2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 int edac_op_state
= EDAC_OPSTATE_INVAL
;
44 EXPORT_SYMBOL_GPL(edac_op_state
);
46 static int edac_report
= EDAC_REPORTING_ENABLED
;
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex
);
50 static LIST_HEAD(mc_devices
);
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
56 static const char *edac_mc_owner
;
58 static struct bus_type mc_bus
[EDAC_MAX_MCS
];
60 int edac_get_report_status(void)
64 EXPORT_SYMBOL_GPL(edac_get_report_status
);
66 void edac_set_report_status(int new)
68 if (new == EDAC_REPORTING_ENABLED
||
69 new == EDAC_REPORTING_DISABLED
||
70 new == EDAC_REPORTING_FORCE
)
73 EXPORT_SYMBOL_GPL(edac_set_report_status
);
75 static int edac_report_set(const char *str
, const struct kernel_param
*kp
)
80 if (!strncmp(str
, "on", 2))
81 edac_report
= EDAC_REPORTING_ENABLED
;
82 else if (!strncmp(str
, "off", 3))
83 edac_report
= EDAC_REPORTING_DISABLED
;
84 else if (!strncmp(str
, "force", 5))
85 edac_report
= EDAC_REPORTING_FORCE
;
90 static int edac_report_get(char *buffer
, const struct kernel_param
*kp
)
94 switch (edac_report
) {
95 case EDAC_REPORTING_ENABLED
:
96 ret
= sprintf(buffer
, "on");
98 case EDAC_REPORTING_DISABLED
:
99 ret
= sprintf(buffer
, "off");
101 case EDAC_REPORTING_FORCE
:
102 ret
= sprintf(buffer
, "force");
112 static const struct kernel_param_ops edac_report_ops
= {
113 .set
= edac_report_set
,
114 .get
= edac_report_get
,
117 module_param_cb(edac_report
, &edac_report_ops
, &edac_report
, 0644);
119 unsigned edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
122 struct mem_ctl_info
*mci
= dimm
->mci
;
126 for (i
= 0; i
< mci
->n_layers
; i
++) {
127 n
= snprintf(p
, len
, "%s %d ",
128 edac_layer_name
[mci
->layers
[i
].type
],
140 #ifdef CONFIG_EDAC_DEBUG
142 static void edac_mc_dump_channel(struct rank_info
*chan
)
144 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
145 edac_dbg(4, " channel = %p\n", chan
);
146 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
147 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
150 static void edac_mc_dump_dimm(struct dimm_info
*dimm
, int number
)
154 edac_dimm_info_location(dimm
, location
, sizeof(location
));
156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157 dimm
->mci
->csbased
? "rank" : "dimm",
158 number
, location
, dimm
->csrow
, dimm
->cschannel
);
159 edac_dbg(4, " dimm = %p\n", dimm
);
160 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
162 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
166 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
169 edac_dbg(4, " csrow = %p\n", csrow
);
170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
174 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
175 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
178 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
180 edac_dbg(3, "\tmci = %p\n", mci
);
181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
184 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 mci
->nr_csrows
, mci
->csrows
);
187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 mci
->tot_dimms
, mci
->dimms
);
189 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 mci
->mod_name
, mci
->ctl_name
);
192 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
195 #endif /* CONFIG_EDAC_DEBUG */
197 const char * const edac_mem_types
[] = {
198 [MEM_EMPTY
] = "Empty",
199 [MEM_RESERVED
] = "Reserved",
200 [MEM_UNKNOWN
] = "Unknown",
204 [MEM_SDR
] = "Unbuffered-SDR",
205 [MEM_RDR
] = "Registered-SDR",
206 [MEM_DDR
] = "Unbuffered-DDR",
207 [MEM_RDDR
] = "Registered-DDR",
209 [MEM_DDR2
] = "Unbuffered-DDR2",
210 [MEM_FB_DDR2
] = "FullyBuffered-DDR2",
211 [MEM_RDDR2
] = "Registered-DDR2",
213 [MEM_DDR3
] = "Unbuffered-DDR3",
214 [MEM_RDDR3
] = "Registered-DDR3",
215 [MEM_LRDDR3
] = "Load-Reduced-DDR3-RAM",
216 [MEM_DDR4
] = "Unbuffered-DDR4",
217 [MEM_RDDR4
] = "Registered-DDR4",
218 [MEM_LRDDR4
] = "Load-Reduced-DDR4-RAM",
219 [MEM_NVDIMM
] = "Non-volatile-RAM",
221 EXPORT_SYMBOL_GPL(edac_mem_types
);
224 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
225 * @p: pointer to a pointer with the memory offset to be used. At
226 * return, this will be incremented to point to the next offset
227 * @size: Size of the data structure to be reserved
228 * @n_elems: Number of elements that should be reserved
230 * If 'size' is a constant, the compiler will optimize this whole function
231 * down to either a no-op or the addition of a constant to the value of '*p'.
233 * The 'p' pointer is absolutely needed to keep the proper advancing
234 * further in memory to the proper offsets when allocating the struct along
235 * with its embedded structs, as edac_device_alloc_ctl_info() does it
236 * above, for example.
238 * At return, the pointer 'p' will be incremented to be used on a next call
241 void *edac_align_ptr(void **p
, unsigned size
, int n_elems
)
246 *p
+= size
* n_elems
;
249 * 'p' can possibly be an unaligned item X such that sizeof(X) is
250 * 'size'. Adjust 'p' so that its alignment is at least as
251 * stringent as what the compiler would provide for X and return
252 * the aligned result.
253 * Here we assume that the alignment of a "long long" is the most
254 * stringent alignment that the compiler will ever provide by default.
255 * As far as I know, this is a reasonable assumption.
257 if (size
> sizeof(long))
258 align
= sizeof(long long);
259 else if (size
> sizeof(int))
260 align
= sizeof(long);
261 else if (size
> sizeof(short))
263 else if (size
> sizeof(char))
264 align
= sizeof(short);
268 r
= (unsigned long)p
% align
;
275 return (void *)(((unsigned long)ptr
) + align
- r
);
278 static void _edac_mc_free(struct mem_ctl_info
*mci
)
281 struct csrow_info
*csr
;
282 const unsigned int tot_dimms
= mci
->tot_dimms
;
283 const unsigned int tot_channels
= mci
->num_cschannel
;
284 const unsigned int tot_csrows
= mci
->nr_csrows
;
287 for (i
= 0; i
< tot_dimms
; i
++)
288 kfree(mci
->dimms
[i
]);
292 for (row
= 0; row
< tot_csrows
; row
++) {
293 csr
= mci
->csrows
[row
];
296 for (chn
= 0; chn
< tot_channels
; chn
++)
297 kfree(csr
->channels
[chn
]);
298 kfree(csr
->channels
);
308 struct mem_ctl_info
*edac_mc_alloc(unsigned mc_num
,
310 struct edac_mc_layer
*layers
,
313 struct mem_ctl_info
*mci
;
314 struct edac_mc_layer
*layer
;
315 struct csrow_info
*csr
;
316 struct rank_info
*chan
;
317 struct dimm_info
*dimm
;
318 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
319 unsigned pos
[EDAC_MAX_LAYERS
];
320 unsigned size
, tot_dimms
= 1, count
= 1;
321 unsigned tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
322 void *pvt
, *p
, *ptr
= NULL
;
323 int i
, j
, row
, chn
, n
, len
, off
;
324 bool per_rank
= false;
326 BUG_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0);
328 * Calculate the total amount of dimms and csrows/cschannels while
329 * in the old API emulation mode
331 for (i
= 0; i
< n_layers
; i
++) {
332 tot_dimms
*= layers
[i
].size
;
333 if (layers
[i
].is_virt_csrow
)
334 tot_csrows
*= layers
[i
].size
;
336 tot_channels
*= layers
[i
].size
;
338 if (layers
[i
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
342 /* Figure out the offsets of the various items from the start of an mc
343 * structure. We want the alignment of each item to be at least as
344 * stringent as what the compiler would provide if we could simply
345 * hardcode everything into a single struct.
347 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
348 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
349 for (i
= 0; i
< n_layers
; i
++) {
350 count
*= layers
[i
].size
;
351 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
352 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
353 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
354 tot_errcount
+= 2 * count
;
357 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
358 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
359 size
= ((unsigned long)pvt
) + sz_pvt
;
361 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
364 per_rank
? "ranks" : "dimms",
365 tot_csrows
* tot_channels
);
367 mci
= kzalloc(size
, GFP_KERNEL
);
371 /* Adjust pointers so they point within the memory we just allocated
372 * rather than an imaginary chunk of memory located at address 0.
374 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
375 for (i
= 0; i
< n_layers
; i
++) {
376 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
377 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
379 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
381 /* setup index and various internal pointers */
382 mci
->mc_idx
= mc_num
;
383 mci
->tot_dimms
= tot_dimms
;
385 mci
->n_layers
= n_layers
;
387 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
388 mci
->nr_csrows
= tot_csrows
;
389 mci
->num_cschannel
= tot_channels
;
390 mci
->csbased
= per_rank
;
393 * Alocate and fill the csrow/channels structs
395 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
398 for (row
= 0; row
< tot_csrows
; row
++) {
399 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
402 mci
->csrows
[row
] = csr
;
403 csr
->csrow_idx
= row
;
405 csr
->nr_channels
= tot_channels
;
406 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
411 for (chn
= 0; chn
< tot_channels
; chn
++) {
412 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
415 csr
->channels
[chn
] = chan
;
416 chan
->chan_idx
= chn
;
422 * Allocate and fill the dimm structs
424 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
428 memset(&pos
, 0, sizeof(pos
));
431 for (i
= 0; i
< tot_dimms
; i
++) {
432 chan
= mci
->csrows
[row
]->channels
[chn
];
433 off
= EDAC_DIMM_OFF(layer
, n_layers
, pos
[0], pos
[1], pos
[2]);
434 if (off
< 0 || off
>= tot_dimms
) {
435 edac_mc_printk(mci
, KERN_ERR
, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
439 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
442 mci
->dimms
[off
] = dimm
;
446 * Copy DIMM location and initialize it.
448 len
= sizeof(dimm
->label
);
450 n
= snprintf(p
, len
, "mc#%u", mc_num
);
453 for (j
= 0; j
< n_layers
; j
++) {
454 n
= snprintf(p
, len
, "%s#%u",
455 edac_layer_name
[layers
[j
].type
],
459 dimm
->location
[j
] = pos
[j
];
465 /* Link it to the csrows old API data */
468 dimm
->cschannel
= chn
;
470 /* Increment csrow location */
471 if (layers
[0].is_virt_csrow
) {
473 if (chn
== tot_channels
) {
479 if (row
== tot_csrows
) {
485 /* Increment dimm location */
486 for (j
= n_layers
- 1; j
>= 0; j
--) {
488 if (pos
[j
] < layers
[j
].size
)
494 mci
->op_state
= OP_ALLOC
;
503 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
505 void edac_mc_free(struct mem_ctl_info
*mci
)
509 /* If we're not yet registered with sysfs free only what was allocated
510 * in edac_mc_alloc().
512 if (!device_is_registered(&mci
->dev
)) {
517 /* the mci instance is freed here, when the sysfs object is dropped */
518 edac_unregister_sysfs(mci
);
520 EXPORT_SYMBOL_GPL(edac_mc_free
);
522 bool edac_has_mcs(void)
526 mutex_lock(&mem_ctls_mutex
);
528 ret
= list_empty(&mc_devices
);
530 mutex_unlock(&mem_ctls_mutex
);
534 EXPORT_SYMBOL_GPL(edac_has_mcs
);
536 /* Caller must hold mem_ctls_mutex */
537 static struct mem_ctl_info
*__find_mci_by_dev(struct device
*dev
)
539 struct mem_ctl_info
*mci
;
540 struct list_head
*item
;
544 list_for_each(item
, &mc_devices
) {
545 mci
= list_entry(item
, struct mem_ctl_info
, link
);
547 if (mci
->pdev
== dev
)
557 * scan list of controllers looking for the one that manages
559 * @dev: pointer to a struct device related with the MCI
561 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
563 struct mem_ctl_info
*ret
;
565 mutex_lock(&mem_ctls_mutex
);
566 ret
= __find_mci_by_dev(dev
);
567 mutex_unlock(&mem_ctls_mutex
);
571 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
574 * edac_mc_workq_function
575 * performs the operation scheduled by a workq request
577 static void edac_mc_workq_function(struct work_struct
*work_req
)
579 struct delayed_work
*d_work
= to_delayed_work(work_req
);
580 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
582 mutex_lock(&mem_ctls_mutex
);
584 if (mci
->op_state
!= OP_RUNNING_POLL
) {
585 mutex_unlock(&mem_ctls_mutex
);
589 if (edac_op_state
== EDAC_OPSTATE_POLL
)
590 mci
->edac_check(mci
);
592 mutex_unlock(&mem_ctls_mutex
);
594 /* Queue ourselves again. */
595 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
599 * edac_mc_reset_delay_period(unsigned long value)
601 * user space has updated our poll period value, need to
602 * reset our workq delays
604 void edac_mc_reset_delay_period(unsigned long value
)
606 struct mem_ctl_info
*mci
;
607 struct list_head
*item
;
609 mutex_lock(&mem_ctls_mutex
);
611 list_for_each(item
, &mc_devices
) {
612 mci
= list_entry(item
, struct mem_ctl_info
, link
);
614 if (mci
->op_state
== OP_RUNNING_POLL
)
615 edac_mod_work(&mci
->work
, value
);
617 mutex_unlock(&mem_ctls_mutex
);
622 /* Return 0 on success, 1 on failure.
623 * Before calling this function, caller must
624 * assign a unique value to mci->mc_idx.
628 * called with the mem_ctls_mutex lock held
630 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
632 struct list_head
*item
, *insert_before
;
633 struct mem_ctl_info
*p
;
635 insert_before
= &mc_devices
;
637 p
= __find_mci_by_dev(mci
->pdev
);
638 if (unlikely(p
!= NULL
))
641 list_for_each(item
, &mc_devices
) {
642 p
= list_entry(item
, struct mem_ctl_info
, link
);
644 if (p
->mc_idx
>= mci
->mc_idx
) {
645 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
648 insert_before
= item
;
653 list_add_tail_rcu(&mci
->link
, insert_before
);
657 edac_printk(KERN_WARNING
, EDAC_MC
,
658 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
659 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
663 edac_printk(KERN_WARNING
, EDAC_MC
,
664 "bug in low-level driver: attempt to assign\n"
665 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
669 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
671 list_del_rcu(&mci
->link
);
673 /* these are for safe removal of devices from global list while
674 * NMI handlers may be traversing list
677 INIT_LIST_HEAD(&mci
->link
);
679 return list_empty(&mc_devices
);
682 struct mem_ctl_info
*edac_mc_find(int idx
)
684 struct mem_ctl_info
*mci
;
685 struct list_head
*item
;
687 mutex_lock(&mem_ctls_mutex
);
689 list_for_each(item
, &mc_devices
) {
690 mci
= list_entry(item
, struct mem_ctl_info
, link
);
691 if (mci
->mc_idx
== idx
)
697 mutex_unlock(&mem_ctls_mutex
);
700 EXPORT_SYMBOL(edac_mc_find
);
702 const char *edac_get_owner(void)
704 return edac_mc_owner
;
706 EXPORT_SYMBOL_GPL(edac_get_owner
);
708 /* FIXME - should a warning be printed if no error detection? correction? */
709 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
710 const struct attribute_group
**groups
)
715 if (mci
->mc_idx
>= EDAC_MAX_MCS
) {
716 pr_warn_once("Too many memory controllers: %d\n", mci
->mc_idx
);
720 #ifdef CONFIG_EDAC_DEBUG
721 if (edac_debug_level
>= 3)
722 edac_mc_dump_mci(mci
);
724 if (edac_debug_level
>= 4) {
727 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
728 struct csrow_info
*csrow
= mci
->csrows
[i
];
732 for (j
= 0; j
< csrow
->nr_channels
; j
++)
733 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
736 edac_mc_dump_csrow(csrow
);
737 for (j
= 0; j
< csrow
->nr_channels
; j
++)
738 if (csrow
->channels
[j
]->dimm
->nr_pages
)
739 edac_mc_dump_channel(csrow
->channels
[j
]);
741 for (i
= 0; i
< mci
->tot_dimms
; i
++)
742 if (mci
->dimms
[i
]->nr_pages
)
743 edac_mc_dump_dimm(mci
->dimms
[i
], i
);
746 mutex_lock(&mem_ctls_mutex
);
748 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
753 if (add_mc_to_global_list(mci
))
756 /* set load time so that error rate can be tracked */
757 mci
->start_time
= jiffies
;
759 mci
->bus
= &mc_bus
[mci
->mc_idx
];
761 if (edac_create_sysfs_mci_device(mci
, groups
)) {
762 edac_mc_printk(mci
, KERN_WARNING
,
763 "failed to create sysfs device\n");
767 if (mci
->edac_check
) {
768 mci
->op_state
= OP_RUNNING_POLL
;
770 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
771 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
774 mci
->op_state
= OP_RUNNING_INTERRUPT
;
777 /* Report action taken */
778 edac_mc_printk(mci
, KERN_INFO
,
779 "Giving out device to module %s controller %s: DEV %s (%s)\n",
780 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
781 edac_op_state_to_string(mci
->op_state
));
783 edac_mc_owner
= mci
->mod_name
;
785 mutex_unlock(&mem_ctls_mutex
);
789 del_mc_from_global_list(mci
);
792 mutex_unlock(&mem_ctls_mutex
);
795 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
797 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
799 struct mem_ctl_info
*mci
;
803 mutex_lock(&mem_ctls_mutex
);
805 /* find the requested mci struct in the global list */
806 mci
= __find_mci_by_dev(dev
);
808 mutex_unlock(&mem_ctls_mutex
);
812 /* mark MCI offline: */
813 mci
->op_state
= OP_OFFLINE
;
815 if (del_mc_from_global_list(mci
))
816 edac_mc_owner
= NULL
;
818 mutex_unlock(&mem_ctls_mutex
);
821 edac_stop_work(&mci
->work
);
823 /* remove from sysfs */
824 edac_remove_sysfs_mci_device(mci
);
826 edac_printk(KERN_INFO
, EDAC_MC
,
827 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
828 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
832 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
834 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
839 unsigned long flags
= 0;
843 /* ECC error page was not in our memory. Ignore it. */
844 if (!pfn_valid(page
))
847 /* Find the actual page structure then map it and fix */
848 pg
= pfn_to_page(page
);
851 local_irq_save(flags
);
853 virt_addr
= kmap_atomic(pg
);
855 /* Perform architecture specific atomic scrub operation */
856 edac_atomic_scrub(virt_addr
+ offset
, size
);
858 /* Unmap and complete */
859 kunmap_atomic(virt_addr
);
862 local_irq_restore(flags
);
865 /* FIXME - should return -1 */
866 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
868 struct csrow_info
**csrows
= mci
->csrows
;
871 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
874 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
875 struct csrow_info
*csrow
= csrows
[i
];
877 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
878 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
884 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
886 csrow
->first_page
, page
, csrow
->last_page
,
889 if ((page
>= csrow
->first_page
) &&
890 (page
<= csrow
->last_page
) &&
891 ((page
& csrow
->page_mask
) ==
892 (csrow
->first_page
& csrow
->page_mask
))) {
899 edac_mc_printk(mci
, KERN_ERR
,
900 "could not look up page error address %lx\n",
901 (unsigned long)page
);
905 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
907 const char *edac_layer_name
[] = {
908 [EDAC_MC_LAYER_BRANCH
] = "branch",
909 [EDAC_MC_LAYER_CHANNEL
] = "channel",
910 [EDAC_MC_LAYER_SLOT
] = "slot",
911 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
912 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
914 EXPORT_SYMBOL_GPL(edac_layer_name
);
916 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
917 bool enable_per_layer_report
,
918 const int pos
[EDAC_MAX_LAYERS
],
925 if (!enable_per_layer_report
) {
926 mci
->ce_noinfo_count
+= count
;
930 for (i
= 0; i
< mci
->n_layers
; i
++) {
934 mci
->ce_per_layer
[i
][index
] += count
;
936 if (i
< mci
->n_layers
- 1)
937 index
*= mci
->layers
[i
+ 1].size
;
941 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
942 bool enable_per_layer_report
,
943 const int pos
[EDAC_MAX_LAYERS
],
950 if (!enable_per_layer_report
) {
951 mci
->ue_noinfo_count
+= count
;
955 for (i
= 0; i
< mci
->n_layers
; i
++) {
959 mci
->ue_per_layer
[i
][index
] += count
;
961 if (i
< mci
->n_layers
- 1)
962 index
*= mci
->layers
[i
+ 1].size
;
966 static void edac_ce_error(struct mem_ctl_info
*mci
,
967 const u16 error_count
,
968 const int pos
[EDAC_MAX_LAYERS
],
970 const char *location
,
973 const char *other_detail
,
974 const bool enable_per_layer_report
,
975 const unsigned long page_frame_number
,
976 const unsigned long offset_in_page
,
979 unsigned long remapped_page
;
985 if (edac_mc_get_log_ce()) {
986 if (other_detail
&& *other_detail
)
987 edac_mc_printk(mci
, KERN_WARNING
,
988 "%d CE %s%son %s (%s %s - %s)\n",
989 error_count
, msg
, msg_aux
, label
,
990 location
, detail
, other_detail
);
992 edac_mc_printk(mci
, KERN_WARNING
,
993 "%d CE %s%son %s (%s %s)\n",
994 error_count
, msg
, msg_aux
, label
,
997 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
999 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
1001 * Some memory controllers (called MCs below) can remap
1002 * memory so that it is still available at a different
1003 * address when PCI devices map into memory.
1004 * MC's that can't do this, lose the memory where PCI
1005 * devices are mapped. This mapping is MC-dependent
1006 * and so we call back into the MC driver for it to
1007 * map the MC page to a physical (CPU) page which can
1008 * then be mapped to a virtual page - which can then
1011 remapped_page
= mci
->ctl_page_to_phys
?
1012 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
1015 edac_mc_scrub_block(remapped_page
,
1016 offset_in_page
, grain
);
1020 static void edac_ue_error(struct mem_ctl_info
*mci
,
1021 const u16 error_count
,
1022 const int pos
[EDAC_MAX_LAYERS
],
1024 const char *location
,
1027 const char *other_detail
,
1028 const bool enable_per_layer_report
)
1035 if (edac_mc_get_log_ue()) {
1036 if (other_detail
&& *other_detail
)
1037 edac_mc_printk(mci
, KERN_WARNING
,
1038 "%d UE %s%son %s (%s %s - %s)\n",
1039 error_count
, msg
, msg_aux
, label
,
1040 location
, detail
, other_detail
);
1042 edac_mc_printk(mci
, KERN_WARNING
,
1043 "%d UE %s%son %s (%s %s)\n",
1044 error_count
, msg
, msg_aux
, label
,
1048 if (edac_mc_get_panic_on_ue()) {
1049 if (other_detail
&& *other_detail
)
1050 panic("UE %s%son %s (%s%s - %s)\n",
1051 msg
, msg_aux
, label
, location
, detail
, other_detail
);
1053 panic("UE %s%son %s (%s%s)\n",
1054 msg
, msg_aux
, label
, location
, detail
);
1057 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
1060 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
1061 struct mem_ctl_info
*mci
,
1062 struct edac_raw_error_desc
*e
)
1065 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1067 /* Memory type dependent details about the error */
1068 if (type
== HW_EVENT_ERR_CORRECTED
) {
1069 snprintf(detail
, sizeof(detail
),
1070 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1071 e
->page_frame_number
, e
->offset_in_page
,
1072 e
->grain
, e
->syndrome
);
1073 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1074 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1075 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1077 snprintf(detail
, sizeof(detail
),
1078 "page:0x%lx offset:0x%lx grain:%ld",
1079 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1081 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1082 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1087 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1089 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1090 struct mem_ctl_info
*mci
,
1091 const u16 error_count
,
1092 const unsigned long page_frame_number
,
1093 const unsigned long offset_in_page
,
1094 const unsigned long syndrome
,
1095 const int top_layer
,
1096 const int mid_layer
,
1097 const int low_layer
,
1099 const char *other_detail
)
1102 int row
= -1, chan
= -1;
1103 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1104 int i
, n_labels
= 0;
1106 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1108 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1110 /* Fills the error report buffer */
1111 memset(e
, 0, sizeof (*e
));
1112 e
->error_count
= error_count
;
1113 e
->top_layer
= top_layer
;
1114 e
->mid_layer
= mid_layer
;
1115 e
->low_layer
= low_layer
;
1116 e
->page_frame_number
= page_frame_number
;
1117 e
->offset_in_page
= offset_in_page
;
1118 e
->syndrome
= syndrome
;
1120 e
->other_detail
= other_detail
;
1123 * Check if the event report is consistent and if the memory
1124 * location is known. If it is known, enable_per_layer_report will be
1125 * true, the DIMM(s) label info will be filled and the per-layer
1126 * error counters will be incremented.
1128 for (i
= 0; i
< mci
->n_layers
; i
++) {
1129 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1131 edac_mc_printk(mci
, KERN_ERR
,
1132 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1133 edac_layer_name
[mci
->layers
[i
].type
],
1134 pos
[i
], mci
->layers
[i
].size
);
1136 * Instead of just returning it, let's use what's
1137 * known about the error. The increment routines and
1138 * the DIMM filter logic will do the right thing by
1139 * pointing the likely damaged DIMMs.
1144 e
->enable_per_layer_report
= true;
1148 * Get the dimm label/grain that applies to the match criteria.
1149 * As the error algorithm may not be able to point to just one memory
1150 * stick, the logic here will get all possible labels that could
1151 * pottentially be affected by the error.
1152 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1153 * to have only the MC channel and the MC dimm (also called "branch")
1154 * but the channel is not known, as the memory is arranged in pairs,
1155 * where each memory belongs to a separate channel within the same
1161 for (i
= 0; i
< mci
->tot_dimms
; i
++) {
1162 struct dimm_info
*dimm
= mci
->dimms
[i
];
1164 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1166 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1168 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1171 /* get the max grain, over the error match range */
1172 if (dimm
->grain
> e
->grain
)
1173 e
->grain
= dimm
->grain
;
1176 * If the error is memory-controller wide, there's no need to
1177 * seek for the affected DIMMs because the whole
1178 * channel/memory controller/... may be affected.
1179 * Also, don't show errors for empty DIMM slots.
1181 if (e
->enable_per_layer_report
&& dimm
->nr_pages
) {
1182 if (n_labels
>= EDAC_MAX_LABELS
) {
1183 e
->enable_per_layer_report
= false;
1187 if (p
!= e
->label
) {
1188 strcpy(p
, OTHER_LABEL
);
1189 p
+= strlen(OTHER_LABEL
);
1191 strcpy(p
, dimm
->label
);
1196 * get csrow/channel of the DIMM, in order to allow
1197 * incrementing the compat API counters
1199 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1200 mci
->csbased
? "rank" : "dimm",
1201 dimm
->csrow
, dimm
->cschannel
);
1204 else if (row
>= 0 && row
!= dimm
->csrow
)
1208 chan
= dimm
->cschannel
;
1209 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1214 if (!e
->enable_per_layer_report
) {
1215 strcpy(e
->label
, "any memory");
1217 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1219 strcpy(e
->label
, "unknown memory");
1220 if (type
== HW_EVENT_ERR_CORRECTED
) {
1222 mci
->csrows
[row
]->ce_count
+= error_count
;
1224 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1228 mci
->csrows
[row
]->ue_count
+= error_count
;
1231 /* Fill the RAM location data */
1234 for (i
= 0; i
< mci
->n_layers
; i
++) {
1238 p
+= sprintf(p
, "%s:%d ",
1239 edac_layer_name
[mci
->layers
[i
].type
],
1242 if (p
> e
->location
)
1245 /* Sanity-check driver-supplied grain value. */
1246 if (WARN_ON_ONCE(!e
->grain
))
1249 grain_bits
= fls_long(e
->grain
- 1);
1251 /* Report the error via the trace interface */
1252 if (IS_ENABLED(CONFIG_RAS
))
1253 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1254 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
,
1256 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1257 grain_bits
, e
->syndrome
, e
->other_detail
);
1259 edac_raw_mc_handle_error(type
, mci
, e
);
1261 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);