl_lock
);
536 * __schedule_ubi_work - schedule a work.
537 * @ubi: UBI device description object
538 * @wrk: the work to schedule
540 * This function adds a work defined by @wrk to the tail of the pending works
541 * list. Can only be used if ubi->work_sem is already held in read mode!
543 static void __schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
545 spin_lock(&ubi
->wl_lock
);
546 list_add_tail(&wrk
->list
, &ubi
->works
);
547 ubi_assert(ubi
->works_count
>= 0);
548 ubi
->works_count
+= 1;
549 if (ubi
->thread_enabled
&& !ubi_dbg_is_bgt_disabled(ubi
))
550 wake_up_process(ubi
->bgt_thread
);
551 spin_unlock(&ubi
->wl_lock
);
555 * schedule_ubi_work - schedule a work.
556 * @ubi: UBI device description object
557 * @wrk: the work to schedule
559 * This function adds a work defined by @wrk to the tail of the pending works
562 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
564 down_read(&ubi
->work_sem
);
565 __schedule_ubi_work(ubi
, wrk
);
566 up_read(&ubi
->work_sem
);
569 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
573 * schedule_erase - schedule an erase work.
574 * @ubi: UBI device description object
575 * @e: the WL entry of the physical eraseblock to erase
576 * @vol_id: the volume ID that last used this PEB
577 * @lnum: the last used logical eraseblock number for the PEB
578 * @torture: if the physical eraseblock has to be tortured
580 * This function returns zero in case of success and a %-ENOMEM in case of
583 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
584 int vol_id
, int lnum
, int torture
, bool nested
)
586 struct ubi_work
*wl_wrk
;
590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 e
->pnum
, e
->ec
, torture
);
593 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
597 wl_wrk
->func
= &erase_worker
;
599 wl_wrk
->vol_id
= vol_id
;
601 wl_wrk
->torture
= torture
;
604 __schedule_ubi_work(ubi
, wl_wrk
);
606 schedule_ubi_work(ubi
, wl_wrk
);
610 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
);
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
620 static int do_sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
621 int vol_id
, int lnum
, int torture
)
623 struct ubi_work wl_wrk
;
625 dbg_wl("sync erase of PEB %i", e
->pnum
);
628 wl_wrk
.vol_id
= vol_id
;
630 wl_wrk
.torture
= torture
;
632 return __erase_worker(ubi
, &wl_wrk
);
635 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
);
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
647 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
650 int err
, scrubbing
= 0, torture
= 0, protect
= 0, erroneous
= 0;
651 int erase
= 0, keep
= 0, vol_id
= -1, lnum
= -1;
652 struct ubi_wl_entry
*e1
, *e2
;
653 struct ubi_vid_io_buf
*vidb
;
654 struct ubi_vid_hdr
*vid_hdr
;
655 int dst_leb_clean
= 0;
661 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
665 vid_hdr
= ubi_get_vid_hdr(vidb
);
667 down_read(&ubi
->fm_eba_sem
);
668 mutex_lock(&ubi
->move_mutex
);
669 spin_lock(&ubi
->wl_lock
);
670 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
671 ubi_assert(!ubi
->move_to_put
);
673 if (!ubi
->free
.rb_node
||
674 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
676 * No free physical eraseblocks? Well, they must be waiting in
677 * the queue to be erased. Cancel movement - it will be
678 * triggered again when a free physical eraseblock appears.
680 * No used physical eraseblocks? They must be temporarily
681 * protected from being moved. They will be moved to the
682 * @ubi->used tree later and the wear-leveling will be
685 dbg_wl("cancel WL, a list is empty: free %d, used %d",
686 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
690 #ifdef CONFIG_MTD_UBI_FASTMAP
691 if (ubi
->fm_do_produce_anchor
) {
692 e1
= find_anchor_wl_entry(&ubi
->used
);
695 e2
= get_peb_for_wl(ubi
);
700 * Anchor move within the anchor area is useless.
702 if (e2
->pnum
< UBI_FM_MAX_START
)
705 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
706 rb_erase(&e1
->u
.rb
, &ubi
->used
);
707 dbg_wl("anchor-move PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
708 ubi
->fm_do_produce_anchor
= 0;
709 } else if (!ubi
->scrub
.rb_node
) {
711 if (!ubi
->scrub
.rb_node
) {
714 * Now pick the least worn-out used physical eraseblock and a
715 * highly worn-out free physical eraseblock. If the erase
716 * counters differ much enough, start wear-leveling.
718 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
719 e2
= get_peb_for_wl(ubi
);
723 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
724 dbg_wl("no WL needed: min used EC %d, max free EC %d",
727 /* Give the unused PEB back */
728 wl_tree_add(e2
, &ubi
->free
);
732 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
733 rb_erase(&e1
->u
.rb
, &ubi
->used
);
734 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
735 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
737 /* Perform scrubbing */
739 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, u
.rb
);
740 e2
= get_peb_for_wl(ubi
);
744 self_check_in_wl_tree(ubi
, e1
, &ubi
->scrub
);
745 rb_erase(&e1
->u
.rb
, &ubi
->scrub
);
746 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
751 spin_unlock(&ubi
->wl_lock
);
754 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
755 * We so far do not know which logical eraseblock our physical
756 * eraseblock (@e1) belongs to. We have to read the volume identifier
759 * Note, we are protected from this PEB being unmapped and erased. The
760 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
761 * which is being moved was unmapped.
764 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vidb
, 0);
765 if (err
&& err
!= UBI_IO_BITFLIPS
) {
767 if (err
== UBI_IO_FF
) {
769 * We are trying to move PEB without a VID header. UBI
770 * always write VID headers shortly after the PEB was
771 * given, so we have a situation when it has not yet
772 * had a chance to write it, because it was preempted.
773 * So add this PEB to the protection queue so far,
774 * because presumably more data will be written there
775 * (including the missing VID header), and then we'll
778 dbg_wl("PEB %d has no VID header", e1
->pnum
);
781 } else if (err
== UBI_IO_FF_BITFLIPS
) {
783 * The same situation as %UBI_IO_FF, but bit-flips were
784 * detected. It is better to schedule this PEB for
787 dbg_wl("PEB %d has no VID header but has bit-flips",
791 } else if (ubi
->fast_attach
&& err
== UBI_IO_BAD_HDR_EBADMSG
) {
793 * While a full scan would detect interrupted erasures
794 * at attach time we can face them here when attached from
797 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
803 ubi_err(ubi
, "error %d while reading VID header from PEB %d",
808 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
809 lnum
= be32_to_cpu(vid_hdr
->lnum
);
811 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vidb
);
813 if (err
== MOVE_CANCEL_RACE
) {
815 * The LEB has not been moved because the volume is
816 * being deleted or the PEB has been put meanwhile. We
817 * should prevent this PEB from being selected for
818 * wear-leveling movement again, so put it to the
825 if (err
== MOVE_RETRY
) {
830 if (err
== MOVE_TARGET_BITFLIPS
|| err
== MOVE_TARGET_WR_ERR
||
831 err
== MOVE_TARGET_RD_ERR
) {
833 * Target PEB had bit-flips or write error - torture it.
840 if (err
== MOVE_SOURCE_RD_ERR
) {
842 * An error happened while reading the source PEB. Do
843 * not switch to R/O mode in this case, and give the
844 * upper layers a possibility to recover from this,
845 * e.g. by unmapping corresponding LEB. Instead, just
846 * put this PEB to the @ubi->erroneous list to prevent
847 * UBI from trying to move it over and over again.
849 if (ubi
->erroneous_peb_count
> ubi
->max_erroneous
) {
850 ubi_err(ubi
, "too many erroneous eraseblocks (%d)",
851 ubi
->erroneous_peb_count
);
865 /* The PEB has been successfully moved */
867 ubi_msg(ubi
, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
868 e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
869 ubi_free_vid_buf(vidb
);
871 spin_lock(&ubi
->wl_lock
);
872 if (!ubi
->move_to_put
) {
873 wl_tree_add(e2
, &ubi
->used
);
876 ubi
->move_from
= ubi
->move_to
= NULL
;
877 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
878 spin_unlock(&ubi
->wl_lock
);
880 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 0);
883 wl_entry_destroy(ubi
, e2
);
889 * Well, the target PEB was put meanwhile, schedule it for
892 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
893 e2
->pnum
, vol_id
, lnum
);
894 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, 0);
900 mutex_unlock(&ubi
->move_mutex
);
901 up_read(&ubi
->fm_eba_sem
);
905 * For some reasons the LEB was not moved, might be an error, might be
906 * something else. @e1 was not changed, so return it back. @e2 might
907 * have been changed, schedule it for erasure.
911 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
912 e1
->pnum
, vol_id
, lnum
, e2
->pnum
, err
);
914 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
915 e1
->pnum
, e2
->pnum
, err
);
916 spin_lock(&ubi
->wl_lock
);
918 prot_queue_add(ubi
, e1
);
919 else if (erroneous
) {
920 wl_tree_add(e1
, &ubi
->erroneous
);
921 ubi
->erroneous_peb_count
+= 1;
922 } else if (scrubbing
)
923 wl_tree_add(e1
, &ubi
->scrub
);
925 wl_tree_add(e1
, &ubi
->used
);
927 wl_tree_add(e2
, &ubi
->free
);
931 ubi_assert(!ubi
->move_to_put
);
932 ubi
->move_from
= ubi
->move_to
= NULL
;
933 ubi
->wl_scheduled
= 0;
934 spin_unlock(&ubi
->wl_lock
);
936 ubi_free_vid_buf(vidb
);
938 ensure_wear_leveling(ubi
, 1);
940 err
= do_sync_erase(ubi
, e2
, vol_id
, lnum
, torture
);
946 err
= do_sync_erase(ubi
, e1
, vol_id
, lnum
, 1);
951 mutex_unlock(&ubi
->move_mutex
);
952 up_read(&ubi
->fm_eba_sem
);
957 ubi_err(ubi
, "error %d while moving PEB %d to PEB %d",
958 err
, e1
->pnum
, e2
->pnum
);
960 ubi_err(ubi
, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
961 err
, e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
962 spin_lock(&ubi
->wl_lock
);
963 ubi
->move_from
= ubi
->move_to
= NULL
;
964 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
965 spin_unlock(&ubi
->wl_lock
);
967 ubi_free_vid_buf(vidb
);
968 wl_entry_destroy(ubi
, e1
);
969 wl_entry_destroy(ubi
, e2
);
973 mutex_unlock(&ubi
->move_mutex
);
974 up_read(&ubi
->fm_eba_sem
);
975 ubi_assert(err
!= 0);
976 return err
< 0 ? err
: -EIO
;
979 ubi
->wl_scheduled
= 0;
980 spin_unlock(&ubi
->wl_lock
);
981 mutex_unlock(&ubi
->move_mutex
);
982 up_read(&ubi
->fm_eba_sem
);
983 ubi_free_vid_buf(vidb
);
988 * ensure_wear_leveling - schedule wear-leveling if it is needed.
989 * @ubi: UBI device description object
990 * @nested: set to non-zero if this function is called from UBI worker
992 * This function checks if it is time to start wear-leveling and schedules it
993 * if yes. This function returns zero in case of success and a negative error
994 * code in case of failure.
996 static int ensure_wear_leveling(struct ubi_device
*ubi
, int nested
)
999 struct ubi_wl_entry
*e1
;
1000 struct ubi_wl_entry
*e2
;
1001 struct ubi_work
*wrk
;
1003 spin_lock(&ubi
->wl_lock
);
1004 if (ubi
->wl_scheduled
)
1005 /* Wear-leveling is already in the work queue */
1009 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1010 * the WL worker has to be scheduled anyway.
1012 if (!ubi
->scrub
.rb_node
) {
1013 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
1014 /* No physical eraseblocks - no deal */
1018 * We schedule wear-leveling only if the difference between the
1019 * lowest erase counter of used physical eraseblocks and a high
1020 * erase counter of free physical eraseblocks is greater than
1021 * %UBI_WL_THRESHOLD.
1023 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
1024 e2
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
);
1026 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
1028 dbg_wl("schedule wear-leveling");
1030 dbg_wl("schedule scrubbing");
1032 ubi
->wl_scheduled
= 1;
1033 spin_unlock(&ubi
->wl_lock
);
1035 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
1041 wrk
->func
= &wear_leveling_worker
;
1043 __schedule_ubi_work(ubi
, wrk
);
1045 schedule_ubi_work(ubi
, wrk
);
1049 spin_lock(&ubi
->wl_lock
);
1050 ubi
->wl_scheduled
= 0;
1052 spin_unlock(&ubi
->wl_lock
);
1057 * __erase_worker - physical eraseblock erase worker function.
1058 * @ubi: UBI device description object
1059 * @wl_wrk: the work object
1060 * @shutdown: non-zero if the worker has to free memory and exit
1061 * because the WL sub-system is shutting down
1063 * This function erases a physical eraseblock and perform torture testing if
1064 * needed. It also takes care about marking the physical eraseblock bad if
1065 * needed. Returns zero in case of success and a negative error code in case of
1068 static int __erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
)
1070 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1072 int vol_id
= wl_wrk
->vol_id
;
1073 int lnum
= wl_wrk
->lnum
;
1074 int err
, available_consumed
= 0;
1076 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077 pnum
, e
->ec
, wl_wrk
->vol_id
, wl_wrk
->lnum
);
1079 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
1081 spin_lock(&ubi
->wl_lock
);
1083 if (!ubi
->fm_anchor
&& e
->pnum
< UBI_FM_MAX_START
) {
1085 ubi
->fm_do_produce_anchor
= 0;
1087 wl_tree_add(e
, &ubi
->free
);
1091 spin_unlock(&ubi
->wl_lock
);
1094 * One more erase operation has happened, take care about
1095 * protected physical eraseblocks.
1097 serve_prot_queue(ubi
);
1099 /* And take care about wear-leveling */
1100 err
= ensure_wear_leveling(ubi
, 1);
1104 ubi_err(ubi
, "failed to erase PEB %d, error %d", pnum
, err
);
1106 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1110 /* Re-schedule the LEB for erasure */
1111 err1
= schedule_erase(ubi
, e
, vol_id
, lnum
, 0, false);
1113 wl_entry_destroy(ubi
, e
);
1120 wl_entry_destroy(ubi
, e
);
1123 * If this is not %-EIO, we have no idea what to do. Scheduling
1124 * this physical eraseblock for erasure again would cause
1125 * errors again and again. Well, lets switch to R/O mode.
1129 /* It is %-EIO, the PEB went bad */
1131 if (!ubi
->bad_allowed
) {
1132 ubi_err(ubi
, "bad physical eraseblock %d detected", pnum
);
1136 spin_lock(&ubi
->volumes_lock
);
1137 if (ubi
->beb_rsvd_pebs
== 0) {
1138 if (ubi
->avail_pebs
== 0) {
1139 spin_unlock(&ubi
->volumes_lock
);
1140 ubi_err(ubi
, "no reserved/available physical eraseblocks");
1143 ubi
->avail_pebs
-= 1;
1144 available_consumed
= 1;
1146 spin_unlock(&ubi
->volumes_lock
);
1148 ubi_msg(ubi
, "mark PEB %d as bad", pnum
);
1149 err
= ubi_io_mark_bad(ubi
, pnum
);
1153 spin_lock(&ubi
->volumes_lock
);
1154 if (ubi
->beb_rsvd_pebs
> 0) {
1155 if (available_consumed
) {
1157 * The amount of reserved PEBs increased since we last
1160 ubi
->avail_pebs
+= 1;
1161 available_consumed
= 0;
1163 ubi
->beb_rsvd_pebs
-= 1;
1165 ubi
->bad_peb_count
+= 1;
1166 ubi
->good_peb_count
-= 1;
1167 ubi_calculate_reserved(ubi
);
1168 if (available_consumed
)
1169 ubi_warn(ubi
, "no PEBs in the reserved pool, used an available PEB");
1170 else if (ubi
->beb_rsvd_pebs
)
1171 ubi_msg(ubi
, "%d PEBs left in the reserve",
1172 ubi
->beb_rsvd_pebs
);
1174 ubi_warn(ubi
, "last PEB from the reserve was used");
1175 spin_unlock(&ubi
->volumes_lock
);
1180 if (available_consumed
) {
1181 spin_lock(&ubi
->volumes_lock
);
1182 ubi
->avail_pebs
+= 1;
1183 spin_unlock(&ubi
->volumes_lock
);
1189 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
1195 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1197 dbg_wl("cancel erasure of PEB %d EC %d", e
->pnum
, e
->ec
);
1199 wl_entry_destroy(ubi
, e
);
1203 ret
= __erase_worker(ubi
, wl_wrk
);
1209 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1210 * @ubi: UBI device description object
1211 * @vol_id: the volume ID that last used this PEB
1212 * @lnum: the last used logical eraseblock number for the PEB
1213 * @pnum: physical eraseblock to return
1214 * @torture: if this physical eraseblock has to be tortured
1216 * This function is called to return physical eraseblock @pnum to the pool of
1217 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1218 * occurred to this @pnum and it has to be tested. This function returns zero
1219 * in case of success, and a negative error code in case of failure.
1221 int ubi_wl_put_peb(struct ubi_device
*ubi
, int vol_id
, int lnum
,
1222 int pnum
, int torture
)
1225 struct ubi_wl_entry
*e
;
1227 dbg_wl("PEB %d", pnum
);
1228 ubi_assert(pnum
>= 0);
1229 ubi_assert(pnum
< ubi
->peb_count
);
1231 down_read(&ubi
->fm_protect
);
1234 spin_lock(&ubi
->wl_lock
);
1235 e
= ubi
->lookuptbl
[pnum
];
1236 if (e
== ubi
->move_from
) {
1238 * User is putting the physical eraseblock which was selected to
1239 * be moved. It will be scheduled for erasure in the
1240 * wear-leveling worker.
1242 dbg_wl("PEB %d is being moved, wait", pnum
);
1243 spin_unlock(&ubi
->wl_lock
);
1245 /* Wait for the WL worker by taking the @ubi->move_mutex */
1246 mutex_lock(&ubi
->move_mutex
);
1247 mutex_unlock(&ubi
->move_mutex
);
1249 } else if (e
== ubi
->move_to
) {
1251 * User is putting the physical eraseblock which was selected
1252 * as the target the data is moved to. It may happen if the EBA
1253 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1254 * but the WL sub-system has not put the PEB to the "used" tree
1255 * yet, but it is about to do this. So we just set a flag which
1256 * will tell the WL worker that the PEB is not needed anymore
1257 * and should be scheduled for erasure.
1259 dbg_wl("PEB %d is the target of data moving", pnum
);
1260 ubi_assert(!ubi
->move_to_put
);
1261 ubi
->move_to_put
= 1;
1262 spin_unlock(&ubi
->wl_lock
);
1263 up_read(&ubi
->fm_protect
);
1266 if (in_wl_tree(e
, &ubi
->used
)) {
1267 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1268 rb_erase(&e
->u
.rb
, &ubi
->used
);
1269 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1270 self_check_in_wl_tree(ubi
, e
, &ubi
->scrub
);
1271 rb_erase(&e
->u
.rb
, &ubi
->scrub
);
1272 } else if (in_wl_tree(e
, &ubi
->erroneous
)) {
1273 self_check_in_wl_tree(ubi
, e
, &ubi
->erroneous
);
1274 rb_erase(&e
->u
.rb
, &ubi
->erroneous
);
1275 ubi
->erroneous_peb_count
-= 1;
1276 ubi_assert(ubi
->erroneous_peb_count
>= 0);
1277 /* Erroneous PEBs should be tortured */
1280 err
= prot_queue_del(ubi
, e
->pnum
);
1282 ubi_err(ubi
, "PEB %d not found", pnum
);
1284 spin_unlock(&ubi
->wl_lock
);
1285 up_read(&ubi
->fm_protect
);
1290 spin_unlock(&ubi
->wl_lock
);
1292 err
= schedule_erase(ubi
, e
, vol_id
, lnum
, torture
, false);
1294 spin_lock(&ubi
->wl_lock
);
1295 wl_tree_add(e
, &ubi
->used
);
1296 spin_unlock(&ubi
->wl_lock
);
1299 up_read(&ubi
->fm_protect
);
1304 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1305 * @ubi: UBI device description object
1306 * @pnum: the physical eraseblock to schedule
1308 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1309 * needs scrubbing. This function schedules a physical eraseblock for
1310 * scrubbing which is done in background. This function returns zero in case of
1311 * success and a negative error code in case of failure.
1313 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1315 struct ubi_wl_entry
*e
;
1317 ubi_msg(ubi
, "schedule PEB %d for scrubbing", pnum
);
1320 spin_lock(&ubi
->wl_lock
);
1321 e
= ubi
->lookuptbl
[pnum
];
1322 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
) ||
1323 in_wl_tree(e
, &ubi
->erroneous
)) {
1324 spin_unlock(&ubi
->wl_lock
);
1328 if (e
== ubi
->move_to
) {
1330 * This physical eraseblock was used to move data to. The data
1331 * was moved but the PEB was not yet inserted to the proper
1332 * tree. We should just wait a little and let the WL worker
1335 spin_unlock(&ubi
->wl_lock
);
1336 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1341 if (in_wl_tree(e
, &ubi
->used
)) {
1342 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1343 rb_erase(&e
->u
.rb
, &ubi
->used
);
1347 err
= prot_queue_del(ubi
, e
->pnum
);
1349 ubi_err(ubi
, "PEB %d not found", pnum
);
1351 spin_unlock(&ubi
->wl_lock
);
1356 wl_tree_add(e
, &ubi
->scrub
);
1357 spin_unlock(&ubi
->wl_lock
);
1360 * Technically scrubbing is the same as wear-leveling, so it is done
1363 return ensure_wear_leveling(ubi
, 0);
1367 * ubi_wl_flush - flush all pending works.
1368 * @ubi: UBI device description object
1369 * @vol_id: the volume id to flush for
1370 * @lnum: the logical eraseblock number to flush for
1372 * This function executes all pending works for a particular volume id /
1373 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1374 * acts as a wildcard for all of the corresponding volume numbers or logical
1375 * eraseblock numbers. It returns zero in case of success and a negative error
1376 * code in case of failure.
1378 int ubi_wl_flush(struct ubi_device
*ubi
, int vol_id
, int lnum
)
1384 * Erase while the pending works queue is not empty, but not more than
1385 * the number of currently pending works.
1387 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1388 vol_id
, lnum
, ubi
->works_count
);
1391 struct ubi_work
*wrk
, *tmp
;
1394 down_read(&ubi
->work_sem
);
1395 spin_lock(&ubi
->wl_lock
);
1396 list_for_each_entry_safe(wrk
, tmp
, &ubi
->works
, list
) {
1397 if ((vol_id
== UBI_ALL
|| wrk
->vol_id
== vol_id
) &&
1398 (lnum
== UBI_ALL
|| wrk
->lnum
== lnum
)) {
1399 list_del(&wrk
->list
);
1400 ubi
->works_count
-= 1;
1401 ubi_assert(ubi
->works_count
>= 0);
1402 spin_unlock(&ubi
->wl_lock
);
1404 err
= wrk
->func(ubi
, wrk
, 0);
1406 up_read(&ubi
->work_sem
);
1410 spin_lock(&ubi
->wl_lock
);
1415 spin_unlock(&ubi
->wl_lock
);
1416 up_read(&ubi
->work_sem
);
1420 * Make sure all the works which have been done in parallel are
1423 down_write(&ubi
->work_sem
);
1424 up_write(&ubi
->work_sem
);
1429 static bool scrub_possible(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
1431 if (in_wl_tree(e
, &ubi
->scrub
))
1433 else if (in_wl_tree(e
, &ubi
->erroneous
))
1435 else if (ubi
->move_from
== e
)
1437 else if (ubi
->move_to
== e
)
1444 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1445 * @ubi: UBI device description object
1446 * @pnum: the physical eraseblock to schedule
1447 * @force: dont't read the block, assume bitflips happened and take action.
1449 * This function reads the given eraseblock and checks if bitflips occured.
1450 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1451 * If scrubbing is forced with @force, the eraseblock is not read,
1452 * but scheduled for scrubbing right away.
1455 * %EINVAL, PEB is out of range
1456 * %ENOENT, PEB is no longer used by UBI
1457 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1458 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1459 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1460 * %0, no bit flips detected
1462 int ubi_bitflip_check(struct ubi_device
*ubi
, int pnum
, int force
)
1465 struct ubi_wl_entry
*e
;
1467 if (pnum
< 0 || pnum
>= ubi
->peb_count
) {
1473 * Pause all parallel work, otherwise it can happen that the
1474 * erase worker frees a wl entry under us.
1476 down_write(&ubi
->work_sem
);
1479 * Make sure that the wl entry does not change state while
1482 spin_lock(&ubi
->wl_lock
);
1483 e
= ubi
->lookuptbl
[pnum
];
1485 spin_unlock(&ubi
->wl_lock
);
1491 * Does it make sense to check this PEB?
1493 if (!scrub_possible(ubi
, e
)) {
1494 spin_unlock(&ubi
->wl_lock
);
1498 spin_unlock(&ubi
->wl_lock
);
1501 mutex_lock(&ubi
->buf_mutex
);
1502 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
1503 mutex_unlock(&ubi
->buf_mutex
);
1506 if (force
|| err
== UBI_IO_BITFLIPS
) {
1508 * Okay, bit flip happened, let's figure out what we can do.
1510 spin_lock(&ubi
->wl_lock
);
1513 * Recheck. We released wl_lock, UBI might have killed the
1514 * wl entry under us.
1516 e
= ubi
->lookuptbl
[pnum
];
1518 spin_unlock(&ubi
->wl_lock
);
1524 * Need to re-check state
1526 if (!scrub_possible(ubi
, e
)) {
1527 spin_unlock(&ubi
->wl_lock
);
1532 if (in_pq(ubi
, e
)) {
1533 prot_queue_del(ubi
, e
->pnum
);
1534 wl_tree_add(e
, &ubi
->scrub
);
1535 spin_unlock(&ubi
->wl_lock
);
1537 err
= ensure_wear_leveling(ubi
, 1);
1538 } else if (in_wl_tree(e
, &ubi
->used
)) {
1539 rb_erase(&e
->u
.rb
, &ubi
->used
);
1540 wl_tree_add(e
, &ubi
->scrub
);
1541 spin_unlock(&ubi
->wl_lock
);
1543 err
= ensure_wear_leveling(ubi
, 1);
1544 } else if (in_wl_tree(e
, &ubi
->free
)) {
1545 rb_erase(&e
->u
.rb
, &ubi
->free
);
1547 spin_unlock(&ubi
->wl_lock
);
1550 * This PEB is empty we can schedule it for
1551 * erasure right away. No wear leveling needed.
1553 err
= schedule_erase(ubi
, e
, UBI_UNKNOWN
, UBI_UNKNOWN
,
1554 force
? 0 : 1, true);
1556 spin_unlock(&ubi
->wl_lock
);
1567 up_write(&ubi
->work_sem
);
1574 * tree_destroy - destroy an RB-tree.
1575 * @ubi: UBI device description object
1576 * @root: the root of the tree to destroy
1578 static void tree_destroy(struct ubi_device
*ubi
, struct rb_root
*root
)
1581 struct ubi_wl_entry
*e
;
1587 else if (rb
->rb_right
)
1590 e
= rb_entry(rb
, struct ubi_wl_entry
, u
.rb
);
1594 if (rb
->rb_left
== &e
->u
.rb
)
1597 rb
->rb_right
= NULL
;
1600 wl_entry_destroy(ubi
, e
);
1606 * ubi_thread - UBI background thread.
1607 * @u: the UBI device description object pointer
1609 int ubi_thread(void *u
)
1612 struct ubi_device
*ubi
= u
;
1614 ubi_msg(ubi
, "background thread \"%s\" started, PID %d",
1615 ubi
->bgt_name
, task_pid_nr(current
));
1621 if (kthread_should_stop())
1624 if (try_to_freeze())
1627 spin_lock(&ubi
->wl_lock
);
1628 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1629 !ubi
->thread_enabled
|| ubi_dbg_is_bgt_disabled(ubi
)) {
1630 set_current_state(TASK_INTERRUPTIBLE
);
1631 spin_unlock(&ubi
->wl_lock
);
1635 spin_unlock(&ubi
->wl_lock
);
1639 ubi_err(ubi
, "%s: work failed with error code %d",
1640 ubi
->bgt_name
, err
);
1641 if (failures
++ > WL_MAX_FAILURES
) {
1643 * Too many failures, disable the thread and
1644 * switch to read-only mode.
1646 ubi_msg(ubi
, "%s: %d consecutive failures",
1647 ubi
->bgt_name
, WL_MAX_FAILURES
);
1649 ubi
->thread_enabled
= 0;
1658 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1659 ubi
->thread_enabled
= 0;
1664 * shutdown_work - shutdown all pending works.
1665 * @ubi: UBI device description object
1667 static void shutdown_work(struct ubi_device
*ubi
)
1669 while (!list_empty(&ubi
->works
)) {
1670 struct ubi_work
*wrk
;
1672 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1673 list_del(&wrk
->list
);
1674 wrk
->func(ubi
, wrk
, 1);
1675 ubi
->works_count
-= 1;
1676 ubi_assert(ubi
->works_count
>= 0);
1681 * erase_aeb - erase a PEB given in UBI attach info PEB
1682 * @ubi: UBI device description object
1683 * @aeb: UBI attach info PEB
1684 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1686 static int erase_aeb(struct ubi_device
*ubi
, struct ubi_ainf_peb
*aeb
, bool sync
)
1688 struct ubi_wl_entry
*e
;
1691 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1695 e
->pnum
= aeb
->pnum
;
1697 ubi
->lookuptbl
[e
->pnum
] = e
;
1700 err
= sync_erase(ubi
, e
, false);
1704 wl_tree_add(e
, &ubi
->free
);
1707 err
= schedule_erase(ubi
, e
, aeb
->vol_id
, aeb
->lnum
, 0, false);
1715 wl_entry_destroy(ubi
, e
);
1721 * ubi_wl_init - initialize the WL sub-system using attaching information.
1722 * @ubi: UBI device description object
1723 * @ai: attaching information
1725 * This function returns zero in case of success, and a negative error code in
1728 int ubi_wl_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1730 int err
, i
, reserved_pebs
, found_pebs
= 0;
1731 struct rb_node
*rb1
, *rb2
;
1732 struct ubi_ainf_volume
*av
;
1733 struct ubi_ainf_peb
*aeb
, *tmp
;
1734 struct ubi_wl_entry
*e
;
1736 ubi
->used
= ubi
->erroneous
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1737 spin_lock_init(&ubi
->wl_lock
);
1738 mutex_init(&ubi
->move_mutex
);
1739 init_rwsem(&ubi
->work_sem
);
1740 ubi
->max_ec
= ai
->max_ec
;
1741 INIT_LIST_HEAD(&ubi
->works
);
1743 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1746 ubi
->lookuptbl
= kcalloc(ubi
->peb_count
, sizeof(void *), GFP_KERNEL
);
1747 if (!ubi
->lookuptbl
)
1750 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; i
++)
1751 INIT_LIST_HEAD(&ubi
->pq
[i
]);
1754 ubi
->free_count
= 0;
1755 list_for_each_entry_safe(aeb
, tmp
, &ai
->erase
, u
.list
) {
1758 err
= erase_aeb(ubi
, aeb
, false);
1765 list_for_each_entry(aeb
, &ai
->free
, u
.list
) {
1768 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1774 e
->pnum
= aeb
->pnum
;
1776 ubi_assert(e
->ec
>= 0);
1778 wl_tree_add(e
, &ubi
->free
);
1781 ubi
->lookuptbl
[e
->pnum
] = e
;
1786 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1787 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1790 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1796 e
->pnum
= aeb
->pnum
;
1798 ubi
->lookuptbl
[e
->pnum
] = e
;
1801 dbg_wl("add PEB %d EC %d to the used tree",
1803 wl_tree_add(e
, &ubi
->used
);
1805 dbg_wl("add PEB %d EC %d to the scrub tree",
1807 wl_tree_add(e
, &ubi
->scrub
);
1814 list_for_each_entry(aeb
, &ai
->fastmap
, u
.list
) {
1817 e
= ubi_find_fm_block(ubi
, aeb
->pnum
);
1820 ubi_assert(!ubi
->lookuptbl
[e
->pnum
]);
1821 ubi
->lookuptbl
[e
->pnum
] = e
;
1826 * Usually old Fastmap PEBs are scheduled for erasure
1827 * and we don't have to care about them but if we face
1828 * an power cut before scheduling them we need to
1829 * take care of them here.
1831 if (ubi
->lookuptbl
[aeb
->pnum
])
1835 * The fastmap update code might not find a free PEB for
1836 * writing the fastmap anchor to and then reuses the
1837 * current fastmap anchor PEB. When this PEB gets erased
1838 * and a power cut happens before it is written again we
1839 * must make sure that the fastmap attach code doesn't
1840 * find any outdated fastmap anchors, hence we erase the
1841 * outdated fastmap anchor PEBs synchronously here.
1843 if (aeb
->vol_id
== UBI_FM_SB_VOLUME_ID
)
1846 err
= erase_aeb(ubi
, aeb
, sync
);
1854 dbg_wl("found %i PEBs", found_pebs
);
1856 ubi_assert(ubi
->good_peb_count
== found_pebs
);
1858 reserved_pebs
= WL_RESERVED_PEBS
;
1859 ubi_fastmap_init(ubi
, &reserved_pebs
);
1861 if (ubi
->avail_pebs
< reserved_pebs
) {
1862 ubi_err(ubi
, "no enough physical eraseblocks (%d, need %d)",
1863 ubi
->avail_pebs
, reserved_pebs
);
1864 if (ubi
->corr_peb_count
)
1865 ubi_err(ubi
, "%d PEBs are corrupted and not used",
1866 ubi
->corr_peb_count
);
1870 ubi
->avail_pebs
-= reserved_pebs
;
1871 ubi
->rsvd_pebs
+= reserved_pebs
;
1873 /* Schedule wear-leveling if needed */
1874 err
= ensure_wear_leveling(ubi
, 0);
1878 #ifdef CONFIG_MTD_UBI_FASTMAP
1879 ubi_ensure_anchor_pebs(ubi
);
1885 tree_destroy(ubi
, &ubi
->used
);
1886 tree_destroy(ubi
, &ubi
->free
);
1887 tree_destroy(ubi
, &ubi
->scrub
);
1888 kfree(ubi
->lookuptbl
);
1893 * protection_queue_destroy - destroy the protection queue.
1894 * @ubi: UBI device description object
1896 static void protection_queue_destroy(struct ubi_device
*ubi
)
1899 struct ubi_wl_entry
*e
, *tmp
;
1901 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
) {
1902 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[i
], u
.list
) {
1903 list_del(&e
->u
.list
);
1904 wl_entry_destroy(ubi
, e
);
1910 * ubi_wl_close - close the wear-leveling sub-system.
1911 * @ubi: UBI device description object
1913 void ubi_wl_close(struct ubi_device
*ubi
)
1915 dbg_wl("close the WL sub-system");
1916 ubi_fastmap_close(ubi
);
1918 protection_queue_destroy(ubi
);
1919 tree_destroy(ubi
, &ubi
->used
);
1920 tree_destroy(ubi
, &ubi
->erroneous
);
1921 tree_destroy(ubi
, &ubi
->free
);
1922 tree_destroy(ubi
, &ubi
->scrub
);
1923 kfree(ubi
->lookuptbl
);
1927 * self_check_ec - make sure that the erase counter of a PEB is correct.
1928 * @ubi: UBI device description object
1929 * @pnum: the physical eraseblock number to check
1930 * @ec: the erase counter to check
1932 * This function returns zero if the erase counter of physical eraseblock @pnum
1933 * is equivalent to @ec, and a negative error code if not or if an error
1936 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1940 struct ubi_ec_hdr
*ec_hdr
;
1942 if (!ubi_dbg_chk_gen(ubi
))
1945 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1949 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1950 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1951 /* The header does not have to exist */
1956 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1957 if (ec
!= read_ec
&& read_ec
- ec
> 1) {
1958 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1959 ubi_err(ubi
, "read EC is %lld, should be %d", read_ec
, ec
);
1971 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1972 * @ubi: UBI device description object
1973 * @e: the wear-leveling entry to check
1974 * @root: the root of the tree
1976 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1979 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
1980 struct ubi_wl_entry
*e
, struct rb_root
*root
)
1982 if (!ubi_dbg_chk_gen(ubi
))
1985 if (in_wl_tree(e
, root
))
1988 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1989 e
->pnum
, e
->ec
, root
);
1995 * self_check_in_pq - check if wear-leveling entry is in the protection
1997 * @ubi: UBI device description object
1998 * @e: the wear-leveling entry to check
2000 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2002 static int self_check_in_pq(const struct ubi_device
*ubi
,
2003 struct ubi_wl_entry
*e
)
2005 if (!ubi_dbg_chk_gen(ubi
))
2011 ubi_err(ubi
, "self-check failed for PEB %d, EC %d, Protect queue",
2016 #ifndef CONFIG_MTD_UBI_FASTMAP
2017 static struct ubi_wl_entry
*get_peb_for_wl(struct ubi_device
*ubi
)
2019 struct ubi_wl_entry
*e
;
2021 e
= find_wl_entry(ubi
, &ubi
->free
, WL_FREE_MAX_DIFF
);
2022 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
2024 ubi_assert(ubi
->free_count
>= 0);
2025 rb_erase(&e
->u
.rb
, &ubi
->free
);
2031 * produce_free_peb - produce a free physical eraseblock.
2032 * @ubi: UBI device description object
2034 * This function tries to make a free PEB by means of synchronous execution of
2035 * pending works. This may be needed if, for example the background thread is
2036 * disabled. Returns zero in case of success and a negative error code in case
2039 static int produce_free_peb(struct ubi_device
*ubi
)
2043 while (!ubi
->free
.rb_node
&& ubi
->works_count
) {
2044 spin_unlock(&ubi
->wl_lock
);
2046 dbg_wl("do one work synchronously");
2049 spin_lock(&ubi
->wl_lock
);
2058 * ubi_wl_get_peb - get a physical eraseblock.
2059 * @ubi: UBI device description object
2061 * This function returns a physical eraseblock in case of success and a
2062 * negative error code in case of failure.
2063 * Returns with ubi->fm_eba_sem held in read mode!
2065 int ubi_wl_get_peb(struct ubi_device
*ubi
)
2068 struct ubi_wl_entry
*e
;
2071 down_read(&ubi
->fm_eba_sem
);
2072 spin_lock(&ubi
->wl_lock
);
2073 if (!ubi
->free
.rb_node
) {
2074 if (ubi
->works_count
== 0) {
2075 ubi_err(ubi
, "no free eraseblocks");
2076 ubi_assert(list_empty(&ubi
->works
));
2077 spin_unlock(&ubi
->wl_lock
);
2081 err
= produce_free_peb(ubi
);
2083 spin_unlock(&ubi
->wl_lock
);
2086 spin_unlock(&ubi
->wl_lock
);
2087 up_read(&ubi
->fm_eba_sem
);
2091 e
= wl_get_wle(ubi
);
2092 prot_queue_add(ubi
, e
);
2093 spin_unlock(&ubi
->wl_lock
);
2095 err
= ubi_self_check_all_ff(ubi
, e
->pnum
, ubi
->vid_hdr_aloffset
,
2096 ubi
->peb_size
- ubi
->vid_hdr_aloffset
);
2098 ubi_err(ubi
, "new PEB %d does not contain all 0xFF bytes", e
->pnum
);
2105 #include "fastmap-wl.c"