1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
39 #include "extent_map.h"
40 #include "heartbeat.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 DEFINE_SPINLOCK(trans_inc_lock
);
54 static int ocfs2_force_read_journal(struct inode
*inode
);
55 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
57 static int __ocfs2_recovery_thread(void *arg
);
58 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
59 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
);
60 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal
*journal
,
61 struct ocfs2_journal_handle
*handle
);
62 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle
*handle
);
63 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
65 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
67 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
69 static int ocfs2_commit_thread(void *arg
);
71 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
76 struct ocfs2_journal
*journal
= NULL
;
80 journal
= osb
->journal
;
82 /* Flush all pending commits and checkpoint the journal. */
83 down_write(&journal
->j_trans_barrier
);
85 if (atomic_read(&journal
->j_num_trans
) == 0) {
86 up_write(&journal
->j_trans_barrier
);
87 mlog(0, "No transactions for me to flush!\n");
91 journal_lock_updates(journal
->j_journal
);
92 status
= journal_flush(journal
->j_journal
);
93 journal_unlock_updates(journal
->j_journal
);
95 up_write(&journal
->j_trans_barrier
);
100 old_id
= ocfs2_inc_trans_id(journal
);
102 flushed
= atomic_read(&journal
->j_num_trans
);
103 atomic_set(&journal
->j_num_trans
, 0);
104 up_write(&journal
->j_trans_barrier
);
106 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
107 journal
->j_trans_id
, flushed
);
109 ocfs2_kick_vote_thread(osb
);
110 wake_up(&journal
->j_checkpointed
);
116 struct ocfs2_journal_handle
*ocfs2_alloc_handle(struct ocfs2_super
*osb
)
118 struct ocfs2_journal_handle
*retval
= NULL
;
120 retval
= kcalloc(1, sizeof(*retval
), GFP_NOFS
);
122 mlog(ML_ERROR
, "Failed to allocate memory for journal "
127 retval
->max_buffs
= 0;
128 retval
->num_locks
= 0;
129 retval
->k_handle
= NULL
;
131 INIT_LIST_HEAD(&retval
->locks
);
132 INIT_LIST_HEAD(&retval
->inode_list
);
133 retval
->journal
= osb
->journal
;
138 /* pass it NULL and it will allocate a new handle object for you. If
139 * you pass it a handle however, it may still return error, in which
140 * case it has free'd the passed handle for you. */
141 struct ocfs2_journal_handle
*ocfs2_start_trans(struct ocfs2_super
*osb
,
142 struct ocfs2_journal_handle
*handle
,
146 journal_t
*journal
= osb
->journal
->j_journal
;
148 mlog_entry("(max_buffs = %d)\n", max_buffs
);
150 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
152 if (ocfs2_is_hard_readonly(osb
)) {
157 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
158 BUG_ON(max_buffs
<= 0);
160 /* JBD might support this, but our journalling code doesn't yet. */
161 if (journal_current_handle()) {
162 mlog(ML_ERROR
, "Recursive transaction attempted!\n");
167 handle
= ocfs2_alloc_handle(osb
);
170 mlog(ML_ERROR
, "Failed to allocate memory for journal "
175 handle
->max_buffs
= max_buffs
;
177 down_read(&osb
->journal
->j_trans_barrier
);
179 /* actually start the transaction now */
180 handle
->k_handle
= journal_start(journal
, max_buffs
);
181 if (IS_ERR(handle
->k_handle
)) {
182 up_read(&osb
->journal
->j_trans_barrier
);
184 ret
= PTR_ERR(handle
->k_handle
);
185 handle
->k_handle
= NULL
;
188 if (is_journal_aborted(journal
)) {
189 ocfs2_abort(osb
->sb
, "Detected aborted journal");
195 atomic_inc(&(osb
->journal
->j_num_trans
));
196 handle
->flags
|= OCFS2_HANDLE_STARTED
;
198 mlog_exit_ptr(handle
);
203 ocfs2_commit_unstarted_handle(handle
); /* will kfree handle */
209 void ocfs2_handle_add_inode(struct ocfs2_journal_handle
*handle
,
215 atomic_inc(&inode
->i_count
);
217 /* we're obviously changing it... */
218 mutex_lock(&inode
->i_mutex
);
221 BUG_ON(OCFS2_I(inode
)->ip_handle
);
222 BUG_ON(!list_empty(&OCFS2_I(inode
)->ip_handle_list
));
224 OCFS2_I(inode
)->ip_handle
= handle
;
225 list_move_tail(&(OCFS2_I(inode
)->ip_handle_list
), &(handle
->inode_list
));
228 static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle
*handle
)
230 struct list_head
*p
, *n
;
232 struct ocfs2_inode_info
*oi
;
234 list_for_each_safe(p
, n
, &handle
->inode_list
) {
235 oi
= list_entry(p
, struct ocfs2_inode_info
,
237 inode
= &oi
->vfs_inode
;
239 OCFS2_I(inode
)->ip_handle
= NULL
;
240 list_del_init(&OCFS2_I(inode
)->ip_handle_list
);
242 mutex_unlock(&inode
->i_mutex
);
247 /* This is trivial so we do it out of the main commit
248 * paths. Beware, it can be called from start_trans too! */
249 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle
*handle
)
253 BUG_ON(handle
->flags
& OCFS2_HANDLE_STARTED
);
255 ocfs2_handle_unlock_inodes(handle
);
256 /* You are allowed to add journal locks before the transaction
258 ocfs2_handle_cleanup_locks(handle
->journal
, handle
);
265 void ocfs2_commit_trans(struct ocfs2_journal_handle
*handle
)
267 handle_t
*jbd_handle
;
269 struct ocfs2_journal
*journal
= handle
->journal
;
275 if (!(handle
->flags
& OCFS2_HANDLE_STARTED
)) {
276 ocfs2_commit_unstarted_handle(handle
);
281 /* release inode semaphores we took during this transaction */
282 ocfs2_handle_unlock_inodes(handle
);
284 /* ocfs2_extend_trans may have had to call journal_restart
285 * which will always commit the transaction, but may return
286 * error for any number of reasons. If this is the case, we
287 * clear k_handle as it's not valid any more. */
288 if (handle
->k_handle
) {
289 jbd_handle
= handle
->k_handle
;
291 if (handle
->flags
& OCFS2_HANDLE_SYNC
)
292 jbd_handle
->h_sync
= 1;
294 jbd_handle
->h_sync
= 0;
296 /* actually stop the transaction. if we've set h_sync,
297 * it'll have been committed when we return */
298 retval
= journal_stop(jbd_handle
);
301 mlog(ML_ERROR
, "Could not commit transaction\n");
305 handle
->k_handle
= NULL
; /* it's been free'd in journal_stop */
308 ocfs2_handle_cleanup_locks(journal
, handle
);
310 up_read(&journal
->j_trans_barrier
);
317 * 'nblocks' is what you want to add to the current
318 * transaction. extend_trans will either extend the current handle by
319 * nblocks, or commit it and start a new one with nblocks credits.
321 * WARNING: This will not release any semaphores or disk locks taken
322 * during the transaction, so make sure they were taken *before*
323 * start_trans or we'll have ordering deadlocks.
325 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
326 * good because transaction ids haven't yet been recorded on the
327 * cluster locks associated with this handle.
329 int ocfs2_extend_trans(struct ocfs2_journal_handle
*handle
,
335 BUG_ON(!(handle
->flags
& OCFS2_HANDLE_STARTED
));
340 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks
);
342 status
= journal_extend(handle
->k_handle
, nblocks
);
349 mlog(0, "journal_extend failed, trying journal_restart\n");
350 status
= journal_restart(handle
->k_handle
, nblocks
);
352 handle
->k_handle
= NULL
;
356 handle
->max_buffs
= nblocks
;
358 handle
->max_buffs
+= nblocks
;
367 int ocfs2_journal_access(struct ocfs2_journal_handle
*handle
,
369 struct buffer_head
*bh
,
377 BUG_ON(!(handle
->flags
& OCFS2_HANDLE_STARTED
));
379 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
380 (unsigned long long)bh
->b_blocknr
, type
,
381 (type
== OCFS2_JOURNAL_ACCESS_CREATE
) ?
382 "OCFS2_JOURNAL_ACCESS_CREATE" :
383 "OCFS2_JOURNAL_ACCESS_WRITE",
386 /* we can safely remove this assertion after testing. */
387 if (!buffer_uptodate(bh
)) {
388 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
389 mlog(ML_ERROR
, "b_blocknr=%llu\n",
390 (unsigned long long)bh
->b_blocknr
);
394 /* Set the current transaction information on the inode so
395 * that the locking code knows whether it can drop it's locks
396 * on this inode or not. We're protected from the commit
397 * thread updating the current transaction id until
398 * ocfs2_commit_trans() because ocfs2_start_trans() took
399 * j_trans_barrier for us. */
400 ocfs2_set_inode_lock_trans(OCFS2_SB(inode
->i_sb
)->journal
, inode
);
402 mutex_lock(&OCFS2_I(inode
)->ip_io_mutex
);
404 case OCFS2_JOURNAL_ACCESS_CREATE
:
405 case OCFS2_JOURNAL_ACCESS_WRITE
:
406 status
= journal_get_write_access(handle
->k_handle
, bh
);
409 case OCFS2_JOURNAL_ACCESS_UNDO
:
410 status
= journal_get_undo_access(handle
->k_handle
, bh
);
415 mlog(ML_ERROR
, "Uknown access type!\n");
417 mutex_unlock(&OCFS2_I(inode
)->ip_io_mutex
);
420 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
427 int ocfs2_journal_dirty(struct ocfs2_journal_handle
*handle
,
428 struct buffer_head
*bh
)
432 BUG_ON(!(handle
->flags
& OCFS2_HANDLE_STARTED
));
434 mlog_entry("(bh->b_blocknr=%llu)\n",
435 (unsigned long long)bh
->b_blocknr
);
437 status
= journal_dirty_metadata(handle
->k_handle
, bh
);
439 mlog(ML_ERROR
, "Could not dirty metadata buffer. "
440 "(bh->b_blocknr=%llu)\n",
441 (unsigned long long)bh
->b_blocknr
);
447 int ocfs2_journal_dirty_data(handle_t
*handle
,
448 struct buffer_head
*bh
)
450 int err
= journal_dirty_data(handle
, bh
);
453 /* TODO: When we can handle it, abort the handle and go RO on
459 /* We always assume you're adding a metadata lock at level 'ex' */
460 int ocfs2_handle_add_lock(struct ocfs2_journal_handle
*handle
,
464 struct ocfs2_journal_lock
*lock
;
468 lock
= kmem_cache_alloc(ocfs2_lock_cache
, GFP_NOFS
);
477 lock
->jl_inode
= inode
;
479 list_add_tail(&(lock
->jl_lock_list
), &(handle
->locks
));
488 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal
*journal
,
489 struct ocfs2_journal_handle
*handle
)
491 struct list_head
*p
, *n
;
492 struct ocfs2_journal_lock
*lock
;
495 list_for_each_safe(p
, n
, &(handle
->locks
)) {
496 lock
= list_entry(p
, struct ocfs2_journal_lock
,
498 list_del(&lock
->jl_lock_list
);
501 inode
= lock
->jl_inode
;
502 ocfs2_meta_unlock(inode
, 1);
503 if (atomic_read(&inode
->i_count
) == 1)
505 "Inode %llu, I'm doing a last iput for!",
506 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
508 kmem_cache_free(ocfs2_lock_cache
, lock
);
512 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
514 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
516 journal_t
*journal
= osb
->journal
->j_journal
;
518 spin_lock(&journal
->j_state_lock
);
519 journal
->j_commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
520 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
521 journal
->j_flags
|= JFS_BARRIER
;
523 journal
->j_flags
&= ~JFS_BARRIER
;
524 spin_unlock(&journal
->j_state_lock
);
527 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
530 struct inode
*inode
= NULL
; /* the journal inode */
531 journal_t
*j_journal
= NULL
;
532 struct ocfs2_dinode
*di
= NULL
;
533 struct buffer_head
*bh
= NULL
;
534 struct ocfs2_super
*osb
;
541 osb
= journal
->j_osb
;
543 /* already have the inode for our journal */
544 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
551 if (is_bad_inode(inode
)) {
552 mlog(ML_ERROR
, "access error (bad inode)\n");
559 SET_INODE_JOURNAL(inode
);
560 OCFS2_I(inode
)->ip_open_count
++;
562 /* Skip recovery waits here - journal inode metadata never
563 * changes in a live cluster so it can be considered an
564 * exception to the rule. */
565 status
= ocfs2_meta_lock_full(inode
, NULL
, &bh
, 1,
566 OCFS2_META_LOCK_RECOVERY
);
568 if (status
!= -ERESTARTSYS
)
569 mlog(ML_ERROR
, "Could not get lock on journal!\n");
574 di
= (struct ocfs2_dinode
*)bh
->b_data
;
576 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
577 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
583 mlog(0, "inode->i_size = %lld\n", inode
->i_size
);
584 mlog(0, "inode->i_blocks = %llu\n",
585 (unsigned long long)inode
->i_blocks
);
586 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode
)->ip_clusters
);
588 /* call the kernels journal init function now */
589 j_journal
= journal_init_inode(inode
);
590 if (j_journal
== NULL
) {
591 mlog(ML_ERROR
, "Linux journal layer error\n");
596 mlog(0, "Returned from journal_init_inode\n");
597 mlog(0, "j_journal->j_maxlen = %u\n", j_journal
->j_maxlen
);
599 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
600 OCFS2_JOURNAL_DIRTY_FL
);
602 journal
->j_journal
= j_journal
;
603 journal
->j_inode
= inode
;
606 ocfs2_set_journal_params(osb
);
608 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
614 ocfs2_meta_unlock(inode
, 1);
618 OCFS2_I(inode
)->ip_open_count
--;
627 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
632 struct ocfs2_journal
*journal
= osb
->journal
;
633 struct buffer_head
*bh
= journal
->j_bh
;
634 struct ocfs2_dinode
*fe
;
638 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
639 if (!OCFS2_IS_VALID_DINODE(fe
)) {
640 /* This is called from startup/shutdown which will
641 * handle the errors in a specific manner, so no need
642 * to call ocfs2_error() here. */
643 mlog(ML_ERROR
, "Journal dinode %llu has invalid "
644 "signature: %.*s", (unsigned long long)fe
->i_blkno
, 7,
650 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
652 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
654 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
655 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
657 status
= ocfs2_write_block(osb
, bh
, journal
->j_inode
);
667 * If the journal has been kmalloc'd it needs to be freed after this
670 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
672 struct ocfs2_journal
*journal
= NULL
;
674 struct inode
*inode
= NULL
;
675 int num_running_trans
= 0;
681 journal
= osb
->journal
;
685 inode
= journal
->j_inode
;
687 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
690 /* need to inc inode use count as journal_destroy will iput. */
694 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
695 if (num_running_trans
> 0)
696 mlog(0, "Shutting down journal: must wait on %d "
697 "running transactions!\n",
700 /* Do a commit_cache here. It will flush our journal, *and*
701 * release any locks that are still held.
702 * set the SHUTDOWN flag and release the trans lock.
703 * the commit thread will take the trans lock for us below. */
704 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
706 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
707 * drop the trans_lock (which we want to hold until we
708 * completely destroy the journal. */
709 if (osb
->commit_task
) {
710 /* Wait for the commit thread */
711 mlog(0, "Waiting for ocfs2commit to exit....\n");
712 kthread_stop(osb
->commit_task
);
713 osb
->commit_task
= NULL
;
716 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
718 status
= ocfs2_journal_toggle_dirty(osb
, 0);
722 /* Shutdown the kernel journal system */
723 journal_destroy(journal
->j_journal
);
725 OCFS2_I(inode
)->ip_open_count
--;
727 /* unlock our journal */
728 ocfs2_meta_unlock(inode
, 1);
730 brelse(journal
->j_bh
);
731 journal
->j_bh
= NULL
;
733 journal
->j_state
= OCFS2_JOURNAL_FREE
;
735 // up_write(&journal->j_trans_barrier);
742 static void ocfs2_clear_journal_error(struct super_block
*sb
,
748 olderr
= journal_errno(journal
);
750 mlog(ML_ERROR
, "File system error %d recorded in "
751 "journal %u.\n", olderr
, slot
);
752 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
755 journal_ack_err(journal
);
756 journal_clear_err(journal
);
760 int ocfs2_journal_load(struct ocfs2_journal
*journal
)
763 struct ocfs2_super
*osb
;
770 osb
= journal
->j_osb
;
772 status
= journal_load(journal
->j_journal
);
774 mlog(ML_ERROR
, "Failed to load journal!\n");
778 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
780 status
= ocfs2_journal_toggle_dirty(osb
, 1);
786 /* Launch the commit thread */
787 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
, "ocfs2cmt");
788 if (IS_ERR(osb
->commit_task
)) {
789 status
= PTR_ERR(osb
->commit_task
);
790 osb
->commit_task
= NULL
;
791 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, error=%d",
802 /* 'full' flag tells us whether we clear out all blocks or if we just
803 * mark the journal clean */
804 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
812 status
= journal_wipe(journal
->j_journal
, full
);
818 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0);
828 * JBD Might read a cached version of another nodes journal file. We
829 * don't want this as this file changes often and we get no
830 * notification on those changes. The only way to be sure that we've
831 * got the most up to date version of those blocks then is to force
832 * read them off disk. Just searching through the buffer cache won't
833 * work as there may be pages backing this file which are still marked
834 * up to date. We know things can't change on this file underneath us
835 * as we have the lock by now :)
837 static int ocfs2_force_read_journal(struct inode
*inode
)
841 u64 v_blkno
, p_blkno
;
842 #define CONCURRENT_JOURNAL_FILL 32
843 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
847 BUG_ON(inode
->i_blocks
!=
848 ocfs2_align_bytes_to_sectors(i_size_read(inode
)));
850 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
852 mlog(0, "Force reading %llu blocks\n",
853 (unsigned long long)(inode
->i_blocks
>>
854 (inode
->i_sb
->s_blocksize_bits
- 9)));
858 (inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9))) {
860 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
868 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
869 p_blocks
= CONCURRENT_JOURNAL_FILL
;
871 /* We are reading journal data which should not
872 * be put in the uptodate cache */
873 status
= ocfs2_read_blocks(OCFS2_SB(inode
->i_sb
),
874 p_blkno
, p_blocks
, bhs
, 0,
881 for(i
= 0; i
< p_blocks
; i
++) {
890 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
897 struct ocfs2_la_recovery_item
{
898 struct list_head lri_list
;
900 struct ocfs2_dinode
*lri_la_dinode
;
901 struct ocfs2_dinode
*lri_tl_dinode
;
904 /* Does the second half of the recovery process. By this point, the
905 * node is marked clean and can actually be considered recovered,
906 * hence it's no longer in the recovery map, but there's still some
907 * cleanup we can do which shouldn't happen within the recovery thread
908 * as locking in that context becomes very difficult if we are to take
909 * recovering nodes into account.
911 * NOTE: This function can and will sleep on recovery of other nodes
912 * during cluster locking, just like any other ocfs2 process.
914 void ocfs2_complete_recovery(void *data
)
917 struct ocfs2_super
*osb
= data
;
918 struct ocfs2_journal
*journal
= osb
->journal
;
919 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
920 struct ocfs2_la_recovery_item
*item
;
921 struct list_head
*p
, *n
;
922 LIST_HEAD(tmp_la_list
);
926 mlog(0, "completing recovery from keventd\n");
928 spin_lock(&journal
->j_lock
);
929 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
930 spin_unlock(&journal
->j_lock
);
932 list_for_each_safe(p
, n
, &tmp_la_list
) {
933 item
= list_entry(p
, struct ocfs2_la_recovery_item
, lri_list
);
934 list_del_init(&item
->lri_list
);
936 mlog(0, "Complete recovery for slot %d\n", item
->lri_slot
);
938 la_dinode
= item
->lri_la_dinode
;
940 mlog(0, "Clean up local alloc %llu\n",
941 (unsigned long long)la_dinode
->i_blkno
);
943 ret
= ocfs2_complete_local_alloc_recovery(osb
,
951 tl_dinode
= item
->lri_tl_dinode
;
953 mlog(0, "Clean up truncate log %llu\n",
954 (unsigned long long)tl_dinode
->i_blkno
);
956 ret
= ocfs2_complete_truncate_log_recovery(osb
,
964 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
971 mlog(0, "Recovery completion\n");
975 /* NOTE: This function always eats your references to la_dinode and
976 * tl_dinode, either manually on error, or by passing them to
977 * ocfs2_complete_recovery */
978 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
980 struct ocfs2_dinode
*la_dinode
,
981 struct ocfs2_dinode
*tl_dinode
)
983 struct ocfs2_la_recovery_item
*item
;
985 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
987 /* Though we wish to avoid it, we are in fact safe in
988 * skipping local alloc cleanup as fsck.ocfs2 is more
989 * than capable of reclaiming unused space. */
1000 INIT_LIST_HEAD(&item
->lri_list
);
1001 item
->lri_la_dinode
= la_dinode
;
1002 item
->lri_slot
= slot_num
;
1003 item
->lri_tl_dinode
= tl_dinode
;
1005 spin_lock(&journal
->j_lock
);
1006 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1007 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1008 spin_unlock(&journal
->j_lock
);
1011 /* Called by the mount code to queue recovery the last part of
1012 * recovery for it's own slot. */
1013 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1015 struct ocfs2_journal
*journal
= osb
->journal
;
1018 /* No need to queue up our truncate_log as regular
1019 * cleanup will catch that. */
1020 ocfs2_queue_recovery_completion(journal
,
1022 osb
->local_alloc_copy
,
1024 ocfs2_schedule_truncate_log_flush(osb
, 0);
1026 osb
->local_alloc_copy
= NULL
;
1031 static int __ocfs2_recovery_thread(void *arg
)
1033 int status
, node_num
;
1034 struct ocfs2_super
*osb
= arg
;
1038 status
= ocfs2_wait_on_mount(osb
);
1044 status
= ocfs2_super_lock(osb
, 1);
1050 while(!ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
1051 node_num
= ocfs2_node_map_first_set_bit(osb
,
1052 &osb
->recovery_map
);
1053 if (node_num
== O2NM_INVALID_NODE_NUM
) {
1054 mlog(0, "Out of nodes to recover.\n");
1058 status
= ocfs2_recover_node(osb
, node_num
);
1061 "Error %d recovering node %d on device (%u,%u)!\n",
1063 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1064 mlog(ML_ERROR
, "Volume requires unmount.\n");
1068 ocfs2_recovery_map_clear(osb
, node_num
);
1070 ocfs2_super_unlock(osb
, 1);
1072 /* We always run recovery on our own orphan dir - the dead
1073 * node(s) may have voted "no" on an inode delete earlier. A
1074 * revote is therefore required. */
1075 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1079 mutex_lock(&osb
->recovery_lock
);
1081 !ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
1082 mutex_unlock(&osb
->recovery_lock
);
1086 osb
->recovery_thread_task
= NULL
;
1087 mb(); /* sync with ocfs2_recovery_thread_running */
1088 wake_up(&osb
->recovery_event
);
1090 mutex_unlock(&osb
->recovery_lock
);
1093 /* no one is callint kthread_stop() for us so the kthread() api
1094 * requires that we call do_exit(). And it isn't exported, but
1095 * complete_and_exit() seems to be a minimal wrapper around it. */
1096 complete_and_exit(NULL
, status
);
1100 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1102 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1103 node_num
, osb
->node_num
);
1105 mutex_lock(&osb
->recovery_lock
);
1106 if (osb
->disable_recovery
)
1109 /* People waiting on recovery will wait on
1110 * the recovery map to empty. */
1111 if (!ocfs2_recovery_map_set(osb
, node_num
))
1112 mlog(0, "node %d already be in recovery.\n", node_num
);
1114 mlog(0, "starting recovery thread...\n");
1116 if (osb
->recovery_thread_task
)
1119 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1121 if (IS_ERR(osb
->recovery_thread_task
)) {
1122 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1123 osb
->recovery_thread_task
= NULL
;
1127 mutex_unlock(&osb
->recovery_lock
);
1128 wake_up(&osb
->recovery_event
);
1133 /* Does the actual journal replay and marks the journal inode as
1134 * clean. Will only replay if the journal inode is marked dirty. */
1135 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1142 struct inode
*inode
= NULL
;
1143 struct ocfs2_dinode
*fe
;
1144 journal_t
*journal
= NULL
;
1145 struct buffer_head
*bh
= NULL
;
1147 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1149 if (inode
== NULL
) {
1154 if (is_bad_inode(inode
)) {
1161 SET_INODE_JOURNAL(inode
);
1163 status
= ocfs2_meta_lock_full(inode
, NULL
, &bh
, 1,
1164 OCFS2_META_LOCK_RECOVERY
);
1166 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status
);
1167 if (status
!= -ERESTARTSYS
)
1168 mlog(ML_ERROR
, "Could not lock journal!\n");
1173 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1175 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1177 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1178 mlog(0, "No recovery required for node %d\n", node_num
);
1182 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
1184 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1186 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1188 status
= ocfs2_force_read_journal(inode
);
1194 mlog(0, "calling journal_init_inode\n");
1195 journal
= journal_init_inode(inode
);
1196 if (journal
== NULL
) {
1197 mlog(ML_ERROR
, "Linux journal layer error\n");
1202 status
= journal_load(journal
);
1207 journal_destroy(journal
);
1211 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1213 /* wipe the journal */
1214 mlog(0, "flushing the journal.\n");
1215 journal_lock_updates(journal
);
1216 status
= journal_flush(journal
);
1217 journal_unlock_updates(journal
);
1221 /* This will mark the node clean */
1222 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1223 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1224 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1226 status
= ocfs2_write_block(osb
, bh
, inode
);
1233 journal_destroy(journal
);
1236 /* drop the lock on this nodes journal */
1238 ocfs2_meta_unlock(inode
, 1);
1251 * Do the most important parts of node recovery:
1252 * - Replay it's journal
1253 * - Stamp a clean local allocator file
1254 * - Stamp a clean truncate log
1255 * - Mark the node clean
1257 * If this function completes without error, a node in OCFS2 can be
1258 * said to have been safely recovered. As a result, failure during the
1259 * second part of a nodes recovery process (local alloc recovery) is
1260 * far less concerning.
1262 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1267 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1268 struct ocfs2_dinode
*la_copy
= NULL
;
1269 struct ocfs2_dinode
*tl_copy
= NULL
;
1271 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1272 node_num
, osb
->node_num
);
1274 mlog(0, "checking node %d\n", node_num
);
1276 /* Should not ever be called to recover ourselves -- in that
1277 * case we should've called ocfs2_journal_load instead. */
1278 BUG_ON(osb
->node_num
== node_num
);
1280 slot_num
= ocfs2_node_num_to_slot(si
, node_num
);
1281 if (slot_num
== OCFS2_INVALID_SLOT
) {
1283 mlog(0, "no slot for this node, so no recovery required.\n");
1287 mlog(0, "node %d was using slot %d\n", node_num
, slot_num
);
1289 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1295 /* Stamp a clean local alloc file AFTER recovering the journal... */
1296 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1302 /* An error from begin_truncate_log_recovery is not
1303 * serious enough to warrant halting the rest of
1305 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1309 /* Likewise, this would be a strange but ultimately not so
1310 * harmful place to get an error... */
1311 ocfs2_clear_slot(si
, slot_num
);
1312 status
= ocfs2_update_disk_slots(osb
, si
);
1316 /* This will kfree the memory pointed to by la_copy and tl_copy */
1317 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1327 /* Test node liveness by trylocking his journal. If we get the lock,
1328 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1329 * still alive (we couldn't get the lock) and < 0 on error. */
1330 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1334 struct inode
*inode
= NULL
;
1336 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1338 if (inode
== NULL
) {
1339 mlog(ML_ERROR
, "access error\n");
1343 if (is_bad_inode(inode
)) {
1344 mlog(ML_ERROR
, "access error (bad inode)\n");
1350 SET_INODE_JOURNAL(inode
);
1352 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1353 status
= ocfs2_meta_lock_full(inode
, NULL
, NULL
, 1, flags
);
1355 if (status
!= -EAGAIN
)
1360 ocfs2_meta_unlock(inode
, 1);
1368 /* Call this underneath ocfs2_super_lock. It also assumes that the
1369 * slot info struct has been updated from disk. */
1370 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1372 int status
, i
, node_num
;
1373 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1375 /* This is called with the super block cluster lock, so we
1376 * know that the slot map can't change underneath us. */
1378 spin_lock(&si
->si_lock
);
1379 for(i
= 0; i
< si
->si_num_slots
; i
++) {
1380 if (i
== osb
->slot_num
)
1382 if (ocfs2_is_empty_slot(si
, i
))
1385 node_num
= si
->si_global_node_nums
[i
];
1386 if (ocfs2_node_map_test_bit(osb
, &osb
->recovery_map
, node_num
))
1388 spin_unlock(&si
->si_lock
);
1390 /* Ok, we have a slot occupied by another node which
1391 * is not in the recovery map. We trylock his journal
1392 * file here to test if he's alive. */
1393 status
= ocfs2_trylock_journal(osb
, i
);
1395 /* Since we're called from mount, we know that
1396 * the recovery thread can't race us on
1397 * setting / checking the recovery bits. */
1398 ocfs2_recovery_thread(osb
, node_num
);
1399 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1404 spin_lock(&si
->si_lock
);
1406 spin_unlock(&si
->si_lock
);
1414 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
1416 struct inode
**head
)
1419 struct inode
*orphan_dir_inode
= NULL
;
1421 unsigned long offset
, blk
, local
;
1422 struct buffer_head
*bh
= NULL
;
1423 struct ocfs2_dir_entry
*de
;
1424 struct super_block
*sb
= osb
->sb
;
1426 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
1427 ORPHAN_DIR_SYSTEM_INODE
,
1429 if (!orphan_dir_inode
) {
1435 mutex_lock(&orphan_dir_inode
->i_mutex
);
1436 status
= ocfs2_meta_lock(orphan_dir_inode
, NULL
, NULL
, 0);
1444 while(offset
< i_size_read(orphan_dir_inode
)) {
1445 blk
= offset
>> sb
->s_blocksize_bits
;
1447 bh
= ocfs2_bread(orphan_dir_inode
, blk
, &status
, 0);
1458 while(offset
< i_size_read(orphan_dir_inode
)
1459 && local
< sb
->s_blocksize
) {
1460 de
= (struct ocfs2_dir_entry
*) (bh
->b_data
+ local
);
1462 if (!ocfs2_check_dir_entry(orphan_dir_inode
,
1470 local
+= le16_to_cpu(de
->rec_len
);
1471 offset
+= le16_to_cpu(de
->rec_len
);
1473 /* I guess we silently fail on no inode? */
1474 if (!le64_to_cpu(de
->inode
))
1476 if (de
->file_type
> OCFS2_FT_MAX
) {
1478 "block %llu contains invalid de: "
1479 "inode = %llu, rec_len = %u, "
1480 "name_len = %u, file_type = %u, "
1482 (unsigned long long)bh
->b_blocknr
,
1483 (unsigned long long)le64_to_cpu(de
->inode
),
1484 le16_to_cpu(de
->rec_len
),
1491 if (de
->name_len
== 1 && !strncmp(".", de
->name
, 1))
1493 if (de
->name_len
== 2 && !strncmp("..", de
->name
, 2))
1496 iter
= ocfs2_iget(osb
, le64_to_cpu(de
->inode
));
1500 mlog(0, "queue orphan %llu\n",
1501 (unsigned long long)OCFS2_I(iter
)->ip_blkno
);
1502 /* No locking is required for the next_orphan
1503 * queue as there is only ever a single
1504 * process doing orphan recovery. */
1505 OCFS2_I(iter
)->ip_next_orphan
= *head
;
1512 ocfs2_meta_unlock(orphan_dir_inode
, 0);
1514 mutex_unlock(&orphan_dir_inode
->i_mutex
);
1515 iput(orphan_dir_inode
);
1519 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
1524 spin_lock(&osb
->osb_lock
);
1525 ret
= !osb
->osb_orphan_wipes
[slot
];
1526 spin_unlock(&osb
->osb_lock
);
1530 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
1533 spin_lock(&osb
->osb_lock
);
1534 /* Mark ourselves such that new processes in delete_inode()
1535 * know to quit early. */
1536 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1537 while (osb
->osb_orphan_wipes
[slot
]) {
1538 /* If any processes are already in the middle of an
1539 * orphan wipe on this dir, then we need to wait for
1541 spin_unlock(&osb
->osb_lock
);
1542 wait_event_interruptible(osb
->osb_wipe_event
,
1543 ocfs2_orphan_recovery_can_continue(osb
, slot
));
1544 spin_lock(&osb
->osb_lock
);
1546 spin_unlock(&osb
->osb_lock
);
1549 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
1552 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1556 * Orphan recovery. Each mounted node has it's own orphan dir which we
1557 * must run during recovery. Our strategy here is to build a list of
1558 * the inodes in the orphan dir and iget/iput them. The VFS does
1559 * (most) of the rest of the work.
1561 * Orphan recovery can happen at any time, not just mount so we have a
1562 * couple of extra considerations.
1564 * - We grab as many inodes as we can under the orphan dir lock -
1565 * doing iget() outside the orphan dir risks getting a reference on
1567 * - We must be sure not to deadlock with other processes on the
1568 * system wanting to run delete_inode(). This can happen when they go
1569 * to lock the orphan dir and the orphan recovery process attempts to
1570 * iget() inside the orphan dir lock. This can be avoided by
1571 * advertising our state to ocfs2_delete_inode().
1573 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
1577 struct inode
*inode
= NULL
;
1579 struct ocfs2_inode_info
*oi
;
1581 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot
);
1583 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
1584 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
1585 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
1587 /* Error here should be noted, but we want to continue with as
1588 * many queued inodes as we've got. */
1593 oi
= OCFS2_I(inode
);
1594 mlog(0, "iput orphan %llu\n", (unsigned long long)oi
->ip_blkno
);
1596 iter
= oi
->ip_next_orphan
;
1598 spin_lock(&oi
->ip_lock
);
1599 /* Delete voting may have set these on the assumption
1600 * that the other node would wipe them successfully.
1601 * If they are still in the node's orphan dir, we need
1602 * to reset that state. */
1603 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
1605 /* Set the proper information to get us going into
1606 * ocfs2_delete_inode. */
1607 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
1608 oi
->ip_orphaned_slot
= slot
;
1609 spin_unlock(&oi
->ip_lock
);
1619 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
1621 /* This check is good because ocfs2 will wait on our recovery
1622 * thread before changing it to something other than MOUNTED
1624 wait_event(osb
->osb_mount_event
,
1625 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
||
1626 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
1628 /* If there's an error on mount, then we may never get to the
1629 * MOUNTED flag, but this is set right before
1630 * dismount_volume() so we can trust it. */
1631 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
1632 mlog(0, "mount error, exiting!\n");
1639 static int ocfs2_commit_thread(void *arg
)
1642 struct ocfs2_super
*osb
= arg
;
1643 struct ocfs2_journal
*journal
= osb
->journal
;
1645 /* we can trust j_num_trans here because _should_stop() is only set in
1646 * shutdown and nobody other than ourselves should be able to start
1647 * transactions. committing on shutdown might take a few iterations
1648 * as final transactions put deleted inodes on the list */
1649 while (!(kthread_should_stop() &&
1650 atomic_read(&journal
->j_num_trans
) == 0)) {
1652 wait_event_interruptible(osb
->checkpoint_event
,
1653 atomic_read(&journal
->j_num_trans
)
1654 || kthread_should_stop());
1656 status
= ocfs2_commit_cache(osb
);
1660 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
1662 "commit_thread: %u transactions pending on "
1664 atomic_read(&journal
->j_num_trans
));
1671 /* Look for a dirty journal without taking any cluster locks. Used for
1672 * hard readonly access to determine whether the file system journals
1673 * require recovery. */
1674 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
1678 struct buffer_head
*di_bh
;
1679 struct ocfs2_dinode
*di
;
1680 struct inode
*journal
= NULL
;
1682 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
1683 journal
= ocfs2_get_system_file_inode(osb
,
1684 JOURNAL_SYSTEM_INODE
,
1686 if (!journal
|| is_bad_inode(journal
)) {
1693 ret
= ocfs2_read_block(osb
, OCFS2_I(journal
)->ip_blkno
, &di_bh
,
1700 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
1702 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
1703 OCFS2_JOURNAL_DIRTY_FL
)