2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
37 static inline void ieee80211_rx_stats(struct net_device
*dev
, u32 len
)
39 struct pcpu_sw_netstats
*tstats
= this_cpu_ptr(dev
->tstats
);
41 u64_stats_update_begin(&tstats
->syncp
);
43 tstats
->rx_bytes
+= len
;
44 u64_stats_update_end(&tstats
->syncp
);
47 static u8
*ieee80211_get_bssid(struct ieee80211_hdr
*hdr
, size_t len
,
48 enum nl80211_iftype type
)
50 __le16 fc
= hdr
->frame_control
;
52 if (ieee80211_is_data(fc
)) {
53 if (len
< 24) /* drop incorrect hdr len (data) */
56 if (ieee80211_has_a4(fc
))
58 if (ieee80211_has_tods(fc
))
60 if (ieee80211_has_fromds(fc
))
66 if (ieee80211_is_mgmt(fc
)) {
67 if (len
< 24) /* drop incorrect hdr len (mgmt) */
72 if (ieee80211_is_ctl(fc
)) {
73 if (ieee80211_is_pspoll(fc
))
76 if (ieee80211_is_back_req(fc
)) {
78 case NL80211_IFTYPE_STATION
:
80 case NL80211_IFTYPE_AP
:
81 case NL80211_IFTYPE_AP_VLAN
:
84 break; /* fall through to the return */
93 * monitor mode reception
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
98 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
100 unsigned int rtap_vendor_space
)
102 if (ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
)) {
103 if (likely(skb
->len
> FCS_LEN
))
104 __pskb_trim(skb
, skb
->len
- FCS_LEN
);
113 __pskb_pull(skb
, rtap_vendor_space
);
118 static inline bool should_drop_frame(struct sk_buff
*skb
, int present_fcs_len
,
119 unsigned int rtap_vendor_space
)
121 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
122 struct ieee80211_hdr
*hdr
;
124 hdr
= (void *)(skb
->data
+ rtap_vendor_space
);
126 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
|
127 RX_FLAG_FAILED_PLCP_CRC
|
128 RX_FLAG_ONLY_MONITOR
))
131 if (unlikely(skb
->len
< 16 + present_fcs_len
+ rtap_vendor_space
))
134 if (ieee80211_is_ctl(hdr
->frame_control
) &&
135 !ieee80211_is_pspoll(hdr
->frame_control
) &&
136 !ieee80211_is_back_req(hdr
->frame_control
))
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local
*local
,
144 struct ieee80211_rx_status
*status
,
149 /* always present fields */
150 len
= sizeof(struct ieee80211_radiotap_header
) + 8;
152 /* allocate extra bitmaps */
154 len
+= 4 * hweight8(status
->chains
);
156 if (ieee80211_have_rx_timestamp(status
)) {
160 if (ieee80211_hw_check(&local
->hw
, SIGNAL_DBM
))
163 /* antenna field, if we don't have per-chain info */
167 /* padding for RX_FLAGS if necessary */
170 if (status
->flag
& RX_FLAG_HT
) /* HT info */
173 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
178 if (status
->flag
& RX_FLAG_VHT
) {
183 if (local
->hw
.radiotap_timestamp
.units_pos
>= 0) {
188 if (status
->chains
) {
189 /* antenna and antenna signal fields */
190 len
+= 2 * hweight8(status
->chains
);
193 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
194 struct ieee80211_vendor_radiotap
*rtap
= (void *)skb
->data
;
196 /* vendor presence bitmap */
198 /* alignment for fixed 6-byte vendor data header */
200 /* vendor data header */
202 if (WARN_ON(rtap
->align
== 0))
204 len
= ALIGN(len
, rtap
->align
);
205 len
+= rtap
->len
+ rtap
->pad
;
211 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data
*sdata
,
213 int rtap_vendor_space
)
216 struct ieee80211_hdr_3addr hdr
;
224 BUILD_BUG_ON(sizeof(action
) != IEEE80211_MIN_ACTION_SIZE
+ 1);
226 if (skb
->len
< rtap_vendor_space
+ sizeof(action
) +
227 VHT_MUMIMO_GROUPS_DATA_LEN
)
230 if (!is_valid_ether_addr(sdata
->u
.mntr
.mu_follow_addr
))
233 skb_copy_bits(skb
, rtap_vendor_space
, &action
, sizeof(action
));
235 if (!ieee80211_is_action(action
.hdr
.frame_control
))
238 if (action
.category
!= WLAN_CATEGORY_VHT
)
241 if (action
.action_code
!= WLAN_VHT_ACTION_GROUPID_MGMT
)
244 if (!ether_addr_equal(action
.hdr
.addr1
, sdata
->u
.mntr
.mu_follow_addr
))
247 skb
= skb_copy(skb
, GFP_ATOMIC
);
251 skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
252 skb_queue_tail(&sdata
->skb_queue
, skb
);
253 ieee80211_queue_work(&sdata
->local
->hw
, &sdata
->work
);
257 * ieee80211_add_rx_radiotap_header - add radiotap header
259 * add a radiotap header containing all the fields which the hardware provided.
262 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
264 struct ieee80211_rate
*rate
,
265 int rtap_len
, bool has_fcs
)
267 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
268 struct ieee80211_radiotap_header
*rthdr
;
273 u16 channel_flags
= 0;
275 unsigned long chains
= status
->chains
;
276 struct ieee80211_vendor_radiotap rtap
= {};
278 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
279 rtap
= *(struct ieee80211_vendor_radiotap
*)skb
->data
;
280 /* rtap.len and rtap.pad are undone immediately */
281 skb_pull(skb
, sizeof(rtap
) + rtap
.len
+ rtap
.pad
);
285 if (!(has_fcs
&& ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
)))
288 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
289 memset(rthdr
, 0, rtap_len
- rtap
.len
- rtap
.pad
);
290 it_present
= &rthdr
->it_present
;
292 /* radiotap header, set always present flags */
293 rthdr
->it_len
= cpu_to_le16(rtap_len
);
294 it_present_val
= BIT(IEEE80211_RADIOTAP_FLAGS
) |
295 BIT(IEEE80211_RADIOTAP_CHANNEL
) |
296 BIT(IEEE80211_RADIOTAP_RX_FLAGS
);
299 it_present_val
|= BIT(IEEE80211_RADIOTAP_ANTENNA
);
301 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
303 BIT(IEEE80211_RADIOTAP_EXT
) |
304 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE
);
305 put_unaligned_le32(it_present_val
, it_present
);
307 it_present_val
= BIT(IEEE80211_RADIOTAP_ANTENNA
) |
308 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
311 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
312 it_present_val
|= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE
) |
313 BIT(IEEE80211_RADIOTAP_EXT
);
314 put_unaligned_le32(it_present_val
, it_present
);
316 it_present_val
= rtap
.present
;
319 put_unaligned_le32(it_present_val
, it_present
);
321 pos
= (void *)(it_present
+ 1);
323 /* the order of the following fields is important */
325 /* IEEE80211_RADIOTAP_TSFT */
326 if (ieee80211_have_rx_timestamp(status
)) {
328 while ((pos
- (u8
*)rthdr
) & 7)
331 ieee80211_calculate_rx_timestamp(local
, status
,
334 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
338 /* IEEE80211_RADIOTAP_FLAGS */
339 if (has_fcs
&& ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
))
340 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
341 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
342 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
343 if (status
->flag
& RX_FLAG_SHORTPRE
)
344 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
347 /* IEEE80211_RADIOTAP_RATE */
348 if (!rate
|| status
->flag
& (RX_FLAG_HT
| RX_FLAG_VHT
)) {
350 * Without rate information don't add it. If we have,
351 * MCS information is a separate field in radiotap,
352 * added below. The byte here is needed as padding
353 * for the channel though, so initialise it to 0.
358 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
359 if (status
->flag
& RX_FLAG_10MHZ
)
361 else if (status
->flag
& RX_FLAG_5MHZ
)
363 *pos
= DIV_ROUND_UP(rate
->bitrate
, 5 * (1 << shift
));
367 /* IEEE80211_RADIOTAP_CHANNEL */
368 put_unaligned_le16(status
->freq
, pos
);
370 if (status
->flag
& RX_FLAG_10MHZ
)
371 channel_flags
|= IEEE80211_CHAN_HALF
;
372 else if (status
->flag
& RX_FLAG_5MHZ
)
373 channel_flags
|= IEEE80211_CHAN_QUARTER
;
375 if (status
->band
== NL80211_BAND_5GHZ
)
376 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
;
377 else if (status
->flag
& (RX_FLAG_HT
| RX_FLAG_VHT
))
378 channel_flags
|= IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
;
379 else if (rate
&& rate
->flags
& IEEE80211_RATE_ERP_G
)
380 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
;
382 channel_flags
|= IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
;
384 channel_flags
|= IEEE80211_CHAN_2GHZ
;
385 put_unaligned_le16(channel_flags
, pos
);
388 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
389 if (ieee80211_hw_check(&local
->hw
, SIGNAL_DBM
) &&
390 !(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
391 *pos
= status
->signal
;
393 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
397 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
399 if (!status
->chains
) {
400 /* IEEE80211_RADIOTAP_ANTENNA */
401 *pos
= status
->antenna
;
405 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
407 /* IEEE80211_RADIOTAP_RX_FLAGS */
408 /* ensure 2 byte alignment for the 2 byte field as required */
409 if ((pos
- (u8
*)rthdr
) & 1)
411 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
412 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
413 put_unaligned_le16(rx_flags
, pos
);
416 if (status
->flag
& RX_FLAG_HT
) {
419 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS
);
420 *pos
++ = local
->hw
.radiotap_mcs_details
;
422 if (status
->flag
& RX_FLAG_SHORT_GI
)
423 *pos
|= IEEE80211_RADIOTAP_MCS_SGI
;
424 if (status
->flag
& RX_FLAG_40MHZ
)
425 *pos
|= IEEE80211_RADIOTAP_MCS_BW_40
;
426 if (status
->flag
& RX_FLAG_HT_GF
)
427 *pos
|= IEEE80211_RADIOTAP_MCS_FMT_GF
;
428 if (status
->flag
& RX_FLAG_LDPC
)
429 *pos
|= IEEE80211_RADIOTAP_MCS_FEC_LDPC
;
430 stbc
= (status
->flag
& RX_FLAG_STBC_MASK
) >> RX_FLAG_STBC_SHIFT
;
431 *pos
|= stbc
<< IEEE80211_RADIOTAP_MCS_STBC_SHIFT
;
433 *pos
++ = status
->rate_idx
;
436 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
439 /* ensure 4 byte alignment */
440 while ((pos
- (u8
*)rthdr
) & 3)
443 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS
);
444 put_unaligned_le32(status
->ampdu_reference
, pos
);
446 if (status
->flag
& RX_FLAG_AMPDU_LAST_KNOWN
)
447 flags
|= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN
;
448 if (status
->flag
& RX_FLAG_AMPDU_IS_LAST
)
449 flags
|= IEEE80211_RADIOTAP_AMPDU_IS_LAST
;
450 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_ERROR
)
451 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR
;
452 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
453 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN
;
454 put_unaligned_le16(flags
, pos
);
456 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
457 *pos
++ = status
->ampdu_delimiter_crc
;
463 if (status
->flag
& RX_FLAG_VHT
) {
464 u16 known
= local
->hw
.radiotap_vht_details
;
466 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT
);
467 put_unaligned_le16(known
, pos
);
470 if (status
->flag
& RX_FLAG_SHORT_GI
)
471 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_SGI
;
472 /* in VHT, STBC is binary */
473 if (status
->flag
& RX_FLAG_STBC_MASK
)
474 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_STBC
;
475 if (status
->vht_flag
& RX_VHT_FLAG_BF
)
476 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED
;
479 if (status
->vht_flag
& RX_VHT_FLAG_80MHZ
)
481 else if (status
->vht_flag
& RX_VHT_FLAG_160MHZ
)
483 else if (status
->flag
& RX_FLAG_40MHZ
)
488 *pos
= (status
->rate_idx
<< 4) | status
->vht_nss
;
491 if (status
->flag
& RX_FLAG_LDPC
)
492 *pos
|= IEEE80211_RADIOTAP_CODING_LDPC_USER0
;
500 if (local
->hw
.radiotap_timestamp
.units_pos
>= 0) {
502 u8 flags
= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT
;
505 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP
);
507 /* ensure 8 byte alignment */
508 while ((pos
- (u8
*)rthdr
) & 7)
511 put_unaligned_le64(status
->device_timestamp
, pos
);
514 if (local
->hw
.radiotap_timestamp
.accuracy
>= 0) {
515 accuracy
= local
->hw
.radiotap_timestamp
.accuracy
;
516 flags
|= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY
;
518 put_unaligned_le16(accuracy
, pos
);
521 *pos
++ = local
->hw
.radiotap_timestamp
.units_pos
;
525 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
526 *pos
++ = status
->chain_signal
[chain
];
530 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
531 /* ensure 2 byte alignment for the vendor field as required */
532 if ((pos
- (u8
*)rthdr
) & 1)
534 *pos
++ = rtap
.oui
[0];
535 *pos
++ = rtap
.oui
[1];
536 *pos
++ = rtap
.oui
[2];
538 put_unaligned_le16(rtap
.len
, pos
);
540 /* align the actual payload as requested */
541 while ((pos
- (u8
*)rthdr
) & (rtap
.align
- 1))
543 /* data (and possible padding) already follows */
548 * This function copies a received frame to all monitor interfaces and
549 * returns a cleaned-up SKB that no longer includes the FCS nor the
550 * radiotap header the driver might have added.
552 static struct sk_buff
*
553 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
554 struct ieee80211_rate
*rate
)
556 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
557 struct ieee80211_sub_if_data
*sdata
;
558 int rt_hdrlen
, needed_headroom
;
559 struct sk_buff
*skb
, *skb2
;
560 struct net_device
*prev_dev
= NULL
;
561 int present_fcs_len
= 0;
562 unsigned int rtap_vendor_space
= 0;
563 struct ieee80211_sub_if_data
*monitor_sdata
=
564 rcu_dereference(local
->monitor_sdata
);
566 if (unlikely(status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
)) {
567 struct ieee80211_vendor_radiotap
*rtap
= (void *)origskb
->data
;
569 rtap_vendor_space
= sizeof(*rtap
) + rtap
->len
+ rtap
->pad
;
573 * First, we may need to make a copy of the skb because
574 * (1) we need to modify it for radiotap (if not present), and
575 * (2) the other RX handlers will modify the skb we got.
577 * We don't need to, of course, if we aren't going to return
578 * the SKB because it has a bad FCS/PLCP checksum.
581 if (ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
))
582 present_fcs_len
= FCS_LEN
;
584 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
585 if (!pskb_may_pull(origskb
, 2 + rtap_vendor_space
)) {
586 dev_kfree_skb(origskb
);
590 if (!local
->monitors
|| (status
->flag
& RX_FLAG_SKIP_MONITOR
)) {
591 if (should_drop_frame(origskb
, present_fcs_len
,
592 rtap_vendor_space
)) {
593 dev_kfree_skb(origskb
);
597 return remove_monitor_info(local
, origskb
, rtap_vendor_space
);
600 ieee80211_handle_mu_mimo_mon(monitor_sdata
, origskb
, rtap_vendor_space
);
602 /* room for the radiotap header based on driver features */
603 rt_hdrlen
= ieee80211_rx_radiotap_hdrlen(local
, status
, origskb
);
604 needed_headroom
= rt_hdrlen
- rtap_vendor_space
;
606 if (should_drop_frame(origskb
, present_fcs_len
, rtap_vendor_space
)) {
607 /* only need to expand headroom if necessary */
612 * This shouldn't trigger often because most devices have an
613 * RX header they pull before we get here, and that should
614 * be big enough for our radiotap information. We should
615 * probably export the length to drivers so that we can have
616 * them allocate enough headroom to start with.
618 if (skb_headroom(skb
) < needed_headroom
&&
619 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
625 * Need to make a copy and possibly remove radiotap header
626 * and FCS from the original.
628 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
630 origskb
= remove_monitor_info(local
, origskb
,
637 /* prepend radiotap information */
638 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, rt_hdrlen
, true);
640 skb_reset_mac_header(skb
);
641 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
642 skb
->pkt_type
= PACKET_OTHERHOST
;
643 skb
->protocol
= htons(ETH_P_802_2
);
645 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
646 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
)
649 if (sdata
->u
.mntr
.flags
& MONITOR_FLAG_COOK_FRAMES
)
652 if (!ieee80211_sdata_running(sdata
))
656 skb2
= skb_clone(skb
, GFP_ATOMIC
);
658 skb2
->dev
= prev_dev
;
659 netif_receive_skb(skb2
);
663 prev_dev
= sdata
->dev
;
664 ieee80211_rx_stats(sdata
->dev
, skb
->len
);
669 netif_receive_skb(skb
);
676 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
678 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
679 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
680 int tid
, seqno_idx
, security_idx
;
682 /* does the frame have a qos control field? */
683 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
684 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
685 /* frame has qos control */
686 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
687 if (*qc
& IEEE80211_QOS_CTL_A_MSDU_PRESENT
)
688 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
694 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
696 * Sequence numbers for management frames, QoS data
697 * frames with a broadcast/multicast address in the
698 * Address 1 field, and all non-QoS data frames sent
699 * by QoS STAs are assigned using an additional single
700 * modulo-4096 counter, [...]
702 * We also use that counter for non-QoS STAs.
704 seqno_idx
= IEEE80211_NUM_TIDS
;
706 if (ieee80211_is_mgmt(hdr
->frame_control
))
707 security_idx
= IEEE80211_NUM_TIDS
;
711 rx
->seqno_idx
= seqno_idx
;
712 rx
->security_idx
= security_idx
;
713 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
714 * For now, set skb->priority to 0 for other cases. */
715 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
719 * DOC: Packet alignment
721 * Drivers always need to pass packets that are aligned to two-byte boundaries
724 * Additionally, should, if possible, align the payload data in a way that
725 * guarantees that the contained IP header is aligned to a four-byte
726 * boundary. In the case of regular frames, this simply means aligning the
727 * payload to a four-byte boundary (because either the IP header is directly
728 * contained, or IV/RFC1042 headers that have a length divisible by four are
729 * in front of it). If the payload data is not properly aligned and the
730 * architecture doesn't support efficient unaligned operations, mac80211
731 * will align the data.
733 * With A-MSDU frames, however, the payload data address must yield two modulo
734 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
735 * push the IP header further back to a multiple of four again. Thankfully, the
736 * specs were sane enough this time around to require padding each A-MSDU
737 * subframe to a length that is a multiple of four.
739 * Padding like Atheros hardware adds which is between the 802.11 header and
740 * the payload is not supported, the driver is required to move the 802.11
741 * header to be directly in front of the payload in that case.
743 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
745 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
746 WARN_ON_ONCE((unsigned long)rx
->skb
->data
& 1);
753 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
755 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
757 if (is_multicast_ether_addr(hdr
->addr1
))
760 return ieee80211_is_robust_mgmt_frame(skb
);
764 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
766 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
768 if (!is_multicast_ether_addr(hdr
->addr1
))
771 return ieee80211_is_robust_mgmt_frame(skb
);
775 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
776 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
778 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
779 struct ieee80211_mmie
*mmie
;
780 struct ieee80211_mmie_16
*mmie16
;
782 if (skb
->len
< 24 + sizeof(*mmie
) || !is_multicast_ether_addr(hdr
->da
))
785 if (!ieee80211_is_robust_mgmt_frame(skb
))
786 return -1; /* not a robust management frame */
788 mmie
= (struct ieee80211_mmie
*)
789 (skb
->data
+ skb
->len
- sizeof(*mmie
));
790 if (mmie
->element_id
== WLAN_EID_MMIE
&&
791 mmie
->length
== sizeof(*mmie
) - 2)
792 return le16_to_cpu(mmie
->key_id
);
794 mmie16
= (struct ieee80211_mmie_16
*)
795 (skb
->data
+ skb
->len
- sizeof(*mmie16
));
796 if (skb
->len
>= 24 + sizeof(*mmie16
) &&
797 mmie16
->element_id
== WLAN_EID_MMIE
&&
798 mmie16
->length
== sizeof(*mmie16
) - 2)
799 return le16_to_cpu(mmie16
->key_id
);
804 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme
*cs
,
807 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
812 fc
= hdr
->frame_control
;
813 hdrlen
= ieee80211_hdrlen(fc
);
815 if (skb
->len
< hdrlen
+ cs
->hdr_len
)
818 skb_copy_bits(skb
, hdrlen
+ cs
->key_idx_off
, &keyid
, 1);
819 keyid
&= cs
->key_idx_mask
;
820 keyid
>>= cs
->key_idx_shift
;
825 static ieee80211_rx_result
ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
827 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
828 char *dev_addr
= rx
->sdata
->vif
.addr
;
830 if (ieee80211_is_data(hdr
->frame_control
)) {
831 if (is_multicast_ether_addr(hdr
->addr1
)) {
832 if (ieee80211_has_tods(hdr
->frame_control
) ||
833 !ieee80211_has_fromds(hdr
->frame_control
))
834 return RX_DROP_MONITOR
;
835 if (ether_addr_equal(hdr
->addr3
, dev_addr
))
836 return RX_DROP_MONITOR
;
838 if (!ieee80211_has_a4(hdr
->frame_control
))
839 return RX_DROP_MONITOR
;
840 if (ether_addr_equal(hdr
->addr4
, dev_addr
))
841 return RX_DROP_MONITOR
;
845 /* If there is not an established peer link and this is not a peer link
846 * establisment frame, beacon or probe, drop the frame.
849 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != NL80211_PLINK_ESTAB
) {
850 struct ieee80211_mgmt
*mgmt
;
852 if (!ieee80211_is_mgmt(hdr
->frame_control
))
853 return RX_DROP_MONITOR
;
855 if (ieee80211_is_action(hdr
->frame_control
)) {
858 /* make sure category field is present */
859 if (rx
->skb
->len
< IEEE80211_MIN_ACTION_SIZE
)
860 return RX_DROP_MONITOR
;
862 mgmt
= (struct ieee80211_mgmt
*)hdr
;
863 category
= mgmt
->u
.action
.category
;
864 if (category
!= WLAN_CATEGORY_MESH_ACTION
&&
865 category
!= WLAN_CATEGORY_SELF_PROTECTED
)
866 return RX_DROP_MONITOR
;
870 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
871 ieee80211_is_probe_resp(hdr
->frame_control
) ||
872 ieee80211_is_beacon(hdr
->frame_control
) ||
873 ieee80211_is_auth(hdr
->frame_control
))
876 return RX_DROP_MONITOR
;
882 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx
*tid_agg_rx
,
885 struct sk_buff_head
*frames
= &tid_agg_rx
->reorder_buf
[index
];
886 struct sk_buff
*tail
= skb_peek_tail(frames
);
887 struct ieee80211_rx_status
*status
;
889 if (tid_agg_rx
->reorder_buf_filtered
& BIT_ULL(index
))
895 status
= IEEE80211_SKB_RXCB(tail
);
896 if (status
->flag
& RX_FLAG_AMSDU_MORE
)
902 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data
*sdata
,
903 struct tid_ampdu_rx
*tid_agg_rx
,
905 struct sk_buff_head
*frames
)
907 struct sk_buff_head
*skb_list
= &tid_agg_rx
->reorder_buf
[index
];
909 struct ieee80211_rx_status
*status
;
911 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
913 if (skb_queue_empty(skb_list
))
916 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
917 __skb_queue_purge(skb_list
);
921 /* release frames from the reorder ring buffer */
922 tid_agg_rx
->stored_mpdu_num
--;
923 while ((skb
= __skb_dequeue(skb_list
))) {
924 status
= IEEE80211_SKB_RXCB(skb
);
925 status
->rx_flags
|= IEEE80211_RX_DEFERRED_RELEASE
;
926 __skb_queue_tail(frames
, skb
);
930 tid_agg_rx
->reorder_buf_filtered
&= ~BIT_ULL(index
);
931 tid_agg_rx
->head_seq_num
= ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
934 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data
*sdata
,
935 struct tid_ampdu_rx
*tid_agg_rx
,
937 struct sk_buff_head
*frames
)
941 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
943 while (ieee80211_sn_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
944 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
945 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
951 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
952 * the skb was added to the buffer longer than this time ago, the earlier
953 * frames that have not yet been received are assumed to be lost and the skb
954 * can be released for processing. This may also release other skb's from the
955 * reorder buffer if there are no additional gaps between the frames.
957 * Callers must hold tid_agg_rx->reorder_lock.
959 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
961 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data
*sdata
,
962 struct tid_ampdu_rx
*tid_agg_rx
,
963 struct sk_buff_head
*frames
)
967 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
969 /* release the buffer until next missing frame */
970 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
971 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, index
) &&
972 tid_agg_rx
->stored_mpdu_num
) {
974 * No buffers ready to be released, but check whether any
975 * frames in the reorder buffer have timed out.
978 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
979 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
980 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, j
)) {
985 !time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
986 HT_RX_REORDER_BUF_TIMEOUT
))
987 goto set_release_timer
;
989 /* don't leave incomplete A-MSDUs around */
990 for (i
= (index
+ 1) % tid_agg_rx
->buf_size
; i
!= j
;
991 i
= (i
+ 1) % tid_agg_rx
->buf_size
)
992 __skb_queue_purge(&tid_agg_rx
->reorder_buf
[i
]);
994 ht_dbg_ratelimited(sdata
,
995 "release an RX reorder frame due to timeout on earlier frames\n");
996 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, j
,
1000 * Increment the head seq# also for the skipped slots.
1002 tid_agg_rx
->head_seq_num
=
1003 (tid_agg_rx
->head_seq_num
+
1004 skipped
) & IEEE80211_SN_MASK
;
1007 } else while (ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
1008 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
1010 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1013 if (tid_agg_rx
->stored_mpdu_num
) {
1014 j
= index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1016 for (; j
!= (index
- 1) % tid_agg_rx
->buf_size
;
1017 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
1018 if (ieee80211_rx_reorder_ready(tid_agg_rx
, j
))
1024 if (!tid_agg_rx
->removed
)
1025 mod_timer(&tid_agg_rx
->reorder_timer
,
1026 tid_agg_rx
->reorder_time
[j
] + 1 +
1027 HT_RX_REORDER_BUF_TIMEOUT
);
1029 del_timer(&tid_agg_rx
->reorder_timer
);
1034 * As this function belongs to the RX path it must be under
1035 * rcu_read_lock protection. It returns false if the frame
1036 * can be processed immediately, true if it was consumed.
1038 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data
*sdata
,
1039 struct tid_ampdu_rx
*tid_agg_rx
,
1040 struct sk_buff
*skb
,
1041 struct sk_buff_head
*frames
)
1043 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1044 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1045 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1046 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1047 u16 head_seq_num
, buf_size
;
1051 spin_lock(&tid_agg_rx
->reorder_lock
);
1054 * Offloaded BA sessions have no known starting sequence number so pick
1055 * one from first Rxed frame for this tid after BA was started.
1057 if (unlikely(tid_agg_rx
->auto_seq
)) {
1058 tid_agg_rx
->auto_seq
= false;
1059 tid_agg_rx
->ssn
= mpdu_seq_num
;
1060 tid_agg_rx
->head_seq_num
= mpdu_seq_num
;
1063 buf_size
= tid_agg_rx
->buf_size
;
1064 head_seq_num
= tid_agg_rx
->head_seq_num
;
1067 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1070 if (unlikely(!tid_agg_rx
->started
)) {
1071 if (ieee80211_sn_less(mpdu_seq_num
, head_seq_num
)) {
1075 tid_agg_rx
->started
= true;
1078 /* frame with out of date sequence number */
1079 if (ieee80211_sn_less(mpdu_seq_num
, head_seq_num
)) {
1085 * If frame the sequence number exceeds our buffering window
1086 * size release some previous frames to make room for this one.
1088 if (!ieee80211_sn_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
1089 head_seq_num
= ieee80211_sn_inc(
1090 ieee80211_sn_sub(mpdu_seq_num
, buf_size
));
1091 /* release stored frames up to new head to stack */
1092 ieee80211_release_reorder_frames(sdata
, tid_agg_rx
,
1093 head_seq_num
, frames
);
1096 /* Now the new frame is always in the range of the reordering buffer */
1098 index
= mpdu_seq_num
% tid_agg_rx
->buf_size
;
1100 /* check if we already stored this frame */
1101 if (ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
1107 * If the current MPDU is in the right order and nothing else
1108 * is stored we can process it directly, no need to buffer it.
1109 * If it is first but there's something stored, we may be able
1110 * to release frames after this one.
1112 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
1113 tid_agg_rx
->stored_mpdu_num
== 0) {
1114 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
))
1115 tid_agg_rx
->head_seq_num
=
1116 ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
1121 /* put the frame in the reordering buffer */
1122 __skb_queue_tail(&tid_agg_rx
->reorder_buf
[index
], skb
);
1123 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
1124 tid_agg_rx
->reorder_time
[index
] = jiffies
;
1125 tid_agg_rx
->stored_mpdu_num
++;
1126 ieee80211_sta_reorder_release(sdata
, tid_agg_rx
, frames
);
1130 spin_unlock(&tid_agg_rx
->reorder_lock
);
1135 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1136 * true if the MPDU was buffered, false if it should be processed.
1138 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
,
1139 struct sk_buff_head
*frames
)
1141 struct sk_buff
*skb
= rx
->skb
;
1142 struct ieee80211_local
*local
= rx
->local
;
1143 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1144 struct sta_info
*sta
= rx
->sta
;
1145 struct tid_ampdu_rx
*tid_agg_rx
;
1149 if (!ieee80211_is_data_qos(hdr
->frame_control
) ||
1150 is_multicast_ether_addr(hdr
->addr1
))
1154 * filter the QoS data rx stream according to
1155 * STA/TID and check if this STA/TID is on aggregation
1161 ack_policy
= *ieee80211_get_qos_ctl(hdr
) &
1162 IEEE80211_QOS_CTL_ACK_POLICY_MASK
;
1163 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
1165 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
1167 if (ack_policy
== IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
1168 !test_bit(tid
, rx
->sta
->ampdu_mlme
.agg_session_valid
) &&
1169 !test_and_set_bit(tid
, rx
->sta
->ampdu_mlme
.unexpected_agg
))
1170 ieee80211_send_delba(rx
->sdata
, rx
->sta
->sta
.addr
, tid
,
1171 WLAN_BACK_RECIPIENT
,
1172 WLAN_REASON_QSTA_REQUIRE_SETUP
);
1176 /* qos null data frames are excluded */
1177 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
1180 /* not part of a BA session */
1181 if (ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
1182 ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_NORMAL
)
1185 /* new, potentially un-ordered, ampdu frame - process it */
1187 /* reset session timer */
1188 if (tid_agg_rx
->timeout
)
1189 tid_agg_rx
->last_rx
= jiffies
;
1191 /* if this mpdu is fragmented - terminate rx aggregation session */
1192 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1193 if (sc
& IEEE80211_SCTL_FRAG
) {
1194 skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
1195 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
1196 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
1201 * No locking needed -- we will only ever process one
1202 * RX packet at a time, and thus own tid_agg_rx. All
1203 * other code manipulating it needs to (and does) make
1204 * sure that we cannot get to it any more before doing
1207 if (ieee80211_sta_manage_reorder_buf(rx
->sdata
, tid_agg_rx
, skb
,
1212 __skb_queue_tail(frames
, skb
);
1215 static ieee80211_rx_result debug_noinline
1216 ieee80211_rx_h_check_dup(struct ieee80211_rx_data
*rx
)
1218 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1219 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1221 if (status
->flag
& RX_FLAG_DUP_VALIDATED
)
1225 * Drop duplicate 802.11 retransmissions
1226 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1229 if (rx
->skb
->len
< 24)
1232 if (ieee80211_is_ctl(hdr
->frame_control
) ||
1233 ieee80211_is_qos_nullfunc(hdr
->frame_control
) ||
1234 is_multicast_ether_addr(hdr
->addr1
))
1240 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
1241 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] == hdr
->seq_ctrl
)) {
1242 I802_DEBUG_INC(rx
->local
->dot11FrameDuplicateCount
);
1243 rx
->sta
->rx_stats
.num_duplicates
++;
1244 return RX_DROP_UNUSABLE
;
1245 } else if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
1246 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] = hdr
->seq_ctrl
;
1252 static ieee80211_rx_result debug_noinline
1253 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
1255 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1257 /* Drop disallowed frame classes based on STA auth/assoc state;
1258 * IEEE 802.11, Chap 5.5.
1260 * mac80211 filters only based on association state, i.e. it drops
1261 * Class 3 frames from not associated stations. hostapd sends
1262 * deauth/disassoc frames when needed. In addition, hostapd is
1263 * responsible for filtering on both auth and assoc states.
1266 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1267 return ieee80211_rx_mesh_check(rx
);
1269 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
1270 ieee80211_is_pspoll(hdr
->frame_control
)) &&
1271 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
1272 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
1273 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
1274 (!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_ASSOC
)))) {
1276 * accept port control frames from the AP even when it's not
1277 * yet marked ASSOC to prevent a race where we don't set the
1278 * assoc bit quickly enough before it sends the first frame
1280 if (rx
->sta
&& rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1281 ieee80211_is_data_present(hdr
->frame_control
)) {
1282 unsigned int hdrlen
;
1285 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1287 if (rx
->skb
->len
< hdrlen
+ 8)
1288 return RX_DROP_MONITOR
;
1290 skb_copy_bits(rx
->skb
, hdrlen
+ 6, ðertype
, 2);
1291 if (ethertype
== rx
->sdata
->control_port_protocol
)
1295 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
1296 cfg80211_rx_spurious_frame(rx
->sdata
->dev
,
1299 return RX_DROP_UNUSABLE
;
1301 return RX_DROP_MONITOR
;
1308 static ieee80211_rx_result debug_noinline
1309 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1311 struct ieee80211_local
*local
;
1312 struct ieee80211_hdr
*hdr
;
1313 struct sk_buff
*skb
;
1317 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1319 if (!local
->pspolling
)
1322 if (!ieee80211_has_fromds(hdr
->frame_control
))
1323 /* this is not from AP */
1326 if (!ieee80211_is_data(hdr
->frame_control
))
1329 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1330 /* AP has no more frames buffered for us */
1331 local
->pspolling
= false;
1335 /* more data bit is set, let's request a new frame from the AP */
1336 ieee80211_send_pspoll(local
, rx
->sdata
);
1341 static void sta_ps_start(struct sta_info
*sta
)
1343 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1344 struct ieee80211_local
*local
= sdata
->local
;
1348 if (sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1349 sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
1350 ps
= &sdata
->bss
->ps
;
1354 atomic_inc(&ps
->num_sta_ps
);
1355 set_sta_flag(sta
, WLAN_STA_PS_STA
);
1356 if (!ieee80211_hw_check(&local
->hw
, AP_LINK_PS
))
1357 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1358 ps_dbg(sdata
, "STA %pM aid %d enters power save mode\n",
1359 sta
->sta
.addr
, sta
->sta
.aid
);
1361 ieee80211_clear_fast_xmit(sta
);
1363 if (!sta
->sta
.txq
[0])
1366 for (tid
= 0; tid
< ARRAY_SIZE(sta
->sta
.txq
); tid
++) {
1367 if (txq_has_queue(sta
->sta
.txq
[tid
]))
1368 set_bit(tid
, &sta
->txq_buffered_tids
);
1370 clear_bit(tid
, &sta
->txq_buffered_tids
);
1374 static void sta_ps_end(struct sta_info
*sta
)
1376 ps_dbg(sta
->sdata
, "STA %pM aid %d exits power save mode\n",
1377 sta
->sta
.addr
, sta
->sta
.aid
);
1379 if (test_sta_flag(sta
, WLAN_STA_PS_DRIVER
)) {
1381 * Clear the flag only if the other one is still set
1382 * so that the TX path won't start TX'ing new frames
1383 * directly ... In the case that the driver flag isn't
1384 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1386 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1387 ps_dbg(sta
->sdata
, "STA %pM aid %d driver-ps-blocked\n",
1388 sta
->sta
.addr
, sta
->sta
.aid
);
1392 set_sta_flag(sta
, WLAN_STA_PS_DELIVER
);
1393 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1394 ieee80211_sta_ps_deliver_wakeup(sta
);
1397 int ieee80211_sta_ps_transition(struct ieee80211_sta
*pubsta
, bool start
)
1399 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1402 WARN_ON(!ieee80211_hw_check(&sta
->local
->hw
, AP_LINK_PS
));
1404 /* Don't let the same PS state be set twice */
1405 in_ps
= test_sta_flag(sta
, WLAN_STA_PS_STA
);
1406 if ((start
&& in_ps
) || (!start
&& !in_ps
))
1416 EXPORT_SYMBOL(ieee80211_sta_ps_transition
);
1418 void ieee80211_sta_pspoll(struct ieee80211_sta
*pubsta
)
1420 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1422 if (test_sta_flag(sta
, WLAN_STA_SP
))
1425 if (!test_sta_flag(sta
, WLAN_STA_PS_DRIVER
))
1426 ieee80211_sta_ps_deliver_poll_response(sta
);
1428 set_sta_flag(sta
, WLAN_STA_PSPOLL
);
1430 EXPORT_SYMBOL(ieee80211_sta_pspoll
);
1432 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta
*pubsta
, u8 tid
)
1434 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1435 u8 ac
= ieee802_1d_to_ac
[tid
& 7];
1438 * If this AC is not trigger-enabled do nothing.
1440 * NB: This could/should check a separate bitmap of trigger-
1441 * enabled queues, but for now we only implement uAPSD w/o
1442 * TSPEC changes to the ACs, so they're always the same.
1444 if (!(sta
->sta
.uapsd_queues
& BIT(ac
)))
1447 /* if we are in a service period, do nothing */
1448 if (test_sta_flag(sta
, WLAN_STA_SP
))
1451 if (!test_sta_flag(sta
, WLAN_STA_PS_DRIVER
))
1452 ieee80211_sta_ps_deliver_uapsd(sta
);
1454 set_sta_flag(sta
, WLAN_STA_UAPSD
);
1456 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger
);
1458 static ieee80211_rx_result debug_noinline
1459 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data
*rx
)
1461 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1462 struct ieee80211_hdr
*hdr
= (void *)rx
->skb
->data
;
1463 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1468 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
1469 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
)
1473 * The device handles station powersave, so don't do anything about
1474 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1475 * it to mac80211 since they're handled.)
1477 if (ieee80211_hw_check(&sdata
->local
->hw
, AP_LINK_PS
))
1481 * Don't do anything if the station isn't already asleep. In
1482 * the uAPSD case, the station will probably be marked asleep,
1483 * in the PS-Poll case the station must be confused ...
1485 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_STA
))
1488 if (unlikely(ieee80211_is_pspoll(hdr
->frame_control
))) {
1489 ieee80211_sta_pspoll(&rx
->sta
->sta
);
1491 /* Free PS Poll skb here instead of returning RX_DROP that would
1492 * count as an dropped frame. */
1493 dev_kfree_skb(rx
->skb
);
1496 } else if (!ieee80211_has_morefrags(hdr
->frame_control
) &&
1497 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1498 ieee80211_has_pm(hdr
->frame_control
) &&
1499 (ieee80211_is_data_qos(hdr
->frame_control
) ||
1500 ieee80211_is_qos_nullfunc(hdr
->frame_control
))) {
1503 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
1505 ieee80211_sta_uapsd_trigger(&rx
->sta
->sta
, tid
);
1511 static ieee80211_rx_result debug_noinline
1512 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1514 struct sta_info
*sta
= rx
->sta
;
1515 struct sk_buff
*skb
= rx
->skb
;
1516 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1517 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1524 * Update last_rx only for IBSS packets which are for the current
1525 * BSSID and for station already AUTHORIZED to avoid keeping the
1526 * current IBSS network alive in cases where other STAs start
1527 * using different BSSID. This will also give the station another
1528 * chance to restart the authentication/authorization in case
1529 * something went wrong the first time.
1531 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1532 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1533 NL80211_IFTYPE_ADHOC
);
1534 if (ether_addr_equal(bssid
, rx
->sdata
->u
.ibss
.bssid
) &&
1535 test_sta_flag(sta
, WLAN_STA_AUTHORIZED
)) {
1536 sta
->rx_stats
.last_rx
= jiffies
;
1537 if (ieee80211_is_data(hdr
->frame_control
) &&
1538 !is_multicast_ether_addr(hdr
->addr1
))
1539 sta
->rx_stats
.last_rate
=
1540 sta_stats_encode_rate(status
);
1542 } else if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_OCB
) {
1543 sta
->rx_stats
.last_rx
= jiffies
;
1544 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1546 * Mesh beacons will update last_rx when if they are found to
1547 * match the current local configuration when processed.
1549 sta
->rx_stats
.last_rx
= jiffies
;
1550 if (ieee80211_is_data(hdr
->frame_control
))
1551 sta
->rx_stats
.last_rate
= sta_stats_encode_rate(status
);
1554 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1555 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1557 sta
->rx_stats
.fragments
++;
1559 u64_stats_update_begin(&rx
->sta
->rx_stats
.syncp
);
1560 sta
->rx_stats
.bytes
+= rx
->skb
->len
;
1561 u64_stats_update_end(&rx
->sta
->rx_stats
.syncp
);
1563 if (!(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
1564 sta
->rx_stats
.last_signal
= status
->signal
;
1565 ewma_signal_add(&sta
->rx_stats_avg
.signal
, -status
->signal
);
1568 if (status
->chains
) {
1569 sta
->rx_stats
.chains
= status
->chains
;
1570 for (i
= 0; i
< ARRAY_SIZE(status
->chain_signal
); i
++) {
1571 int signal
= status
->chain_signal
[i
];
1573 if (!(status
->chains
& BIT(i
)))
1576 sta
->rx_stats
.chain_signal_last
[i
] = signal
;
1577 ewma_signal_add(&sta
->rx_stats_avg
.chain_signal
[i
],
1583 * Change STA power saving mode only at the end of a frame
1584 * exchange sequence.
1586 if (!ieee80211_hw_check(&sta
->local
->hw
, AP_LINK_PS
) &&
1587 !ieee80211_has_morefrags(hdr
->frame_control
) &&
1588 !ieee80211_is_back_req(hdr
->frame_control
) &&
1589 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1590 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1591 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
1593 * PM bit is only checked in frames where it isn't reserved,
1594 * in AP mode it's reserved in non-bufferable management frames
1595 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1596 * BAR frames should be ignored as specified in
1597 * IEEE 802.11-2012 10.2.1.2.
1599 (!ieee80211_is_mgmt(hdr
->frame_control
) ||
1600 ieee80211_is_bufferable_mmpdu(hdr
->frame_control
))) {
1601 if (test_sta_flag(sta
, WLAN_STA_PS_STA
)) {
1602 if (!ieee80211_has_pm(hdr
->frame_control
))
1605 if (ieee80211_has_pm(hdr
->frame_control
))
1610 /* mesh power save support */
1611 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1612 ieee80211_mps_rx_h_sta_process(sta
, hdr
);
1615 * Drop (qos-)data::nullfunc frames silently, since they
1616 * are used only to control station power saving mode.
1618 if (ieee80211_is_nullfunc(hdr
->frame_control
) ||
1619 ieee80211_is_qos_nullfunc(hdr
->frame_control
)) {
1620 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1623 * If we receive a 4-addr nullfunc frame from a STA
1624 * that was not moved to a 4-addr STA vlan yet send
1625 * the event to userspace and for older hostapd drop
1626 * the frame to the monitor interface.
1628 if (ieee80211_has_a4(hdr
->frame_control
) &&
1629 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1630 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1631 !rx
->sdata
->u
.vlan
.sta
))) {
1632 if (!test_and_set_sta_flag(sta
, WLAN_STA_4ADDR_EVENT
))
1633 cfg80211_rx_unexpected_4addr_frame(
1634 rx
->sdata
->dev
, sta
->sta
.addr
,
1636 return RX_DROP_MONITOR
;
1639 * Update counter and free packet here to avoid
1640 * counting this as a dropped packed.
1642 sta
->rx_stats
.packets
++;
1643 dev_kfree_skb(rx
->skb
);
1648 } /* ieee80211_rx_h_sta_process */
1650 static ieee80211_rx_result debug_noinline
1651 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
1653 struct sk_buff
*skb
= rx
->skb
;
1654 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1655 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1658 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
1659 struct ieee80211_key
*sta_ptk
= NULL
;
1660 int mmie_keyidx
= -1;
1662 const struct ieee80211_cipher_scheme
*cs
= NULL
;
1667 * There are four types of keys:
1668 * - GTK (group keys)
1669 * - IGTK (group keys for management frames)
1670 * - PTK (pairwise keys)
1671 * - STK (station-to-station pairwise keys)
1673 * When selecting a key, we have to distinguish between multicast
1674 * (including broadcast) and unicast frames, the latter can only
1675 * use PTKs and STKs while the former always use GTKs and IGTKs.
1676 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1677 * unicast frames can also use key indices like GTKs. Hence, if we
1678 * don't have a PTK/STK we check the key index for a WEP key.
1680 * Note that in a regular BSS, multicast frames are sent by the
1681 * AP only, associated stations unicast the frame to the AP first
1682 * which then multicasts it on their behalf.
1684 * There is also a slight problem in IBSS mode: GTKs are negotiated
1685 * with each station, that is something we don't currently handle.
1686 * The spec seems to expect that one negotiates the same key with
1687 * every station but there's no such requirement; VLANs could be
1691 /* start without a key */
1693 fc
= hdr
->frame_control
;
1696 int keyid
= rx
->sta
->ptk_idx
;
1698 if (ieee80211_has_protected(fc
) && rx
->sta
->cipher_scheme
) {
1699 cs
= rx
->sta
->cipher_scheme
;
1700 keyid
= ieee80211_get_cs_keyid(cs
, rx
->skb
);
1701 if (unlikely(keyid
< 0))
1702 return RX_DROP_UNUSABLE
;
1704 sta_ptk
= rcu_dereference(rx
->sta
->ptk
[keyid
]);
1707 if (!ieee80211_has_protected(fc
))
1708 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
1710 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
1712 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1713 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1715 /* Skip decryption if the frame is not protected. */
1716 if (!ieee80211_has_protected(fc
))
1718 } else if (mmie_keyidx
>= 0) {
1719 /* Broadcast/multicast robust management frame / BIP */
1720 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1721 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1724 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
1725 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
1726 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
1728 if (ieee80211_is_group_privacy_action(skb
) &&
1729 test_sta_flag(rx
->sta
, WLAN_STA_MFP
))
1730 return RX_DROP_MONITOR
;
1732 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
1735 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
1736 } else if (!ieee80211_has_protected(fc
)) {
1738 * The frame was not protected, so skip decryption. However, we
1739 * need to set rx->key if there is a key that could have been
1740 * used so that the frame may be dropped if encryption would
1741 * have been expected.
1743 struct ieee80211_key
*key
= NULL
;
1744 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1747 if (ieee80211_is_mgmt(fc
) &&
1748 is_multicast_ether_addr(hdr
->addr1
) &&
1749 (key
= rcu_dereference(rx
->sdata
->default_mgmt_key
)))
1753 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
1754 key
= rcu_dereference(rx
->sta
->gtk
[i
]);
1760 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
1761 key
= rcu_dereference(sdata
->keys
[i
]);
1774 * The device doesn't give us the IV so we won't be
1775 * able to look up the key. That's ok though, we
1776 * don't need to decrypt the frame, we just won't
1777 * be able to keep statistics accurate.
1778 * Except for key threshold notifications, should
1779 * we somehow allow the driver to tell us which key
1780 * the hardware used if this flag is set?
1782 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1783 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1786 hdrlen
= ieee80211_hdrlen(fc
);
1789 keyidx
= ieee80211_get_cs_keyid(cs
, rx
->skb
);
1791 if (unlikely(keyidx
< 0))
1792 return RX_DROP_UNUSABLE
;
1794 if (rx
->skb
->len
< 8 + hdrlen
)
1795 return RX_DROP_UNUSABLE
; /* TODO: count this? */
1797 * no need to call ieee80211_wep_get_keyidx,
1798 * it verifies a bunch of things we've done already
1800 skb_copy_bits(rx
->skb
, hdrlen
+ 3, &keyid
, 1);
1801 keyidx
= keyid
>> 6;
1804 /* check per-station GTK first, if multicast packet */
1805 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
1806 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
1808 /* if not found, try default key */
1810 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
1813 * RSNA-protected unicast frames should always be
1814 * sent with pairwise or station-to-station keys,
1815 * but for WEP we allow using a key index as well.
1818 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
1819 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
1820 !is_multicast_ether_addr(hdr
->addr1
))
1826 if (unlikely(rx
->key
->flags
& KEY_FLAG_TAINTED
))
1827 return RX_DROP_MONITOR
;
1829 /* TODO: add threshold stuff again */
1831 return RX_DROP_MONITOR
;
1834 switch (rx
->key
->conf
.cipher
) {
1835 case WLAN_CIPHER_SUITE_WEP40
:
1836 case WLAN_CIPHER_SUITE_WEP104
:
1837 result
= ieee80211_crypto_wep_decrypt(rx
);
1839 case WLAN_CIPHER_SUITE_TKIP
:
1840 result
= ieee80211_crypto_tkip_decrypt(rx
);
1842 case WLAN_CIPHER_SUITE_CCMP
:
1843 result
= ieee80211_crypto_ccmp_decrypt(
1844 rx
, IEEE80211_CCMP_MIC_LEN
);
1846 case WLAN_CIPHER_SUITE_CCMP_256
:
1847 result
= ieee80211_crypto_ccmp_decrypt(
1848 rx
, IEEE80211_CCMP_256_MIC_LEN
);
1850 case WLAN_CIPHER_SUITE_AES_CMAC
:
1851 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
1853 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
1854 result
= ieee80211_crypto_aes_cmac_256_decrypt(rx
);
1856 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
1857 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
1858 result
= ieee80211_crypto_aes_gmac_decrypt(rx
);
1860 case WLAN_CIPHER_SUITE_GCMP
:
1861 case WLAN_CIPHER_SUITE_GCMP_256
:
1862 result
= ieee80211_crypto_gcmp_decrypt(rx
);
1865 result
= ieee80211_crypto_hw_decrypt(rx
);
1868 /* the hdr variable is invalid after the decrypt handlers */
1870 /* either the frame has been decrypted or will be dropped */
1871 status
->flag
|= RX_FLAG_DECRYPTED
;
1876 static inline struct ieee80211_fragment_entry
*
1877 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
1878 unsigned int frag
, unsigned int seq
, int rx_queue
,
1879 struct sk_buff
**skb
)
1881 struct ieee80211_fragment_entry
*entry
;
1883 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
1884 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
1885 sdata
->fragment_next
= 0;
1887 if (!skb_queue_empty(&entry
->skb_list
))
1888 __skb_queue_purge(&entry
->skb_list
);
1890 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
1892 entry
->first_frag_time
= jiffies
;
1894 entry
->rx_queue
= rx_queue
;
1895 entry
->last_frag
= frag
;
1896 entry
->check_sequential_pn
= false;
1897 entry
->extra_len
= 0;
1902 static inline struct ieee80211_fragment_entry
*
1903 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
1904 unsigned int frag
, unsigned int seq
,
1905 int rx_queue
, struct ieee80211_hdr
*hdr
)
1907 struct ieee80211_fragment_entry
*entry
;
1910 idx
= sdata
->fragment_next
;
1911 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
1912 struct ieee80211_hdr
*f_hdr
;
1916 idx
= IEEE80211_FRAGMENT_MAX
- 1;
1918 entry
= &sdata
->fragments
[idx
];
1919 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
1920 entry
->rx_queue
!= rx_queue
||
1921 entry
->last_frag
+ 1 != frag
)
1924 f_hdr
= (struct ieee80211_hdr
*)entry
->skb_list
.next
->data
;
1927 * Check ftype and addresses are equal, else check next fragment
1929 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
1930 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
1931 !ether_addr_equal(hdr
->addr1
, f_hdr
->addr1
) ||
1932 !ether_addr_equal(hdr
->addr2
, f_hdr
->addr2
))
1935 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
1936 __skb_queue_purge(&entry
->skb_list
);
1945 static ieee80211_rx_result debug_noinline
1946 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
1948 struct ieee80211_hdr
*hdr
;
1951 unsigned int frag
, seq
;
1952 struct ieee80211_fragment_entry
*entry
;
1953 struct sk_buff
*skb
;
1954 struct ieee80211_rx_status
*status
;
1956 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1957 fc
= hdr
->frame_control
;
1959 if (ieee80211_is_ctl(fc
))
1962 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1963 frag
= sc
& IEEE80211_SCTL_FRAG
;
1965 if (is_multicast_ether_addr(hdr
->addr1
)) {
1966 I802_DEBUG_INC(rx
->local
->dot11MulticastReceivedFrameCount
);
1970 if (likely(!ieee80211_has_morefrags(fc
) && frag
== 0))
1973 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
1975 if (skb_linearize(rx
->skb
))
1976 return RX_DROP_UNUSABLE
;
1979 * skb_linearize() might change the skb->data and
1980 * previously cached variables (in this case, hdr) need to
1981 * be refreshed with the new data.
1983 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1984 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1987 /* This is the first fragment of a new frame. */
1988 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
1989 rx
->seqno_idx
, &(rx
->skb
));
1991 (rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
||
1992 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP_256
||
1993 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_GCMP
||
1994 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_GCMP_256
) &&
1995 ieee80211_has_protected(fc
)) {
1996 int queue
= rx
->security_idx
;
1998 /* Store CCMP/GCMP PN so that we can verify that the
1999 * next fragment has a sequential PN value.
2001 entry
->check_sequential_pn
= true;
2002 memcpy(entry
->last_pn
,
2003 rx
->key
->u
.ccmp
.rx_pn
[queue
],
2004 IEEE80211_CCMP_PN_LEN
);
2005 BUILD_BUG_ON(offsetof(struct ieee80211_key
,
2007 offsetof(struct ieee80211_key
,
2009 BUILD_BUG_ON(sizeof(rx
->key
->u
.ccmp
.rx_pn
[queue
]) !=
2010 sizeof(rx
->key
->u
.gcmp
.rx_pn
[queue
]));
2011 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN
!=
2012 IEEE80211_GCMP_PN_LEN
);
2017 /* This is a fragment for a frame that should already be pending in
2018 * fragment cache. Add this fragment to the end of the pending entry.
2020 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
,
2021 rx
->seqno_idx
, hdr
);
2023 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
2024 return RX_DROP_MONITOR
;
2027 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2028 * MPDU PN values are not incrementing in steps of 1."
2029 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2030 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2032 if (entry
->check_sequential_pn
) {
2034 u8 pn
[IEEE80211_CCMP_PN_LEN
], *rpn
;
2038 (rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
&&
2039 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP_256
&&
2040 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_GCMP
&&
2041 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_GCMP_256
))
2042 return RX_DROP_UNUSABLE
;
2043 memcpy(pn
, entry
->last_pn
, IEEE80211_CCMP_PN_LEN
);
2044 for (i
= IEEE80211_CCMP_PN_LEN
- 1; i
>= 0; i
--) {
2049 queue
= rx
->security_idx
;
2050 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
2051 if (memcmp(pn
, rpn
, IEEE80211_CCMP_PN_LEN
))
2052 return RX_DROP_UNUSABLE
;
2053 memcpy(entry
->last_pn
, pn
, IEEE80211_CCMP_PN_LEN
);
2056 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
2057 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
2058 entry
->last_frag
= frag
;
2059 entry
->extra_len
+= rx
->skb
->len
;
2060 if (ieee80211_has_morefrags(fc
)) {
2065 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
2066 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
2067 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head_defrag
);
2068 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
2070 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
2071 __skb_queue_purge(&entry
->skb_list
);
2072 return RX_DROP_UNUSABLE
;
2075 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
2076 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
2080 /* Complete frame has been reassembled - process it now */
2081 status
= IEEE80211_SKB_RXCB(rx
->skb
);
2084 ieee80211_led_rx(rx
->local
);
2087 rx
->sta
->rx_stats
.packets
++;
2091 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
2093 if (unlikely(!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_AUTHORIZED
)))
2099 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
2101 struct sk_buff
*skb
= rx
->skb
;
2102 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2105 * Pass through unencrypted frames if the hardware has
2106 * decrypted them already.
2108 if (status
->flag
& RX_FLAG_DECRYPTED
)
2111 /* Drop unencrypted frames if key is set. */
2112 if (unlikely(!ieee80211_has_protected(fc
) &&
2113 !ieee80211_is_nullfunc(fc
) &&
2114 ieee80211_is_data(fc
) && rx
->key
))
2120 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
2122 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2123 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2124 __le16 fc
= hdr
->frame_control
;
2127 * Pass through unencrypted frames if the hardware has
2128 * decrypted them already.
2130 if (status
->flag
& RX_FLAG_DECRYPTED
)
2133 if (rx
->sta
&& test_sta_flag(rx
->sta
, WLAN_STA_MFP
)) {
2134 if (unlikely(!ieee80211_has_protected(fc
) &&
2135 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
2137 if (ieee80211_is_deauth(fc
) ||
2138 ieee80211_is_disassoc(fc
))
2139 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
2144 /* BIP does not use Protected field, so need to check MMIE */
2145 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
2146 ieee80211_get_mmie_keyidx(rx
->skb
) < 0)) {
2147 if (ieee80211_is_deauth(fc
) ||
2148 ieee80211_is_disassoc(fc
))
2149 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
2155 * When using MFP, Action frames are not allowed prior to
2156 * having configured keys.
2158 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
2159 ieee80211_is_robust_mgmt_frame(rx
->skb
)))
2167 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
, bool *port_control
)
2169 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2170 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2171 bool check_port_control
= false;
2172 struct ethhdr
*ehdr
;
2175 *port_control
= false;
2176 if (ieee80211_has_a4(hdr
->frame_control
) &&
2177 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
2180 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
2181 !!sdata
->u
.mgd
.use_4addr
!= !!ieee80211_has_a4(hdr
->frame_control
)) {
2183 if (!sdata
->u
.mgd
.use_4addr
)
2186 check_port_control
= true;
2189 if (is_multicast_ether_addr(hdr
->addr1
) &&
2190 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
)
2193 ret
= ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
2197 ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2198 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
)
2199 *port_control
= true;
2200 else if (check_port_control
)
2207 * requires that rx->skb is a frame with ethernet header
2209 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
2211 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
2212 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2213 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2216 * Allow EAPOL frames to us/the PAE group address regardless
2217 * of whether the frame was encrypted or not.
2219 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
2220 (ether_addr_equal(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) ||
2221 ether_addr_equal(ehdr
->h_dest
, pae_group_addr
)))
2224 if (ieee80211_802_1x_port_control(rx
) ||
2225 ieee80211_drop_unencrypted(rx
, fc
))
2232 * requires that rx->skb is a frame with ethernet header
2235 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
2237 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2238 struct net_device
*dev
= sdata
->dev
;
2239 struct sk_buff
*skb
, *xmit_skb
;
2240 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2241 struct sta_info
*dsta
;
2246 ieee80211_rx_stats(dev
, skb
->len
);
2249 /* The seqno index has the same property as needed
2250 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2251 * for non-QoS-data frames. Here we know it's a data
2252 * frame, so count MSDUs.
2254 u64_stats_update_begin(&rx
->sta
->rx_stats
.syncp
);
2255 rx
->sta
->rx_stats
.msdu
[rx
->seqno_idx
]++;
2256 u64_stats_update_end(&rx
->sta
->rx_stats
.syncp
);
2259 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2260 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
2261 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
2262 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
2263 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
2265 * send multicast frames both to higher layers in
2266 * local net stack and back to the wireless medium
2268 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
2270 net_info_ratelimited("%s: failed to clone multicast frame\n",
2273 dsta
= sta_info_get(sdata
, skb
->data
);
2276 * The destination station is associated to
2277 * this AP (in this VLAN), so send the frame
2278 * directly to it and do not pass it to local
2287 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2289 /* 'align' will only take the values 0 or 2 here since all
2290 * frames are required to be aligned to 2-byte boundaries
2291 * when being passed to mac80211; the code here works just
2292 * as well if that isn't true, but mac80211 assumes it can
2293 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2297 align
= (unsigned long)(skb
->data
+ sizeof(struct ethhdr
)) & 3;
2299 if (WARN_ON(skb_headroom(skb
) < 3)) {
2303 u8
*data
= skb
->data
;
2304 size_t len
= skb_headlen(skb
);
2306 memmove(skb
->data
, data
, len
);
2307 skb_set_tail_pointer(skb
, len
);
2314 /* deliver to local stack */
2315 skb
->protocol
= eth_type_trans(skb
, dev
);
2316 memset(skb
->cb
, 0, sizeof(skb
->cb
));
2318 napi_gro_receive(rx
->napi
, skb
);
2320 netif_receive_skb(skb
);
2325 * Send to wireless media and increase priority by 256 to
2326 * keep the received priority instead of reclassifying
2327 * the frame (see cfg80211_classify8021d).
2329 xmit_skb
->priority
+= 256;
2330 xmit_skb
->protocol
= htons(ETH_P_802_3
);
2331 skb_reset_network_header(xmit_skb
);
2332 skb_reset_mac_header(xmit_skb
);
2333 dev_queue_xmit(xmit_skb
);
2337 static ieee80211_rx_result debug_noinline
2338 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
2340 struct net_device
*dev
= rx
->sdata
->dev
;
2341 struct sk_buff
*skb
= rx
->skb
;
2342 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2343 __le16 fc
= hdr
->frame_control
;
2344 struct sk_buff_head frame_list
;
2345 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2346 struct ethhdr ethhdr
;
2347 const u8
*check_da
= ethhdr
.h_dest
, *check_sa
= ethhdr
.h_source
;
2349 if (unlikely(!ieee80211_is_data(fc
)))
2352 if (unlikely(!ieee80211_is_data_present(fc
)))
2353 return RX_DROP_MONITOR
;
2355 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
2358 if (unlikely(ieee80211_has_a4(hdr
->frame_control
))) {
2359 switch (rx
->sdata
->vif
.type
) {
2360 case NL80211_IFTYPE_AP_VLAN
:
2361 if (!rx
->sdata
->u
.vlan
.sta
)
2362 return RX_DROP_UNUSABLE
;
2364 case NL80211_IFTYPE_STATION
:
2365 if (!rx
->sdata
->u
.mgd
.use_4addr
)
2366 return RX_DROP_UNUSABLE
;
2369 return RX_DROP_UNUSABLE
;
2373 } else switch (rx
->sdata
->vif
.type
) {
2374 case NL80211_IFTYPE_AP
:
2375 case NL80211_IFTYPE_AP_VLAN
:
2378 case NL80211_IFTYPE_STATION
:
2380 !test_sta_flag(rx
->sta
, WLAN_STA_TDLS_PEER
))
2383 case NL80211_IFTYPE_MESH_POINT
:
2390 if (is_multicast_ether_addr(hdr
->addr1
))
2391 return RX_DROP_UNUSABLE
;
2394 __skb_queue_head_init(&frame_list
);
2396 if (ieee80211_data_to_8023_exthdr(skb
, ðhdr
,
2397 rx
->sdata
->vif
.addr
,
2398 rx
->sdata
->vif
.type
))
2399 return RX_DROP_UNUSABLE
;
2401 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
2402 rx
->sdata
->vif
.type
,
2403 rx
->local
->hw
.extra_tx_headroom
,
2404 check_da
, check_sa
);
2406 while (!skb_queue_empty(&frame_list
)) {
2407 rx
->skb
= __skb_dequeue(&frame_list
);
2409 if (!ieee80211_frame_allowed(rx
, fc
)) {
2410 dev_kfree_skb(rx
->skb
);
2414 ieee80211_deliver_skb(rx
);
2420 #ifdef CONFIG_MAC80211_MESH
2421 static ieee80211_rx_result
2422 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
2424 struct ieee80211_hdr
*fwd_hdr
, *hdr
;
2425 struct ieee80211_tx_info
*info
;
2426 struct ieee80211s_hdr
*mesh_hdr
;
2427 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
2428 struct ieee80211_local
*local
= rx
->local
;
2429 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2430 struct ieee80211_if_mesh
*ifmsh
= &sdata
->u
.mesh
;
2433 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2434 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
2436 /* make sure fixed part of mesh header is there, also checks skb len */
2437 if (!pskb_may_pull(rx
->skb
, hdrlen
+ 6))
2438 return RX_DROP_MONITOR
;
2440 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2442 /* make sure full mesh header is there, also checks skb len */
2443 if (!pskb_may_pull(rx
->skb
,
2444 hdrlen
+ ieee80211_get_mesh_hdrlen(mesh_hdr
)))
2445 return RX_DROP_MONITOR
;
2447 /* reload pointers */
2448 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2449 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2451 if (ieee80211_drop_unencrypted(rx
, hdr
->frame_control
))
2452 return RX_DROP_MONITOR
;
2454 /* frame is in RMC, don't forward */
2455 if (ieee80211_is_data(hdr
->frame_control
) &&
2456 is_multicast_ether_addr(hdr
->addr1
) &&
2457 mesh_rmc_check(rx
->sdata
, hdr
->addr3
, mesh_hdr
))
2458 return RX_DROP_MONITOR
;
2460 if (!ieee80211_is_data(hdr
->frame_control
))
2464 return RX_DROP_MONITOR
;
2466 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
2467 struct mesh_path
*mppath
;
2471 if (is_multicast_ether_addr(hdr
->addr1
)) {
2472 mpp_addr
= hdr
->addr3
;
2473 proxied_addr
= mesh_hdr
->eaddr1
;
2474 } else if ((mesh_hdr
->flags
& MESH_FLAGS_AE
) ==
2475 MESH_FLAGS_AE_A5_A6
) {
2476 /* has_a4 already checked in ieee80211_rx_mesh_check */
2477 mpp_addr
= hdr
->addr4
;
2478 proxied_addr
= mesh_hdr
->eaddr2
;
2480 return RX_DROP_MONITOR
;
2484 mppath
= mpp_path_lookup(sdata
, proxied_addr
);
2486 mpp_path_add(sdata
, proxied_addr
, mpp_addr
);
2488 spin_lock_bh(&mppath
->state_lock
);
2489 if (!ether_addr_equal(mppath
->mpp
, mpp_addr
))
2490 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
2491 mppath
->exp_time
= jiffies
;
2492 spin_unlock_bh(&mppath
->state_lock
);
2497 /* Frame has reached destination. Don't forward */
2498 if (!is_multicast_ether_addr(hdr
->addr1
) &&
2499 ether_addr_equal(sdata
->vif
.addr
, hdr
->addr3
))
2502 ac
= ieee80211_select_queue_80211(sdata
, skb
, hdr
);
2503 q
= sdata
->vif
.hw_queue
[ac
];
2504 if (ieee80211_queue_stopped(&local
->hw
, q
)) {
2505 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_congestion
);
2506 return RX_DROP_MONITOR
;
2508 skb_set_queue_mapping(skb
, q
);
2510 if (!--mesh_hdr
->ttl
) {
2511 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_ttl
);
2515 if (!ifmsh
->mshcfg
.dot11MeshForwarding
)
2518 fwd_skb
= skb_copy(skb
, GFP_ATOMIC
);
2520 net_info_ratelimited("%s: failed to clone mesh frame\n",
2525 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
2526 fwd_hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_FCTL_RETRY
);
2527 info
= IEEE80211_SKB_CB(fwd_skb
);
2528 memset(info
, 0, sizeof(*info
));
2529 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
2530 info
->control
.vif
= &rx
->sdata
->vif
;
2531 info
->control
.jiffies
= jiffies
;
2532 if (is_multicast_ether_addr(fwd_hdr
->addr1
)) {
2533 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_mcast
);
2534 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
2535 /* update power mode indication when forwarding */
2536 ieee80211_mps_set_frame_flags(sdata
, NULL
, fwd_hdr
);
2537 } else if (!mesh_nexthop_lookup(sdata
, fwd_skb
)) {
2538 /* mesh power mode flags updated in mesh_nexthop_lookup */
2539 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_unicast
);
2541 /* unable to resolve next hop */
2542 mesh_path_error_tx(sdata
, ifmsh
->mshcfg
.element_ttl
,
2544 WLAN_REASON_MESH_PATH_NOFORWARD
,
2546 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_no_route
);
2548 return RX_DROP_MONITOR
;
2551 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_frames
);
2552 ieee80211_add_pending_skb(local
, fwd_skb
);
2554 if (is_multicast_ether_addr(hdr
->addr1
))
2556 return RX_DROP_MONITOR
;
2560 static ieee80211_rx_result debug_noinline
2561 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
2563 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2564 struct ieee80211_local
*local
= rx
->local
;
2565 struct net_device
*dev
= sdata
->dev
;
2566 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2567 __le16 fc
= hdr
->frame_control
;
2571 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
2574 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
2575 return RX_DROP_MONITOR
;
2578 * Send unexpected-4addr-frame event to hostapd. For older versions,
2579 * also drop the frame to cooked monitor interfaces.
2581 if (ieee80211_has_a4(hdr
->frame_control
) &&
2582 sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
2584 !test_and_set_sta_flag(rx
->sta
, WLAN_STA_4ADDR_EVENT
))
2585 cfg80211_rx_unexpected_4addr_frame(
2586 rx
->sdata
->dev
, rx
->sta
->sta
.addr
, GFP_ATOMIC
);
2587 return RX_DROP_MONITOR
;
2590 err
= __ieee80211_data_to_8023(rx
, &port_control
);
2592 return RX_DROP_UNUSABLE
;
2594 if (!ieee80211_frame_allowed(rx
, fc
))
2595 return RX_DROP_MONITOR
;
2597 /* directly handle TDLS channel switch requests/responses */
2598 if (unlikely(((struct ethhdr
*)rx
->skb
->data
)->h_proto
==
2599 cpu_to_be16(ETH_P_TDLS
))) {
2600 struct ieee80211_tdls_data
*tf
= (void *)rx
->skb
->data
;
2602 if (pskb_may_pull(rx
->skb
,
2603 offsetof(struct ieee80211_tdls_data
, u
)) &&
2604 tf
->payload_type
== WLAN_TDLS_SNAP_RFTYPE
&&
2605 tf
->category
== WLAN_CATEGORY_TDLS
&&
2606 (tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_REQUEST
||
2607 tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_RESPONSE
)) {
2608 skb_queue_tail(&local
->skb_queue_tdls_chsw
, rx
->skb
);
2609 schedule_work(&local
->tdls_chsw_work
);
2611 rx
->sta
->rx_stats
.packets
++;
2617 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
2618 unlikely(port_control
) && sdata
->bss
) {
2619 sdata
= container_of(sdata
->bss
, struct ieee80211_sub_if_data
,
2627 if (!ieee80211_hw_check(&local
->hw
, SUPPORTS_DYNAMIC_PS
) &&
2628 local
->ps_sdata
&& local
->hw
.conf
.dynamic_ps_timeout
> 0 &&
2629 !is_multicast_ether_addr(
2630 ((struct ethhdr
*)rx
->skb
->data
)->h_dest
) &&
2631 (!local
->scanning
&&
2632 !test_bit(SDATA_STATE_OFFCHANNEL
, &sdata
->state
)))
2633 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
2634 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
2636 ieee80211_deliver_skb(rx
);
2641 static ieee80211_rx_result debug_noinline
2642 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
, struct sk_buff_head
*frames
)
2644 struct sk_buff
*skb
= rx
->skb
;
2645 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
2646 struct tid_ampdu_rx
*tid_agg_rx
;
2650 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
2653 if (ieee80211_is_back_req(bar
->frame_control
)) {
2655 __le16 control
, start_seq_num
;
2656 } __packed bar_data
;
2657 struct ieee80211_event event
= {
2658 .type
= BAR_RX_EVENT
,
2662 return RX_DROP_MONITOR
;
2664 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
2665 &bar_data
, sizeof(bar_data
)))
2666 return RX_DROP_MONITOR
;
2668 tid
= le16_to_cpu(bar_data
.control
) >> 12;
2670 if (!test_bit(tid
, rx
->sta
->ampdu_mlme
.agg_session_valid
) &&
2671 !test_and_set_bit(tid
, rx
->sta
->ampdu_mlme
.unexpected_agg
))
2672 ieee80211_send_delba(rx
->sdata
, rx
->sta
->sta
.addr
, tid
,
2673 WLAN_BACK_RECIPIENT
,
2674 WLAN_REASON_QSTA_REQUIRE_SETUP
);
2676 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
2678 return RX_DROP_MONITOR
;
2680 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
2681 event
.u
.ba
.tid
= tid
;
2682 event
.u
.ba
.ssn
= start_seq_num
;
2683 event
.u
.ba
.sta
= &rx
->sta
->sta
;
2685 /* reset session timer */
2686 if (tid_agg_rx
->timeout
)
2687 mod_timer(&tid_agg_rx
->session_timer
,
2688 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
2690 spin_lock(&tid_agg_rx
->reorder_lock
);
2691 /* release stored frames up to start of BAR */
2692 ieee80211_release_reorder_frames(rx
->sdata
, tid_agg_rx
,
2693 start_seq_num
, frames
);
2694 spin_unlock(&tid_agg_rx
->reorder_lock
);
2696 drv_event_callback(rx
->local
, rx
->sdata
, &event
);
2703 * After this point, we only want management frames,
2704 * so we can drop all remaining control frames to
2705 * cooked monitor interfaces.
2707 return RX_DROP_MONITOR
;
2710 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
2711 struct ieee80211_mgmt
*mgmt
,
2714 struct ieee80211_local
*local
= sdata
->local
;
2715 struct sk_buff
*skb
;
2716 struct ieee80211_mgmt
*resp
;
2718 if (!ether_addr_equal(mgmt
->da
, sdata
->vif
.addr
)) {
2719 /* Not to own unicast address */
2723 if (!ether_addr_equal(mgmt
->sa
, sdata
->u
.mgd
.bssid
) ||
2724 !ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
)) {
2725 /* Not from the current AP or not associated yet. */
2729 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
2730 /* Too short SA Query request frame */
2734 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
2738 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
2739 resp
= (struct ieee80211_mgmt
*) skb_put(skb
, 24);
2740 memset(resp
, 0, 24);
2741 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
2742 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
2743 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
2744 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
2745 IEEE80211_STYPE_ACTION
);
2746 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
2747 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
2748 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
2749 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
2750 mgmt
->u
.action
.u
.sa_query
.trans_id
,
2751 WLAN_SA_QUERY_TR_ID_LEN
);
2753 ieee80211_tx_skb(sdata
, skb
);
2756 static ieee80211_rx_result debug_noinline
2757 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
2759 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2760 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2763 * From here on, look only at management frames.
2764 * Data and control frames are already handled,
2765 * and unknown (reserved) frames are useless.
2767 if (rx
->skb
->len
< 24)
2768 return RX_DROP_MONITOR
;
2770 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
2771 return RX_DROP_MONITOR
;
2773 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
2774 ieee80211_is_beacon(mgmt
->frame_control
) &&
2775 !(rx
->flags
& IEEE80211_RX_BEACON_REPORTED
)) {
2778 if (ieee80211_hw_check(&rx
->local
->hw
, SIGNAL_DBM
))
2779 sig
= status
->signal
;
2781 cfg80211_report_obss_beacon(rx
->local
->hw
.wiphy
,
2782 rx
->skb
->data
, rx
->skb
->len
,
2784 rx
->flags
|= IEEE80211_RX_BEACON_REPORTED
;
2787 if (ieee80211_drop_unencrypted_mgmt(rx
))
2788 return RX_DROP_UNUSABLE
;
2793 static ieee80211_rx_result debug_noinline
2794 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
2796 struct ieee80211_local
*local
= rx
->local
;
2797 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2798 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2799 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2800 int len
= rx
->skb
->len
;
2802 if (!ieee80211_is_action(mgmt
->frame_control
))
2805 /* drop too small frames */
2806 if (len
< IEEE80211_MIN_ACTION_SIZE
)
2807 return RX_DROP_UNUSABLE
;
2809 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
&&
2810 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SELF_PROTECTED
&&
2811 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SPECTRUM_MGMT
)
2812 return RX_DROP_UNUSABLE
;
2814 switch (mgmt
->u
.action
.category
) {
2815 case WLAN_CATEGORY_HT
:
2816 /* reject HT action frames from stations not supporting HT */
2817 if (!rx
->sta
->sta
.ht_cap
.ht_supported
)
2820 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2821 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2822 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2823 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2824 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2827 /* verify action & smps_control/chanwidth are present */
2828 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
2831 switch (mgmt
->u
.action
.u
.ht_smps
.action
) {
2832 case WLAN_HT_ACTION_SMPS
: {
2833 struct ieee80211_supported_band
*sband
;
2834 enum ieee80211_smps_mode smps_mode
;
2836 /* convert to HT capability */
2837 switch (mgmt
->u
.action
.u
.ht_smps
.smps_control
) {
2838 case WLAN_HT_SMPS_CONTROL_DISABLED
:
2839 smps_mode
= IEEE80211_SMPS_OFF
;
2841 case WLAN_HT_SMPS_CONTROL_STATIC
:
2842 smps_mode
= IEEE80211_SMPS_STATIC
;
2844 case WLAN_HT_SMPS_CONTROL_DYNAMIC
:
2845 smps_mode
= IEEE80211_SMPS_DYNAMIC
;
2851 /* if no change do nothing */
2852 if (rx
->sta
->sta
.smps_mode
== smps_mode
)
2854 rx
->sta
->sta
.smps_mode
= smps_mode
;
2856 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2858 rate_control_rate_update(local
, sband
, rx
->sta
,
2859 IEEE80211_RC_SMPS_CHANGED
);
2862 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH
: {
2863 struct ieee80211_supported_band
*sband
;
2864 u8 chanwidth
= mgmt
->u
.action
.u
.ht_notify_cw
.chanwidth
;
2865 enum ieee80211_sta_rx_bandwidth max_bw
, new_bw
;
2867 /* If it doesn't support 40 MHz it can't change ... */
2868 if (!(rx
->sta
->sta
.ht_cap
.cap
&
2869 IEEE80211_HT_CAP_SUP_WIDTH_20_40
))
2872 if (chanwidth
== IEEE80211_HT_CHANWIDTH_20MHZ
)
2873 max_bw
= IEEE80211_STA_RX_BW_20
;
2875 max_bw
= ieee80211_sta_cap_rx_bw(rx
->sta
);
2877 /* set cur_max_bandwidth and recalc sta bw */
2878 rx
->sta
->cur_max_bandwidth
= max_bw
;
2879 new_bw
= ieee80211_sta_cur_vht_bw(rx
->sta
);
2881 if (rx
->sta
->sta
.bandwidth
== new_bw
)
2884 rx
->sta
->sta
.bandwidth
= new_bw
;
2885 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2887 rate_control_rate_update(local
, sband
, rx
->sta
,
2888 IEEE80211_RC_BW_CHANGED
);
2896 case WLAN_CATEGORY_PUBLIC
:
2897 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2899 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2903 if (!ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
))
2905 if (mgmt
->u
.action
.u
.ext_chan_switch
.action_code
!=
2906 WLAN_PUB_ACTION_EXT_CHANSW_ANN
)
2908 if (len
< offsetof(struct ieee80211_mgmt
,
2909 u
.action
.u
.ext_chan_switch
.variable
))
2912 case WLAN_CATEGORY_VHT
:
2913 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2914 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2915 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2916 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2917 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2920 /* verify action code is present */
2921 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2924 switch (mgmt
->u
.action
.u
.vht_opmode_notif
.action_code
) {
2925 case WLAN_VHT_ACTION_OPMODE_NOTIF
: {
2926 /* verify opmode is present */
2927 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
2931 case WLAN_VHT_ACTION_GROUPID_MGMT
: {
2932 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 25)
2940 case WLAN_CATEGORY_BACK
:
2941 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2942 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2943 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2944 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2945 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2948 /* verify action_code is present */
2949 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2952 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
2953 case WLAN_ACTION_ADDBA_REQ
:
2954 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2955 sizeof(mgmt
->u
.action
.u
.addba_req
)))
2958 case WLAN_ACTION_ADDBA_RESP
:
2959 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2960 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
2963 case WLAN_ACTION_DELBA
:
2964 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2965 sizeof(mgmt
->u
.action
.u
.delba
)))
2973 case WLAN_CATEGORY_SPECTRUM_MGMT
:
2974 /* verify action_code is present */
2975 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2978 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
2979 case WLAN_ACTION_SPCT_MSR_REQ
:
2980 if (status
->band
!= NL80211_BAND_5GHZ
)
2983 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2984 sizeof(mgmt
->u
.action
.u
.measurement
)))
2987 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2990 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
2992 case WLAN_ACTION_SPCT_CHL_SWITCH
: {
2994 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2995 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
2998 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2999 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3000 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
3003 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
3004 bssid
= sdata
->u
.mgd
.bssid
;
3005 else if (sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
)
3006 bssid
= sdata
->u
.ibss
.bssid
;
3007 else if (sdata
->vif
.type
== NL80211_IFTYPE_MESH_POINT
)
3012 if (!ether_addr_equal(mgmt
->bssid
, bssid
))
3019 case WLAN_CATEGORY_SA_QUERY
:
3020 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3021 sizeof(mgmt
->u
.action
.u
.sa_query
)))
3024 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
3025 case WLAN_ACTION_SA_QUERY_REQUEST
:
3026 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3028 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
3032 case WLAN_CATEGORY_SELF_PROTECTED
:
3033 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3034 sizeof(mgmt
->u
.action
.u
.self_prot
.action_code
)))
3037 switch (mgmt
->u
.action
.u
.self_prot
.action_code
) {
3038 case WLAN_SP_MESH_PEERING_OPEN
:
3039 case WLAN_SP_MESH_PEERING_CLOSE
:
3040 case WLAN_SP_MESH_PEERING_CONFIRM
:
3041 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3043 if (sdata
->u
.mesh
.user_mpm
)
3044 /* userspace handles this frame */
3047 case WLAN_SP_MGK_INFORM
:
3048 case WLAN_SP_MGK_ACK
:
3049 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3054 case WLAN_CATEGORY_MESH_ACTION
:
3055 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3056 sizeof(mgmt
->u
.action
.u
.mesh_action
.action_code
)))
3059 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3061 if (mesh_action_is_path_sel(mgmt
) &&
3062 !mesh_path_sel_is_hwmp(sdata
))
3070 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
3071 /* will return in the next handlers */
3076 rx
->sta
->rx_stats
.packets
++;
3077 dev_kfree_skb(rx
->skb
);
3081 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
3082 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
3083 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
3085 rx
->sta
->rx_stats
.packets
++;
3089 static ieee80211_rx_result debug_noinline
3090 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
3092 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3095 /* skip known-bad action frames and return them in the next handler */
3096 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
3100 * Getting here means the kernel doesn't know how to handle
3101 * it, but maybe userspace does ... include returned frames
3102 * so userspace can register for those to know whether ones
3103 * it transmitted were processed or returned.
3106 if (ieee80211_hw_check(&rx
->local
->hw
, SIGNAL_DBM
))
3107 sig
= status
->signal
;
3109 if (cfg80211_rx_mgmt(&rx
->sdata
->wdev
, status
->freq
, sig
,
3110 rx
->skb
->data
, rx
->skb
->len
, 0)) {
3112 rx
->sta
->rx_stats
.packets
++;
3113 dev_kfree_skb(rx
->skb
);
3120 static ieee80211_rx_result debug_noinline
3121 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
3123 struct ieee80211_local
*local
= rx
->local
;
3124 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
3125 struct sk_buff
*nskb
;
3126 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3127 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3129 if (!ieee80211_is_action(mgmt
->frame_control
))
3133 * For AP mode, hostapd is responsible for handling any action
3134 * frames that we didn't handle, including returning unknown
3135 * ones. For all other modes we will return them to the sender,
3136 * setting the 0x80 bit in the action category, as required by
3137 * 802.11-2012 9.24.4.
3138 * Newer versions of hostapd shall also use the management frame
3139 * registration mechanisms, but older ones still use cooked
3140 * monitor interfaces so push all frames there.
3142 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
3143 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
3144 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
3145 return RX_DROP_MONITOR
;
3147 if (is_multicast_ether_addr(mgmt
->da
))
3148 return RX_DROP_MONITOR
;
3150 /* do not return rejected action frames */
3151 if (mgmt
->u
.action
.category
& 0x80)
3152 return RX_DROP_UNUSABLE
;
3154 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
3157 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
3159 nmgmt
->u
.action
.category
|= 0x80;
3160 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
3161 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
3163 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
3165 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_P2P_DEVICE
) {
3166 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(nskb
);
3168 info
->flags
= IEEE80211_TX_CTL_TX_OFFCHAN
|
3169 IEEE80211_TX_INTFL_OFFCHAN_TX_OK
|
3170 IEEE80211_TX_CTL_NO_CCK_RATE
;
3171 if (ieee80211_hw_check(&local
->hw
, QUEUE_CONTROL
))
3173 local
->hw
.offchannel_tx_hw_queue
;
3176 __ieee80211_tx_skb_tid_band(rx
->sdata
, nskb
, 7,
3179 dev_kfree_skb(rx
->skb
);
3183 static ieee80211_rx_result debug_noinline
3184 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
3186 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3187 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
3190 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
3192 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
3193 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3194 sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
3195 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3196 return RX_DROP_MONITOR
;
3199 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
3200 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
3201 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
3202 /* process for all: mesh, mlme, ibss */
3204 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP
):
3205 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP
):
3206 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
3207 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
3208 if (is_multicast_ether_addr(mgmt
->da
) &&
3209 !is_broadcast_ether_addr(mgmt
->da
))
3210 return RX_DROP_MONITOR
;
3212 /* process only for station */
3213 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3214 return RX_DROP_MONITOR
;
3216 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
3217 /* process only for ibss and mesh */
3218 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3219 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
3220 return RX_DROP_MONITOR
;
3223 return RX_DROP_MONITOR
;
3226 /* queue up frame and kick off work to process it */
3227 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
3228 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
3229 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
3231 rx
->sta
->rx_stats
.packets
++;
3236 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
3237 struct ieee80211_rate
*rate
)
3239 struct ieee80211_sub_if_data
*sdata
;
3240 struct ieee80211_local
*local
= rx
->local
;
3241 struct sk_buff
*skb
= rx
->skb
, *skb2
;
3242 struct net_device
*prev_dev
= NULL
;
3243 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3244 int needed_headroom
;
3247 * If cooked monitor has been processed already, then
3248 * don't do it again. If not, set the flag.
3250 if (rx
->flags
& IEEE80211_RX_CMNTR
)
3252 rx
->flags
|= IEEE80211_RX_CMNTR
;
3254 /* If there are no cooked monitor interfaces, just free the SKB */
3255 if (!local
->cooked_mntrs
)
3258 /* vendor data is long removed here */
3259 status
->flag
&= ~RX_FLAG_RADIOTAP_VENDOR_DATA
;
3260 /* room for the radiotap header based on driver features */
3261 needed_headroom
= ieee80211_rx_radiotap_hdrlen(local
, status
, skb
);
3263 if (skb_headroom(skb
) < needed_headroom
&&
3264 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
))
3267 /* prepend radiotap information */
3268 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
,
3271 skb_reset_mac_header(skb
);
3272 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3273 skb
->pkt_type
= PACKET_OTHERHOST
;
3274 skb
->protocol
= htons(ETH_P_802_2
);
3276 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
3277 if (!ieee80211_sdata_running(sdata
))
3280 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
3281 !(sdata
->u
.mntr
.flags
& MONITOR_FLAG_COOK_FRAMES
))
3285 skb2
= skb_clone(skb
, GFP_ATOMIC
);
3287 skb2
->dev
= prev_dev
;
3288 netif_receive_skb(skb2
);
3292 prev_dev
= sdata
->dev
;
3293 ieee80211_rx_stats(sdata
->dev
, skb
->len
);
3297 skb
->dev
= prev_dev
;
3298 netif_receive_skb(skb
);
3306 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
3307 ieee80211_rx_result res
)
3310 case RX_DROP_MONITOR
:
3311 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3313 rx
->sta
->rx_stats
.dropped
++;
3316 struct ieee80211_rate
*rate
= NULL
;
3317 struct ieee80211_supported_band
*sband
;
3318 struct ieee80211_rx_status
*status
;
3320 status
= IEEE80211_SKB_RXCB((rx
->skb
));
3322 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
3323 if (!(status
->flag
& RX_FLAG_HT
) &&
3324 !(status
->flag
& RX_FLAG_VHT
))
3325 rate
= &sband
->bitrates
[status
->rate_idx
];
3327 ieee80211_rx_cooked_monitor(rx
, rate
);
3330 case RX_DROP_UNUSABLE
:
3331 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3333 rx
->sta
->rx_stats
.dropped
++;
3334 dev_kfree_skb(rx
->skb
);
3337 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
3342 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
,
3343 struct sk_buff_head
*frames
)
3345 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3346 struct sk_buff
*skb
;
3348 #define CALL_RXH(rxh) \
3351 if (res != RX_CONTINUE) \
3355 /* Lock here to avoid hitting all of the data used in the RX
3356 * path (e.g. key data, station data, ...) concurrently when
3357 * a frame is released from the reorder buffer due to timeout
3358 * from the timer, potentially concurrently with RX from the
3361 spin_lock_bh(&rx
->local
->rx_path_lock
);
3363 while ((skb
= __skb_dequeue(frames
))) {
3365 * all the other fields are valid across frames
3366 * that belong to an aMPDU since they are on the
3367 * same TID from the same station
3371 CALL_RXH(ieee80211_rx_h_check_more_data
);
3372 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll
);
3373 CALL_RXH(ieee80211_rx_h_sta_process
);
3374 CALL_RXH(ieee80211_rx_h_decrypt
);
3375 CALL_RXH(ieee80211_rx_h_defragment
);
3376 CALL_RXH(ieee80211_rx_h_michael_mic_verify
);
3377 /* must be after MMIC verify so header is counted in MPDU mic */
3378 #ifdef CONFIG_MAC80211_MESH
3379 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
3380 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
3382 CALL_RXH(ieee80211_rx_h_amsdu
);
3383 CALL_RXH(ieee80211_rx_h_data
);
3385 /* special treatment -- needs the queue */
3386 res
= ieee80211_rx_h_ctrl(rx
, frames
);
3387 if (res
!= RX_CONTINUE
)
3390 CALL_RXH(ieee80211_rx_h_mgmt_check
);
3391 CALL_RXH(ieee80211_rx_h_action
);
3392 CALL_RXH(ieee80211_rx_h_userspace_mgmt
);
3393 CALL_RXH(ieee80211_rx_h_action_return
);
3394 CALL_RXH(ieee80211_rx_h_mgmt
);
3397 ieee80211_rx_handlers_result(rx
, res
);
3402 spin_unlock_bh(&rx
->local
->rx_path_lock
);
3405 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
3407 struct sk_buff_head reorder_release
;
3408 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3410 __skb_queue_head_init(&reorder_release
);
3412 #define CALL_RXH(rxh) \
3415 if (res != RX_CONTINUE) \
3419 CALL_RXH(ieee80211_rx_h_check_dup
);
3420 CALL_RXH(ieee80211_rx_h_check
);
3422 ieee80211_rx_reorder_ampdu(rx
, &reorder_release
);
3424 ieee80211_rx_handlers(rx
, &reorder_release
);
3428 ieee80211_rx_handlers_result(rx
, res
);
3434 * This function makes calls into the RX path, therefore
3435 * it has to be invoked under RCU read lock.
3437 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
3439 struct sk_buff_head frames
;
3440 struct ieee80211_rx_data rx
= {
3442 .sdata
= sta
->sdata
,
3443 .local
= sta
->local
,
3444 /* This is OK -- must be QoS data frame */
3445 .security_idx
= tid
,
3447 .napi
= NULL
, /* must be NULL to not have races */
3449 struct tid_ampdu_rx
*tid_agg_rx
;
3451 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
3455 __skb_queue_head_init(&frames
);
3457 spin_lock(&tid_agg_rx
->reorder_lock
);
3458 ieee80211_sta_reorder_release(sta
->sdata
, tid_agg_rx
, &frames
);
3459 spin_unlock(&tid_agg_rx
->reorder_lock
);
3461 if (!skb_queue_empty(&frames
)) {
3462 struct ieee80211_event event
= {
3463 .type
= BA_FRAME_TIMEOUT
,
3465 .u
.ba
.sta
= &sta
->sta
,
3467 drv_event_callback(rx
.local
, rx
.sdata
, &event
);
3470 ieee80211_rx_handlers(&rx
, &frames
);
3473 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta
*pubsta
, u8 tid
,
3474 u16 ssn
, u64 filtered
,
3477 struct sta_info
*sta
;
3478 struct tid_ampdu_rx
*tid_agg_rx
;
3479 struct sk_buff_head frames
;
3480 struct ieee80211_rx_data rx
= {
3481 /* This is OK -- must be QoS data frame */
3482 .security_idx
= tid
,
3487 if (WARN_ON(!pubsta
|| tid
>= IEEE80211_NUM_TIDS
))
3490 __skb_queue_head_init(&frames
);
3492 sta
= container_of(pubsta
, struct sta_info
, sta
);
3495 rx
.sdata
= sta
->sdata
;
3496 rx
.local
= sta
->local
;
3499 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
3503 spin_lock_bh(&tid_agg_rx
->reorder_lock
);
3505 if (received_mpdus
>= IEEE80211_SN_MODULO
>> 1) {
3508 /* release all frames in the reorder buffer */
3509 release
= (tid_agg_rx
->head_seq_num
+ tid_agg_rx
->buf_size
) %
3510 IEEE80211_SN_MODULO
;
3511 ieee80211_release_reorder_frames(sta
->sdata
, tid_agg_rx
,
3513 /* update ssn to match received ssn */
3514 tid_agg_rx
->head_seq_num
= ssn
;
3516 ieee80211_release_reorder_frames(sta
->sdata
, tid_agg_rx
, ssn
,
3520 /* handle the case that received ssn is behind the mac ssn.
3521 * it can be tid_agg_rx->buf_size behind and still be valid */
3522 diff
= (tid_agg_rx
->head_seq_num
- ssn
) & IEEE80211_SN_MASK
;
3523 if (diff
>= tid_agg_rx
->buf_size
) {
3524 tid_agg_rx
->reorder_buf_filtered
= 0;
3527 filtered
= filtered
>> diff
;
3531 for (i
= 0; i
< tid_agg_rx
->buf_size
; i
++) {
3532 int index
= (ssn
+ i
) % tid_agg_rx
->buf_size
;
3534 tid_agg_rx
->reorder_buf_filtered
&= ~BIT_ULL(index
);
3535 if (filtered
& BIT_ULL(i
))
3536 tid_agg_rx
->reorder_buf_filtered
|= BIT_ULL(index
);
3539 /* now process also frames that the filter marking released */
3540 ieee80211_sta_reorder_release(sta
->sdata
, tid_agg_rx
, &frames
);
3543 spin_unlock_bh(&tid_agg_rx
->reorder_lock
);
3545 ieee80211_rx_handlers(&rx
, &frames
);
3550 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames
);
3552 /* main receive path */
3554 static bool ieee80211_accept_frame(struct ieee80211_rx_data
*rx
)
3556 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3557 struct sk_buff
*skb
= rx
->skb
;
3558 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
3559 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3560 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
3561 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
3563 switch (sdata
->vif
.type
) {
3564 case NL80211_IFTYPE_STATION
:
3565 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
3569 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3570 case NL80211_IFTYPE_ADHOC
:
3573 if (ether_addr_equal(sdata
->vif
.addr
, hdr
->addr2
) ||
3574 ether_addr_equal(sdata
->u
.ibss
.bssid
, hdr
->addr2
))
3576 if (ieee80211_is_beacon(hdr
->frame_control
))
3578 if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
))
3581 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3585 if (status
->flag
& (RX_FLAG_HT
| RX_FLAG_VHT
))
3586 rate_idx
= 0; /* TODO: HT/VHT rates */
3588 rate_idx
= status
->rate_idx
;
3589 ieee80211_ibss_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3593 case NL80211_IFTYPE_OCB
:
3596 if (!ieee80211_is_data_present(hdr
->frame_control
))
3598 if (!is_broadcast_ether_addr(bssid
))
3601 !ether_addr_equal(sdata
->dev
->dev_addr
, hdr
->addr1
))
3605 if (status
->flag
& RX_FLAG_HT
)
3606 rate_idx
= 0; /* TODO: HT rates */
3608 rate_idx
= status
->rate_idx
;
3609 ieee80211_ocb_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3613 case NL80211_IFTYPE_MESH_POINT
:
3616 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3617 case NL80211_IFTYPE_AP_VLAN
:
3618 case NL80211_IFTYPE_AP
:
3620 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3622 if (!ieee80211_bssid_match(bssid
, sdata
->vif
.addr
)) {
3624 * Accept public action frames even when the
3625 * BSSID doesn't match, this is used for P2P
3626 * and location updates. Note that mac80211
3627 * itself never looks at these frames.
3630 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3632 if (ieee80211_is_public_action(hdr
, skb
->len
))
3634 return ieee80211_is_beacon(hdr
->frame_control
);
3637 if (!ieee80211_has_tods(hdr
->frame_control
)) {
3638 /* ignore data frames to TDLS-peers */
3639 if (ieee80211_is_data(hdr
->frame_control
))
3641 /* ignore action frames to TDLS-peers */
3642 if (ieee80211_is_action(hdr
->frame_control
) &&
3643 !is_broadcast_ether_addr(bssid
) &&
3644 !ether_addr_equal(bssid
, hdr
->addr1
))
3649 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3650 * the BSSID - we've checked that already but may have accepted
3651 * the wildcard (ff:ff:ff:ff:ff:ff).
3654 * The BSSID of the Data frame is determined as follows:
3655 * a) If the STA is contained within an AP or is associated
3656 * with an AP, the BSSID is the address currently in use
3657 * by the STA contained in the AP.
3659 * So we should not accept data frames with an address that's
3662 * Accepting it also opens a security problem because stations
3663 * could encrypt it with the GTK and inject traffic that way.
3665 if (ieee80211_is_data(hdr
->frame_control
) && multicast
)
3669 case NL80211_IFTYPE_WDS
:
3670 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
3672 return ether_addr_equal(sdata
->u
.wds
.remote_addr
, hdr
->addr2
);
3673 case NL80211_IFTYPE_P2P_DEVICE
:
3674 return ieee80211_is_public_action(hdr
, skb
->len
) ||
3675 ieee80211_is_probe_req(hdr
->frame_control
) ||
3676 ieee80211_is_probe_resp(hdr
->frame_control
) ||
3677 ieee80211_is_beacon(hdr
->frame_control
);
3678 case NL80211_IFTYPE_NAN
:
3679 /* Currently no frames on NAN interface are allowed */
3689 void ieee80211_check_fast_rx(struct sta_info
*sta
)
3691 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
3692 struct ieee80211_local
*local
= sdata
->local
;
3693 struct ieee80211_key
*key
;
3694 struct ieee80211_fast_rx fastrx
= {
3696 .vif_type
= sdata
->vif
.type
,
3697 .control_port_protocol
= sdata
->control_port_protocol
,
3698 }, *old
, *new = NULL
;
3699 bool assign
= false;
3701 /* use sparse to check that we don't return without updating */
3702 __acquire(check_fast_rx
);
3704 BUILD_BUG_ON(sizeof(fastrx
.rfc1042_hdr
) != sizeof(rfc1042_header
));
3705 BUILD_BUG_ON(sizeof(fastrx
.rfc1042_hdr
) != ETH_ALEN
);
3706 ether_addr_copy(fastrx
.rfc1042_hdr
, rfc1042_header
);
3707 ether_addr_copy(fastrx
.vif_addr
, sdata
->vif
.addr
);
3709 fastrx
.uses_rss
= ieee80211_hw_check(&local
->hw
, USES_RSS
);
3711 /* fast-rx doesn't do reordering */
3712 if (ieee80211_hw_check(&local
->hw
, AMPDU_AGGREGATION
) &&
3713 !ieee80211_hw_check(&local
->hw
, SUPPORTS_REORDERING_BUFFER
))
3716 switch (sdata
->vif
.type
) {
3717 case NL80211_IFTYPE_STATION
:
3718 /* 4-addr is harder to deal with, later maybe */
3719 if (sdata
->u
.mgd
.use_4addr
)
3721 /* software powersave is a huge mess, avoid all of it */
3722 if (ieee80211_hw_check(&local
->hw
, PS_NULLFUNC_STACK
))
3724 if (ieee80211_hw_check(&local
->hw
, SUPPORTS_PS
) &&
3725 !ieee80211_hw_check(&local
->hw
, SUPPORTS_DYNAMIC_PS
))
3727 if (sta
->sta
.tdls
) {
3728 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr1
);
3729 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr2
);
3730 fastrx
.expected_ds_bits
= 0;
3732 fastrx
.sta_notify
= sdata
->u
.mgd
.probe_send_count
> 0;
3733 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr1
);
3734 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr3
);
3735 fastrx
.expected_ds_bits
=
3736 cpu_to_le16(IEEE80211_FCTL_FROMDS
);
3739 case NL80211_IFTYPE_AP_VLAN
:
3740 case NL80211_IFTYPE_AP
:
3741 /* parallel-rx requires this, at least with calls to
3742 * ieee80211_sta_ps_transition()
3744 if (!ieee80211_hw_check(&local
->hw
, AP_LINK_PS
))
3746 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr3
);
3747 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr2
);
3748 fastrx
.expected_ds_bits
= cpu_to_le16(IEEE80211_FCTL_TODS
);
3750 fastrx
.internal_forward
=
3751 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
3752 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
||
3753 !sdata
->u
.vlan
.sta
);
3759 if (!test_sta_flag(sta
, WLAN_STA_AUTHORIZED
))
3763 key
= rcu_dereference(sta
->ptk
[sta
->ptk_idx
]);
3765 switch (key
->conf
.cipher
) {
3766 case WLAN_CIPHER_SUITE_TKIP
:
3767 /* we don't want to deal with MMIC in fast-rx */
3769 case WLAN_CIPHER_SUITE_CCMP
:
3770 case WLAN_CIPHER_SUITE_CCMP_256
:
3771 case WLAN_CIPHER_SUITE_GCMP
:
3772 case WLAN_CIPHER_SUITE_GCMP_256
:
3775 /* we also don't want to deal with WEP or cipher scheme
3776 * since those require looking up the key idx in the
3777 * frame, rather than assuming the PTK is used
3778 * (we need to revisit this once we implement the real
3779 * PTK index, which is now valid in the spec, but we
3780 * haven't implemented that part yet)
3786 fastrx
.icv_len
= key
->conf
.icv_len
;
3793 __release(check_fast_rx
);
3796 new = kmemdup(&fastrx
, sizeof(fastrx
), GFP_KERNEL
);
3798 spin_lock_bh(&sta
->lock
);
3799 old
= rcu_dereference_protected(sta
->fast_rx
, true);
3800 rcu_assign_pointer(sta
->fast_rx
, new);
3801 spin_unlock_bh(&sta
->lock
);
3804 kfree_rcu(old
, rcu_head
);
3807 void ieee80211_clear_fast_rx(struct sta_info
*sta
)
3809 struct ieee80211_fast_rx
*old
;
3811 spin_lock_bh(&sta
->lock
);
3812 old
= rcu_dereference_protected(sta
->fast_rx
, true);
3813 RCU_INIT_POINTER(sta
->fast_rx
, NULL
);
3814 spin_unlock_bh(&sta
->lock
);
3817 kfree_rcu(old
, rcu_head
);
3820 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data
*sdata
)
3822 struct ieee80211_local
*local
= sdata
->local
;
3823 struct sta_info
*sta
;
3825 lockdep_assert_held(&local
->sta_mtx
);
3827 list_for_each_entry_rcu(sta
, &local
->sta_list
, list
) {
3828 if (sdata
!= sta
->sdata
&&
3829 (!sta
->sdata
->bss
|| sta
->sdata
->bss
!= sdata
->bss
))
3831 ieee80211_check_fast_rx(sta
);
3835 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data
*sdata
)
3837 struct ieee80211_local
*local
= sdata
->local
;
3839 mutex_lock(&local
->sta_mtx
);
3840 __ieee80211_check_fast_rx_iface(sdata
);
3841 mutex_unlock(&local
->sta_mtx
);
3844 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data
*rx
,
3845 struct ieee80211_fast_rx
*fast_rx
)
3847 struct sk_buff
*skb
= rx
->skb
;
3848 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
3849 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3850 struct sta_info
*sta
= rx
->sta
;
3851 int orig_len
= skb
->len
;
3852 int snap_offs
= ieee80211_hdrlen(hdr
->frame_control
);
3854 u8 snap
[sizeof(rfc1042_header
)];
3856 } *payload
__aligned(2);
3860 } addrs
__aligned(2);
3861 struct ieee80211_sta_rx_stats
*stats
= &sta
->rx_stats
;
3863 if (fast_rx
->uses_rss
)
3864 stats
= this_cpu_ptr(sta
->pcpu_rx_stats
);
3866 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3867 * to a common data structure; drivers can implement that per queue
3868 * but we don't have that information in mac80211
3870 if (!(status
->flag
& RX_FLAG_DUP_VALIDATED
))
3873 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3875 /* If using encryption, we also need to have:
3876 * - PN_VALIDATED: similar, but the implementation is tricky
3877 * - DECRYPTED: necessary for PN_VALIDATED
3880 (status
->flag
& FAST_RX_CRYPT_FLAGS
) != FAST_RX_CRYPT_FLAGS
)
3883 /* we don't deal with A-MSDU deaggregation here */
3884 if (status
->rx_flags
& IEEE80211_RX_AMSDU
)
3887 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
3890 if (unlikely(ieee80211_is_frag(hdr
)))
3893 /* Since our interface address cannot be multicast, this
3894 * implicitly also rejects multicast frames without the
3897 * We shouldn't get any *data* frames not addressed to us
3898 * (AP mode will accept multicast *management* frames), but
3899 * punting here will make it go through the full checks in
3900 * ieee80211_accept_frame().
3902 if (!ether_addr_equal(fast_rx
->vif_addr
, hdr
->addr1
))
3905 if ((hdr
->frame_control
& cpu_to_le16(IEEE80211_FCTL_FROMDS
|
3906 IEEE80211_FCTL_TODS
)) !=
3907 fast_rx
->expected_ds_bits
)
3910 /* assign the key to drop unencrypted frames (later)
3911 * and strip the IV/MIC if necessary
3913 if (fast_rx
->key
&& !(status
->flag
& RX_FLAG_IV_STRIPPED
)) {
3914 /* GCMP header length is the same */
3915 snap_offs
+= IEEE80211_CCMP_HDR_LEN
;
3918 if (!pskb_may_pull(skb
, snap_offs
+ sizeof(*payload
)))
3920 payload
= (void *)(skb
->data
+ snap_offs
);
3922 if (!ether_addr_equal(payload
->snap
, fast_rx
->rfc1042_hdr
))
3925 /* Don't handle these here since they require special code.
3926 * Accept AARP and IPX even though they should come with a
3927 * bridge-tunnel header - but if we get them this way then
3928 * there's little point in discarding them.
3930 if (unlikely(payload
->proto
== cpu_to_be16(ETH_P_TDLS
) ||
3931 payload
->proto
== fast_rx
->control_port_protocol
))
3934 /* after this point, don't punt to the slowpath! */
3936 if (rx
->key
&& !(status
->flag
& RX_FLAG_MIC_STRIPPED
) &&
3937 pskb_trim(skb
, skb
->len
- fast_rx
->icv_len
))
3940 if (unlikely(fast_rx
->sta_notify
)) {
3941 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
3942 fast_rx
->sta_notify
= false;
3945 /* statistics part of ieee80211_rx_h_sta_process() */
3946 stats
->last_rx
= jiffies
;
3947 stats
->last_rate
= sta_stats_encode_rate(status
);
3952 if (!(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
3953 stats
->last_signal
= status
->signal
;
3954 if (!fast_rx
->uses_rss
)
3955 ewma_signal_add(&sta
->rx_stats_avg
.signal
,
3959 if (status
->chains
) {
3962 stats
->chains
= status
->chains
;
3963 for (i
= 0; i
< ARRAY_SIZE(status
->chain_signal
); i
++) {
3964 int signal
= status
->chain_signal
[i
];
3966 if (!(status
->chains
& BIT(i
)))
3969 stats
->chain_signal_last
[i
] = signal
;
3970 if (!fast_rx
->uses_rss
)
3971 ewma_signal_add(&sta
->rx_stats_avg
.chain_signal
[i
],
3975 /* end of statistics */
3977 if (rx
->key
&& !ieee80211_has_protected(hdr
->frame_control
))
3980 /* do the header conversion - first grab the addresses */
3981 ether_addr_copy(addrs
.da
, skb
->data
+ fast_rx
->da_offs
);
3982 ether_addr_copy(addrs
.sa
, skb
->data
+ fast_rx
->sa_offs
);
3983 /* remove the SNAP but leave the ethertype */
3984 skb_pull(skb
, snap_offs
+ sizeof(rfc1042_header
));
3985 /* push the addresses in front */
3986 memcpy(skb_push(skb
, sizeof(addrs
)), &addrs
, sizeof(addrs
));
3988 skb
->dev
= fast_rx
->dev
;
3990 ieee80211_rx_stats(fast_rx
->dev
, skb
->len
);
3992 /* The seqno index has the same property as needed
3993 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3994 * for non-QoS-data frames. Here we know it's a data
3995 * frame, so count MSDUs.
3997 u64_stats_update_begin(&stats
->syncp
);
3998 stats
->msdu
[rx
->seqno_idx
]++;
3999 stats
->bytes
+= orig_len
;
4000 u64_stats_update_end(&stats
->syncp
);
4002 if (fast_rx
->internal_forward
) {
4003 struct sk_buff
*xmit_skb
= NULL
;
4004 bool multicast
= is_multicast_ether_addr(skb
->data
);
4007 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
4008 } else if (sta_info_get(rx
->sdata
, skb
->data
)) {
4015 * Send to wireless media and increase priority by 256
4016 * to keep the received priority instead of
4017 * reclassifying the frame (see cfg80211_classify8021d).
4019 xmit_skb
->priority
+= 256;
4020 xmit_skb
->protocol
= htons(ETH_P_802_3
);
4021 skb_reset_network_header(xmit_skb
);
4022 skb_reset_mac_header(xmit_skb
);
4023 dev_queue_xmit(xmit_skb
);
4030 /* deliver to local stack */
4031 skb
->protocol
= eth_type_trans(skb
, fast_rx
->dev
);
4032 memset(skb
->cb
, 0, sizeof(skb
->cb
));
4034 napi_gro_receive(rx
->napi
, skb
);
4036 netif_receive_skb(skb
);
4046 * This function returns whether or not the SKB
4047 * was destined for RX processing or not, which,
4048 * if consume is true, is equivalent to whether
4049 * or not the skb was consumed.
4051 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
4052 struct sk_buff
*skb
, bool consume
)
4054 struct ieee80211_local
*local
= rx
->local
;
4055 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
4059 /* See if we can do fast-rx; if we have to copy we already lost,
4060 * so punt in that case. We should never have to deliver a data
4061 * frame to multiple interfaces anyway.
4063 * We skip the ieee80211_accept_frame() call and do the necessary
4064 * checking inside ieee80211_invoke_fast_rx().
4066 if (consume
&& rx
->sta
) {
4067 struct ieee80211_fast_rx
*fast_rx
;
4069 fast_rx
= rcu_dereference(rx
->sta
->fast_rx
);
4070 if (fast_rx
&& ieee80211_invoke_fast_rx(rx
, fast_rx
))
4074 if (!ieee80211_accept_frame(rx
))
4078 skb
= skb_copy(skb
, GFP_ATOMIC
);
4080 if (net_ratelimit())
4081 wiphy_debug(local
->hw
.wiphy
,
4082 "failed to copy skb for %s\n",
4090 ieee80211_invoke_rx_handlers(rx
);
4095 * This is the actual Rx frames handler. as it belongs to Rx path it must
4096 * be called with rcu_read_lock protection.
4098 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
4099 struct ieee80211_sta
*pubsta
,
4100 struct sk_buff
*skb
,
4101 struct napi_struct
*napi
)
4103 struct ieee80211_local
*local
= hw_to_local(hw
);
4104 struct ieee80211_sub_if_data
*sdata
;
4105 struct ieee80211_hdr
*hdr
;
4107 struct ieee80211_rx_data rx
;
4108 struct ieee80211_sub_if_data
*prev
;
4109 struct rhlist_head
*tmp
;
4112 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
4113 memset(&rx
, 0, sizeof(rx
));
4118 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
4119 I802_DEBUG_INC(local
->dot11ReceivedFragmentCount
);
4121 if (ieee80211_is_mgmt(fc
)) {
4122 /* drop frame if too short for header */
4123 if (skb
->len
< ieee80211_hdrlen(fc
))
4126 err
= skb_linearize(skb
);
4128 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
4136 hdr
= (struct ieee80211_hdr
*)skb
->data
;
4137 ieee80211_parse_qos(&rx
);
4138 ieee80211_verify_alignment(&rx
);
4140 if (unlikely(ieee80211_is_probe_resp(hdr
->frame_control
) ||
4141 ieee80211_is_beacon(hdr
->frame_control
)))
4142 ieee80211_scan_rx(local
, skb
);
4144 if (ieee80211_is_data(fc
)) {
4145 struct sta_info
*sta
, *prev_sta
;
4148 rx
.sta
= container_of(pubsta
, struct sta_info
, sta
);
4149 rx
.sdata
= rx
.sta
->sdata
;
4150 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4157 for_each_sta_info(local
, hdr
->addr2
, sta
, tmp
) {
4164 rx
.sdata
= prev_sta
->sdata
;
4165 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
4172 rx
.sdata
= prev_sta
->sdata
;
4174 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4182 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
4183 if (!ieee80211_sdata_running(sdata
))
4186 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
4187 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
4191 * frame is destined for this interface, but if it's
4192 * not also for the previous one we handle that after
4193 * the loop to avoid copying the SKB once too much
4201 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
4203 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
4209 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
4212 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4221 * This is the receive path handler. It is called by a low level driver when an
4222 * 802.11 MPDU is received from the hardware.
4224 void ieee80211_rx_napi(struct ieee80211_hw
*hw
, struct ieee80211_sta
*pubsta
,
4225 struct sk_buff
*skb
, struct napi_struct
*napi
)
4227 struct ieee80211_local
*local
= hw_to_local(hw
);
4228 struct ieee80211_rate
*rate
= NULL
;
4229 struct ieee80211_supported_band
*sband
;
4230 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
4232 WARN_ON_ONCE(softirq_count() == 0);
4234 if (WARN_ON(status
->band
>= NUM_NL80211_BANDS
))
4237 sband
= local
->hw
.wiphy
->bands
[status
->band
];
4238 if (WARN_ON(!sband
))
4242 * If we're suspending, it is possible although not too likely
4243 * that we'd be receiving frames after having already partially
4244 * quiesced the stack. We can't process such frames then since
4245 * that might, for example, cause stations to be added or other
4246 * driver callbacks be invoked.
4248 if (unlikely(local
->quiescing
|| local
->suspended
))
4251 /* We might be during a HW reconfig, prevent Rx for the same reason */
4252 if (unlikely(local
->in_reconfig
))
4256 * The same happens when we're not even started,
4257 * but that's worth a warning.
4259 if (WARN_ON(!local
->started
))
4262 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
4264 * Validate the rate, unless a PLCP error means that
4265 * we probably can't have a valid rate here anyway.
4268 if (status
->flag
& RX_FLAG_HT
) {
4270 * rate_idx is MCS index, which can be [0-76]
4273 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4275 * Anything else would be some sort of driver or
4276 * hardware error. The driver should catch hardware
4279 if (WARN(status
->rate_idx
> 76,
4280 "Rate marked as an HT rate but passed "
4281 "status->rate_idx is not "
4282 "an MCS index [0-76]: %d (0x%02x)\n",
4286 } else if (status
->flag
& RX_FLAG_VHT
) {
4287 if (WARN_ONCE(status
->rate_idx
> 9 ||
4289 status
->vht_nss
> 8,
4290 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4291 status
->rate_idx
, status
->vht_nss
))
4294 if (WARN_ON(status
->rate_idx
>= sband
->n_bitrates
))
4296 rate
= &sband
->bitrates
[status
->rate_idx
];
4300 status
->rx_flags
= 0;
4303 * key references and virtual interfaces are protected using RCU
4304 * and this requires that we are in a read-side RCU section during
4305 * receive processing
4310 * Frames with failed FCS/PLCP checksum are not returned,
4311 * all other frames are returned without radiotap header
4312 * if it was previously present.
4313 * Also, frames with less than 16 bytes are dropped.
4315 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
4321 ieee80211_tpt_led_trig_rx(local
,
4322 ((struct ieee80211_hdr
*)skb
->data
)->frame_control
,
4325 __ieee80211_rx_handle_packet(hw
, pubsta
, skb
, napi
);
4333 EXPORT_SYMBOL(ieee80211_rx_napi
);
4335 /* This is a version of the rx handler that can be called from hard irq
4336 * context. Post the skb on the queue and schedule the tasklet */
4337 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
4339 struct ieee80211_local
*local
= hw_to_local(hw
);
4341 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
4343 skb
->pkt_type
= IEEE80211_RX_MSG
;
4344 skb_queue_tail(&local
->skb_queue
, skb
);
4345 tasklet_schedule(&local
->tasklet
);
4347 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);