2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/dax.h>
39 #include <asm/uaccess.h>
40 #include <asm/param.h>
44 #define user_long_t long
46 #ifndef user_siginfo_t
47 #define user_siginfo_t siginfo_t
50 static int load_elf_binary(struct linux_binprm
*bprm
);
51 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
52 int, int, unsigned long);
55 static int load_elf_library(struct file
*);
57 #define load_elf_library NULL
61 * If we don't support core dumping, then supply a NULL so we
64 #ifdef CONFIG_ELF_CORE
65 static int elf_core_dump(struct coredump_params
*cprm
);
67 #define elf_core_dump NULL
70 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
71 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
73 #define ELF_MIN_ALIGN PAGE_SIZE
76 #ifndef ELF_CORE_EFLAGS
77 #define ELF_CORE_EFLAGS 0
80 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
84 static struct linux_binfmt elf_format
= {
85 .module
= THIS_MODULE
,
86 .load_binary
= load_elf_binary
,
87 .load_shlib
= load_elf_library
,
88 .core_dump
= elf_core_dump
,
89 .min_coredump
= ELF_EXEC_PAGESIZE
,
92 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
94 static int set_brk(unsigned long start
, unsigned long end
)
96 start
= ELF_PAGEALIGN(start
);
97 end
= ELF_PAGEALIGN(end
);
99 int error
= vm_brk(start
, end
- start
);
103 current
->mm
->start_brk
= current
->mm
->brk
= end
;
107 /* We need to explicitly zero any fractional pages
108 after the data section (i.e. bss). This would
109 contain the junk from the file that should not
112 static int padzero(unsigned long elf_bss
)
116 nbyte
= ELF_PAGEOFFSET(elf_bss
);
118 nbyte
= ELF_MIN_ALIGN
- nbyte
;
119 if (clear_user((void __user
*) elf_bss
, nbyte
))
125 /* Let's use some macros to make this stack manipulation a little clearer */
126 #ifdef CONFIG_STACK_GROWSUP
127 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
128 #define STACK_ROUND(sp, items) \
129 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
130 #define STACK_ALLOC(sp, len) ({ \
131 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
134 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
135 #define STACK_ROUND(sp, items) \
136 (((unsigned long) (sp - items)) &~ 15UL)
137 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
140 #ifndef ELF_BASE_PLATFORM
142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
144 * will be copied to the user stack in the same manner as AT_PLATFORM.
146 #define ELF_BASE_PLATFORM NULL
150 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
151 unsigned long load_addr
, unsigned long interp_load_addr
)
153 unsigned long p
= bprm
->p
;
154 int argc
= bprm
->argc
;
155 int envc
= bprm
->envc
;
156 elf_addr_t __user
*argv
;
157 elf_addr_t __user
*envp
;
158 elf_addr_t __user
*sp
;
159 elf_addr_t __user
*u_platform
;
160 elf_addr_t __user
*u_base_platform
;
161 elf_addr_t __user
*u_rand_bytes
;
162 const char *k_platform
= ELF_PLATFORM
;
163 const char *k_base_platform
= ELF_BASE_PLATFORM
;
164 unsigned char k_rand_bytes
[16];
166 elf_addr_t
*elf_info
;
168 const struct cred
*cred
= current_cred();
169 struct vm_area_struct
*vma
;
172 * In some cases (e.g. Hyper-Threading), we want to avoid L1
173 * evictions by the processes running on the same package. One
174 * thing we can do is to shuffle the initial stack for them.
177 p
= arch_align_stack(p
);
180 * If this architecture has a platform capability string, copy it
181 * to userspace. In some cases (Sparc), this info is impossible
182 * for userspace to get any other way, in others (i386) it is
187 size_t len
= strlen(k_platform
) + 1;
189 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
190 if (__copy_to_user(u_platform
, k_platform
, len
))
195 * If this architecture has a "base" platform capability
196 * string, copy it to userspace.
198 u_base_platform
= NULL
;
199 if (k_base_platform
) {
200 size_t len
= strlen(k_base_platform
) + 1;
202 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
203 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
208 * Generate 16 random bytes for userspace PRNG seeding.
210 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
211 u_rand_bytes
= (elf_addr_t __user
*)
212 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
213 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
216 /* Create the ELF interpreter info */
217 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
218 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
219 #define NEW_AUX_ENT(id, val) \
221 elf_info[ei_index++] = id; \
222 elf_info[ei_index++] = val; \
227 * ARCH_DLINFO must come first so PPC can do its special alignment of
229 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
230 * ARCH_DLINFO changes
234 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
235 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
236 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
237 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
238 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
239 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
240 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
241 NEW_AUX_ENT(AT_FLAGS
, 0);
242 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
243 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
244 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
245 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
246 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
247 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
248 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
250 NEW_AUX_ENT(AT_HWCAP2
, ELF_HWCAP2
);
252 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
254 NEW_AUX_ENT(AT_PLATFORM
,
255 (elf_addr_t
)(unsigned long)u_platform
);
257 if (k_base_platform
) {
258 NEW_AUX_ENT(AT_BASE_PLATFORM
,
259 (elf_addr_t
)(unsigned long)u_base_platform
);
261 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
262 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
265 /* AT_NULL is zero; clear the rest too */
266 memset(&elf_info
[ei_index
], 0,
267 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
269 /* And advance past the AT_NULL entry. */
272 sp
= STACK_ADD(p
, ei_index
);
274 items
= (argc
+ 1) + (envc
+ 1) + 1;
275 bprm
->p
= STACK_ROUND(sp
, items
);
277 /* Point sp at the lowest address on the stack */
278 #ifdef CONFIG_STACK_GROWSUP
279 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
280 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
282 sp
= (elf_addr_t __user
*)bprm
->p
;
287 * Grow the stack manually; some architectures have a limit on how
288 * far ahead a user-space access may be in order to grow the stack.
290 vma
= find_extend_vma(current
->mm
, bprm
->p
);
294 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
295 if (__put_user(argc
, sp
++))
298 envp
= argv
+ argc
+ 1;
300 /* Populate argv and envp */
301 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
304 if (__put_user((elf_addr_t
)p
, argv
++))
306 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
307 if (!len
|| len
> MAX_ARG_STRLEN
)
311 if (__put_user(0, argv
))
313 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
316 if (__put_user((elf_addr_t
)p
, envp
++))
318 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
319 if (!len
|| len
> MAX_ARG_STRLEN
)
323 if (__put_user(0, envp
))
325 current
->mm
->env_end
= p
;
327 /* Put the elf_info on the stack in the right place. */
328 sp
= (elf_addr_t __user
*)envp
+ 1;
329 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
336 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
337 struct elf_phdr
*eppnt
, int prot
, int type
,
338 unsigned long total_size
)
340 unsigned long map_addr
;
341 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
342 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
343 addr
= ELF_PAGESTART(addr
);
344 size
= ELF_PAGEALIGN(size
);
346 /* mmap() will return -EINVAL if given a zero size, but a
347 * segment with zero filesize is perfectly valid */
352 * total_size is the size of the ELF (interpreter) image.
353 * The _first_ mmap needs to know the full size, otherwise
354 * randomization might put this image into an overlapping
355 * position with the ELF binary image. (since size < total_size)
356 * So we first map the 'big' image - and unmap the remainder at
357 * the end. (which unmap is needed for ELF images with holes.)
360 total_size
= ELF_PAGEALIGN(total_size
);
361 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
362 if (!BAD_ADDR(map_addr
))
363 vm_munmap(map_addr
+size
, total_size
-size
);
365 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
370 #endif /* !elf_map */
372 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
374 int i
, first_idx
= -1, last_idx
= -1;
376 for (i
= 0; i
< nr
; i
++) {
377 if (cmds
[i
].p_type
== PT_LOAD
) {
386 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
387 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
391 * load_elf_phdrs() - load ELF program headers
392 * @elf_ex: ELF header of the binary whose program headers should be loaded
393 * @elf_file: the opened ELF binary file
395 * Loads ELF program headers from the binary file elf_file, which has the ELF
396 * header pointed to by elf_ex, into a newly allocated array. The caller is
397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
399 static struct elf_phdr
*load_elf_phdrs(struct elfhdr
*elf_ex
,
400 struct file
*elf_file
)
402 struct elf_phdr
*elf_phdata
= NULL
;
403 int retval
, size
, err
= -1;
406 * If the size of this structure has changed, then punt, since
407 * we will be doing the wrong thing.
409 if (elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
412 /* Sanity check the number of program headers... */
413 if (elf_ex
->e_phnum
< 1 ||
414 elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
417 /* ...and their total size. */
418 size
= sizeof(struct elf_phdr
) * elf_ex
->e_phnum
;
419 if (size
> ELF_MIN_ALIGN
)
422 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
426 /* Read in the program headers */
427 retval
= kernel_read(elf_file
, elf_ex
->e_phoff
,
428 (char *)elf_phdata
, size
);
429 if (retval
!= size
) {
430 err
= (retval
< 0) ? retval
: -EIO
;
444 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
447 * struct arch_elf_state - arch-specific ELF loading state
449 * This structure is used to preserve architecture specific data during
450 * the loading of an ELF file, throughout the checking of architecture
451 * specific ELF headers & through to the point where the ELF load is
452 * known to be proceeding (ie. SET_PERSONALITY).
454 * This implementation is a dummy for architectures which require no
457 struct arch_elf_state
{
460 #define INIT_ARCH_ELF_STATE {}
463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
464 * @ehdr: The main ELF header
465 * @phdr: The program header to check
466 * @elf: The open ELF file
467 * @is_interp: True if the phdr is from the interpreter of the ELF being
468 * loaded, else false.
469 * @state: Architecture-specific state preserved throughout the process
470 * of loading the ELF.
472 * Inspects the program header phdr to validate its correctness and/or
473 * suitability for the system. Called once per ELF program header in the
474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
478 * with that return code.
480 static inline int arch_elf_pt_proc(struct elfhdr
*ehdr
,
481 struct elf_phdr
*phdr
,
482 struct file
*elf
, bool is_interp
,
483 struct arch_elf_state
*state
)
485 /* Dummy implementation, always proceed */
490 * arch_check_elf() - check an ELF executable
491 * @ehdr: The main ELF header
492 * @has_interp: True if the ELF has an interpreter, else false.
493 * @interp_ehdr: The interpreter's ELF header
494 * @state: Architecture-specific state preserved throughout the process
495 * of loading the ELF.
497 * Provides a final opportunity for architecture code to reject the loading
498 * of the ELF & cause an exec syscall to return an error. This is called after
499 * all program headers to be checked by arch_elf_pt_proc have been.
501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502 * with that return code.
504 static inline int arch_check_elf(struct elfhdr
*ehdr
, bool has_interp
,
505 struct elfhdr
*interp_ehdr
,
506 struct arch_elf_state
*state
)
508 /* Dummy implementation, always proceed */
512 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
514 /* This is much more generalized than the library routine read function,
515 so we keep this separate. Technically the library read function
516 is only provided so that we can read a.out libraries that have
519 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
520 struct file
*interpreter
, unsigned long *interp_map_addr
,
521 unsigned long no_base
, struct elf_phdr
*interp_elf_phdata
)
523 struct elf_phdr
*eppnt
;
524 unsigned long load_addr
= 0;
525 int load_addr_set
= 0;
526 unsigned long last_bss
= 0, elf_bss
= 0;
527 unsigned long error
= ~0UL;
528 unsigned long total_size
;
531 /* First of all, some simple consistency checks */
532 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
533 interp_elf_ex
->e_type
!= ET_DYN
)
535 if (!elf_check_arch(interp_elf_ex
))
537 if (!interpreter
->f_op
->mmap
)
540 total_size
= total_mapping_size(interp_elf_phdata
,
541 interp_elf_ex
->e_phnum
);
547 eppnt
= interp_elf_phdata
;
548 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
549 if (eppnt
->p_type
== PT_LOAD
) {
550 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
552 unsigned long vaddr
= 0;
553 unsigned long k
, map_addr
;
555 if (eppnt
->p_flags
& PF_R
)
556 elf_prot
= PROT_READ
;
557 if (eppnt
->p_flags
& PF_W
)
558 elf_prot
|= PROT_WRITE
;
559 if (eppnt
->p_flags
& PF_X
)
560 elf_prot
|= PROT_EXEC
;
561 vaddr
= eppnt
->p_vaddr
;
562 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
563 elf_type
|= MAP_FIXED
;
564 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
567 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
568 eppnt
, elf_prot
, elf_type
, total_size
);
570 if (!*interp_map_addr
)
571 *interp_map_addr
= map_addr
;
573 if (BAD_ADDR(map_addr
))
576 if (!load_addr_set
&&
577 interp_elf_ex
->e_type
== ET_DYN
) {
578 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
583 * Check to see if the section's size will overflow the
584 * allowed task size. Note that p_filesz must always be
585 * <= p_memsize so it's only necessary to check p_memsz.
587 k
= load_addr
+ eppnt
->p_vaddr
;
589 eppnt
->p_filesz
> eppnt
->p_memsz
||
590 eppnt
->p_memsz
> TASK_SIZE
||
591 TASK_SIZE
- eppnt
->p_memsz
< k
) {
597 * Find the end of the file mapping for this phdr, and
598 * keep track of the largest address we see for this.
600 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
605 * Do the same thing for the memory mapping - between
606 * elf_bss and last_bss is the bss section.
608 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_memsz
;
615 * Now fill out the bss section: first pad the last page from
616 * the file up to the page boundary, and zero it from elf_bss
617 * up to the end of the page.
619 if (padzero(elf_bss
)) {
624 * Next, align both the file and mem bss up to the page size,
625 * since this is where elf_bss was just zeroed up to, and where
626 * last_bss will end after the vm_brk() below.
628 elf_bss
= ELF_PAGEALIGN(elf_bss
);
629 last_bss
= ELF_PAGEALIGN(last_bss
);
630 /* Finally, if there is still more bss to allocate, do it. */
631 if (last_bss
> elf_bss
) {
632 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
643 * These are the functions used to load ELF style executables and shared
644 * libraries. There is no binary dependent code anywhere else.
647 #ifndef STACK_RND_MASK
648 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
651 static unsigned long randomize_stack_top(unsigned long stack_top
)
653 unsigned long random_variable
= 0;
655 if ((current
->flags
& PF_RANDOMIZE
) &&
656 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
657 random_variable
= get_random_long();
658 random_variable
&= STACK_RND_MASK
;
659 random_variable
<<= PAGE_SHIFT
;
661 #ifdef CONFIG_STACK_GROWSUP
662 return PAGE_ALIGN(stack_top
) + random_variable
;
664 return PAGE_ALIGN(stack_top
) - random_variable
;
668 static int load_elf_binary(struct linux_binprm
*bprm
)
670 struct file
*interpreter
= NULL
; /* to shut gcc up */
671 unsigned long load_addr
= 0, load_bias
= 0;
672 int load_addr_set
= 0;
673 char * elf_interpreter
= NULL
;
675 struct elf_phdr
*elf_ppnt
, *elf_phdata
, *interp_elf_phdata
= NULL
;
676 unsigned long elf_bss
, elf_brk
;
678 unsigned long elf_entry
;
679 unsigned long interp_load_addr
= 0;
680 unsigned long start_code
, end_code
, start_data
, end_data
;
681 unsigned long reloc_func_desc __maybe_unused
= 0;
682 int executable_stack
= EXSTACK_DEFAULT
;
683 struct pt_regs
*regs
= current_pt_regs();
685 struct elfhdr elf_ex
;
686 struct elfhdr interp_elf_ex
;
688 struct arch_elf_state arch_state
= INIT_ARCH_ELF_STATE
;
690 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
696 /* Get the exec-header */
697 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
700 /* First of all, some simple consistency checks */
701 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
704 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
706 if (!elf_check_arch(&loc
->elf_ex
))
708 if (!bprm
->file
->f_op
->mmap
)
711 elf_phdata
= load_elf_phdrs(&loc
->elf_ex
, bprm
->file
);
715 elf_ppnt
= elf_phdata
;
724 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
725 if (elf_ppnt
->p_type
== PT_INTERP
) {
726 /* This is the program interpreter used for
727 * shared libraries - for now assume that this
728 * is an a.out format binary
731 if (elf_ppnt
->p_filesz
> PATH_MAX
||
732 elf_ppnt
->p_filesz
< 2)
736 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
738 if (!elf_interpreter
)
741 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
744 if (retval
!= elf_ppnt
->p_filesz
) {
747 goto out_free_interp
;
749 /* make sure path is NULL terminated */
751 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
752 goto out_free_interp
;
754 interpreter
= open_exec(elf_interpreter
);
755 retval
= PTR_ERR(interpreter
);
756 if (IS_ERR(interpreter
))
757 goto out_free_interp
;
760 * If the binary is not readable then enforce
761 * mm->dumpable = 0 regardless of the interpreter's
764 would_dump(bprm
, interpreter
);
766 /* Get the exec headers */
767 retval
= kernel_read(interpreter
, 0,
768 (void *)&loc
->interp_elf_ex
,
769 sizeof(loc
->interp_elf_ex
));
770 if (retval
!= sizeof(loc
->interp_elf_ex
)) {
773 goto out_free_dentry
;
781 elf_ppnt
= elf_phdata
;
782 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
783 switch (elf_ppnt
->p_type
) {
785 if (elf_ppnt
->p_flags
& PF_X
)
786 executable_stack
= EXSTACK_ENABLE_X
;
788 executable_stack
= EXSTACK_DISABLE_X
;
791 case PT_LOPROC
... PT_HIPROC
:
792 retval
= arch_elf_pt_proc(&loc
->elf_ex
, elf_ppnt
,
796 goto out_free_dentry
;
800 /* Some simple consistency checks for the interpreter */
801 if (elf_interpreter
) {
803 /* Not an ELF interpreter */
804 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
805 goto out_free_dentry
;
806 /* Verify the interpreter has a valid arch */
807 if (!elf_check_arch(&loc
->interp_elf_ex
))
808 goto out_free_dentry
;
810 /* Load the interpreter program headers */
811 interp_elf_phdata
= load_elf_phdrs(&loc
->interp_elf_ex
,
813 if (!interp_elf_phdata
)
814 goto out_free_dentry
;
816 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
817 elf_ppnt
= interp_elf_phdata
;
818 for (i
= 0; i
< loc
->interp_elf_ex
.e_phnum
; i
++, elf_ppnt
++)
819 switch (elf_ppnt
->p_type
) {
820 case PT_LOPROC
... PT_HIPROC
:
821 retval
= arch_elf_pt_proc(&loc
->interp_elf_ex
,
822 elf_ppnt
, interpreter
,
825 goto out_free_dentry
;
831 * Allow arch code to reject the ELF at this point, whilst it's
832 * still possible to return an error to the code that invoked
835 retval
= arch_check_elf(&loc
->elf_ex
,
836 !!interpreter
, &loc
->interp_elf_ex
,
839 goto out_free_dentry
;
841 /* Flush all traces of the currently running executable */
842 retval
= flush_old_exec(bprm
);
844 goto out_free_dentry
;
846 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
847 may depend on the personality. */
848 SET_PERSONALITY2(loc
->elf_ex
, &arch_state
);
849 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
850 current
->personality
|= READ_IMPLIES_EXEC
;
852 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
853 current
->flags
|= PF_RANDOMIZE
;
855 setup_new_exec(bprm
);
856 install_exec_creds(bprm
);
858 /* Do this so that we can load the interpreter, if need be. We will
859 change some of these later */
860 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
863 goto out_free_dentry
;
865 current
->mm
->start_stack
= bprm
->p
;
867 /* Now we do a little grungy work by mmapping the ELF image into
868 the correct location in memory. */
869 for(i
= 0, elf_ppnt
= elf_phdata
;
870 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
871 int elf_prot
= 0, elf_flags
;
872 unsigned long k
, vaddr
;
873 unsigned long total_size
= 0;
875 if (elf_ppnt
->p_type
!= PT_LOAD
)
878 if (unlikely (elf_brk
> elf_bss
)) {
881 /* There was a PT_LOAD segment with p_memsz > p_filesz
882 before this one. Map anonymous pages, if needed,
883 and clear the area. */
884 retval
= set_brk(elf_bss
+ load_bias
,
885 elf_brk
+ load_bias
);
887 goto out_free_dentry
;
888 nbyte
= ELF_PAGEOFFSET(elf_bss
);
890 nbyte
= ELF_MIN_ALIGN
- nbyte
;
891 if (nbyte
> elf_brk
- elf_bss
)
892 nbyte
= elf_brk
- elf_bss
;
893 if (clear_user((void __user
*)elf_bss
+
896 * This bss-zeroing can fail if the ELF
897 * file specifies odd protections. So
898 * we don't check the return value
904 if (elf_ppnt
->p_flags
& PF_R
)
905 elf_prot
|= PROT_READ
;
906 if (elf_ppnt
->p_flags
& PF_W
)
907 elf_prot
|= PROT_WRITE
;
908 if (elf_ppnt
->p_flags
& PF_X
)
909 elf_prot
|= PROT_EXEC
;
911 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
913 vaddr
= elf_ppnt
->p_vaddr
;
914 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
915 elf_flags
|= MAP_FIXED
;
916 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
917 /* Try and get dynamic programs out of the way of the
918 * default mmap base, as well as whatever program they
919 * might try to exec. This is because the brk will
920 * follow the loader, and is not movable. */
921 load_bias
= ELF_ET_DYN_BASE
- vaddr
;
922 if (current
->flags
& PF_RANDOMIZE
)
923 load_bias
+= arch_mmap_rnd();
924 load_bias
= ELF_PAGESTART(load_bias
);
925 total_size
= total_mapping_size(elf_phdata
,
926 loc
->elf_ex
.e_phnum
);
929 goto out_free_dentry
;
933 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
934 elf_prot
, elf_flags
, total_size
);
935 if (BAD_ADDR(error
)) {
936 retval
= IS_ERR((void *)error
) ?
937 PTR_ERR((void*)error
) : -EINVAL
;
938 goto out_free_dentry
;
941 if (!load_addr_set
) {
943 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
944 if (loc
->elf_ex
.e_type
== ET_DYN
) {
946 ELF_PAGESTART(load_bias
+ vaddr
);
947 load_addr
+= load_bias
;
948 reloc_func_desc
= load_bias
;
951 k
= elf_ppnt
->p_vaddr
;
958 * Check to see if the section's size will overflow the
959 * allowed task size. Note that p_filesz must always be
960 * <= p_memsz so it is only necessary to check p_memsz.
962 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
963 elf_ppnt
->p_memsz
> TASK_SIZE
||
964 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
965 /* set_brk can never work. Avoid overflows. */
967 goto out_free_dentry
;
970 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
974 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
978 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
983 loc
->elf_ex
.e_entry
+= load_bias
;
984 elf_bss
+= load_bias
;
985 elf_brk
+= load_bias
;
986 start_code
+= load_bias
;
987 end_code
+= load_bias
;
988 start_data
+= load_bias
;
989 end_data
+= load_bias
;
991 /* Calling set_brk effectively mmaps the pages that we need
992 * for the bss and break sections. We must do this before
993 * mapping in the interpreter, to make sure it doesn't wind
994 * up getting placed where the bss needs to go.
996 retval
= set_brk(elf_bss
, elf_brk
);
998 goto out_free_dentry
;
999 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
1000 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
1001 goto out_free_dentry
;
1004 if (elf_interpreter
) {
1005 unsigned long interp_map_addr
= 0;
1007 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
1010 load_bias
, interp_elf_phdata
);
1011 if (!IS_ERR((void *)elf_entry
)) {
1013 * load_elf_interp() returns relocation
1016 interp_load_addr
= elf_entry
;
1017 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
1019 if (BAD_ADDR(elf_entry
)) {
1020 retval
= IS_ERR((void *)elf_entry
) ?
1021 (int)elf_entry
: -EINVAL
;
1022 goto out_free_dentry
;
1024 reloc_func_desc
= interp_load_addr
;
1026 allow_write_access(interpreter
);
1028 kfree(elf_interpreter
);
1030 elf_entry
= loc
->elf_ex
.e_entry
;
1031 if (BAD_ADDR(elf_entry
)) {
1033 goto out_free_dentry
;
1037 kfree(interp_elf_phdata
);
1040 set_binfmt(&elf_format
);
1042 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1043 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
1046 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1048 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
1049 load_addr
, interp_load_addr
);
1052 /* N.B. passed_fileno might not be initialized? */
1053 current
->mm
->end_code
= end_code
;
1054 current
->mm
->start_code
= start_code
;
1055 current
->mm
->start_data
= start_data
;
1056 current
->mm
->end_data
= end_data
;
1057 current
->mm
->start_stack
= bprm
->p
;
1059 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
1060 current
->mm
->brk
= current
->mm
->start_brk
=
1061 arch_randomize_brk(current
->mm
);
1062 #ifdef compat_brk_randomized
1063 current
->brk_randomized
= 1;
1067 if (current
->personality
& MMAP_PAGE_ZERO
) {
1068 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1069 and some applications "depend" upon this behavior.
1070 Since we do not have the power to recompile these, we
1071 emulate the SVr4 behavior. Sigh. */
1072 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
1073 MAP_FIXED
| MAP_PRIVATE
, 0);
1076 #ifdef ELF_PLAT_INIT
1078 * The ABI may specify that certain registers be set up in special
1079 * ways (on i386 %edx is the address of a DT_FINI function, for
1080 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1081 * that the e_entry field is the address of the function descriptor
1082 * for the startup routine, rather than the address of the startup
1083 * routine itself. This macro performs whatever initialization to
1084 * the regs structure is required as well as any relocations to the
1085 * function descriptor entries when executing dynamically links apps.
1087 ELF_PLAT_INIT(regs
, reloc_func_desc
);
1090 start_thread(regs
, elf_entry
, bprm
->p
);
1099 kfree(interp_elf_phdata
);
1100 allow_write_access(interpreter
);
1104 kfree(elf_interpreter
);
1110 #ifdef CONFIG_USELIB
1111 /* This is really simpleminded and specialized - we are loading an
1112 a.out library that is given an ELF header. */
1113 static int load_elf_library(struct file
*file
)
1115 struct elf_phdr
*elf_phdata
;
1116 struct elf_phdr
*eppnt
;
1117 unsigned long elf_bss
, bss
, len
;
1118 int retval
, error
, i
, j
;
1119 struct elfhdr elf_ex
;
1122 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1123 if (retval
!= sizeof(elf_ex
))
1126 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1129 /* First of all, some simple consistency checks */
1130 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1131 !elf_check_arch(&elf_ex
) || !file
->f_op
->mmap
)
1134 /* Now read in all of the header information */
1136 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1137 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1140 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1146 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1150 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1151 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1156 while (eppnt
->p_type
!= PT_LOAD
)
1159 /* Now use mmap to map the library into memory. */
1160 error
= vm_mmap(file
,
1161 ELF_PAGESTART(eppnt
->p_vaddr
),
1163 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1164 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1165 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1167 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1168 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1171 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1172 if (padzero(elf_bss
)) {
1177 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1179 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1181 error
= vm_brk(len
, bss
- len
);
1192 #endif /* #ifdef CONFIG_USELIB */
1194 #ifdef CONFIG_ELF_CORE
1198 * Modelled on fs/exec.c:aout_core_dump()
1199 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1203 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1204 * that are useful for post-mortem analysis are included in every core dump.
1205 * In that way we ensure that the core dump is fully interpretable later
1206 * without matching up the same kernel and hardware config to see what PC values
1207 * meant. These special mappings include - vDSO, vsyscall, and other
1208 * architecture specific mappings
1210 static bool always_dump_vma(struct vm_area_struct
*vma
)
1212 /* Any vsyscall mappings? */
1213 if (vma
== get_gate_vma(vma
->vm_mm
))
1217 * Assume that all vmas with a .name op should always be dumped.
1218 * If this changes, a new vm_ops field can easily be added.
1220 if (vma
->vm_ops
&& vma
->vm_ops
->name
&& vma
->vm_ops
->name(vma
))
1224 * arch_vma_name() returns non-NULL for special architecture mappings,
1225 * such as vDSO sections.
1227 if (arch_vma_name(vma
))
1234 * Decide what to dump of a segment, part, all or none.
1236 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1237 unsigned long mm_flags
)
1239 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1241 /* always dump the vdso and vsyscall sections */
1242 if (always_dump_vma(vma
))
1245 if (vma
->vm_flags
& VM_DONTDUMP
)
1248 /* support for DAX */
1249 if (vma_is_dax(vma
)) {
1250 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_SHARED
))
1252 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_PRIVATE
))
1257 /* Hugetlb memory check */
1258 if (vma
->vm_flags
& VM_HUGETLB
) {
1259 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1261 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1266 /* Do not dump I/O mapped devices or special mappings */
1267 if (vma
->vm_flags
& VM_IO
)
1270 /* By default, dump shared memory if mapped from an anonymous file. */
1271 if (vma
->vm_flags
& VM_SHARED
) {
1272 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1273 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1278 /* Dump segments that have been written to. */
1279 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1281 if (vma
->vm_file
== NULL
)
1284 if (FILTER(MAPPED_PRIVATE
))
1288 * If this looks like the beginning of a DSO or executable mapping,
1289 * check for an ELF header. If we find one, dump the first page to
1290 * aid in determining what was mapped here.
1292 if (FILTER(ELF_HEADERS
) &&
1293 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1294 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1296 mm_segment_t fs
= get_fs();
1298 * Doing it this way gets the constant folded by GCC.
1302 char elfmag
[SELFMAG
];
1304 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1305 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1306 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1307 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1308 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1310 * Switch to the user "segment" for get_user(),
1311 * then put back what elf_core_dump() had in place.
1314 if (unlikely(get_user(word
, header
)))
1317 if (word
== magic
.cmp
)
1326 return vma
->vm_end
- vma
->vm_start
;
1329 /* An ELF note in memory */
1334 unsigned int datasz
;
1338 static int notesize(struct memelfnote
*en
)
1342 sz
= sizeof(struct elf_note
);
1343 sz
+= roundup(strlen(en
->name
) + 1, 4);
1344 sz
+= roundup(en
->datasz
, 4);
1349 static int writenote(struct memelfnote
*men
, struct coredump_params
*cprm
)
1352 en
.n_namesz
= strlen(men
->name
) + 1;
1353 en
.n_descsz
= men
->datasz
;
1354 en
.n_type
= men
->type
;
1356 return dump_emit(cprm
, &en
, sizeof(en
)) &&
1357 dump_emit(cprm
, men
->name
, en
.n_namesz
) && dump_align(cprm
, 4) &&
1358 dump_emit(cprm
, men
->data
, men
->datasz
) && dump_align(cprm
, 4);
1361 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1362 u16 machine
, u32 flags
)
1364 memset(elf
, 0, sizeof(*elf
));
1366 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1367 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1368 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1369 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1370 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1372 elf
->e_type
= ET_CORE
;
1373 elf
->e_machine
= machine
;
1374 elf
->e_version
= EV_CURRENT
;
1375 elf
->e_phoff
= sizeof(struct elfhdr
);
1376 elf
->e_flags
= flags
;
1377 elf
->e_ehsize
= sizeof(struct elfhdr
);
1378 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1379 elf
->e_phnum
= segs
;
1384 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1386 phdr
->p_type
= PT_NOTE
;
1387 phdr
->p_offset
= offset
;
1390 phdr
->p_filesz
= sz
;
1397 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1398 unsigned int sz
, void *data
)
1408 * fill up all the fields in prstatus from the given task struct, except
1409 * registers which need to be filled up separately.
1411 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1412 struct task_struct
*p
, long signr
)
1414 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1415 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1416 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1418 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1420 prstatus
->pr_pid
= task_pid_vnr(p
);
1421 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1422 prstatus
->pr_sid
= task_session_vnr(p
);
1423 if (thread_group_leader(p
)) {
1424 struct task_cputime cputime
;
1427 * This is the record for the group leader. It shows the
1428 * group-wide total, not its individual thread total.
1430 thread_group_cputime(p
, &cputime
);
1431 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1432 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1434 cputime_t utime
, stime
;
1436 task_cputime(p
, &utime
, &stime
);
1437 cputime_to_timeval(utime
, &prstatus
->pr_utime
);
1438 cputime_to_timeval(stime
, &prstatus
->pr_stime
);
1440 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1441 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1444 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1445 struct mm_struct
*mm
)
1447 const struct cred
*cred
;
1448 unsigned int i
, len
;
1450 /* first copy the parameters from user space */
1451 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1453 len
= mm
->arg_end
- mm
->arg_start
;
1454 if (len
>= ELF_PRARGSZ
)
1455 len
= ELF_PRARGSZ
-1;
1456 if (copy_from_user(&psinfo
->pr_psargs
,
1457 (const char __user
*)mm
->arg_start
, len
))
1459 for(i
= 0; i
< len
; i
++)
1460 if (psinfo
->pr_psargs
[i
] == 0)
1461 psinfo
->pr_psargs
[i
] = ' ';
1462 psinfo
->pr_psargs
[len
] = 0;
1465 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1467 psinfo
->pr_pid
= task_pid_vnr(p
);
1468 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1469 psinfo
->pr_sid
= task_session_vnr(p
);
1471 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1472 psinfo
->pr_state
= i
;
1473 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1474 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1475 psinfo
->pr_nice
= task_nice(p
);
1476 psinfo
->pr_flag
= p
->flags
;
1478 cred
= __task_cred(p
);
1479 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1480 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1482 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1487 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1489 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1493 while (auxv
[i
- 2] != AT_NULL
);
1494 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1497 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1498 const siginfo_t
*siginfo
)
1500 mm_segment_t old_fs
= get_fs();
1502 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1504 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1507 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1509 * Format of NT_FILE note:
1511 * long count -- how many files are mapped
1512 * long page_size -- units for file_ofs
1513 * array of [COUNT] elements of
1517 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1519 static int fill_files_note(struct memelfnote
*note
)
1521 struct vm_area_struct
*vma
;
1522 unsigned count
, size
, names_ofs
, remaining
, n
;
1524 user_long_t
*start_end_ofs
;
1525 char *name_base
, *name_curpos
;
1527 /* *Estimated* file count and total data size needed */
1528 count
= current
->mm
->map_count
;
1531 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1533 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1535 size
= round_up(size
, PAGE_SIZE
);
1536 data
= vmalloc(size
);
1540 start_end_ofs
= data
+ 2;
1541 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1542 remaining
= size
- names_ofs
;
1544 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1546 const char *filename
;
1548 file
= vma
->vm_file
;
1551 filename
= file_path(file
, name_curpos
, remaining
);
1552 if (IS_ERR(filename
)) {
1553 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1555 size
= size
* 5 / 4;
1561 /* file_path() fills at the end, move name down */
1562 /* n = strlen(filename) + 1: */
1563 n
= (name_curpos
+ remaining
) - filename
;
1564 remaining
= filename
- name_curpos
;
1565 memmove(name_curpos
, filename
, n
);
1568 *start_end_ofs
++ = vma
->vm_start
;
1569 *start_end_ofs
++ = vma
->vm_end
;
1570 *start_end_ofs
++ = vma
->vm_pgoff
;
1574 /* Now we know exact count of files, can store it */
1576 data
[1] = PAGE_SIZE
;
1578 * Count usually is less than current->mm->map_count,
1579 * we need to move filenames down.
1581 n
= current
->mm
->map_count
- count
;
1583 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1584 memmove(name_base
- shift_bytes
, name_base
,
1585 name_curpos
- name_base
);
1586 name_curpos
-= shift_bytes
;
1589 size
= name_curpos
- (char *)data
;
1590 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1594 #ifdef CORE_DUMP_USE_REGSET
1595 #include <linux/regset.h>
1597 struct elf_thread_core_info
{
1598 struct elf_thread_core_info
*next
;
1599 struct task_struct
*task
;
1600 struct elf_prstatus prstatus
;
1601 struct memelfnote notes
[0];
1604 struct elf_note_info
{
1605 struct elf_thread_core_info
*thread
;
1606 struct memelfnote psinfo
;
1607 struct memelfnote signote
;
1608 struct memelfnote auxv
;
1609 struct memelfnote files
;
1610 user_siginfo_t csigdata
;
1616 * When a regset has a writeback hook, we call it on each thread before
1617 * dumping user memory. On register window machines, this makes sure the
1618 * user memory backing the register data is up to date before we read it.
1620 static void do_thread_regset_writeback(struct task_struct
*task
,
1621 const struct user_regset
*regset
)
1623 if (regset
->writeback
)
1624 regset
->writeback(task
, regset
, 1);
1628 #define PR_REG_SIZE(S) sizeof(S)
1631 #ifndef PRSTATUS_SIZE
1632 #define PRSTATUS_SIZE(S) sizeof(S)
1636 #define PR_REG_PTR(S) (&((S)->pr_reg))
1639 #ifndef SET_PR_FPVALID
1640 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1643 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1644 const struct user_regset_view
*view
,
1645 long signr
, size_t *total
)
1650 * NT_PRSTATUS is the one special case, because the regset data
1651 * goes into the pr_reg field inside the note contents, rather
1652 * than being the whole note contents. We fill the reset in here.
1653 * We assume that regset 0 is NT_PRSTATUS.
1655 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1656 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1657 0, PR_REG_SIZE(t
->prstatus
.pr_reg
),
1658 PR_REG_PTR(&t
->prstatus
), NULL
);
1660 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1661 PRSTATUS_SIZE(t
->prstatus
), &t
->prstatus
);
1662 *total
+= notesize(&t
->notes
[0]);
1664 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1667 * Each other regset might generate a note too. For each regset
1668 * that has no core_note_type or is inactive, we leave t->notes[i]
1669 * all zero and we'll know to skip writing it later.
1671 for (i
= 1; i
< view
->n
; ++i
) {
1672 const struct user_regset
*regset
= &view
->regsets
[i
];
1673 do_thread_regset_writeback(t
->task
, regset
);
1674 if (regset
->core_note_type
&& regset
->get
&&
1675 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1677 size_t size
= regset
->n
* regset
->size
;
1678 void *data
= kmalloc(size
, GFP_KERNEL
);
1679 if (unlikely(!data
))
1681 ret
= regset
->get(t
->task
, regset
,
1682 0, size
, data
, NULL
);
1686 if (regset
->core_note_type
!= NT_PRFPREG
)
1687 fill_note(&t
->notes
[i
], "LINUX",
1688 regset
->core_note_type
,
1691 SET_PR_FPVALID(&t
->prstatus
, 1);
1692 fill_note(&t
->notes
[i
], "CORE",
1693 NT_PRFPREG
, size
, data
);
1695 *total
+= notesize(&t
->notes
[i
]);
1703 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1704 struct elf_note_info
*info
,
1705 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1707 struct task_struct
*dump_task
= current
;
1708 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1709 struct elf_thread_core_info
*t
;
1710 struct elf_prpsinfo
*psinfo
;
1711 struct core_thread
*ct
;
1715 info
->thread
= NULL
;
1717 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1718 if (psinfo
== NULL
) {
1719 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1723 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1726 * Figure out how many notes we're going to need for each thread.
1728 info
->thread_notes
= 0;
1729 for (i
= 0; i
< view
->n
; ++i
)
1730 if (view
->regsets
[i
].core_note_type
!= 0)
1731 ++info
->thread_notes
;
1734 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1735 * since it is our one special case.
1737 if (unlikely(info
->thread_notes
== 0) ||
1738 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1744 * Initialize the ELF file header.
1746 fill_elf_header(elf
, phdrs
,
1747 view
->e_machine
, view
->e_flags
);
1750 * Allocate a structure for each thread.
1752 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1753 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1754 notes
[info
->thread_notes
]),
1760 if (ct
->task
== dump_task
|| !info
->thread
) {
1761 t
->next
= info
->thread
;
1765 * Make sure to keep the original task at
1766 * the head of the list.
1768 t
->next
= info
->thread
->next
;
1769 info
->thread
->next
= t
;
1774 * Now fill in each thread's information.
1776 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1777 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1781 * Fill in the two process-wide notes.
1783 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1784 info
->size
+= notesize(&info
->psinfo
);
1786 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1787 info
->size
+= notesize(&info
->signote
);
1789 fill_auxv_note(&info
->auxv
, current
->mm
);
1790 info
->size
+= notesize(&info
->auxv
);
1792 if (fill_files_note(&info
->files
) == 0)
1793 info
->size
+= notesize(&info
->files
);
1798 static size_t get_note_info_size(struct elf_note_info
*info
)
1804 * Write all the notes for each thread. When writing the first thread, the
1805 * process-wide notes are interleaved after the first thread-specific note.
1807 static int write_note_info(struct elf_note_info
*info
,
1808 struct coredump_params
*cprm
)
1811 struct elf_thread_core_info
*t
= info
->thread
;
1816 if (!writenote(&t
->notes
[0], cprm
))
1819 if (first
&& !writenote(&info
->psinfo
, cprm
))
1821 if (first
&& !writenote(&info
->signote
, cprm
))
1823 if (first
&& !writenote(&info
->auxv
, cprm
))
1825 if (first
&& info
->files
.data
&&
1826 !writenote(&info
->files
, cprm
))
1829 for (i
= 1; i
< info
->thread_notes
; ++i
)
1830 if (t
->notes
[i
].data
&&
1831 !writenote(&t
->notes
[i
], cprm
))
1841 static void free_note_info(struct elf_note_info
*info
)
1843 struct elf_thread_core_info
*threads
= info
->thread
;
1846 struct elf_thread_core_info
*t
= threads
;
1848 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1849 for (i
= 1; i
< info
->thread_notes
; ++i
)
1850 kfree(t
->notes
[i
].data
);
1853 kfree(info
->psinfo
.data
);
1854 vfree(info
->files
.data
);
1859 /* Here is the structure in which status of each thread is captured. */
1860 struct elf_thread_status
1862 struct list_head list
;
1863 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1864 elf_fpregset_t fpu
; /* NT_PRFPREG */
1865 struct task_struct
*thread
;
1866 #ifdef ELF_CORE_COPY_XFPREGS
1867 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1869 struct memelfnote notes
[3];
1874 * In order to add the specific thread information for the elf file format,
1875 * we need to keep a linked list of every threads pr_status and then create
1876 * a single section for them in the final core file.
1878 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1881 struct task_struct
*p
= t
->thread
;
1884 fill_prstatus(&t
->prstatus
, p
, signr
);
1885 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1887 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1890 sz
+= notesize(&t
->notes
[0]);
1892 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1894 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1897 sz
+= notesize(&t
->notes
[1]);
1900 #ifdef ELF_CORE_COPY_XFPREGS
1901 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1902 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1903 sizeof(t
->xfpu
), &t
->xfpu
);
1905 sz
+= notesize(&t
->notes
[2]);
1911 struct elf_note_info
{
1912 struct memelfnote
*notes
;
1913 struct memelfnote
*notes_files
;
1914 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1915 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1916 struct list_head thread_list
;
1917 elf_fpregset_t
*fpu
;
1918 #ifdef ELF_CORE_COPY_XFPREGS
1919 elf_fpxregset_t
*xfpu
;
1921 user_siginfo_t csigdata
;
1922 int thread_status_size
;
1926 static int elf_note_info_init(struct elf_note_info
*info
)
1928 memset(info
, 0, sizeof(*info
));
1929 INIT_LIST_HEAD(&info
->thread_list
);
1931 /* Allocate space for ELF notes */
1932 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1935 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1938 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1939 if (!info
->prstatus
)
1941 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1944 #ifdef ELF_CORE_COPY_XFPREGS
1945 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1952 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1953 struct elf_note_info
*info
,
1954 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1956 struct list_head
*t
;
1957 struct core_thread
*ct
;
1958 struct elf_thread_status
*ets
;
1960 if (!elf_note_info_init(info
))
1963 for (ct
= current
->mm
->core_state
->dumper
.next
;
1964 ct
; ct
= ct
->next
) {
1965 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1969 ets
->thread
= ct
->task
;
1970 list_add(&ets
->list
, &info
->thread_list
);
1973 list_for_each(t
, &info
->thread_list
) {
1976 ets
= list_entry(t
, struct elf_thread_status
, list
);
1977 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
1978 info
->thread_status_size
+= sz
;
1980 /* now collect the dump for the current */
1981 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1982 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
1983 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1986 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
1989 * Set up the notes in similar form to SVR4 core dumps made
1990 * with info from their /proc.
1993 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1994 sizeof(*info
->prstatus
), info
->prstatus
);
1995 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1996 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1997 sizeof(*info
->psinfo
), info
->psinfo
);
1999 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
2000 fill_auxv_note(info
->notes
+ 3, current
->mm
);
2003 if (fill_files_note(info
->notes
+ info
->numnote
) == 0) {
2004 info
->notes_files
= info
->notes
+ info
->numnote
;
2008 /* Try to dump the FPU. */
2009 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
2011 if (info
->prstatus
->pr_fpvalid
)
2012 fill_note(info
->notes
+ info
->numnote
++,
2013 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
2014 #ifdef ELF_CORE_COPY_XFPREGS
2015 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
2016 fill_note(info
->notes
+ info
->numnote
++,
2017 "LINUX", ELF_CORE_XFPREG_TYPE
,
2018 sizeof(*info
->xfpu
), info
->xfpu
);
2024 static size_t get_note_info_size(struct elf_note_info
*info
)
2029 for (i
= 0; i
< info
->numnote
; i
++)
2030 sz
+= notesize(info
->notes
+ i
);
2032 sz
+= info
->thread_status_size
;
2037 static int write_note_info(struct elf_note_info
*info
,
2038 struct coredump_params
*cprm
)
2041 struct list_head
*t
;
2043 for (i
= 0; i
< info
->numnote
; i
++)
2044 if (!writenote(info
->notes
+ i
, cprm
))
2047 /* write out the thread status notes section */
2048 list_for_each(t
, &info
->thread_list
) {
2049 struct elf_thread_status
*tmp
=
2050 list_entry(t
, struct elf_thread_status
, list
);
2052 for (i
= 0; i
< tmp
->num_notes
; i
++)
2053 if (!writenote(&tmp
->notes
[i
], cprm
))
2060 static void free_note_info(struct elf_note_info
*info
)
2062 while (!list_empty(&info
->thread_list
)) {
2063 struct list_head
*tmp
= info
->thread_list
.next
;
2065 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
2068 /* Free data possibly allocated by fill_files_note(): */
2069 if (info
->notes_files
)
2070 vfree(info
->notes_files
->data
);
2072 kfree(info
->prstatus
);
2073 kfree(info
->psinfo
);
2076 #ifdef ELF_CORE_COPY_XFPREGS
2083 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
2084 struct vm_area_struct
*gate_vma
)
2086 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
2093 * Helper function for iterating across a vma list. It ensures that the caller
2094 * will visit `gate_vma' prior to terminating the search.
2096 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
2097 struct vm_area_struct
*gate_vma
)
2099 struct vm_area_struct
*ret
;
2101 ret
= this_vma
->vm_next
;
2104 if (this_vma
== gate_vma
)
2109 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
2110 elf_addr_t e_shoff
, int segs
)
2112 elf
->e_shoff
= e_shoff
;
2113 elf
->e_shentsize
= sizeof(*shdr4extnum
);
2115 elf
->e_shstrndx
= SHN_UNDEF
;
2117 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
2119 shdr4extnum
->sh_type
= SHT_NULL
;
2120 shdr4extnum
->sh_size
= elf
->e_shnum
;
2121 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2122 shdr4extnum
->sh_info
= segs
;
2128 * This is a two-pass process; first we find the offsets of the bits,
2129 * and then they are actually written out. If we run out of core limit
2132 static int elf_core_dump(struct coredump_params
*cprm
)
2137 size_t vma_data_size
= 0;
2138 struct vm_area_struct
*vma
, *gate_vma
;
2139 struct elfhdr
*elf
= NULL
;
2140 loff_t offset
= 0, dataoff
;
2141 struct elf_note_info info
= { };
2142 struct elf_phdr
*phdr4note
= NULL
;
2143 struct elf_shdr
*shdr4extnum
= NULL
;
2146 elf_addr_t
*vma_filesz
= NULL
;
2149 * We no longer stop all VM operations.
2151 * This is because those proceses that could possibly change map_count
2152 * or the mmap / vma pages are now blocked in do_exit on current
2153 * finishing this core dump.
2155 * Only ptrace can touch these memory addresses, but it doesn't change
2156 * the map_count or the pages allocated. So no possibility of crashing
2157 * exists while dumping the mm->vm_next areas to the core file.
2160 /* alloc memory for large data structures: too large to be on stack */
2161 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2165 * The number of segs are recored into ELF header as 16bit value.
2166 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2168 segs
= current
->mm
->map_count
;
2169 segs
+= elf_core_extra_phdrs();
2171 gate_vma
= get_gate_vma(current
->mm
);
2172 if (gate_vma
!= NULL
)
2175 /* for notes section */
2178 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2179 * this, kernel supports extended numbering. Have a look at
2180 * include/linux/elf.h for further information. */
2181 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2184 * Collect all the non-memory information about the process for the
2185 * notes. This also sets up the file header.
2187 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2195 offset
+= sizeof(*elf
); /* Elf header */
2196 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2198 /* Write notes phdr entry */
2200 size_t sz
= get_note_info_size(&info
);
2202 sz
+= elf_coredump_extra_notes_size();
2204 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2208 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2212 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2214 vma_filesz
= kmalloc_array(segs
- 1, sizeof(*vma_filesz
), GFP_KERNEL
);
2218 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2219 vma
= next_vma(vma
, gate_vma
)) {
2220 unsigned long dump_size
;
2222 dump_size
= vma_dump_size(vma
, cprm
->mm_flags
);
2223 vma_filesz
[i
++] = dump_size
;
2224 vma_data_size
+= dump_size
;
2227 offset
+= vma_data_size
;
2228 offset
+= elf_core_extra_data_size();
2231 if (e_phnum
== PN_XNUM
) {
2232 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2235 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2240 if (!dump_emit(cprm
, elf
, sizeof(*elf
)))
2243 if (!dump_emit(cprm
, phdr4note
, sizeof(*phdr4note
)))
2246 /* Write program headers for segments dump */
2247 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2248 vma
= next_vma(vma
, gate_vma
)) {
2249 struct elf_phdr phdr
;
2251 phdr
.p_type
= PT_LOAD
;
2252 phdr
.p_offset
= offset
;
2253 phdr
.p_vaddr
= vma
->vm_start
;
2255 phdr
.p_filesz
= vma_filesz
[i
++];
2256 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2257 offset
+= phdr
.p_filesz
;
2258 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2259 if (vma
->vm_flags
& VM_WRITE
)
2260 phdr
.p_flags
|= PF_W
;
2261 if (vma
->vm_flags
& VM_EXEC
)
2262 phdr
.p_flags
|= PF_X
;
2263 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2265 if (!dump_emit(cprm
, &phdr
, sizeof(phdr
)))
2269 if (!elf_core_write_extra_phdrs(cprm
, offset
))
2272 /* write out the notes section */
2273 if (!write_note_info(&info
, cprm
))
2276 if (elf_coredump_extra_notes_write(cprm
))
2280 if (!dump_skip(cprm
, dataoff
- cprm
->pos
))
2283 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2284 vma
= next_vma(vma
, gate_vma
)) {
2288 end
= vma
->vm_start
+ vma_filesz
[i
++];
2290 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2294 page
= get_dump_page(addr
);
2296 void *kaddr
= kmap(page
);
2297 stop
= !dump_emit(cprm
, kaddr
, PAGE_SIZE
);
2301 stop
= !dump_skip(cprm
, PAGE_SIZE
);
2307 if (!elf_core_write_extra_data(cprm
))
2310 if (e_phnum
== PN_XNUM
) {
2311 if (!dump_emit(cprm
, shdr4extnum
, sizeof(*shdr4extnum
)))
2319 free_note_info(&info
);
2328 #endif /* CONFIG_ELF_CORE */
2330 static int __init
init_elf_binfmt(void)
2332 register_binfmt(&elf_format
);
2336 static void __exit
exit_elf_binfmt(void)
2338 /* Remove the COFF and ELF loaders. */
2339 unregister_binfmt(&elf_format
);
2342 core_initcall(init_elf_binfmt
);
2343 module_exit(exit_elf_binfmt
);
2344 MODULE_LICENSE("GPL");