2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_utils.h"
43 * Initialize the inode hash table for the newly mounted file system.
44 * Choose an initial table size based on user specified value, else
45 * use a simple algorithm using the maximum number of inodes as an
46 * indicator for table size, and clamp it between one and some large
50 xfs_ihash_init(xfs_mount_t
*mp
)
53 uint i
, flags
= KM_SLEEP
| KM_MAYFAIL
;
56 icount
= mp
->m_maxicount
? mp
->m_maxicount
:
57 (mp
->m_sb
.sb_dblocks
<< mp
->m_sb
.sb_inopblog
);
58 mp
->m_ihsize
= 1 << max_t(uint
, 8,
59 (xfs_highbit64(icount
) + 1) / 2);
60 mp
->m_ihsize
= min_t(uint
, mp
->m_ihsize
,
61 (64 * NBPP
) / sizeof(xfs_ihash_t
));
64 while (!(mp
->m_ihash
= (xfs_ihash_t
*)kmem_zalloc(mp
->m_ihsize
*
65 sizeof(xfs_ihash_t
), flags
))) {
66 if ((mp
->m_ihsize
>>= 1) <= NBPP
)
69 for (i
= 0; i
< mp
->m_ihsize
; i
++) {
70 rwlock_init(&(mp
->m_ihash
[i
].ih_lock
));
75 * Free up structures allocated by xfs_ihash_init, at unmount time.
78 xfs_ihash_free(xfs_mount_t
*mp
)
80 kmem_free(mp
->m_ihash
, mp
->m_ihsize
*sizeof(xfs_ihash_t
));
85 * Initialize the inode cluster hash table for the newly mounted file system.
86 * Its size is derived from the ihash table size.
89 xfs_chash_init(xfs_mount_t
*mp
)
93 mp
->m_chsize
= max_t(uint
, 1, mp
->m_ihsize
/
94 (XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
));
95 mp
->m_chsize
= min_t(uint
, mp
->m_chsize
, mp
->m_ihsize
);
96 mp
->m_chash
= (xfs_chash_t
*)kmem_zalloc(mp
->m_chsize
97 * sizeof(xfs_chash_t
),
99 for (i
= 0; i
< mp
->m_chsize
; i
++) {
100 spinlock_init(&mp
->m_chash
[i
].ch_lock
,"xfshash");
105 * Free up structures allocated by xfs_chash_init, at unmount time.
108 xfs_chash_free(xfs_mount_t
*mp
)
112 for (i
= 0; i
< mp
->m_chsize
; i
++) {
113 spinlock_destroy(&mp
->m_chash
[i
].ch_lock
);
116 kmem_free(mp
->m_chash
, mp
->m_chsize
*sizeof(xfs_chash_t
));
121 * Try to move an inode to the front of its hash list if possible
122 * (and if its not there already). Called right after obtaining
123 * the list version number and then dropping the read_lock on the
124 * hash list in question (which is done right after looking up the
125 * inode in question...).
135 if ((ip
->i_prevp
!= &ih
->ih_next
) && write_trylock(&ih
->ih_lock
)) {
136 if (likely(version
== ih
->ih_version
)) {
137 /* remove from list */
138 if ((iq
= ip
->i_next
)) {
139 iq
->i_prevp
= ip
->i_prevp
;
143 /* insert at list head */
145 iq
->i_prevp
= &ip
->i_next
;
147 ip
->i_prevp
= &ih
->ih_next
;
150 write_unlock(&ih
->ih_lock
);
155 * Look up an inode by number in the given file system.
156 * The inode is looked up in the hash table for the file system
157 * represented by the mount point parameter mp. Each bucket of
158 * the hash table is guarded by an individual semaphore.
160 * If the inode is found in the hash table, its corresponding vnode
161 * is obtained with a call to vn_get(). This call takes care of
162 * coordination with the reclamation of the inode and vnode. Note
163 * that the vmap structure is filled in while holding the hash lock.
164 * This gives us the state of the inode/vnode when we found it and
165 * is used for coordination in vn_get().
167 * If it is not in core, read it in from the file system's device and
168 * add the inode into the hash table.
170 * The inode is locked according to the value of the lock_flags parameter.
171 * This flag parameter indicates how and if the inode's IO lock and inode lock
174 * mp -- the mount point structure for the current file system. It points
175 * to the inode hash table.
176 * tp -- a pointer to the current transaction if there is one. This is
177 * simply passed through to the xfs_iread() call.
178 * ino -- the number of the inode desired. This is the unique identifier
179 * within the file system for the inode being requested.
180 * lock_flags -- flags indicating how to lock the inode. See the comment
181 * for xfs_ilock() for a list of valid values.
182 * bno -- the block number starting the buffer containing the inode,
183 * if known (as by bulkstat), else 0.
199 bhv_vnode_t
*inode_vp
;
204 xfs_chashlist_t
*chl
, *chlnew
;
208 ih
= XFS_IHASH(mp
, ino
);
211 read_lock(&ih
->ih_lock
);
213 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
214 if (ip
->i_ino
== ino
) {
216 * If INEW is set this inode is being set up
217 * we need to pause and try again.
219 if (ip
->i_flags
& XFS_INEW
) {
220 read_unlock(&ih
->ih_lock
);
222 XFS_STATS_INC(xs_ig_frecycle
);
227 inode_vp
= XFS_ITOV_NULL(ip
);
228 if (inode_vp
== NULL
) {
230 * If IRECLAIM is set this inode is
231 * on its way out of the system,
232 * we need to pause and try again.
234 if (ip
->i_flags
& XFS_IRECLAIM
) {
235 read_unlock(&ih
->ih_lock
);
237 XFS_STATS_INC(xs_ig_frecycle
);
242 vn_trace_exit(vp
, "xfs_iget.alloc",
243 (inst_t
*)__return_address
);
245 XFS_STATS_INC(xs_ig_found
);
247 ip
->i_flags
&= ~XFS_IRECLAIMABLE
;
248 version
= ih
->ih_version
;
249 read_unlock(&ih
->ih_lock
);
250 xfs_ihash_promote(ih
, ip
, version
);
253 list_del_init(&ip
->i_reclaim
);
254 XFS_MOUNT_IUNLOCK(mp
);
258 } else if (vp
!= inode_vp
) {
259 struct inode
*inode
= vn_to_inode(inode_vp
);
261 /* The inode is being torn down, pause and
264 if (inode
->i_state
& (I_FREEING
| I_CLEAR
)) {
265 read_unlock(&ih
->ih_lock
);
267 XFS_STATS_INC(xs_ig_frecycle
);
271 /* Chances are the other vnode (the one in the inode) is being torn
272 * down right now, and we landed on top of it. Question is, what do
273 * we do? Unhook the old inode and hook up the new one?
276 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
281 * Inode cache hit: if ip is not at the front of
282 * its hash chain, move it there now.
283 * Do this with the lock held for update, but
284 * do statistics after releasing the lock.
286 version
= ih
->ih_version
;
287 read_unlock(&ih
->ih_lock
);
288 xfs_ihash_promote(ih
, ip
, version
);
289 XFS_STATS_INC(xs_ig_found
);
292 if (ip
->i_d
.di_mode
== 0) {
293 if (!(flags
& IGET_CREATE
))
295 xfs_iocore_inode_reinit(ip
);
299 xfs_ilock(ip
, lock_flags
);
301 ip
->i_flags
&= ~XFS_ISTALE
;
303 vn_trace_exit(vp
, "xfs_iget.found",
304 (inst_t
*)__return_address
);
310 * Inode cache miss: save the hash chain version stamp and unlock
311 * the chain, so we don't deadlock in vn_alloc.
313 XFS_STATS_INC(xs_ig_missed
);
315 version
= ih
->ih_version
;
317 read_unlock(&ih
->ih_lock
);
320 * Read the disk inode attributes into a new inode structure and get
321 * a new vnode for it. This should also initialize i_ino and i_mount.
323 error
= xfs_iread(mp
, tp
, ino
, &ip
, bno
);
328 vn_trace_exit(vp
, "xfs_iget.alloc", (inst_t
*)__return_address
);
330 xfs_inode_lock_init(ip
, vp
);
331 xfs_iocore_inode_init(ip
);
333 if (lock_flags
!= 0) {
334 xfs_ilock(ip
, lock_flags
);
337 if ((ip
->i_d
.di_mode
== 0) && !(flags
& IGET_CREATE
)) {
343 * Put ip on its hash chain, unless someone else hashed a duplicate
344 * after we released the hash lock.
346 write_lock(&ih
->ih_lock
);
348 if (ih
->ih_version
!= version
) {
349 for (iq
= ih
->ih_next
; iq
!= NULL
; iq
= iq
->i_next
) {
350 if (iq
->i_ino
== ino
) {
351 write_unlock(&ih
->ih_lock
);
354 XFS_STATS_INC(xs_ig_dup
);
361 * These values _must_ be set before releasing ihlock!
364 if ((iq
= ih
->ih_next
)) {
365 iq
->i_prevp
= &ip
->i_next
;
368 ip
->i_prevp
= &ih
->ih_next
;
370 ip
->i_udquot
= ip
->i_gdquot
= NULL
;
372 ip
->i_flags
|= XFS_INEW
;
374 write_unlock(&ih
->ih_lock
);
377 * put ip on its cluster's hash chain
379 ASSERT(ip
->i_chash
== NULL
&& ip
->i_cprev
== NULL
&&
380 ip
->i_cnext
== NULL
);
383 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
385 s
= mutex_spinlock(&ch
->ch_lock
);
386 for (chl
= ch
->ch_list
; chl
!= NULL
; chl
= chl
->chl_next
) {
387 if (chl
->chl_blkno
== ip
->i_blkno
) {
389 /* insert this inode into the doubly-linked list
390 * where chl points */
391 if ((iq
= chl
->chl_ip
)) {
392 ip
->i_cprev
= iq
->i_cprev
;
393 iq
->i_cprev
->i_cnext
= ip
;
406 /* no hash list found for this block; add a new hash list */
408 if (chlnew
== NULL
) {
409 mutex_spinunlock(&ch
->ch_lock
, s
);
410 ASSERT(xfs_chashlist_zone
!= NULL
);
411 chlnew
= (xfs_chashlist_t
*)
412 kmem_zone_alloc(xfs_chashlist_zone
,
414 ASSERT(chlnew
!= NULL
);
419 ip
->i_chash
= chlnew
;
421 chlnew
->chl_blkno
= ip
->i_blkno
;
423 ch
->ch_list
->chl_prev
= chlnew
;
424 chlnew
->chl_next
= ch
->ch_list
;
425 chlnew
->chl_prev
= NULL
;
426 ch
->ch_list
= chlnew
;
430 if (chlnew
!= NULL
) {
431 kmem_zone_free(xfs_chashlist_zone
, chlnew
);
435 mutex_spinunlock(&ch
->ch_lock
, s
);
439 * Link ip to its mount and thread it on the mount's inode list.
442 if ((iq
= mp
->m_inodes
)) {
443 ASSERT(iq
->i_mprev
->i_mnext
== iq
);
444 ip
->i_mprev
= iq
->i_mprev
;
445 iq
->i_mprev
->i_mnext
= ip
;
454 XFS_MOUNT_IUNLOCK(mp
);
457 ASSERT(ip
->i_df
.if_ext_max
==
458 XFS_IFORK_DSIZE(ip
) / sizeof(xfs_bmbt_rec_t
));
460 ASSERT(((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) != 0) ==
461 ((ip
->i_iocore
.io_flags
& XFS_IOCORE_RT
) != 0));
466 * If we have a real type for an on-disk inode, we can set ops(&unlock)
467 * now. If it's a new inode being created, xfs_ialloc will handle it.
469 bhv_vfs_init_vnode(XFS_MTOVFS(mp
), vp
, XFS_ITOBHV(ip
), 1);
476 * The 'normal' internal xfs_iget, if needed it will
477 * 'allocate', or 'get', the vnode.
490 bhv_vnode_t
*vp
= NULL
;
493 XFS_STATS_INC(xs_ig_attempts
);
496 if ((inode
= iget_locked(XFS_MTOVFS(mp
)->vfs_super
, ino
))) {
499 vp
= vn_from_inode(inode
);
500 if (inode
->i_state
& I_NEW
) {
501 vn_initialize(inode
);
502 error
= xfs_iget_core(vp
, mp
, tp
, ino
, flags
,
503 lock_flags
, ipp
, bno
);
506 if (inode
->i_state
& I_NEW
)
507 unlock_new_inode(inode
);
512 * If the inode is not fully constructed due to
513 * filehandle mismatches wait for the inode to go
514 * away and try again.
516 * iget_locked will call __wait_on_freeing_inode
517 * to wait for the inode to go away.
519 if (is_bad_inode(inode
) ||
520 ((ip
= xfs_vtoi(vp
)) == NULL
)) {
527 xfs_ilock(ip
, lock_flags
);
528 XFS_STATS_INC(xs_ig_found
);
533 error
= ENOMEM
; /* If we got no inode we are out of memory */
539 * Do the setup for the various locks within the incore inode.
546 mrlock_init(&ip
->i_lock
, MRLOCK_ALLOW_EQUAL_PRI
|MRLOCK_BARRIER
,
547 "xfsino", (long)vp
->v_number
);
548 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", vp
->v_number
);
549 init_waitqueue_head(&ip
->i_ipin_wait
);
550 atomic_set(&ip
->i_pincount
, 0);
551 init_sema(&ip
->i_flock
, 1, "xfsfino", vp
->v_number
);
555 * Look for the inode corresponding to the given ino in the hash table.
556 * If it is there and its i_transp pointer matches tp, return it.
557 * Otherwise, return NULL.
560 xfs_inode_incore(xfs_mount_t
*mp
,
568 ih
= XFS_IHASH(mp
, ino
);
569 read_lock(&ih
->ih_lock
);
570 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
571 if (ip
->i_ino
== ino
) {
573 * If we find it and tp matches, return it.
574 * Also move it to the front of the hash list
575 * if we find it and it is not already there.
576 * Otherwise break from the loop and return
579 if (ip
->i_transp
== tp
) {
580 version
= ih
->ih_version
;
581 read_unlock(&ih
->ih_lock
);
582 xfs_ihash_promote(ih
, ip
, version
);
588 read_unlock(&ih
->ih_lock
);
593 * Decrement reference count of an inode structure and unlock it.
595 * ip -- the inode being released
596 * lock_flags -- this parameter indicates the inode's locks to be
597 * to be released. See the comment on xfs_iunlock() for a list
601 xfs_iput(xfs_inode_t
*ip
,
604 bhv_vnode_t
*vp
= XFS_ITOV(ip
);
606 vn_trace_entry(vp
, "xfs_iput", (inst_t
*)__return_address
);
607 xfs_iunlock(ip
, lock_flags
);
612 * Special iput for brand-new inodes that are still locked
615 xfs_iput_new(xfs_inode_t
*ip
,
618 bhv_vnode_t
*vp
= XFS_ITOV(ip
);
619 struct inode
*inode
= vn_to_inode(vp
);
621 vn_trace_entry(vp
, "xfs_iput_new", (inst_t
*)__return_address
);
623 if ((ip
->i_d
.di_mode
== 0)) {
624 ASSERT(!(ip
->i_flags
& XFS_IRECLAIMABLE
));
627 if (inode
->i_state
& I_NEW
)
628 unlock_new_inode(inode
);
630 xfs_iunlock(ip
, lock_flags
);
636 * This routine embodies the part of the reclaim code that pulls
637 * the inode from the inode hash table and the mount structure's
639 * This should only be called from xfs_reclaim().
642 xfs_ireclaim(xfs_inode_t
*ip
)
647 * Remove from old hash list and mount list.
649 XFS_STATS_INC(xs_ig_reclaims
);
654 * Here we do a spurious inode lock in order to coordinate with
655 * xfs_sync(). This is because xfs_sync() references the inodes
656 * in the mount list without taking references on the corresponding
657 * vnodes. We make that OK here by ensuring that we wait until
658 * the inode is unlocked in xfs_sync() before we go ahead and
659 * free it. We get both the regular lock and the io lock because
660 * the xfs_sync() code may need to drop the regular one but will
661 * still hold the io lock.
663 xfs_ilock(ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
666 * Release dquots (and their references) if any. An inode may escape
667 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
669 XFS_QM_DQDETACH(ip
->i_mount
, ip
);
672 * Pull our behavior descriptor from the vnode chain.
674 vp
= XFS_ITOV_NULL(ip
);
676 vn_bhv_remove(VN_BHV_HEAD(vp
), XFS_ITOBHV(ip
));
680 * Free all memory associated with the inode.
686 * This routine removes an about-to-be-destroyed inode from
687 * all of the lists in which it is located with the exception
688 * of the behavior chain.
698 xfs_chashlist_t
*chl
, *chm
;
702 write_lock(&ih
->ih_lock
);
703 if ((iq
= ip
->i_next
)) {
704 iq
->i_prevp
= ip
->i_prevp
;
708 write_unlock(&ih
->ih_lock
);
711 * Remove from cluster hash list
712 * 1) delete the chashlist if this is the last inode on the chashlist
713 * 2) unchain from list of inodes
714 * 3) point chashlist->chl_ip to 'chl_next' if to this inode.
717 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
718 s
= mutex_spinlock(&ch
->ch_lock
);
720 if (ip
->i_cnext
== ip
) {
721 /* Last inode on chashlist */
722 ASSERT(ip
->i_cnext
== ip
&& ip
->i_cprev
== ip
);
723 ASSERT(ip
->i_chash
!= NULL
);
727 chl
->chl_prev
->chl_next
= chl
->chl_next
;
729 ch
->ch_list
= chl
->chl_next
;
731 chl
->chl_next
->chl_prev
= chl
->chl_prev
;
732 kmem_zone_free(xfs_chashlist_zone
, chl
);
734 /* delete one inode from a non-empty list */
736 iq
->i_cprev
= ip
->i_cprev
;
737 ip
->i_cprev
->i_cnext
= iq
;
738 if (ip
->i_chash
->chl_ip
== ip
) {
739 ip
->i_chash
->chl_ip
= iq
;
741 ip
->i_chash
= __return_address
;
742 ip
->i_cprev
= __return_address
;
743 ip
->i_cnext
= __return_address
;
745 mutex_spinunlock(&ch
->ch_lock
, s
);
748 * Remove from mount's inode list.
751 ASSERT((ip
->i_mnext
!= NULL
) && (ip
->i_mprev
!= NULL
));
753 iq
->i_mprev
= ip
->i_mprev
;
754 ip
->i_mprev
->i_mnext
= iq
;
757 * Fix up the head pointer if it points to the inode being deleted.
759 if (mp
->m_inodes
== ip
) {
767 /* Deal with the deleted inodes list */
768 list_del_init(&ip
->i_reclaim
);
771 XFS_MOUNT_IUNLOCK(mp
);
775 * This is a wrapper routine around the xfs_ilock() routine
776 * used to centralize some grungy code. It is used in places
777 * that wish to lock the inode solely for reading the extents.
778 * The reason these places can't just call xfs_ilock(SHARED)
779 * is that the inode lock also guards to bringing in of the
780 * extents from disk for a file in b-tree format. If the inode
781 * is in b-tree format, then we need to lock the inode exclusively
782 * until the extents are read in. Locking it exclusively all
783 * the time would limit our parallelism unnecessarily, though.
784 * What we do instead is check to see if the extents have been
785 * read in yet, and only lock the inode exclusively if they
788 * The function returns a value which should be given to the
789 * corresponding xfs_iunlock_map_shared(). This value is
790 * the mode in which the lock was actually taken.
793 xfs_ilock_map_shared(
798 if ((ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
) &&
799 ((ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)) {
800 lock_mode
= XFS_ILOCK_EXCL
;
802 lock_mode
= XFS_ILOCK_SHARED
;
805 xfs_ilock(ip
, lock_mode
);
811 * This is simply the unlock routine to go with xfs_ilock_map_shared().
812 * All it does is call xfs_iunlock() with the given lock_mode.
815 xfs_iunlock_map_shared(
817 unsigned int lock_mode
)
819 xfs_iunlock(ip
, lock_mode
);
823 * The xfs inode contains 2 locks: a multi-reader lock called the
824 * i_iolock and a multi-reader lock called the i_lock. This routine
825 * allows either or both of the locks to be obtained.
827 * The 2 locks should always be ordered so that the IO lock is
828 * obtained first in order to prevent deadlock.
830 * ip -- the inode being locked
831 * lock_flags -- this parameter indicates the inode's locks
832 * to be locked. It can be:
837 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
838 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
839 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
840 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
843 xfs_ilock(xfs_inode_t
*ip
,
847 * You can't set both SHARED and EXCL for the same lock,
848 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
849 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
851 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
852 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
853 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
854 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
855 ASSERT((lock_flags
& ~XFS_LOCK_MASK
) == 0);
857 if (lock_flags
& XFS_IOLOCK_EXCL
) {
858 mrupdate(&ip
->i_iolock
);
859 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
860 mraccess(&ip
->i_iolock
);
862 if (lock_flags
& XFS_ILOCK_EXCL
) {
863 mrupdate(&ip
->i_lock
);
864 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
865 mraccess(&ip
->i_lock
);
867 xfs_ilock_trace(ip
, 1, lock_flags
, (inst_t
*)__return_address
);
871 * This is just like xfs_ilock(), except that the caller
872 * is guaranteed not to sleep. It returns 1 if it gets
873 * the requested locks and 0 otherwise. If the IO lock is
874 * obtained but the inode lock cannot be, then the IO lock
875 * is dropped before returning.
877 * ip -- the inode being locked
878 * lock_flags -- this parameter indicates the inode's locks to be
879 * to be locked. See the comment for xfs_ilock() for a list
884 xfs_ilock_nowait(xfs_inode_t
*ip
,
891 * You can't set both SHARED and EXCL for the same lock,
892 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
893 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
895 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
896 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
897 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
898 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
899 ASSERT((lock_flags
& ~XFS_LOCK_MASK
) == 0);
902 if (lock_flags
& XFS_IOLOCK_EXCL
) {
903 iolocked
= mrtryupdate(&ip
->i_iolock
);
907 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
908 iolocked
= mrtryaccess(&ip
->i_iolock
);
913 if (lock_flags
& XFS_ILOCK_EXCL
) {
914 ilocked
= mrtryupdate(&ip
->i_lock
);
917 mrunlock(&ip
->i_iolock
);
921 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
922 ilocked
= mrtryaccess(&ip
->i_lock
);
925 mrunlock(&ip
->i_iolock
);
930 xfs_ilock_trace(ip
, 2, lock_flags
, (inst_t
*)__return_address
);
935 * xfs_iunlock() is used to drop the inode locks acquired with
936 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
937 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
938 * that we know which locks to drop.
940 * ip -- the inode being unlocked
941 * lock_flags -- this parameter indicates the inode's locks to be
942 * to be unlocked. See the comment for xfs_ilock() for a list
943 * of valid values for this parameter.
947 xfs_iunlock(xfs_inode_t
*ip
,
951 * You can't set both SHARED and EXCL for the same lock,
952 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
953 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
955 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
956 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
957 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
958 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
959 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_IUNLOCK_NONOTIFY
)) == 0);
960 ASSERT(lock_flags
!= 0);
962 if (lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) {
963 ASSERT(!(lock_flags
& XFS_IOLOCK_SHARED
) ||
964 (ismrlocked(&ip
->i_iolock
, MR_ACCESS
)));
965 ASSERT(!(lock_flags
& XFS_IOLOCK_EXCL
) ||
966 (ismrlocked(&ip
->i_iolock
, MR_UPDATE
)));
967 mrunlock(&ip
->i_iolock
);
970 if (lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) {
971 ASSERT(!(lock_flags
& XFS_ILOCK_SHARED
) ||
972 (ismrlocked(&ip
->i_lock
, MR_ACCESS
)));
973 ASSERT(!(lock_flags
& XFS_ILOCK_EXCL
) ||
974 (ismrlocked(&ip
->i_lock
, MR_UPDATE
)));
975 mrunlock(&ip
->i_lock
);
978 * Let the AIL know that this item has been unlocked in case
979 * it is in the AIL and anyone is waiting on it. Don't do
980 * this if the caller has asked us not to.
982 if (!(lock_flags
& XFS_IUNLOCK_NONOTIFY
) &&
983 ip
->i_itemp
!= NULL
) {
984 xfs_trans_unlocked_item(ip
->i_mount
,
985 (xfs_log_item_t
*)(ip
->i_itemp
));
988 xfs_ilock_trace(ip
, 3, lock_flags
, (inst_t
*)__return_address
);
992 * give up write locks. the i/o lock cannot be held nested
993 * if it is being demoted.
996 xfs_ilock_demote(xfs_inode_t
*ip
,
999 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
));
1000 ASSERT((lock_flags
& ~(XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
1002 if (lock_flags
& XFS_ILOCK_EXCL
) {
1003 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
1004 mrdemote(&ip
->i_lock
);
1006 if (lock_flags
& XFS_IOLOCK_EXCL
) {
1007 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
));
1008 mrdemote(&ip
->i_iolock
);
1013 * The following three routines simply manage the i_flock
1014 * semaphore embedded in the inode. This semaphore synchronizes
1015 * processes attempting to flush the in-core inode back to disk.
1018 xfs_iflock(xfs_inode_t
*ip
)
1020 psema(&(ip
->i_flock
), PINOD
|PLTWAIT
);
1024 xfs_iflock_nowait(xfs_inode_t
*ip
)
1026 return (cpsema(&(ip
->i_flock
)));
1030 xfs_ifunlock(xfs_inode_t
*ip
)
1032 ASSERT(issemalocked(&(ip
->i_flock
)));
1033 vsema(&(ip
->i_flock
));