usb: xhci: Fix build warning seen with CONFIG_PM=n
[linux/fpc-iii.git] / drivers / mtd / ubi / wl.c
blob5d77a38dba5424da8a6ec6051795dd7abfda3b2a
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
8 /*
9 * UBI wear-leveling sub-system.
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
123 #define WL_MAX_FAILURES 32
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
141 struct rb_node **p, *parent = NULL;
143 p = &root->rb_node;
144 while (*p) {
145 struct ubi_wl_entry *e1;
147 parent = *p;
148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
150 if (e->ec < e1->ec)
151 p = &(*p)->rb_left;
152 else if (e->ec > e1->ec)
153 p = &(*p)->rb_right;
154 else {
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
157 p = &(*p)->rb_left;
158 else
159 p = &(*p)->rb_right;
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
188 static int do_work(struct ubi_device *ubi)
190 int err;
191 struct ubi_work *wrk;
193 cond_resched();
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
201 down_read(&ubi->work_sem);
202 spin_lock(&ubi->wl_lock);
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
205 up_read(&ubi->work_sem);
206 return 0;
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
213 spin_unlock(&ubi->wl_lock);
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
220 err = wrk->func(ubi, wrk, 0);
221 if (err)
222 ubi_err(ubi, "work failed with error code %d", err);
223 up_read(&ubi->work_sem);
225 return err;
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
238 struct rb_node *p;
240 p = root->rb_node;
241 while (p) {
242 struct ubi_wl_entry *e1;
244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
246 if (e->pnum == e1->pnum) {
247 ubi_assert(e == e1);
248 return 1;
251 if (e->ec < e1->ec)
252 p = p->rb_left;
253 else if (e->ec > e1->ec)
254 p = p->rb_right;
255 else {
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
258 p = p->rb_left;
259 else
260 p = p->rb_right;
264 return 0;
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
277 struct ubi_wl_entry *p;
278 int i;
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
282 if (p == e)
283 return 1;
285 return 0;
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
300 int pq_tail = ubi->pq_head - 1;
302 if (pq_tail < 0)
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
321 struct rb_node *p;
322 struct ubi_wl_entry *e, *prev_e = NULL;
323 int max;
325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 max = e->ec + diff;
328 p = root->rb_node;
329 while (p) {
330 struct ubi_wl_entry *e1;
332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 if (e1->ec >= max)
334 p = p->rb_left;
335 else {
336 p = p->rb_right;
337 prev_e = e;
338 e = e1;
342 return e;
346 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
347 * @ubi: UBI device description object
348 * @root: the RB-tree where to look for
350 * This function looks for a wear leveling entry with medium erase counter,
351 * but not greater or equivalent than the lowest erase counter plus
352 * %WL_FREE_MAX_DIFF/2.
354 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
355 struct rb_root *root)
357 struct ubi_wl_entry *e, *first, *last;
359 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
360 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
362 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
363 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
365 /* If no fastmap has been written and this WL entry can be used
366 * as anchor PEB, hold it back and return the second best
367 * WL entry such that fastmap can use the anchor PEB later. */
368 e = may_reserve_for_fm(ubi, e, root);
369 } else
370 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
372 return e;
376 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
377 * refill_wl_user_pool().
378 * @ubi: UBI device description object
380 * This function returns a a wear leveling entry in case of success and
381 * NULL in case of failure.
383 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
385 struct ubi_wl_entry *e;
387 e = find_mean_wl_entry(ubi, &ubi->free);
388 if (!e) {
389 ubi_err(ubi, "no free eraseblocks");
390 return NULL;
393 self_check_in_wl_tree(ubi, e, &ubi->free);
396 * Move the physical eraseblock to the protection queue where it will
397 * be protected from being moved for some time.
399 rb_erase(&e->u.rb, &ubi->free);
400 ubi->free_count--;
401 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
403 return e;
407 * prot_queue_del - remove a physical eraseblock from the protection queue.
408 * @ubi: UBI device description object
409 * @pnum: the physical eraseblock to remove
411 * This function deletes PEB @pnum from the protection queue and returns zero
412 * in case of success and %-ENODEV if the PEB was not found.
414 static int prot_queue_del(struct ubi_device *ubi, int pnum)
416 struct ubi_wl_entry *e;
418 e = ubi->lookuptbl[pnum];
419 if (!e)
420 return -ENODEV;
422 if (self_check_in_pq(ubi, e))
423 return -ENODEV;
425 list_del(&e->u.list);
426 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
427 return 0;
431 * sync_erase - synchronously erase a physical eraseblock.
432 * @ubi: UBI device description object
433 * @e: the the physical eraseblock to erase
434 * @torture: if the physical eraseblock has to be tortured
436 * This function returns zero in case of success and a negative error code in
437 * case of failure.
439 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
440 int torture)
442 int err;
443 struct ubi_ec_hdr *ec_hdr;
444 unsigned long long ec = e->ec;
446 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
448 err = self_check_ec(ubi, e->pnum, e->ec);
449 if (err)
450 return -EINVAL;
452 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
453 if (!ec_hdr)
454 return -ENOMEM;
456 err = ubi_io_sync_erase(ubi, e->pnum, torture);
457 if (err < 0)
458 goto out_free;
460 ec += err;
461 if (ec > UBI_MAX_ERASECOUNTER) {
463 * Erase counter overflow. Upgrade UBI and use 64-bit
464 * erase counters internally.
466 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
467 e->pnum, ec);
468 err = -EINVAL;
469 goto out_free;
472 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
474 ec_hdr->ec = cpu_to_be64(ec);
476 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
477 if (err)
478 goto out_free;
480 e->ec = ec;
481 spin_lock(&ubi->wl_lock);
482 if (e->ec > ubi->max_ec)
483 ubi->max_ec = e->ec;
484 spin_unlock(&ubi->wl_lock);
486 out_free:
487 kfree(ec_hdr);
488 return err;
492 * serve_prot_queue - check if it is time to stop protecting PEBs.
493 * @ubi: UBI device description object
495 * This function is called after each erase operation and removes PEBs from the
496 * tail of the protection queue. These PEBs have been protected for long enough
497 * and should be moved to the used tree.
499 static void serve_prot_queue(struct ubi_device *ubi)
501 struct ubi_wl_entry *e, *tmp;
502 int count;
505 * There may be several protected physical eraseblock to remove,
506 * process them all.
508 repeat:
509 count = 0;
510 spin_lock(&ubi->wl_lock);
511 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
512 dbg_wl("PEB %d EC %d protection over, move to used tree",
513 e->pnum, e->ec);
515 list_del(&e->u.list);
516 wl_tree_add(e, &ubi->used);
517 if (count++ > 32) {
519 * Let's be nice and avoid holding the spinlock for
520 * too long.
522 spin_unlock(&ubi->wl_lock);
523 cond_resched();
524 goto repeat;
528 ubi->pq_head += 1;
529 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
530 ubi->pq_head = 0;
531 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
532 spin_unlock(&ubi->wl_lock);
536 * __schedule_ubi_work - schedule a work.
537 * @ubi: UBI device description object
538 * @wrk: the work to schedule
540 * This function adds a work defined by @wrk to the tail of the pending works
541 * list. Can only be used if ubi->work_sem is already held in read mode!
543 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
545 spin_lock(&ubi->wl_lock);
546 list_add_tail(&wrk->list, &ubi->works);
547 ubi_assert(ubi->works_count >= 0);
548 ubi->works_count += 1;
549 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
550 wake_up_process(ubi->bgt_thread);
551 spin_unlock(&ubi->wl_lock);
555 * schedule_ubi_work - schedule a work.
556 * @ubi: UBI device description object
557 * @wrk: the work to schedule
559 * This function adds a work defined by @wrk to the tail of the pending works
560 * list.
562 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
564 down_read(&ubi->work_sem);
565 __schedule_ubi_work(ubi, wrk);
566 up_read(&ubi->work_sem);
569 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
570 int shutdown);
573 * schedule_erase - schedule an erase work.
574 * @ubi: UBI device description object
575 * @e: the WL entry of the physical eraseblock to erase
576 * @vol_id: the volume ID that last used this PEB
577 * @lnum: the last used logical eraseblock number for the PEB
578 * @torture: if the physical eraseblock has to be tortured
580 * This function returns zero in case of success and a %-ENOMEM in case of
581 * failure.
583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 int vol_id, int lnum, int torture, bool nested)
586 struct ubi_work *wl_wrk;
588 ubi_assert(e);
590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 e->pnum, e->ec, torture);
593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594 if (!wl_wrk)
595 return -ENOMEM;
597 wl_wrk->func = &erase_worker;
598 wl_wrk->e = e;
599 wl_wrk->vol_id = vol_id;
600 wl_wrk->lnum = lnum;
601 wl_wrk->torture = torture;
603 if (nested)
604 __schedule_ubi_work(ubi, wl_wrk);
605 else
606 schedule_ubi_work(ubi, wl_wrk);
607 return 0;
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 int vol_id, int lnum, int torture)
623 struct ubi_work wl_wrk;
625 dbg_wl("sync erase of PEB %i", e->pnum);
627 wl_wrk.e = e;
628 wl_wrk.vol_id = vol_id;
629 wl_wrk.lnum = lnum;
630 wl_wrk.torture = torture;
632 return __erase_worker(ubi, &wl_wrk);
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
645 * failure.
647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648 int shutdown)
650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 struct ubi_wl_entry *e1, *e2;
653 struct ubi_vid_io_buf *vidb;
654 struct ubi_vid_hdr *vid_hdr;
655 int dst_leb_clean = 0;
657 kfree(wrk);
658 if (shutdown)
659 return 0;
661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662 if (!vidb)
663 return -ENOMEM;
665 vid_hdr = ubi_get_vid_hdr(vidb);
667 down_read(&ubi->fm_eba_sem);
668 mutex_lock(&ubi->move_mutex);
669 spin_lock(&ubi->wl_lock);
670 ubi_assert(!ubi->move_from && !ubi->move_to);
671 ubi_assert(!ubi->move_to_put);
673 if (!ubi->free.rb_node ||
674 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
676 * No free physical eraseblocks? Well, they must be waiting in
677 * the queue to be erased. Cancel movement - it will be
678 * triggered again when a free physical eraseblock appears.
680 * No used physical eraseblocks? They must be temporarily
681 * protected from being moved. They will be moved to the
682 * @ubi->used tree later and the wear-leveling will be
683 * triggered again.
685 dbg_wl("cancel WL, a list is empty: free %d, used %d",
686 !ubi->free.rb_node, !ubi->used.rb_node);
687 goto out_cancel;
690 #ifdef CONFIG_MTD_UBI_FASTMAP
691 if (ubi->fm_do_produce_anchor) {
692 e1 = find_anchor_wl_entry(&ubi->used);
693 if (!e1)
694 goto out_cancel;
695 e2 = get_peb_for_wl(ubi);
696 if (!e2)
697 goto out_cancel;
700 * Anchor move within the anchor area is useless.
702 if (e2->pnum < UBI_FM_MAX_START)
703 goto out_cancel;
705 self_check_in_wl_tree(ubi, e1, &ubi->used);
706 rb_erase(&e1->u.rb, &ubi->used);
707 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
708 ubi->fm_do_produce_anchor = 0;
709 } else if (!ubi->scrub.rb_node) {
710 #else
711 if (!ubi->scrub.rb_node) {
712 #endif
714 * Now pick the least worn-out used physical eraseblock and a
715 * highly worn-out free physical eraseblock. If the erase
716 * counters differ much enough, start wear-leveling.
718 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
719 e2 = get_peb_for_wl(ubi);
720 if (!e2)
721 goto out_cancel;
723 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
724 dbg_wl("no WL needed: min used EC %d, max free EC %d",
725 e1->ec, e2->ec);
727 /* Give the unused PEB back */
728 wl_tree_add(e2, &ubi->free);
729 ubi->free_count++;
730 goto out_cancel;
732 self_check_in_wl_tree(ubi, e1, &ubi->used);
733 rb_erase(&e1->u.rb, &ubi->used);
734 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
735 e1->pnum, e1->ec, e2->pnum, e2->ec);
736 } else {
737 /* Perform scrubbing */
738 scrubbing = 1;
739 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
740 e2 = get_peb_for_wl(ubi);
741 if (!e2)
742 goto out_cancel;
744 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
745 rb_erase(&e1->u.rb, &ubi->scrub);
746 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
749 ubi->move_from = e1;
750 ubi->move_to = e2;
751 spin_unlock(&ubi->wl_lock);
754 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
755 * We so far do not know which logical eraseblock our physical
756 * eraseblock (@e1) belongs to. We have to read the volume identifier
757 * header first.
759 * Note, we are protected from this PEB being unmapped and erased. The
760 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
761 * which is being moved was unmapped.
764 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
765 if (err && err != UBI_IO_BITFLIPS) {
766 dst_leb_clean = 1;
767 if (err == UBI_IO_FF) {
769 * We are trying to move PEB without a VID header. UBI
770 * always write VID headers shortly after the PEB was
771 * given, so we have a situation when it has not yet
772 * had a chance to write it, because it was preempted.
773 * So add this PEB to the protection queue so far,
774 * because presumably more data will be written there
775 * (including the missing VID header), and then we'll
776 * move it.
778 dbg_wl("PEB %d has no VID header", e1->pnum);
779 protect = 1;
780 goto out_not_moved;
781 } else if (err == UBI_IO_FF_BITFLIPS) {
783 * The same situation as %UBI_IO_FF, but bit-flips were
784 * detected. It is better to schedule this PEB for
785 * scrubbing.
787 dbg_wl("PEB %d has no VID header but has bit-flips",
788 e1->pnum);
789 scrubbing = 1;
790 goto out_not_moved;
791 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
793 * While a full scan would detect interrupted erasures
794 * at attach time we can face them here when attached from
795 * Fastmap.
797 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
798 e1->pnum);
799 erase = 1;
800 goto out_not_moved;
803 ubi_err(ubi, "error %d while reading VID header from PEB %d",
804 err, e1->pnum);
805 goto out_error;
808 vol_id = be32_to_cpu(vid_hdr->vol_id);
809 lnum = be32_to_cpu(vid_hdr->lnum);
811 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
812 if (err) {
813 if (err == MOVE_CANCEL_RACE) {
815 * The LEB has not been moved because the volume is
816 * being deleted or the PEB has been put meanwhile. We
817 * should prevent this PEB from being selected for
818 * wear-leveling movement again, so put it to the
819 * protection queue.
821 protect = 1;
822 dst_leb_clean = 1;
823 goto out_not_moved;
825 if (err == MOVE_RETRY) {
826 scrubbing = 1;
827 dst_leb_clean = 1;
828 goto out_not_moved;
830 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
831 err == MOVE_TARGET_RD_ERR) {
833 * Target PEB had bit-flips or write error - torture it.
835 torture = 1;
836 keep = 1;
837 goto out_not_moved;
840 if (err == MOVE_SOURCE_RD_ERR) {
842 * An error happened while reading the source PEB. Do
843 * not switch to R/O mode in this case, and give the
844 * upper layers a possibility to recover from this,
845 * e.g. by unmapping corresponding LEB. Instead, just
846 * put this PEB to the @ubi->erroneous list to prevent
847 * UBI from trying to move it over and over again.
849 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
850 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
851 ubi->erroneous_peb_count);
852 goto out_error;
854 dst_leb_clean = 1;
855 erroneous = 1;
856 goto out_not_moved;
859 if (err < 0)
860 goto out_error;
862 ubi_assert(0);
865 /* The PEB has been successfully moved */
866 if (scrubbing)
867 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
868 e1->pnum, vol_id, lnum, e2->pnum);
869 ubi_free_vid_buf(vidb);
871 spin_lock(&ubi->wl_lock);
872 if (!ubi->move_to_put) {
873 wl_tree_add(e2, &ubi->used);
874 e2 = NULL;
876 ubi->move_from = ubi->move_to = NULL;
877 ubi->move_to_put = ubi->wl_scheduled = 0;
878 spin_unlock(&ubi->wl_lock);
880 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
881 if (err) {
882 if (e2)
883 wl_entry_destroy(ubi, e2);
884 goto out_ro;
887 if (e2) {
889 * Well, the target PEB was put meanwhile, schedule it for
890 * erasure.
892 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
893 e2->pnum, vol_id, lnum);
894 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
895 if (err)
896 goto out_ro;
899 dbg_wl("done");
900 mutex_unlock(&ubi->move_mutex);
901 up_read(&ubi->fm_eba_sem);
902 return 0;
905 * For some reasons the LEB was not moved, might be an error, might be
906 * something else. @e1 was not changed, so return it back. @e2 might
907 * have been changed, schedule it for erasure.
909 out_not_moved:
910 if (vol_id != -1)
911 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
912 e1->pnum, vol_id, lnum, e2->pnum, err);
913 else
914 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
915 e1->pnum, e2->pnum, err);
916 spin_lock(&ubi->wl_lock);
917 if (protect)
918 prot_queue_add(ubi, e1);
919 else if (erroneous) {
920 wl_tree_add(e1, &ubi->erroneous);
921 ubi->erroneous_peb_count += 1;
922 } else if (scrubbing)
923 wl_tree_add(e1, &ubi->scrub);
924 else if (keep)
925 wl_tree_add(e1, &ubi->used);
926 if (dst_leb_clean) {
927 wl_tree_add(e2, &ubi->free);
928 ubi->free_count++;
931 ubi_assert(!ubi->move_to_put);
932 ubi->move_from = ubi->move_to = NULL;
933 ubi->wl_scheduled = 0;
934 spin_unlock(&ubi->wl_lock);
936 ubi_free_vid_buf(vidb);
937 if (dst_leb_clean) {
938 ensure_wear_leveling(ubi, 1);
939 } else {
940 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
941 if (err)
942 goto out_ro;
945 if (erase) {
946 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
947 if (err)
948 goto out_ro;
951 mutex_unlock(&ubi->move_mutex);
952 up_read(&ubi->fm_eba_sem);
953 return 0;
955 out_error:
956 if (vol_id != -1)
957 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
958 err, e1->pnum, e2->pnum);
959 else
960 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
961 err, e1->pnum, vol_id, lnum, e2->pnum);
962 spin_lock(&ubi->wl_lock);
963 ubi->move_from = ubi->move_to = NULL;
964 ubi->move_to_put = ubi->wl_scheduled = 0;
965 spin_unlock(&ubi->wl_lock);
967 ubi_free_vid_buf(vidb);
968 wl_entry_destroy(ubi, e1);
969 wl_entry_destroy(ubi, e2);
971 out_ro:
972 ubi_ro_mode(ubi);
973 mutex_unlock(&ubi->move_mutex);
974 up_read(&ubi->fm_eba_sem);
975 ubi_assert(err != 0);
976 return err < 0 ? err : -EIO;
978 out_cancel:
979 ubi->wl_scheduled = 0;
980 spin_unlock(&ubi->wl_lock);
981 mutex_unlock(&ubi->move_mutex);
982 up_read(&ubi->fm_eba_sem);
983 ubi_free_vid_buf(vidb);
984 return 0;
988 * ensure_wear_leveling - schedule wear-leveling if it is needed.
989 * @ubi: UBI device description object
990 * @nested: set to non-zero if this function is called from UBI worker
992 * This function checks if it is time to start wear-leveling and schedules it
993 * if yes. This function returns zero in case of success and a negative error
994 * code in case of failure.
996 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
998 int err = 0;
999 struct ubi_wl_entry *e1;
1000 struct ubi_wl_entry *e2;
1001 struct ubi_work *wrk;
1003 spin_lock(&ubi->wl_lock);
1004 if (ubi->wl_scheduled)
1005 /* Wear-leveling is already in the work queue */
1006 goto out_unlock;
1009 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1010 * the WL worker has to be scheduled anyway.
1012 if (!ubi->scrub.rb_node) {
1013 if (!ubi->used.rb_node || !ubi->free.rb_node)
1014 /* No physical eraseblocks - no deal */
1015 goto out_unlock;
1018 * We schedule wear-leveling only if the difference between the
1019 * lowest erase counter of used physical eraseblocks and a high
1020 * erase counter of free physical eraseblocks is greater than
1021 * %UBI_WL_THRESHOLD.
1023 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1024 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1026 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1027 goto out_unlock;
1028 dbg_wl("schedule wear-leveling");
1029 } else
1030 dbg_wl("schedule scrubbing");
1032 ubi->wl_scheduled = 1;
1033 spin_unlock(&ubi->wl_lock);
1035 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1036 if (!wrk) {
1037 err = -ENOMEM;
1038 goto out_cancel;
1041 wrk->func = &wear_leveling_worker;
1042 if (nested)
1043 __schedule_ubi_work(ubi, wrk);
1044 else
1045 schedule_ubi_work(ubi, wrk);
1046 return err;
1048 out_cancel:
1049 spin_lock(&ubi->wl_lock);
1050 ubi->wl_scheduled = 0;
1051 out_unlock:
1052 spin_unlock(&ubi->wl_lock);
1053 return err;
1057 * __erase_worker - physical eraseblock erase worker function.
1058 * @ubi: UBI device description object
1059 * @wl_wrk: the work object
1060 * @shutdown: non-zero if the worker has to free memory and exit
1061 * because the WL sub-system is shutting down
1063 * This function erases a physical eraseblock and perform torture testing if
1064 * needed. It also takes care about marking the physical eraseblock bad if
1065 * needed. Returns zero in case of success and a negative error code in case of
1066 * failure.
1068 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1070 struct ubi_wl_entry *e = wl_wrk->e;
1071 int pnum = e->pnum;
1072 int vol_id = wl_wrk->vol_id;
1073 int lnum = wl_wrk->lnum;
1074 int err, available_consumed = 0;
1076 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1079 err = sync_erase(ubi, e, wl_wrk->torture);
1080 if (!err) {
1081 spin_lock(&ubi->wl_lock);
1083 if (!ubi->fm_anchor && e->pnum < UBI_FM_MAX_START) {
1084 ubi->fm_anchor = e;
1085 ubi->fm_do_produce_anchor = 0;
1086 } else {
1087 wl_tree_add(e, &ubi->free);
1088 ubi->free_count++;
1091 spin_unlock(&ubi->wl_lock);
1094 * One more erase operation has happened, take care about
1095 * protected physical eraseblocks.
1097 serve_prot_queue(ubi);
1099 /* And take care about wear-leveling */
1100 err = ensure_wear_leveling(ubi, 1);
1101 return err;
1104 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1106 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1107 err == -EBUSY) {
1108 int err1;
1110 /* Re-schedule the LEB for erasure */
1111 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1112 if (err1) {
1113 wl_entry_destroy(ubi, e);
1114 err = err1;
1115 goto out_ro;
1117 return err;
1120 wl_entry_destroy(ubi, e);
1121 if (err != -EIO)
1123 * If this is not %-EIO, we have no idea what to do. Scheduling
1124 * this physical eraseblock for erasure again would cause
1125 * errors again and again. Well, lets switch to R/O mode.
1127 goto out_ro;
1129 /* It is %-EIO, the PEB went bad */
1131 if (!ubi->bad_allowed) {
1132 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1133 goto out_ro;
1136 spin_lock(&ubi->volumes_lock);
1137 if (ubi->beb_rsvd_pebs == 0) {
1138 if (ubi->avail_pebs == 0) {
1139 spin_unlock(&ubi->volumes_lock);
1140 ubi_err(ubi, "no reserved/available physical eraseblocks");
1141 goto out_ro;
1143 ubi->avail_pebs -= 1;
1144 available_consumed = 1;
1146 spin_unlock(&ubi->volumes_lock);
1148 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1149 err = ubi_io_mark_bad(ubi, pnum);
1150 if (err)
1151 goto out_ro;
1153 spin_lock(&ubi->volumes_lock);
1154 if (ubi->beb_rsvd_pebs > 0) {
1155 if (available_consumed) {
1157 * The amount of reserved PEBs increased since we last
1158 * checked.
1160 ubi->avail_pebs += 1;
1161 available_consumed = 0;
1163 ubi->beb_rsvd_pebs -= 1;
1165 ubi->bad_peb_count += 1;
1166 ubi->good_peb_count -= 1;
1167 ubi_calculate_reserved(ubi);
1168 if (available_consumed)
1169 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1170 else if (ubi->beb_rsvd_pebs)
1171 ubi_msg(ubi, "%d PEBs left in the reserve",
1172 ubi->beb_rsvd_pebs);
1173 else
1174 ubi_warn(ubi, "last PEB from the reserve was used");
1175 spin_unlock(&ubi->volumes_lock);
1177 return err;
1179 out_ro:
1180 if (available_consumed) {
1181 spin_lock(&ubi->volumes_lock);
1182 ubi->avail_pebs += 1;
1183 spin_unlock(&ubi->volumes_lock);
1185 ubi_ro_mode(ubi);
1186 return err;
1189 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1190 int shutdown)
1192 int ret;
1194 if (shutdown) {
1195 struct ubi_wl_entry *e = wl_wrk->e;
1197 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1198 kfree(wl_wrk);
1199 wl_entry_destroy(ubi, e);
1200 return 0;
1203 ret = __erase_worker(ubi, wl_wrk);
1204 kfree(wl_wrk);
1205 return ret;
1209 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1210 * @ubi: UBI device description object
1211 * @vol_id: the volume ID that last used this PEB
1212 * @lnum: the last used logical eraseblock number for the PEB
1213 * @pnum: physical eraseblock to return
1214 * @torture: if this physical eraseblock has to be tortured
1216 * This function is called to return physical eraseblock @pnum to the pool of
1217 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1218 * occurred to this @pnum and it has to be tested. This function returns zero
1219 * in case of success, and a negative error code in case of failure.
1221 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1222 int pnum, int torture)
1224 int err;
1225 struct ubi_wl_entry *e;
1227 dbg_wl("PEB %d", pnum);
1228 ubi_assert(pnum >= 0);
1229 ubi_assert(pnum < ubi->peb_count);
1231 down_read(&ubi->fm_protect);
1233 retry:
1234 spin_lock(&ubi->wl_lock);
1235 e = ubi->lookuptbl[pnum];
1236 if (e == ubi->move_from) {
1238 * User is putting the physical eraseblock which was selected to
1239 * be moved. It will be scheduled for erasure in the
1240 * wear-leveling worker.
1242 dbg_wl("PEB %d is being moved, wait", pnum);
1243 spin_unlock(&ubi->wl_lock);
1245 /* Wait for the WL worker by taking the @ubi->move_mutex */
1246 mutex_lock(&ubi->move_mutex);
1247 mutex_unlock(&ubi->move_mutex);
1248 goto retry;
1249 } else if (e == ubi->move_to) {
1251 * User is putting the physical eraseblock which was selected
1252 * as the target the data is moved to. It may happen if the EBA
1253 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1254 * but the WL sub-system has not put the PEB to the "used" tree
1255 * yet, but it is about to do this. So we just set a flag which
1256 * will tell the WL worker that the PEB is not needed anymore
1257 * and should be scheduled for erasure.
1259 dbg_wl("PEB %d is the target of data moving", pnum);
1260 ubi_assert(!ubi->move_to_put);
1261 ubi->move_to_put = 1;
1262 spin_unlock(&ubi->wl_lock);
1263 up_read(&ubi->fm_protect);
1264 return 0;
1265 } else {
1266 if (in_wl_tree(e, &ubi->used)) {
1267 self_check_in_wl_tree(ubi, e, &ubi->used);
1268 rb_erase(&e->u.rb, &ubi->used);
1269 } else if (in_wl_tree(e, &ubi->scrub)) {
1270 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1271 rb_erase(&e->u.rb, &ubi->scrub);
1272 } else if (in_wl_tree(e, &ubi->erroneous)) {
1273 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1274 rb_erase(&e->u.rb, &ubi->erroneous);
1275 ubi->erroneous_peb_count -= 1;
1276 ubi_assert(ubi->erroneous_peb_count >= 0);
1277 /* Erroneous PEBs should be tortured */
1278 torture = 1;
1279 } else {
1280 err = prot_queue_del(ubi, e->pnum);
1281 if (err) {
1282 ubi_err(ubi, "PEB %d not found", pnum);
1283 ubi_ro_mode(ubi);
1284 spin_unlock(&ubi->wl_lock);
1285 up_read(&ubi->fm_protect);
1286 return err;
1290 spin_unlock(&ubi->wl_lock);
1292 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1293 if (err) {
1294 spin_lock(&ubi->wl_lock);
1295 wl_tree_add(e, &ubi->used);
1296 spin_unlock(&ubi->wl_lock);
1299 up_read(&ubi->fm_protect);
1300 return err;
1304 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1305 * @ubi: UBI device description object
1306 * @pnum: the physical eraseblock to schedule
1308 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1309 * needs scrubbing. This function schedules a physical eraseblock for
1310 * scrubbing which is done in background. This function returns zero in case of
1311 * success and a negative error code in case of failure.
1313 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1315 struct ubi_wl_entry *e;
1317 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1319 retry:
1320 spin_lock(&ubi->wl_lock);
1321 e = ubi->lookuptbl[pnum];
1322 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1323 in_wl_tree(e, &ubi->erroneous)) {
1324 spin_unlock(&ubi->wl_lock);
1325 return 0;
1328 if (e == ubi->move_to) {
1330 * This physical eraseblock was used to move data to. The data
1331 * was moved but the PEB was not yet inserted to the proper
1332 * tree. We should just wait a little and let the WL worker
1333 * proceed.
1335 spin_unlock(&ubi->wl_lock);
1336 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1337 yield();
1338 goto retry;
1341 if (in_wl_tree(e, &ubi->used)) {
1342 self_check_in_wl_tree(ubi, e, &ubi->used);
1343 rb_erase(&e->u.rb, &ubi->used);
1344 } else {
1345 int err;
1347 err = prot_queue_del(ubi, e->pnum);
1348 if (err) {
1349 ubi_err(ubi, "PEB %d not found", pnum);
1350 ubi_ro_mode(ubi);
1351 spin_unlock(&ubi->wl_lock);
1352 return err;
1356 wl_tree_add(e, &ubi->scrub);
1357 spin_unlock(&ubi->wl_lock);
1360 * Technically scrubbing is the same as wear-leveling, so it is done
1361 * by the WL worker.
1363 return ensure_wear_leveling(ubi, 0);
1367 * ubi_wl_flush - flush all pending works.
1368 * @ubi: UBI device description object
1369 * @vol_id: the volume id to flush for
1370 * @lnum: the logical eraseblock number to flush for
1372 * This function executes all pending works for a particular volume id /
1373 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1374 * acts as a wildcard for all of the corresponding volume numbers or logical
1375 * eraseblock numbers. It returns zero in case of success and a negative error
1376 * code in case of failure.
1378 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1380 int err = 0;
1381 int found = 1;
1384 * Erase while the pending works queue is not empty, but not more than
1385 * the number of currently pending works.
1387 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1388 vol_id, lnum, ubi->works_count);
1390 while (found) {
1391 struct ubi_work *wrk, *tmp;
1392 found = 0;
1394 down_read(&ubi->work_sem);
1395 spin_lock(&ubi->wl_lock);
1396 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1397 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1398 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1399 list_del(&wrk->list);
1400 ubi->works_count -= 1;
1401 ubi_assert(ubi->works_count >= 0);
1402 spin_unlock(&ubi->wl_lock);
1404 err = wrk->func(ubi, wrk, 0);
1405 if (err) {
1406 up_read(&ubi->work_sem);
1407 return err;
1410 spin_lock(&ubi->wl_lock);
1411 found = 1;
1412 break;
1415 spin_unlock(&ubi->wl_lock);
1416 up_read(&ubi->work_sem);
1420 * Make sure all the works which have been done in parallel are
1421 * finished.
1423 down_write(&ubi->work_sem);
1424 up_write(&ubi->work_sem);
1426 return err;
1429 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1431 if (in_wl_tree(e, &ubi->scrub))
1432 return false;
1433 else if (in_wl_tree(e, &ubi->erroneous))
1434 return false;
1435 else if (ubi->move_from == e)
1436 return false;
1437 else if (ubi->move_to == e)
1438 return false;
1440 return true;
1444 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1445 * @ubi: UBI device description object
1446 * @pnum: the physical eraseblock to schedule
1447 * @force: dont't read the block, assume bitflips happened and take action.
1449 * This function reads the given eraseblock and checks if bitflips occured.
1450 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1451 * If scrubbing is forced with @force, the eraseblock is not read,
1452 * but scheduled for scrubbing right away.
1454 * Returns:
1455 * %EINVAL, PEB is out of range
1456 * %ENOENT, PEB is no longer used by UBI
1457 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1458 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1459 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1460 * %0, no bit flips detected
1462 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1464 int err = 0;
1465 struct ubi_wl_entry *e;
1467 if (pnum < 0 || pnum >= ubi->peb_count) {
1468 err = -EINVAL;
1469 goto out;
1473 * Pause all parallel work, otherwise it can happen that the
1474 * erase worker frees a wl entry under us.
1476 down_write(&ubi->work_sem);
1479 * Make sure that the wl entry does not change state while
1480 * inspecting it.
1482 spin_lock(&ubi->wl_lock);
1483 e = ubi->lookuptbl[pnum];
1484 if (!e) {
1485 spin_unlock(&ubi->wl_lock);
1486 err = -ENOENT;
1487 goto out_resume;
1491 * Does it make sense to check this PEB?
1493 if (!scrub_possible(ubi, e)) {
1494 spin_unlock(&ubi->wl_lock);
1495 err = -EBUSY;
1496 goto out_resume;
1498 spin_unlock(&ubi->wl_lock);
1500 if (!force) {
1501 mutex_lock(&ubi->buf_mutex);
1502 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1503 mutex_unlock(&ubi->buf_mutex);
1506 if (force || err == UBI_IO_BITFLIPS) {
1508 * Okay, bit flip happened, let's figure out what we can do.
1510 spin_lock(&ubi->wl_lock);
1513 * Recheck. We released wl_lock, UBI might have killed the
1514 * wl entry under us.
1516 e = ubi->lookuptbl[pnum];
1517 if (!e) {
1518 spin_unlock(&ubi->wl_lock);
1519 err = -ENOENT;
1520 goto out_resume;
1524 * Need to re-check state
1526 if (!scrub_possible(ubi, e)) {
1527 spin_unlock(&ubi->wl_lock);
1528 err = -EBUSY;
1529 goto out_resume;
1532 if (in_pq(ubi, e)) {
1533 prot_queue_del(ubi, e->pnum);
1534 wl_tree_add(e, &ubi->scrub);
1535 spin_unlock(&ubi->wl_lock);
1537 err = ensure_wear_leveling(ubi, 1);
1538 } else if (in_wl_tree(e, &ubi->used)) {
1539 rb_erase(&e->u.rb, &ubi->used);
1540 wl_tree_add(e, &ubi->scrub);
1541 spin_unlock(&ubi->wl_lock);
1543 err = ensure_wear_leveling(ubi, 1);
1544 } else if (in_wl_tree(e, &ubi->free)) {
1545 rb_erase(&e->u.rb, &ubi->free);
1546 ubi->free_count--;
1547 spin_unlock(&ubi->wl_lock);
1550 * This PEB is empty we can schedule it for
1551 * erasure right away. No wear leveling needed.
1553 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1554 force ? 0 : 1, true);
1555 } else {
1556 spin_unlock(&ubi->wl_lock);
1557 err = -EAGAIN;
1560 if (!err && !force)
1561 err = -EUCLEAN;
1562 } else {
1563 err = 0;
1566 out_resume:
1567 up_write(&ubi->work_sem);
1568 out:
1570 return err;
1574 * tree_destroy - destroy an RB-tree.
1575 * @ubi: UBI device description object
1576 * @root: the root of the tree to destroy
1578 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1580 struct rb_node *rb;
1581 struct ubi_wl_entry *e;
1583 rb = root->rb_node;
1584 while (rb) {
1585 if (rb->rb_left)
1586 rb = rb->rb_left;
1587 else if (rb->rb_right)
1588 rb = rb->rb_right;
1589 else {
1590 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1592 rb = rb_parent(rb);
1593 if (rb) {
1594 if (rb->rb_left == &e->u.rb)
1595 rb->rb_left = NULL;
1596 else
1597 rb->rb_right = NULL;
1600 wl_entry_destroy(ubi, e);
1606 * ubi_thread - UBI background thread.
1607 * @u: the UBI device description object pointer
1609 int ubi_thread(void *u)
1611 int failures = 0;
1612 struct ubi_device *ubi = u;
1614 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1615 ubi->bgt_name, task_pid_nr(current));
1617 set_freezable();
1618 for (;;) {
1619 int err;
1621 if (kthread_should_stop())
1622 break;
1624 if (try_to_freeze())
1625 continue;
1627 spin_lock(&ubi->wl_lock);
1628 if (list_empty(&ubi->works) || ubi->ro_mode ||
1629 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1630 set_current_state(TASK_INTERRUPTIBLE);
1631 spin_unlock(&ubi->wl_lock);
1632 schedule();
1633 continue;
1635 spin_unlock(&ubi->wl_lock);
1637 err = do_work(ubi);
1638 if (err) {
1639 ubi_err(ubi, "%s: work failed with error code %d",
1640 ubi->bgt_name, err);
1641 if (failures++ > WL_MAX_FAILURES) {
1643 * Too many failures, disable the thread and
1644 * switch to read-only mode.
1646 ubi_msg(ubi, "%s: %d consecutive failures",
1647 ubi->bgt_name, WL_MAX_FAILURES);
1648 ubi_ro_mode(ubi);
1649 ubi->thread_enabled = 0;
1650 continue;
1652 } else
1653 failures = 0;
1655 cond_resched();
1658 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1659 ubi->thread_enabled = 0;
1660 return 0;
1664 * shutdown_work - shutdown all pending works.
1665 * @ubi: UBI device description object
1667 static void shutdown_work(struct ubi_device *ubi)
1669 while (!list_empty(&ubi->works)) {
1670 struct ubi_work *wrk;
1672 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1673 list_del(&wrk->list);
1674 wrk->func(ubi, wrk, 1);
1675 ubi->works_count -= 1;
1676 ubi_assert(ubi->works_count >= 0);
1681 * erase_aeb - erase a PEB given in UBI attach info PEB
1682 * @ubi: UBI device description object
1683 * @aeb: UBI attach info PEB
1684 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1686 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1688 struct ubi_wl_entry *e;
1689 int err;
1691 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1692 if (!e)
1693 return -ENOMEM;
1695 e->pnum = aeb->pnum;
1696 e->ec = aeb->ec;
1697 ubi->lookuptbl[e->pnum] = e;
1699 if (sync) {
1700 err = sync_erase(ubi, e, false);
1701 if (err)
1702 goto out_free;
1704 wl_tree_add(e, &ubi->free);
1705 ubi->free_count++;
1706 } else {
1707 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1708 if (err)
1709 goto out_free;
1712 return 0;
1714 out_free:
1715 wl_entry_destroy(ubi, e);
1717 return err;
1721 * ubi_wl_init - initialize the WL sub-system using attaching information.
1722 * @ubi: UBI device description object
1723 * @ai: attaching information
1725 * This function returns zero in case of success, and a negative error code in
1726 * case of failure.
1728 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1730 int err, i, reserved_pebs, found_pebs = 0;
1731 struct rb_node *rb1, *rb2;
1732 struct ubi_ainf_volume *av;
1733 struct ubi_ainf_peb *aeb, *tmp;
1734 struct ubi_wl_entry *e;
1736 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1737 spin_lock_init(&ubi->wl_lock);
1738 mutex_init(&ubi->move_mutex);
1739 init_rwsem(&ubi->work_sem);
1740 ubi->max_ec = ai->max_ec;
1741 INIT_LIST_HEAD(&ubi->works);
1743 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1745 err = -ENOMEM;
1746 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1747 if (!ubi->lookuptbl)
1748 return err;
1750 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1751 INIT_LIST_HEAD(&ubi->pq[i]);
1752 ubi->pq_head = 0;
1754 ubi->free_count = 0;
1755 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1756 cond_resched();
1758 err = erase_aeb(ubi, aeb, false);
1759 if (err)
1760 goto out_free;
1762 found_pebs++;
1765 list_for_each_entry(aeb, &ai->free, u.list) {
1766 cond_resched();
1768 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1769 if (!e) {
1770 err = -ENOMEM;
1771 goto out_free;
1774 e->pnum = aeb->pnum;
1775 e->ec = aeb->ec;
1776 ubi_assert(e->ec >= 0);
1778 wl_tree_add(e, &ubi->free);
1779 ubi->free_count++;
1781 ubi->lookuptbl[e->pnum] = e;
1783 found_pebs++;
1786 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1787 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1788 cond_resched();
1790 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1791 if (!e) {
1792 err = -ENOMEM;
1793 goto out_free;
1796 e->pnum = aeb->pnum;
1797 e->ec = aeb->ec;
1798 ubi->lookuptbl[e->pnum] = e;
1800 if (!aeb->scrub) {
1801 dbg_wl("add PEB %d EC %d to the used tree",
1802 e->pnum, e->ec);
1803 wl_tree_add(e, &ubi->used);
1804 } else {
1805 dbg_wl("add PEB %d EC %d to the scrub tree",
1806 e->pnum, e->ec);
1807 wl_tree_add(e, &ubi->scrub);
1810 found_pebs++;
1814 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1815 cond_resched();
1817 e = ubi_find_fm_block(ubi, aeb->pnum);
1819 if (e) {
1820 ubi_assert(!ubi->lookuptbl[e->pnum]);
1821 ubi->lookuptbl[e->pnum] = e;
1822 } else {
1823 bool sync = false;
1826 * Usually old Fastmap PEBs are scheduled for erasure
1827 * and we don't have to care about them but if we face
1828 * an power cut before scheduling them we need to
1829 * take care of them here.
1831 if (ubi->lookuptbl[aeb->pnum])
1832 continue;
1835 * The fastmap update code might not find a free PEB for
1836 * writing the fastmap anchor to and then reuses the
1837 * current fastmap anchor PEB. When this PEB gets erased
1838 * and a power cut happens before it is written again we
1839 * must make sure that the fastmap attach code doesn't
1840 * find any outdated fastmap anchors, hence we erase the
1841 * outdated fastmap anchor PEBs synchronously here.
1843 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1844 sync = true;
1846 err = erase_aeb(ubi, aeb, sync);
1847 if (err)
1848 goto out_free;
1851 found_pebs++;
1854 dbg_wl("found %i PEBs", found_pebs);
1856 ubi_assert(ubi->good_peb_count == found_pebs);
1858 reserved_pebs = WL_RESERVED_PEBS;
1859 ubi_fastmap_init(ubi, &reserved_pebs);
1861 if (ubi->avail_pebs < reserved_pebs) {
1862 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1863 ubi->avail_pebs, reserved_pebs);
1864 if (ubi->corr_peb_count)
1865 ubi_err(ubi, "%d PEBs are corrupted and not used",
1866 ubi->corr_peb_count);
1867 err = -ENOSPC;
1868 goto out_free;
1870 ubi->avail_pebs -= reserved_pebs;
1871 ubi->rsvd_pebs += reserved_pebs;
1873 /* Schedule wear-leveling if needed */
1874 err = ensure_wear_leveling(ubi, 0);
1875 if (err)
1876 goto out_free;
1878 #ifdef CONFIG_MTD_UBI_FASTMAP
1879 ubi_ensure_anchor_pebs(ubi);
1880 #endif
1881 return 0;
1883 out_free:
1884 shutdown_work(ubi);
1885 tree_destroy(ubi, &ubi->used);
1886 tree_destroy(ubi, &ubi->free);
1887 tree_destroy(ubi, &ubi->scrub);
1888 kfree(ubi->lookuptbl);
1889 return err;
1893 * protection_queue_destroy - destroy the protection queue.
1894 * @ubi: UBI device description object
1896 static void protection_queue_destroy(struct ubi_device *ubi)
1898 int i;
1899 struct ubi_wl_entry *e, *tmp;
1901 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1902 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1903 list_del(&e->u.list);
1904 wl_entry_destroy(ubi, e);
1910 * ubi_wl_close - close the wear-leveling sub-system.
1911 * @ubi: UBI device description object
1913 void ubi_wl_close(struct ubi_device *ubi)
1915 dbg_wl("close the WL sub-system");
1916 ubi_fastmap_close(ubi);
1917 shutdown_work(ubi);
1918 protection_queue_destroy(ubi);
1919 tree_destroy(ubi, &ubi->used);
1920 tree_destroy(ubi, &ubi->erroneous);
1921 tree_destroy(ubi, &ubi->free);
1922 tree_destroy(ubi, &ubi->scrub);
1923 kfree(ubi->lookuptbl);
1927 * self_check_ec - make sure that the erase counter of a PEB is correct.
1928 * @ubi: UBI device description object
1929 * @pnum: the physical eraseblock number to check
1930 * @ec: the erase counter to check
1932 * This function returns zero if the erase counter of physical eraseblock @pnum
1933 * is equivalent to @ec, and a negative error code if not or if an error
1934 * occurred.
1936 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1938 int err;
1939 long long read_ec;
1940 struct ubi_ec_hdr *ec_hdr;
1942 if (!ubi_dbg_chk_gen(ubi))
1943 return 0;
1945 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1946 if (!ec_hdr)
1947 return -ENOMEM;
1949 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1950 if (err && err != UBI_IO_BITFLIPS) {
1951 /* The header does not have to exist */
1952 err = 0;
1953 goto out_free;
1956 read_ec = be64_to_cpu(ec_hdr->ec);
1957 if (ec != read_ec && read_ec - ec > 1) {
1958 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1959 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1960 dump_stack();
1961 err = 1;
1962 } else
1963 err = 0;
1965 out_free:
1966 kfree(ec_hdr);
1967 return err;
1971 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1972 * @ubi: UBI device description object
1973 * @e: the wear-leveling entry to check
1974 * @root: the root of the tree
1976 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1977 * is not.
1979 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1980 struct ubi_wl_entry *e, struct rb_root *root)
1982 if (!ubi_dbg_chk_gen(ubi))
1983 return 0;
1985 if (in_wl_tree(e, root))
1986 return 0;
1988 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1989 e->pnum, e->ec, root);
1990 dump_stack();
1991 return -EINVAL;
1995 * self_check_in_pq - check if wear-leveling entry is in the protection
1996 * queue.
1997 * @ubi: UBI device description object
1998 * @e: the wear-leveling entry to check
2000 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2002 static int self_check_in_pq(const struct ubi_device *ubi,
2003 struct ubi_wl_entry *e)
2005 if (!ubi_dbg_chk_gen(ubi))
2006 return 0;
2008 if (in_pq(ubi, e))
2009 return 0;
2011 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2012 e->pnum, e->ec);
2013 dump_stack();
2014 return -EINVAL;
2016 #ifndef CONFIG_MTD_UBI_FASTMAP
2017 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2019 struct ubi_wl_entry *e;
2021 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2022 self_check_in_wl_tree(ubi, e, &ubi->free);
2023 ubi->free_count--;
2024 ubi_assert(ubi->free_count >= 0);
2025 rb_erase(&e->u.rb, &ubi->free);
2027 return e;
2031 * produce_free_peb - produce a free physical eraseblock.
2032 * @ubi: UBI device description object
2034 * This function tries to make a free PEB by means of synchronous execution of
2035 * pending works. This may be needed if, for example the background thread is
2036 * disabled. Returns zero in case of success and a negative error code in case
2037 * of failure.
2039 static int produce_free_peb(struct ubi_device *ubi)
2041 int err;
2043 while (!ubi->free.rb_node && ubi->works_count) {
2044 spin_unlock(&ubi->wl_lock);
2046 dbg_wl("do one work synchronously");
2047 err = do_work(ubi);
2049 spin_lock(&ubi->wl_lock);
2050 if (err)
2051 return err;
2054 return 0;
2058 * ubi_wl_get_peb - get a physical eraseblock.
2059 * @ubi: UBI device description object
2061 * This function returns a physical eraseblock in case of success and a
2062 * negative error code in case of failure.
2063 * Returns with ubi->fm_eba_sem held in read mode!
2065 int ubi_wl_get_peb(struct ubi_device *ubi)
2067 int err;
2068 struct ubi_wl_entry *e;
2070 retry:
2071 down_read(&ubi->fm_eba_sem);
2072 spin_lock(&ubi->wl_lock);
2073 if (!ubi->free.rb_node) {
2074 if (ubi->works_count == 0) {
2075 ubi_err(ubi, "no free eraseblocks");
2076 ubi_assert(list_empty(&ubi->works));
2077 spin_unlock(&ubi->wl_lock);
2078 return -ENOSPC;
2081 err = produce_free_peb(ubi);
2082 if (err < 0) {
2083 spin_unlock(&ubi->wl_lock);
2084 return err;
2086 spin_unlock(&ubi->wl_lock);
2087 up_read(&ubi->fm_eba_sem);
2088 goto retry;
2091 e = wl_get_wle(ubi);
2092 prot_queue_add(ubi, e);
2093 spin_unlock(&ubi->wl_lock);
2095 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2096 ubi->peb_size - ubi->vid_hdr_aloffset);
2097 if (err) {
2098 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2099 return err;
2102 return e->pnum;
2104 #else
2105 #include "fastmap-wl.c"
2106 #endif