mac80211: recalculate min channel width on VHT opmode changes
[linux/fpc-iii.git] / net / mac80211 / rx.c
blob439e597fd3742f070691640641fe7966539fa525
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 u64_stats_update_begin(&tstats->syncp);
42 tstats->rx_packets++;
43 tstats->rx_bytes += len;
44 u64_stats_update_end(&tstats->syncp);
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 enum nl80211_iftype type)
50 __le16 fc = hdr->frame_control;
52 if (ieee80211_is_data(fc)) {
53 if (len < 24) /* drop incorrect hdr len (data) */
54 return NULL;
56 if (ieee80211_has_a4(fc))
57 return NULL;
58 if (ieee80211_has_tods(fc))
59 return hdr->addr1;
60 if (ieee80211_has_fromds(fc))
61 return hdr->addr2;
63 return hdr->addr3;
66 if (ieee80211_is_mgmt(fc)) {
67 if (len < 24) /* drop incorrect hdr len (mgmt) */
68 return NULL;
69 return hdr->addr3;
72 if (ieee80211_is_ctl(fc)) {
73 if (ieee80211_is_pspoll(fc))
74 return hdr->addr1;
76 if (ieee80211_is_back_req(fc)) {
77 switch (type) {
78 case NL80211_IFTYPE_STATION:
79 return hdr->addr2;
80 case NL80211_IFTYPE_AP:
81 case NL80211_IFTYPE_AP_VLAN:
82 return hdr->addr1;
83 default:
84 break; /* fall through to the return */
89 return NULL;
93 * monitor mode reception
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 unsigned int rtap_vendor_space)
102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 if (likely(skb->len > FCS_LEN))
104 __pskb_trim(skb, skb->len - FCS_LEN);
105 else {
106 /* driver bug */
107 WARN_ON(1);
108 dev_kfree_skb(skb);
109 return NULL;
113 __pskb_pull(skb, rtap_vendor_space);
115 return skb;
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 unsigned int rtap_vendor_space)
121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 struct ieee80211_hdr *hdr;
124 hdr = (void *)(skb->data + rtap_vendor_space);
126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 RX_FLAG_FAILED_PLCP_CRC |
128 RX_FLAG_ONLY_MONITOR))
129 return true;
131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 return true;
134 if (ieee80211_is_ctl(hdr->frame_control) &&
135 !ieee80211_is_pspoll(hdr->frame_control) &&
136 !ieee80211_is_back_req(hdr->frame_control))
137 return true;
139 return false;
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 struct ieee80211_rx_status *status,
145 struct sk_buff *skb)
147 int len;
149 /* always present fields */
150 len = sizeof(struct ieee80211_radiotap_header) + 8;
152 /* allocate extra bitmaps */
153 if (status->chains)
154 len += 4 * hweight8(status->chains);
156 if (ieee80211_have_rx_timestamp(status)) {
157 len = ALIGN(len, 8);
158 len += 8;
160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 len += 1;
163 /* antenna field, if we don't have per-chain info */
164 if (!status->chains)
165 len += 1;
167 /* padding for RX_FLAGS if necessary */
168 len = ALIGN(len, 2);
170 if (status->flag & RX_FLAG_HT) /* HT info */
171 len += 3;
173 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 len = ALIGN(len, 4);
175 len += 8;
178 if (status->flag & RX_FLAG_VHT) {
179 len = ALIGN(len, 2);
180 len += 12;
183 if (local->hw.radiotap_timestamp.units_pos >= 0) {
184 len = ALIGN(len, 8);
185 len += 12;
188 if (status->chains) {
189 /* antenna and antenna signal fields */
190 len += 2 * hweight8(status->chains);
193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
196 /* vendor presence bitmap */
197 len += 4;
198 /* alignment for fixed 6-byte vendor data header */
199 len = ALIGN(len, 2);
200 /* vendor data header */
201 len += 6;
202 if (WARN_ON(rtap->align == 0))
203 rtap->align = 1;
204 len = ALIGN(len, rtap->align);
205 len += rtap->len + rtap->pad;
208 return len;
211 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
212 struct sk_buff *skb,
213 int rtap_vendor_space)
215 struct {
216 struct ieee80211_hdr_3addr hdr;
217 u8 category;
218 u8 action_code;
219 } __packed action;
221 if (!sdata)
222 return;
224 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
226 if (skb->len < rtap_vendor_space + sizeof(action) +
227 VHT_MUMIMO_GROUPS_DATA_LEN)
228 return;
230 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
231 return;
233 skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
235 if (!ieee80211_is_action(action.hdr.frame_control))
236 return;
238 if (action.category != WLAN_CATEGORY_VHT)
239 return;
241 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
242 return;
244 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
245 return;
247 skb = skb_copy(skb, GFP_ATOMIC);
248 if (!skb)
249 return;
251 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
252 skb_queue_tail(&sdata->skb_queue, skb);
253 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
257 * ieee80211_add_rx_radiotap_header - add radiotap header
259 * add a radiotap header containing all the fields which the hardware provided.
261 static void
262 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
263 struct sk_buff *skb,
264 struct ieee80211_rate *rate,
265 int rtap_len, bool has_fcs)
267 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
268 struct ieee80211_radiotap_header *rthdr;
269 unsigned char *pos;
270 __le32 *it_present;
271 u32 it_present_val;
272 u16 rx_flags = 0;
273 u16 channel_flags = 0;
274 int mpdulen, chain;
275 unsigned long chains = status->chains;
276 struct ieee80211_vendor_radiotap rtap = {};
278 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
279 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
280 /* rtap.len and rtap.pad are undone immediately */
281 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
284 mpdulen = skb->len;
285 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
286 mpdulen += FCS_LEN;
288 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
289 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
290 it_present = &rthdr->it_present;
292 /* radiotap header, set always present flags */
293 rthdr->it_len = cpu_to_le16(rtap_len);
294 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
295 BIT(IEEE80211_RADIOTAP_CHANNEL) |
296 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
298 if (!status->chains)
299 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
301 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
302 it_present_val |=
303 BIT(IEEE80211_RADIOTAP_EXT) |
304 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
305 put_unaligned_le32(it_present_val, it_present);
306 it_present++;
307 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
308 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
311 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
312 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
313 BIT(IEEE80211_RADIOTAP_EXT);
314 put_unaligned_le32(it_present_val, it_present);
315 it_present++;
316 it_present_val = rtap.present;
319 put_unaligned_le32(it_present_val, it_present);
321 pos = (void *)(it_present + 1);
323 /* the order of the following fields is important */
325 /* IEEE80211_RADIOTAP_TSFT */
326 if (ieee80211_have_rx_timestamp(status)) {
327 /* padding */
328 while ((pos - (u8 *)rthdr) & 7)
329 *pos++ = 0;
330 put_unaligned_le64(
331 ieee80211_calculate_rx_timestamp(local, status,
332 mpdulen, 0),
333 pos);
334 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
335 pos += 8;
338 /* IEEE80211_RADIOTAP_FLAGS */
339 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
340 *pos |= IEEE80211_RADIOTAP_F_FCS;
341 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
342 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
343 if (status->flag & RX_FLAG_SHORTPRE)
344 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
345 pos++;
347 /* IEEE80211_RADIOTAP_RATE */
348 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
350 * Without rate information don't add it. If we have,
351 * MCS information is a separate field in radiotap,
352 * added below. The byte here is needed as padding
353 * for the channel though, so initialise it to 0.
355 *pos = 0;
356 } else {
357 int shift = 0;
358 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
359 if (status->flag & RX_FLAG_10MHZ)
360 shift = 1;
361 else if (status->flag & RX_FLAG_5MHZ)
362 shift = 2;
363 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
365 pos++;
367 /* IEEE80211_RADIOTAP_CHANNEL */
368 put_unaligned_le16(status->freq, pos);
369 pos += 2;
370 if (status->flag & RX_FLAG_10MHZ)
371 channel_flags |= IEEE80211_CHAN_HALF;
372 else if (status->flag & RX_FLAG_5MHZ)
373 channel_flags |= IEEE80211_CHAN_QUARTER;
375 if (status->band == NL80211_BAND_5GHZ)
376 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
377 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
378 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
379 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
380 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
381 else if (rate)
382 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
383 else
384 channel_flags |= IEEE80211_CHAN_2GHZ;
385 put_unaligned_le16(channel_flags, pos);
386 pos += 2;
388 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
389 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
390 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
391 *pos = status->signal;
392 rthdr->it_present |=
393 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
394 pos++;
397 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
399 if (!status->chains) {
400 /* IEEE80211_RADIOTAP_ANTENNA */
401 *pos = status->antenna;
402 pos++;
405 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
407 /* IEEE80211_RADIOTAP_RX_FLAGS */
408 /* ensure 2 byte alignment for the 2 byte field as required */
409 if ((pos - (u8 *)rthdr) & 1)
410 *pos++ = 0;
411 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
412 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
413 put_unaligned_le16(rx_flags, pos);
414 pos += 2;
416 if (status->flag & RX_FLAG_HT) {
417 unsigned int stbc;
419 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
420 *pos++ = local->hw.radiotap_mcs_details;
421 *pos = 0;
422 if (status->flag & RX_FLAG_SHORT_GI)
423 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
424 if (status->flag & RX_FLAG_40MHZ)
425 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
426 if (status->flag & RX_FLAG_HT_GF)
427 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
428 if (status->flag & RX_FLAG_LDPC)
429 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
430 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
431 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
432 pos++;
433 *pos++ = status->rate_idx;
436 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
437 u16 flags = 0;
439 /* ensure 4 byte alignment */
440 while ((pos - (u8 *)rthdr) & 3)
441 pos++;
442 rthdr->it_present |=
443 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
444 put_unaligned_le32(status->ampdu_reference, pos);
445 pos += 4;
446 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
447 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
448 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
449 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
450 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
451 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
452 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
453 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
454 put_unaligned_le16(flags, pos);
455 pos += 2;
456 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
457 *pos++ = status->ampdu_delimiter_crc;
458 else
459 *pos++ = 0;
460 *pos++ = 0;
463 if (status->flag & RX_FLAG_VHT) {
464 u16 known = local->hw.radiotap_vht_details;
466 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
467 put_unaligned_le16(known, pos);
468 pos += 2;
469 /* flags */
470 if (status->flag & RX_FLAG_SHORT_GI)
471 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
472 /* in VHT, STBC is binary */
473 if (status->flag & RX_FLAG_STBC_MASK)
474 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
475 if (status->vht_flag & RX_VHT_FLAG_BF)
476 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
477 pos++;
478 /* bandwidth */
479 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
480 *pos++ = 4;
481 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
482 *pos++ = 11;
483 else if (status->flag & RX_FLAG_40MHZ)
484 *pos++ = 1;
485 else /* 20 MHz */
486 *pos++ = 0;
487 /* MCS/NSS */
488 *pos = (status->rate_idx << 4) | status->vht_nss;
489 pos += 4;
490 /* coding field */
491 if (status->flag & RX_FLAG_LDPC)
492 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
493 pos++;
494 /* group ID */
495 pos++;
496 /* partial_aid */
497 pos += 2;
500 if (local->hw.radiotap_timestamp.units_pos >= 0) {
501 u16 accuracy = 0;
502 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
504 rthdr->it_present |=
505 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
507 /* ensure 8 byte alignment */
508 while ((pos - (u8 *)rthdr) & 7)
509 pos++;
511 put_unaligned_le64(status->device_timestamp, pos);
512 pos += sizeof(u64);
514 if (local->hw.radiotap_timestamp.accuracy >= 0) {
515 accuracy = local->hw.radiotap_timestamp.accuracy;
516 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
518 put_unaligned_le16(accuracy, pos);
519 pos += sizeof(u16);
521 *pos++ = local->hw.radiotap_timestamp.units_pos;
522 *pos++ = flags;
525 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
526 *pos++ = status->chain_signal[chain];
527 *pos++ = chain;
530 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
531 /* ensure 2 byte alignment for the vendor field as required */
532 if ((pos - (u8 *)rthdr) & 1)
533 *pos++ = 0;
534 *pos++ = rtap.oui[0];
535 *pos++ = rtap.oui[1];
536 *pos++ = rtap.oui[2];
537 *pos++ = rtap.subns;
538 put_unaligned_le16(rtap.len, pos);
539 pos += 2;
540 /* align the actual payload as requested */
541 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
542 *pos++ = 0;
543 /* data (and possible padding) already follows */
548 * This function copies a received frame to all monitor interfaces and
549 * returns a cleaned-up SKB that no longer includes the FCS nor the
550 * radiotap header the driver might have added.
552 static struct sk_buff *
553 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
554 struct ieee80211_rate *rate)
556 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
557 struct ieee80211_sub_if_data *sdata;
558 int rt_hdrlen, needed_headroom;
559 struct sk_buff *skb, *skb2;
560 struct net_device *prev_dev = NULL;
561 int present_fcs_len = 0;
562 unsigned int rtap_vendor_space = 0;
563 struct ieee80211_sub_if_data *monitor_sdata =
564 rcu_dereference(local->monitor_sdata);
566 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
567 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
569 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
573 * First, we may need to make a copy of the skb because
574 * (1) we need to modify it for radiotap (if not present), and
575 * (2) the other RX handlers will modify the skb we got.
577 * We don't need to, of course, if we aren't going to return
578 * the SKB because it has a bad FCS/PLCP checksum.
581 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
582 present_fcs_len = FCS_LEN;
584 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
585 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
586 dev_kfree_skb(origskb);
587 return NULL;
590 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
591 if (should_drop_frame(origskb, present_fcs_len,
592 rtap_vendor_space)) {
593 dev_kfree_skb(origskb);
594 return NULL;
597 return remove_monitor_info(local, origskb, rtap_vendor_space);
600 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
602 /* room for the radiotap header based on driver features */
603 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
604 needed_headroom = rt_hdrlen - rtap_vendor_space;
606 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
607 /* only need to expand headroom if necessary */
608 skb = origskb;
609 origskb = NULL;
612 * This shouldn't trigger often because most devices have an
613 * RX header they pull before we get here, and that should
614 * be big enough for our radiotap information. We should
615 * probably export the length to drivers so that we can have
616 * them allocate enough headroom to start with.
618 if (skb_headroom(skb) < needed_headroom &&
619 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
620 dev_kfree_skb(skb);
621 return NULL;
623 } else {
625 * Need to make a copy and possibly remove radiotap header
626 * and FCS from the original.
628 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
630 origskb = remove_monitor_info(local, origskb,
631 rtap_vendor_space);
633 if (!skb)
634 return origskb;
637 /* prepend radiotap information */
638 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
640 skb_reset_mac_header(skb);
641 skb->ip_summed = CHECKSUM_UNNECESSARY;
642 skb->pkt_type = PACKET_OTHERHOST;
643 skb->protocol = htons(ETH_P_802_2);
645 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
646 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
647 continue;
649 if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
650 continue;
652 if (!ieee80211_sdata_running(sdata))
653 continue;
655 if (prev_dev) {
656 skb2 = skb_clone(skb, GFP_ATOMIC);
657 if (skb2) {
658 skb2->dev = prev_dev;
659 netif_receive_skb(skb2);
663 prev_dev = sdata->dev;
664 ieee80211_rx_stats(sdata->dev, skb->len);
667 if (prev_dev) {
668 skb->dev = prev_dev;
669 netif_receive_skb(skb);
670 } else
671 dev_kfree_skb(skb);
673 return origskb;
676 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
678 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
679 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
680 int tid, seqno_idx, security_idx;
682 /* does the frame have a qos control field? */
683 if (ieee80211_is_data_qos(hdr->frame_control)) {
684 u8 *qc = ieee80211_get_qos_ctl(hdr);
685 /* frame has qos control */
686 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
687 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
688 status->rx_flags |= IEEE80211_RX_AMSDU;
690 seqno_idx = tid;
691 security_idx = tid;
692 } else {
694 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
696 * Sequence numbers for management frames, QoS data
697 * frames with a broadcast/multicast address in the
698 * Address 1 field, and all non-QoS data frames sent
699 * by QoS STAs are assigned using an additional single
700 * modulo-4096 counter, [...]
702 * We also use that counter for non-QoS STAs.
704 seqno_idx = IEEE80211_NUM_TIDS;
705 security_idx = 0;
706 if (ieee80211_is_mgmt(hdr->frame_control))
707 security_idx = IEEE80211_NUM_TIDS;
708 tid = 0;
711 rx->seqno_idx = seqno_idx;
712 rx->security_idx = security_idx;
713 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
714 * For now, set skb->priority to 0 for other cases. */
715 rx->skb->priority = (tid > 7) ? 0 : tid;
719 * DOC: Packet alignment
721 * Drivers always need to pass packets that are aligned to two-byte boundaries
722 * to the stack.
724 * Additionally, should, if possible, align the payload data in a way that
725 * guarantees that the contained IP header is aligned to a four-byte
726 * boundary. In the case of regular frames, this simply means aligning the
727 * payload to a four-byte boundary (because either the IP header is directly
728 * contained, or IV/RFC1042 headers that have a length divisible by four are
729 * in front of it). If the payload data is not properly aligned and the
730 * architecture doesn't support efficient unaligned operations, mac80211
731 * will align the data.
733 * With A-MSDU frames, however, the payload data address must yield two modulo
734 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
735 * push the IP header further back to a multiple of four again. Thankfully, the
736 * specs were sane enough this time around to require padding each A-MSDU
737 * subframe to a length that is a multiple of four.
739 * Padding like Atheros hardware adds which is between the 802.11 header and
740 * the payload is not supported, the driver is required to move the 802.11
741 * header to be directly in front of the payload in that case.
743 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
745 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
746 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
747 #endif
751 /* rx handlers */
753 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
757 if (is_multicast_ether_addr(hdr->addr1))
758 return 0;
760 return ieee80211_is_robust_mgmt_frame(skb);
764 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
766 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
768 if (!is_multicast_ether_addr(hdr->addr1))
769 return 0;
771 return ieee80211_is_robust_mgmt_frame(skb);
775 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
776 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
778 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
779 struct ieee80211_mmie *mmie;
780 struct ieee80211_mmie_16 *mmie16;
782 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
783 return -1;
785 if (!ieee80211_is_robust_mgmt_frame(skb))
786 return -1; /* not a robust management frame */
788 mmie = (struct ieee80211_mmie *)
789 (skb->data + skb->len - sizeof(*mmie));
790 if (mmie->element_id == WLAN_EID_MMIE &&
791 mmie->length == sizeof(*mmie) - 2)
792 return le16_to_cpu(mmie->key_id);
794 mmie16 = (struct ieee80211_mmie_16 *)
795 (skb->data + skb->len - sizeof(*mmie16));
796 if (skb->len >= 24 + sizeof(*mmie16) &&
797 mmie16->element_id == WLAN_EID_MMIE &&
798 mmie16->length == sizeof(*mmie16) - 2)
799 return le16_to_cpu(mmie16->key_id);
801 return -1;
804 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
805 struct sk_buff *skb)
807 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
808 __le16 fc;
809 int hdrlen;
810 u8 keyid;
812 fc = hdr->frame_control;
813 hdrlen = ieee80211_hdrlen(fc);
815 if (skb->len < hdrlen + cs->hdr_len)
816 return -EINVAL;
818 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
819 keyid &= cs->key_idx_mask;
820 keyid >>= cs->key_idx_shift;
822 return keyid;
825 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
827 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
828 char *dev_addr = rx->sdata->vif.addr;
830 if (ieee80211_is_data(hdr->frame_control)) {
831 if (is_multicast_ether_addr(hdr->addr1)) {
832 if (ieee80211_has_tods(hdr->frame_control) ||
833 !ieee80211_has_fromds(hdr->frame_control))
834 return RX_DROP_MONITOR;
835 if (ether_addr_equal(hdr->addr3, dev_addr))
836 return RX_DROP_MONITOR;
837 } else {
838 if (!ieee80211_has_a4(hdr->frame_control))
839 return RX_DROP_MONITOR;
840 if (ether_addr_equal(hdr->addr4, dev_addr))
841 return RX_DROP_MONITOR;
845 /* If there is not an established peer link and this is not a peer link
846 * establisment frame, beacon or probe, drop the frame.
849 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
850 struct ieee80211_mgmt *mgmt;
852 if (!ieee80211_is_mgmt(hdr->frame_control))
853 return RX_DROP_MONITOR;
855 if (ieee80211_is_action(hdr->frame_control)) {
856 u8 category;
858 /* make sure category field is present */
859 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
860 return RX_DROP_MONITOR;
862 mgmt = (struct ieee80211_mgmt *)hdr;
863 category = mgmt->u.action.category;
864 if (category != WLAN_CATEGORY_MESH_ACTION &&
865 category != WLAN_CATEGORY_SELF_PROTECTED)
866 return RX_DROP_MONITOR;
867 return RX_CONTINUE;
870 if (ieee80211_is_probe_req(hdr->frame_control) ||
871 ieee80211_is_probe_resp(hdr->frame_control) ||
872 ieee80211_is_beacon(hdr->frame_control) ||
873 ieee80211_is_auth(hdr->frame_control))
874 return RX_CONTINUE;
876 return RX_DROP_MONITOR;
879 return RX_CONTINUE;
882 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
883 int index)
885 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
886 struct sk_buff *tail = skb_peek_tail(frames);
887 struct ieee80211_rx_status *status;
889 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
890 return true;
892 if (!tail)
893 return false;
895 status = IEEE80211_SKB_RXCB(tail);
896 if (status->flag & RX_FLAG_AMSDU_MORE)
897 return false;
899 return true;
902 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
903 struct tid_ampdu_rx *tid_agg_rx,
904 int index,
905 struct sk_buff_head *frames)
907 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
908 struct sk_buff *skb;
909 struct ieee80211_rx_status *status;
911 lockdep_assert_held(&tid_agg_rx->reorder_lock);
913 if (skb_queue_empty(skb_list))
914 goto no_frame;
916 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
917 __skb_queue_purge(skb_list);
918 goto no_frame;
921 /* release frames from the reorder ring buffer */
922 tid_agg_rx->stored_mpdu_num--;
923 while ((skb = __skb_dequeue(skb_list))) {
924 status = IEEE80211_SKB_RXCB(skb);
925 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
926 __skb_queue_tail(frames, skb);
929 no_frame:
930 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
931 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
934 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
935 struct tid_ampdu_rx *tid_agg_rx,
936 u16 head_seq_num,
937 struct sk_buff_head *frames)
939 int index;
941 lockdep_assert_held(&tid_agg_rx->reorder_lock);
943 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
944 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
945 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
946 frames);
951 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
952 * the skb was added to the buffer longer than this time ago, the earlier
953 * frames that have not yet been received are assumed to be lost and the skb
954 * can be released for processing. This may also release other skb's from the
955 * reorder buffer if there are no additional gaps between the frames.
957 * Callers must hold tid_agg_rx->reorder_lock.
959 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
961 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
962 struct tid_ampdu_rx *tid_agg_rx,
963 struct sk_buff_head *frames)
965 int index, i, j;
967 lockdep_assert_held(&tid_agg_rx->reorder_lock);
969 /* release the buffer until next missing frame */
970 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
971 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
972 tid_agg_rx->stored_mpdu_num) {
974 * No buffers ready to be released, but check whether any
975 * frames in the reorder buffer have timed out.
977 int skipped = 1;
978 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
979 j = (j + 1) % tid_agg_rx->buf_size) {
980 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
981 skipped++;
982 continue;
984 if (skipped &&
985 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
986 HT_RX_REORDER_BUF_TIMEOUT))
987 goto set_release_timer;
989 /* don't leave incomplete A-MSDUs around */
990 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
991 i = (i + 1) % tid_agg_rx->buf_size)
992 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
994 ht_dbg_ratelimited(sdata,
995 "release an RX reorder frame due to timeout on earlier frames\n");
996 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
997 frames);
1000 * Increment the head seq# also for the skipped slots.
1002 tid_agg_rx->head_seq_num =
1003 (tid_agg_rx->head_seq_num +
1004 skipped) & IEEE80211_SN_MASK;
1005 skipped = 0;
1007 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1008 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1009 frames);
1010 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1013 if (tid_agg_rx->stored_mpdu_num) {
1014 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1016 for (; j != (index - 1) % tid_agg_rx->buf_size;
1017 j = (j + 1) % tid_agg_rx->buf_size) {
1018 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1019 break;
1022 set_release_timer:
1024 if (!tid_agg_rx->removed)
1025 mod_timer(&tid_agg_rx->reorder_timer,
1026 tid_agg_rx->reorder_time[j] + 1 +
1027 HT_RX_REORDER_BUF_TIMEOUT);
1028 } else {
1029 del_timer(&tid_agg_rx->reorder_timer);
1034 * As this function belongs to the RX path it must be under
1035 * rcu_read_lock protection. It returns false if the frame
1036 * can be processed immediately, true if it was consumed.
1038 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1039 struct tid_ampdu_rx *tid_agg_rx,
1040 struct sk_buff *skb,
1041 struct sk_buff_head *frames)
1043 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1044 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1045 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1046 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1047 u16 head_seq_num, buf_size;
1048 int index;
1049 bool ret = true;
1051 spin_lock(&tid_agg_rx->reorder_lock);
1054 * Offloaded BA sessions have no known starting sequence number so pick
1055 * one from first Rxed frame for this tid after BA was started.
1057 if (unlikely(tid_agg_rx->auto_seq)) {
1058 tid_agg_rx->auto_seq = false;
1059 tid_agg_rx->ssn = mpdu_seq_num;
1060 tid_agg_rx->head_seq_num = mpdu_seq_num;
1063 buf_size = tid_agg_rx->buf_size;
1064 head_seq_num = tid_agg_rx->head_seq_num;
1067 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1068 * be reordered.
1070 if (unlikely(!tid_agg_rx->started)) {
1071 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1072 ret = false;
1073 goto out;
1075 tid_agg_rx->started = true;
1078 /* frame with out of date sequence number */
1079 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1080 dev_kfree_skb(skb);
1081 goto out;
1085 * If frame the sequence number exceeds our buffering window
1086 * size release some previous frames to make room for this one.
1088 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1089 head_seq_num = ieee80211_sn_inc(
1090 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1091 /* release stored frames up to new head to stack */
1092 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1093 head_seq_num, frames);
1096 /* Now the new frame is always in the range of the reordering buffer */
1098 index = mpdu_seq_num % tid_agg_rx->buf_size;
1100 /* check if we already stored this frame */
1101 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1102 dev_kfree_skb(skb);
1103 goto out;
1107 * If the current MPDU is in the right order and nothing else
1108 * is stored we can process it directly, no need to buffer it.
1109 * If it is first but there's something stored, we may be able
1110 * to release frames after this one.
1112 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1113 tid_agg_rx->stored_mpdu_num == 0) {
1114 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1115 tid_agg_rx->head_seq_num =
1116 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1117 ret = false;
1118 goto out;
1121 /* put the frame in the reordering buffer */
1122 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1123 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1124 tid_agg_rx->reorder_time[index] = jiffies;
1125 tid_agg_rx->stored_mpdu_num++;
1126 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1129 out:
1130 spin_unlock(&tid_agg_rx->reorder_lock);
1131 return ret;
1135 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1136 * true if the MPDU was buffered, false if it should be processed.
1138 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1139 struct sk_buff_head *frames)
1141 struct sk_buff *skb = rx->skb;
1142 struct ieee80211_local *local = rx->local;
1143 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1144 struct sta_info *sta = rx->sta;
1145 struct tid_ampdu_rx *tid_agg_rx;
1146 u16 sc;
1147 u8 tid, ack_policy;
1149 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1150 is_multicast_ether_addr(hdr->addr1))
1151 goto dont_reorder;
1154 * filter the QoS data rx stream according to
1155 * STA/TID and check if this STA/TID is on aggregation
1158 if (!sta)
1159 goto dont_reorder;
1161 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1162 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1163 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1165 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1166 if (!tid_agg_rx) {
1167 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1168 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1169 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1170 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1171 WLAN_BACK_RECIPIENT,
1172 WLAN_REASON_QSTA_REQUIRE_SETUP);
1173 goto dont_reorder;
1176 /* qos null data frames are excluded */
1177 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1178 goto dont_reorder;
1180 /* not part of a BA session */
1181 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1182 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1183 goto dont_reorder;
1185 /* new, potentially un-ordered, ampdu frame - process it */
1187 /* reset session timer */
1188 if (tid_agg_rx->timeout)
1189 tid_agg_rx->last_rx = jiffies;
1191 /* if this mpdu is fragmented - terminate rx aggregation session */
1192 sc = le16_to_cpu(hdr->seq_ctrl);
1193 if (sc & IEEE80211_SCTL_FRAG) {
1194 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1195 skb_queue_tail(&rx->sdata->skb_queue, skb);
1196 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1197 return;
1201 * No locking needed -- we will only ever process one
1202 * RX packet at a time, and thus own tid_agg_rx. All
1203 * other code manipulating it needs to (and does) make
1204 * sure that we cannot get to it any more before doing
1205 * anything with it.
1207 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1208 frames))
1209 return;
1211 dont_reorder:
1212 __skb_queue_tail(frames, skb);
1215 static ieee80211_rx_result debug_noinline
1216 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1218 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1219 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1221 if (status->flag & RX_FLAG_DUP_VALIDATED)
1222 return RX_CONTINUE;
1225 * Drop duplicate 802.11 retransmissions
1226 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1229 if (rx->skb->len < 24)
1230 return RX_CONTINUE;
1232 if (ieee80211_is_ctl(hdr->frame_control) ||
1233 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1234 is_multicast_ether_addr(hdr->addr1))
1235 return RX_CONTINUE;
1237 if (!rx->sta)
1238 return RX_CONTINUE;
1240 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1241 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1242 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1243 rx->sta->rx_stats.num_duplicates++;
1244 return RX_DROP_UNUSABLE;
1245 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1246 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1249 return RX_CONTINUE;
1252 static ieee80211_rx_result debug_noinline
1253 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1255 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1257 /* Drop disallowed frame classes based on STA auth/assoc state;
1258 * IEEE 802.11, Chap 5.5.
1260 * mac80211 filters only based on association state, i.e. it drops
1261 * Class 3 frames from not associated stations. hostapd sends
1262 * deauth/disassoc frames when needed. In addition, hostapd is
1263 * responsible for filtering on both auth and assoc states.
1266 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1267 return ieee80211_rx_mesh_check(rx);
1269 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1270 ieee80211_is_pspoll(hdr->frame_control)) &&
1271 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1272 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1273 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1274 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1276 * accept port control frames from the AP even when it's not
1277 * yet marked ASSOC to prevent a race where we don't set the
1278 * assoc bit quickly enough before it sends the first frame
1280 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1281 ieee80211_is_data_present(hdr->frame_control)) {
1282 unsigned int hdrlen;
1283 __be16 ethertype;
1285 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1287 if (rx->skb->len < hdrlen + 8)
1288 return RX_DROP_MONITOR;
1290 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1291 if (ethertype == rx->sdata->control_port_protocol)
1292 return RX_CONTINUE;
1295 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1296 cfg80211_rx_spurious_frame(rx->sdata->dev,
1297 hdr->addr2,
1298 GFP_ATOMIC))
1299 return RX_DROP_UNUSABLE;
1301 return RX_DROP_MONITOR;
1304 return RX_CONTINUE;
1308 static ieee80211_rx_result debug_noinline
1309 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1311 struct ieee80211_local *local;
1312 struct ieee80211_hdr *hdr;
1313 struct sk_buff *skb;
1315 local = rx->local;
1316 skb = rx->skb;
1317 hdr = (struct ieee80211_hdr *) skb->data;
1319 if (!local->pspolling)
1320 return RX_CONTINUE;
1322 if (!ieee80211_has_fromds(hdr->frame_control))
1323 /* this is not from AP */
1324 return RX_CONTINUE;
1326 if (!ieee80211_is_data(hdr->frame_control))
1327 return RX_CONTINUE;
1329 if (!ieee80211_has_moredata(hdr->frame_control)) {
1330 /* AP has no more frames buffered for us */
1331 local->pspolling = false;
1332 return RX_CONTINUE;
1335 /* more data bit is set, let's request a new frame from the AP */
1336 ieee80211_send_pspoll(local, rx->sdata);
1338 return RX_CONTINUE;
1341 static void sta_ps_start(struct sta_info *sta)
1343 struct ieee80211_sub_if_data *sdata = sta->sdata;
1344 struct ieee80211_local *local = sdata->local;
1345 struct ps_data *ps;
1346 int tid;
1348 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1349 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1350 ps = &sdata->bss->ps;
1351 else
1352 return;
1354 atomic_inc(&ps->num_sta_ps);
1355 set_sta_flag(sta, WLAN_STA_PS_STA);
1356 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1357 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1358 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1359 sta->sta.addr, sta->sta.aid);
1361 ieee80211_clear_fast_xmit(sta);
1363 if (!sta->sta.txq[0])
1364 return;
1366 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1367 if (txq_has_queue(sta->sta.txq[tid]))
1368 set_bit(tid, &sta->txq_buffered_tids);
1369 else
1370 clear_bit(tid, &sta->txq_buffered_tids);
1374 static void sta_ps_end(struct sta_info *sta)
1376 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1377 sta->sta.addr, sta->sta.aid);
1379 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1381 * Clear the flag only if the other one is still set
1382 * so that the TX path won't start TX'ing new frames
1383 * directly ... In the case that the driver flag isn't
1384 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1386 clear_sta_flag(sta, WLAN_STA_PS_STA);
1387 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1388 sta->sta.addr, sta->sta.aid);
1389 return;
1392 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1393 clear_sta_flag(sta, WLAN_STA_PS_STA);
1394 ieee80211_sta_ps_deliver_wakeup(sta);
1397 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1399 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1400 bool in_ps;
1402 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1404 /* Don't let the same PS state be set twice */
1405 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1406 if ((start && in_ps) || (!start && !in_ps))
1407 return -EINVAL;
1409 if (start)
1410 sta_ps_start(sta);
1411 else
1412 sta_ps_end(sta);
1414 return 0;
1416 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1418 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1420 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1422 if (test_sta_flag(sta, WLAN_STA_SP))
1423 return;
1425 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1426 ieee80211_sta_ps_deliver_poll_response(sta);
1427 else
1428 set_sta_flag(sta, WLAN_STA_PSPOLL);
1430 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1432 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1434 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1435 u8 ac = ieee802_1d_to_ac[tid & 7];
1438 * If this AC is not trigger-enabled do nothing.
1440 * NB: This could/should check a separate bitmap of trigger-
1441 * enabled queues, but for now we only implement uAPSD w/o
1442 * TSPEC changes to the ACs, so they're always the same.
1444 if (!(sta->sta.uapsd_queues & BIT(ac)))
1445 return;
1447 /* if we are in a service period, do nothing */
1448 if (test_sta_flag(sta, WLAN_STA_SP))
1449 return;
1451 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1452 ieee80211_sta_ps_deliver_uapsd(sta);
1453 else
1454 set_sta_flag(sta, WLAN_STA_UAPSD);
1456 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1458 static ieee80211_rx_result debug_noinline
1459 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1461 struct ieee80211_sub_if_data *sdata = rx->sdata;
1462 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1463 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1465 if (!rx->sta)
1466 return RX_CONTINUE;
1468 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1469 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1470 return RX_CONTINUE;
1473 * The device handles station powersave, so don't do anything about
1474 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1475 * it to mac80211 since they're handled.)
1477 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1478 return RX_CONTINUE;
1481 * Don't do anything if the station isn't already asleep. In
1482 * the uAPSD case, the station will probably be marked asleep,
1483 * in the PS-Poll case the station must be confused ...
1485 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1486 return RX_CONTINUE;
1488 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1489 ieee80211_sta_pspoll(&rx->sta->sta);
1491 /* Free PS Poll skb here instead of returning RX_DROP that would
1492 * count as an dropped frame. */
1493 dev_kfree_skb(rx->skb);
1495 return RX_QUEUED;
1496 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1497 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1498 ieee80211_has_pm(hdr->frame_control) &&
1499 (ieee80211_is_data_qos(hdr->frame_control) ||
1500 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1501 u8 tid;
1503 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1505 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1508 return RX_CONTINUE;
1511 static ieee80211_rx_result debug_noinline
1512 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1514 struct sta_info *sta = rx->sta;
1515 struct sk_buff *skb = rx->skb;
1516 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1517 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1518 int i;
1520 if (!sta)
1521 return RX_CONTINUE;
1524 * Update last_rx only for IBSS packets which are for the current
1525 * BSSID and for station already AUTHORIZED to avoid keeping the
1526 * current IBSS network alive in cases where other STAs start
1527 * using different BSSID. This will also give the station another
1528 * chance to restart the authentication/authorization in case
1529 * something went wrong the first time.
1531 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1532 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1533 NL80211_IFTYPE_ADHOC);
1534 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1535 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1536 sta->rx_stats.last_rx = jiffies;
1537 if (ieee80211_is_data(hdr->frame_control) &&
1538 !is_multicast_ether_addr(hdr->addr1))
1539 sta->rx_stats.last_rate =
1540 sta_stats_encode_rate(status);
1542 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1543 sta->rx_stats.last_rx = jiffies;
1544 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1546 * Mesh beacons will update last_rx when if they are found to
1547 * match the current local configuration when processed.
1549 sta->rx_stats.last_rx = jiffies;
1550 if (ieee80211_is_data(hdr->frame_control))
1551 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1554 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1555 ieee80211_sta_rx_notify(rx->sdata, hdr);
1557 sta->rx_stats.fragments++;
1559 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1560 sta->rx_stats.bytes += rx->skb->len;
1561 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1563 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1564 sta->rx_stats.last_signal = status->signal;
1565 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1568 if (status->chains) {
1569 sta->rx_stats.chains = status->chains;
1570 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1571 int signal = status->chain_signal[i];
1573 if (!(status->chains & BIT(i)))
1574 continue;
1576 sta->rx_stats.chain_signal_last[i] = signal;
1577 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1578 -signal);
1583 * Change STA power saving mode only at the end of a frame
1584 * exchange sequence.
1586 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1587 !ieee80211_has_morefrags(hdr->frame_control) &&
1588 !ieee80211_is_back_req(hdr->frame_control) &&
1589 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1590 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1591 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1593 * PM bit is only checked in frames where it isn't reserved,
1594 * in AP mode it's reserved in non-bufferable management frames
1595 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1596 * BAR frames should be ignored as specified in
1597 * IEEE 802.11-2012 10.2.1.2.
1599 (!ieee80211_is_mgmt(hdr->frame_control) ||
1600 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1601 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1602 if (!ieee80211_has_pm(hdr->frame_control))
1603 sta_ps_end(sta);
1604 } else {
1605 if (ieee80211_has_pm(hdr->frame_control))
1606 sta_ps_start(sta);
1610 /* mesh power save support */
1611 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1612 ieee80211_mps_rx_h_sta_process(sta, hdr);
1615 * Drop (qos-)data::nullfunc frames silently, since they
1616 * are used only to control station power saving mode.
1618 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1619 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1620 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1623 * If we receive a 4-addr nullfunc frame from a STA
1624 * that was not moved to a 4-addr STA vlan yet send
1625 * the event to userspace and for older hostapd drop
1626 * the frame to the monitor interface.
1628 if (ieee80211_has_a4(hdr->frame_control) &&
1629 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1630 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1631 !rx->sdata->u.vlan.sta))) {
1632 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1633 cfg80211_rx_unexpected_4addr_frame(
1634 rx->sdata->dev, sta->sta.addr,
1635 GFP_ATOMIC);
1636 return RX_DROP_MONITOR;
1639 * Update counter and free packet here to avoid
1640 * counting this as a dropped packed.
1642 sta->rx_stats.packets++;
1643 dev_kfree_skb(rx->skb);
1644 return RX_QUEUED;
1647 return RX_CONTINUE;
1648 } /* ieee80211_rx_h_sta_process */
1650 static ieee80211_rx_result debug_noinline
1651 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1653 struct sk_buff *skb = rx->skb;
1654 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1655 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1656 int keyidx;
1657 int hdrlen;
1658 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1659 struct ieee80211_key *sta_ptk = NULL;
1660 int mmie_keyidx = -1;
1661 __le16 fc;
1662 const struct ieee80211_cipher_scheme *cs = NULL;
1665 * Key selection 101
1667 * There are four types of keys:
1668 * - GTK (group keys)
1669 * - IGTK (group keys for management frames)
1670 * - PTK (pairwise keys)
1671 * - STK (station-to-station pairwise keys)
1673 * When selecting a key, we have to distinguish between multicast
1674 * (including broadcast) and unicast frames, the latter can only
1675 * use PTKs and STKs while the former always use GTKs and IGTKs.
1676 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1677 * unicast frames can also use key indices like GTKs. Hence, if we
1678 * don't have a PTK/STK we check the key index for a WEP key.
1680 * Note that in a regular BSS, multicast frames are sent by the
1681 * AP only, associated stations unicast the frame to the AP first
1682 * which then multicasts it on their behalf.
1684 * There is also a slight problem in IBSS mode: GTKs are negotiated
1685 * with each station, that is something we don't currently handle.
1686 * The spec seems to expect that one negotiates the same key with
1687 * every station but there's no such requirement; VLANs could be
1688 * possible.
1691 /* start without a key */
1692 rx->key = NULL;
1693 fc = hdr->frame_control;
1695 if (rx->sta) {
1696 int keyid = rx->sta->ptk_idx;
1698 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1699 cs = rx->sta->cipher_scheme;
1700 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1701 if (unlikely(keyid < 0))
1702 return RX_DROP_UNUSABLE;
1704 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1707 if (!ieee80211_has_protected(fc))
1708 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1710 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1711 rx->key = sta_ptk;
1712 if ((status->flag & RX_FLAG_DECRYPTED) &&
1713 (status->flag & RX_FLAG_IV_STRIPPED))
1714 return RX_CONTINUE;
1715 /* Skip decryption if the frame is not protected. */
1716 if (!ieee80211_has_protected(fc))
1717 return RX_CONTINUE;
1718 } else if (mmie_keyidx >= 0) {
1719 /* Broadcast/multicast robust management frame / BIP */
1720 if ((status->flag & RX_FLAG_DECRYPTED) &&
1721 (status->flag & RX_FLAG_IV_STRIPPED))
1722 return RX_CONTINUE;
1724 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1725 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1726 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1727 if (rx->sta) {
1728 if (ieee80211_is_group_privacy_action(skb) &&
1729 test_sta_flag(rx->sta, WLAN_STA_MFP))
1730 return RX_DROP_MONITOR;
1732 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1734 if (!rx->key)
1735 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1736 } else if (!ieee80211_has_protected(fc)) {
1738 * The frame was not protected, so skip decryption. However, we
1739 * need to set rx->key if there is a key that could have been
1740 * used so that the frame may be dropped if encryption would
1741 * have been expected.
1743 struct ieee80211_key *key = NULL;
1744 struct ieee80211_sub_if_data *sdata = rx->sdata;
1745 int i;
1747 if (ieee80211_is_mgmt(fc) &&
1748 is_multicast_ether_addr(hdr->addr1) &&
1749 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1750 rx->key = key;
1751 else {
1752 if (rx->sta) {
1753 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1754 key = rcu_dereference(rx->sta->gtk[i]);
1755 if (key)
1756 break;
1759 if (!key) {
1760 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1761 key = rcu_dereference(sdata->keys[i]);
1762 if (key)
1763 break;
1766 if (key)
1767 rx->key = key;
1769 return RX_CONTINUE;
1770 } else {
1771 u8 keyid;
1774 * The device doesn't give us the IV so we won't be
1775 * able to look up the key. That's ok though, we
1776 * don't need to decrypt the frame, we just won't
1777 * be able to keep statistics accurate.
1778 * Except for key threshold notifications, should
1779 * we somehow allow the driver to tell us which key
1780 * the hardware used if this flag is set?
1782 if ((status->flag & RX_FLAG_DECRYPTED) &&
1783 (status->flag & RX_FLAG_IV_STRIPPED))
1784 return RX_CONTINUE;
1786 hdrlen = ieee80211_hdrlen(fc);
1788 if (cs) {
1789 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1791 if (unlikely(keyidx < 0))
1792 return RX_DROP_UNUSABLE;
1793 } else {
1794 if (rx->skb->len < 8 + hdrlen)
1795 return RX_DROP_UNUSABLE; /* TODO: count this? */
1797 * no need to call ieee80211_wep_get_keyidx,
1798 * it verifies a bunch of things we've done already
1800 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1801 keyidx = keyid >> 6;
1804 /* check per-station GTK first, if multicast packet */
1805 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1806 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1808 /* if not found, try default key */
1809 if (!rx->key) {
1810 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1813 * RSNA-protected unicast frames should always be
1814 * sent with pairwise or station-to-station keys,
1815 * but for WEP we allow using a key index as well.
1817 if (rx->key &&
1818 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1819 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1820 !is_multicast_ether_addr(hdr->addr1))
1821 rx->key = NULL;
1825 if (rx->key) {
1826 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1827 return RX_DROP_MONITOR;
1829 /* TODO: add threshold stuff again */
1830 } else {
1831 return RX_DROP_MONITOR;
1834 switch (rx->key->conf.cipher) {
1835 case WLAN_CIPHER_SUITE_WEP40:
1836 case WLAN_CIPHER_SUITE_WEP104:
1837 result = ieee80211_crypto_wep_decrypt(rx);
1838 break;
1839 case WLAN_CIPHER_SUITE_TKIP:
1840 result = ieee80211_crypto_tkip_decrypt(rx);
1841 break;
1842 case WLAN_CIPHER_SUITE_CCMP:
1843 result = ieee80211_crypto_ccmp_decrypt(
1844 rx, IEEE80211_CCMP_MIC_LEN);
1845 break;
1846 case WLAN_CIPHER_SUITE_CCMP_256:
1847 result = ieee80211_crypto_ccmp_decrypt(
1848 rx, IEEE80211_CCMP_256_MIC_LEN);
1849 break;
1850 case WLAN_CIPHER_SUITE_AES_CMAC:
1851 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1852 break;
1853 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1854 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1855 break;
1856 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1857 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1858 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1859 break;
1860 case WLAN_CIPHER_SUITE_GCMP:
1861 case WLAN_CIPHER_SUITE_GCMP_256:
1862 result = ieee80211_crypto_gcmp_decrypt(rx);
1863 break;
1864 default:
1865 result = ieee80211_crypto_hw_decrypt(rx);
1868 /* the hdr variable is invalid after the decrypt handlers */
1870 /* either the frame has been decrypted or will be dropped */
1871 status->flag |= RX_FLAG_DECRYPTED;
1873 return result;
1876 static inline struct ieee80211_fragment_entry *
1877 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1878 unsigned int frag, unsigned int seq, int rx_queue,
1879 struct sk_buff **skb)
1881 struct ieee80211_fragment_entry *entry;
1883 entry = &sdata->fragments[sdata->fragment_next++];
1884 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1885 sdata->fragment_next = 0;
1887 if (!skb_queue_empty(&entry->skb_list))
1888 __skb_queue_purge(&entry->skb_list);
1890 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1891 *skb = NULL;
1892 entry->first_frag_time = jiffies;
1893 entry->seq = seq;
1894 entry->rx_queue = rx_queue;
1895 entry->last_frag = frag;
1896 entry->check_sequential_pn = false;
1897 entry->extra_len = 0;
1899 return entry;
1902 static inline struct ieee80211_fragment_entry *
1903 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1904 unsigned int frag, unsigned int seq,
1905 int rx_queue, struct ieee80211_hdr *hdr)
1907 struct ieee80211_fragment_entry *entry;
1908 int i, idx;
1910 idx = sdata->fragment_next;
1911 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1912 struct ieee80211_hdr *f_hdr;
1914 idx--;
1915 if (idx < 0)
1916 idx = IEEE80211_FRAGMENT_MAX - 1;
1918 entry = &sdata->fragments[idx];
1919 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1920 entry->rx_queue != rx_queue ||
1921 entry->last_frag + 1 != frag)
1922 continue;
1924 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1927 * Check ftype and addresses are equal, else check next fragment
1929 if (((hdr->frame_control ^ f_hdr->frame_control) &
1930 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1931 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1932 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1933 continue;
1935 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1936 __skb_queue_purge(&entry->skb_list);
1937 continue;
1939 return entry;
1942 return NULL;
1945 static ieee80211_rx_result debug_noinline
1946 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1948 struct ieee80211_hdr *hdr;
1949 u16 sc;
1950 __le16 fc;
1951 unsigned int frag, seq;
1952 struct ieee80211_fragment_entry *entry;
1953 struct sk_buff *skb;
1954 struct ieee80211_rx_status *status;
1956 hdr = (struct ieee80211_hdr *)rx->skb->data;
1957 fc = hdr->frame_control;
1959 if (ieee80211_is_ctl(fc))
1960 return RX_CONTINUE;
1962 sc = le16_to_cpu(hdr->seq_ctrl);
1963 frag = sc & IEEE80211_SCTL_FRAG;
1965 if (is_multicast_ether_addr(hdr->addr1)) {
1966 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1967 goto out_no_led;
1970 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1971 goto out;
1973 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1975 if (skb_linearize(rx->skb))
1976 return RX_DROP_UNUSABLE;
1979 * skb_linearize() might change the skb->data and
1980 * previously cached variables (in this case, hdr) need to
1981 * be refreshed with the new data.
1983 hdr = (struct ieee80211_hdr *)rx->skb->data;
1984 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1986 if (frag == 0) {
1987 /* This is the first fragment of a new frame. */
1988 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1989 rx->seqno_idx, &(rx->skb));
1990 if (rx->key &&
1991 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1992 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1993 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1994 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1995 ieee80211_has_protected(fc)) {
1996 int queue = rx->security_idx;
1998 /* Store CCMP/GCMP PN so that we can verify that the
1999 * next fragment has a sequential PN value.
2001 entry->check_sequential_pn = true;
2002 memcpy(entry->last_pn,
2003 rx->key->u.ccmp.rx_pn[queue],
2004 IEEE80211_CCMP_PN_LEN);
2005 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2006 u.ccmp.rx_pn) !=
2007 offsetof(struct ieee80211_key,
2008 u.gcmp.rx_pn));
2009 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2010 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2011 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2012 IEEE80211_GCMP_PN_LEN);
2014 return RX_QUEUED;
2017 /* This is a fragment for a frame that should already be pending in
2018 * fragment cache. Add this fragment to the end of the pending entry.
2020 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2021 rx->seqno_idx, hdr);
2022 if (!entry) {
2023 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2024 return RX_DROP_MONITOR;
2027 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2028 * MPDU PN values are not incrementing in steps of 1."
2029 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2030 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2032 if (entry->check_sequential_pn) {
2033 int i;
2034 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2035 int queue;
2037 if (!rx->key ||
2038 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2039 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2040 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2041 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2042 return RX_DROP_UNUSABLE;
2043 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2044 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2045 pn[i]++;
2046 if (pn[i])
2047 break;
2049 queue = rx->security_idx;
2050 rpn = rx->key->u.ccmp.rx_pn[queue];
2051 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2052 return RX_DROP_UNUSABLE;
2053 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2056 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2057 __skb_queue_tail(&entry->skb_list, rx->skb);
2058 entry->last_frag = frag;
2059 entry->extra_len += rx->skb->len;
2060 if (ieee80211_has_morefrags(fc)) {
2061 rx->skb = NULL;
2062 return RX_QUEUED;
2065 rx->skb = __skb_dequeue(&entry->skb_list);
2066 if (skb_tailroom(rx->skb) < entry->extra_len) {
2067 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2068 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2069 GFP_ATOMIC))) {
2070 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2071 __skb_queue_purge(&entry->skb_list);
2072 return RX_DROP_UNUSABLE;
2075 while ((skb = __skb_dequeue(&entry->skb_list))) {
2076 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2077 dev_kfree_skb(skb);
2080 /* Complete frame has been reassembled - process it now */
2081 status = IEEE80211_SKB_RXCB(rx->skb);
2083 out:
2084 ieee80211_led_rx(rx->local);
2085 out_no_led:
2086 if (rx->sta)
2087 rx->sta->rx_stats.packets++;
2088 return RX_CONTINUE;
2091 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2093 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2094 return -EACCES;
2096 return 0;
2099 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2101 struct sk_buff *skb = rx->skb;
2102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2105 * Pass through unencrypted frames if the hardware has
2106 * decrypted them already.
2108 if (status->flag & RX_FLAG_DECRYPTED)
2109 return 0;
2111 /* Drop unencrypted frames if key is set. */
2112 if (unlikely(!ieee80211_has_protected(fc) &&
2113 !ieee80211_is_nullfunc(fc) &&
2114 ieee80211_is_data(fc) && rx->key))
2115 return -EACCES;
2117 return 0;
2120 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2122 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2123 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2124 __le16 fc = hdr->frame_control;
2127 * Pass through unencrypted frames if the hardware has
2128 * decrypted them already.
2130 if (status->flag & RX_FLAG_DECRYPTED)
2131 return 0;
2133 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2134 if (unlikely(!ieee80211_has_protected(fc) &&
2135 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2136 rx->key)) {
2137 if (ieee80211_is_deauth(fc) ||
2138 ieee80211_is_disassoc(fc))
2139 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2140 rx->skb->data,
2141 rx->skb->len);
2142 return -EACCES;
2144 /* BIP does not use Protected field, so need to check MMIE */
2145 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2146 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2147 if (ieee80211_is_deauth(fc) ||
2148 ieee80211_is_disassoc(fc))
2149 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2150 rx->skb->data,
2151 rx->skb->len);
2152 return -EACCES;
2155 * When using MFP, Action frames are not allowed prior to
2156 * having configured keys.
2158 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2159 ieee80211_is_robust_mgmt_frame(rx->skb)))
2160 return -EACCES;
2163 return 0;
2166 static int
2167 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2169 struct ieee80211_sub_if_data *sdata = rx->sdata;
2170 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2171 bool check_port_control = false;
2172 struct ethhdr *ehdr;
2173 int ret;
2175 *port_control = false;
2176 if (ieee80211_has_a4(hdr->frame_control) &&
2177 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2178 return -1;
2180 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2181 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2183 if (!sdata->u.mgd.use_4addr)
2184 return -1;
2185 else
2186 check_port_control = true;
2189 if (is_multicast_ether_addr(hdr->addr1) &&
2190 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2191 return -1;
2193 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2194 if (ret < 0)
2195 return ret;
2197 ehdr = (struct ethhdr *) rx->skb->data;
2198 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2199 *port_control = true;
2200 else if (check_port_control)
2201 return -1;
2203 return 0;
2207 * requires that rx->skb is a frame with ethernet header
2209 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2211 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2212 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2213 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2216 * Allow EAPOL frames to us/the PAE group address regardless
2217 * of whether the frame was encrypted or not.
2219 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2220 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2221 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2222 return true;
2224 if (ieee80211_802_1x_port_control(rx) ||
2225 ieee80211_drop_unencrypted(rx, fc))
2226 return false;
2228 return true;
2232 * requires that rx->skb is a frame with ethernet header
2234 static void
2235 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2237 struct ieee80211_sub_if_data *sdata = rx->sdata;
2238 struct net_device *dev = sdata->dev;
2239 struct sk_buff *skb, *xmit_skb;
2240 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2241 struct sta_info *dsta;
2243 skb = rx->skb;
2244 xmit_skb = NULL;
2246 ieee80211_rx_stats(dev, skb->len);
2248 if (rx->sta) {
2249 /* The seqno index has the same property as needed
2250 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2251 * for non-QoS-data frames. Here we know it's a data
2252 * frame, so count MSDUs.
2254 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2255 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2256 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2259 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2260 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2261 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2262 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2263 if (is_multicast_ether_addr(ehdr->h_dest)) {
2265 * send multicast frames both to higher layers in
2266 * local net stack and back to the wireless medium
2268 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2269 if (!xmit_skb)
2270 net_info_ratelimited("%s: failed to clone multicast frame\n",
2271 dev->name);
2272 } else {
2273 dsta = sta_info_get(sdata, skb->data);
2274 if (dsta) {
2276 * The destination station is associated to
2277 * this AP (in this VLAN), so send the frame
2278 * directly to it and do not pass it to local
2279 * net stack.
2281 xmit_skb = skb;
2282 skb = NULL;
2287 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2288 if (skb) {
2289 /* 'align' will only take the values 0 or 2 here since all
2290 * frames are required to be aligned to 2-byte boundaries
2291 * when being passed to mac80211; the code here works just
2292 * as well if that isn't true, but mac80211 assumes it can
2293 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2295 int align;
2297 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2298 if (align) {
2299 if (WARN_ON(skb_headroom(skb) < 3)) {
2300 dev_kfree_skb(skb);
2301 skb = NULL;
2302 } else {
2303 u8 *data = skb->data;
2304 size_t len = skb_headlen(skb);
2305 skb->data -= align;
2306 memmove(skb->data, data, len);
2307 skb_set_tail_pointer(skb, len);
2311 #endif
2313 if (skb) {
2314 /* deliver to local stack */
2315 skb->protocol = eth_type_trans(skb, dev);
2316 memset(skb->cb, 0, sizeof(skb->cb));
2317 if (rx->napi)
2318 napi_gro_receive(rx->napi, skb);
2319 else
2320 netif_receive_skb(skb);
2323 if (xmit_skb) {
2325 * Send to wireless media and increase priority by 256 to
2326 * keep the received priority instead of reclassifying
2327 * the frame (see cfg80211_classify8021d).
2329 xmit_skb->priority += 256;
2330 xmit_skb->protocol = htons(ETH_P_802_3);
2331 skb_reset_network_header(xmit_skb);
2332 skb_reset_mac_header(xmit_skb);
2333 dev_queue_xmit(xmit_skb);
2337 static ieee80211_rx_result debug_noinline
2338 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2340 struct net_device *dev = rx->sdata->dev;
2341 struct sk_buff *skb = rx->skb;
2342 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2343 __le16 fc = hdr->frame_control;
2344 struct sk_buff_head frame_list;
2345 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2346 struct ethhdr ethhdr;
2347 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2349 if (unlikely(!ieee80211_is_data(fc)))
2350 return RX_CONTINUE;
2352 if (unlikely(!ieee80211_is_data_present(fc)))
2353 return RX_DROP_MONITOR;
2355 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2356 return RX_CONTINUE;
2358 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2359 switch (rx->sdata->vif.type) {
2360 case NL80211_IFTYPE_AP_VLAN:
2361 if (!rx->sdata->u.vlan.sta)
2362 return RX_DROP_UNUSABLE;
2363 break;
2364 case NL80211_IFTYPE_STATION:
2365 if (!rx->sdata->u.mgd.use_4addr)
2366 return RX_DROP_UNUSABLE;
2367 break;
2368 default:
2369 return RX_DROP_UNUSABLE;
2371 check_da = NULL;
2372 check_sa = NULL;
2373 } else switch (rx->sdata->vif.type) {
2374 case NL80211_IFTYPE_AP:
2375 case NL80211_IFTYPE_AP_VLAN:
2376 check_da = NULL;
2377 break;
2378 case NL80211_IFTYPE_STATION:
2379 if (!rx->sta ||
2380 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2381 check_sa = NULL;
2382 break;
2383 case NL80211_IFTYPE_MESH_POINT:
2384 check_sa = NULL;
2385 break;
2386 default:
2387 break;
2390 if (is_multicast_ether_addr(hdr->addr1))
2391 return RX_DROP_UNUSABLE;
2393 skb->dev = dev;
2394 __skb_queue_head_init(&frame_list);
2396 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2397 rx->sdata->vif.addr,
2398 rx->sdata->vif.type))
2399 return RX_DROP_UNUSABLE;
2401 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2402 rx->sdata->vif.type,
2403 rx->local->hw.extra_tx_headroom,
2404 check_da, check_sa);
2406 while (!skb_queue_empty(&frame_list)) {
2407 rx->skb = __skb_dequeue(&frame_list);
2409 if (!ieee80211_frame_allowed(rx, fc)) {
2410 dev_kfree_skb(rx->skb);
2411 continue;
2414 ieee80211_deliver_skb(rx);
2417 return RX_QUEUED;
2420 #ifdef CONFIG_MAC80211_MESH
2421 static ieee80211_rx_result
2422 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2424 struct ieee80211_hdr *fwd_hdr, *hdr;
2425 struct ieee80211_tx_info *info;
2426 struct ieee80211s_hdr *mesh_hdr;
2427 struct sk_buff *skb = rx->skb, *fwd_skb;
2428 struct ieee80211_local *local = rx->local;
2429 struct ieee80211_sub_if_data *sdata = rx->sdata;
2430 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2431 u16 ac, q, hdrlen;
2433 hdr = (struct ieee80211_hdr *) skb->data;
2434 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2436 /* make sure fixed part of mesh header is there, also checks skb len */
2437 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2438 return RX_DROP_MONITOR;
2440 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2442 /* make sure full mesh header is there, also checks skb len */
2443 if (!pskb_may_pull(rx->skb,
2444 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2445 return RX_DROP_MONITOR;
2447 /* reload pointers */
2448 hdr = (struct ieee80211_hdr *) skb->data;
2449 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2451 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2452 return RX_DROP_MONITOR;
2454 /* frame is in RMC, don't forward */
2455 if (ieee80211_is_data(hdr->frame_control) &&
2456 is_multicast_ether_addr(hdr->addr1) &&
2457 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2458 return RX_DROP_MONITOR;
2460 if (!ieee80211_is_data(hdr->frame_control))
2461 return RX_CONTINUE;
2463 if (!mesh_hdr->ttl)
2464 return RX_DROP_MONITOR;
2466 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2467 struct mesh_path *mppath;
2468 char *proxied_addr;
2469 char *mpp_addr;
2471 if (is_multicast_ether_addr(hdr->addr1)) {
2472 mpp_addr = hdr->addr3;
2473 proxied_addr = mesh_hdr->eaddr1;
2474 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2475 MESH_FLAGS_AE_A5_A6) {
2476 /* has_a4 already checked in ieee80211_rx_mesh_check */
2477 mpp_addr = hdr->addr4;
2478 proxied_addr = mesh_hdr->eaddr2;
2479 } else {
2480 return RX_DROP_MONITOR;
2483 rcu_read_lock();
2484 mppath = mpp_path_lookup(sdata, proxied_addr);
2485 if (!mppath) {
2486 mpp_path_add(sdata, proxied_addr, mpp_addr);
2487 } else {
2488 spin_lock_bh(&mppath->state_lock);
2489 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2490 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2491 mppath->exp_time = jiffies;
2492 spin_unlock_bh(&mppath->state_lock);
2494 rcu_read_unlock();
2497 /* Frame has reached destination. Don't forward */
2498 if (!is_multicast_ether_addr(hdr->addr1) &&
2499 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2500 return RX_CONTINUE;
2502 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2503 q = sdata->vif.hw_queue[ac];
2504 if (ieee80211_queue_stopped(&local->hw, q)) {
2505 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2506 return RX_DROP_MONITOR;
2508 skb_set_queue_mapping(skb, q);
2510 if (!--mesh_hdr->ttl) {
2511 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2512 goto out;
2515 if (!ifmsh->mshcfg.dot11MeshForwarding)
2516 goto out;
2518 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2519 if (!fwd_skb) {
2520 net_info_ratelimited("%s: failed to clone mesh frame\n",
2521 sdata->name);
2522 goto out;
2525 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2526 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2527 info = IEEE80211_SKB_CB(fwd_skb);
2528 memset(info, 0, sizeof(*info));
2529 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2530 info->control.vif = &rx->sdata->vif;
2531 info->control.jiffies = jiffies;
2532 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2533 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2534 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2535 /* update power mode indication when forwarding */
2536 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2537 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2538 /* mesh power mode flags updated in mesh_nexthop_lookup */
2539 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2540 } else {
2541 /* unable to resolve next hop */
2542 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2543 fwd_hdr->addr3, 0,
2544 WLAN_REASON_MESH_PATH_NOFORWARD,
2545 fwd_hdr->addr2);
2546 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2547 kfree_skb(fwd_skb);
2548 return RX_DROP_MONITOR;
2551 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2552 ieee80211_add_pending_skb(local, fwd_skb);
2553 out:
2554 if (is_multicast_ether_addr(hdr->addr1))
2555 return RX_CONTINUE;
2556 return RX_DROP_MONITOR;
2558 #endif
2560 static ieee80211_rx_result debug_noinline
2561 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2563 struct ieee80211_sub_if_data *sdata = rx->sdata;
2564 struct ieee80211_local *local = rx->local;
2565 struct net_device *dev = sdata->dev;
2566 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2567 __le16 fc = hdr->frame_control;
2568 bool port_control;
2569 int err;
2571 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2572 return RX_CONTINUE;
2574 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2575 return RX_DROP_MONITOR;
2578 * Send unexpected-4addr-frame event to hostapd. For older versions,
2579 * also drop the frame to cooked monitor interfaces.
2581 if (ieee80211_has_a4(hdr->frame_control) &&
2582 sdata->vif.type == NL80211_IFTYPE_AP) {
2583 if (rx->sta &&
2584 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2585 cfg80211_rx_unexpected_4addr_frame(
2586 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2587 return RX_DROP_MONITOR;
2590 err = __ieee80211_data_to_8023(rx, &port_control);
2591 if (unlikely(err))
2592 return RX_DROP_UNUSABLE;
2594 if (!ieee80211_frame_allowed(rx, fc))
2595 return RX_DROP_MONITOR;
2597 /* directly handle TDLS channel switch requests/responses */
2598 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2599 cpu_to_be16(ETH_P_TDLS))) {
2600 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2602 if (pskb_may_pull(rx->skb,
2603 offsetof(struct ieee80211_tdls_data, u)) &&
2604 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2605 tf->category == WLAN_CATEGORY_TDLS &&
2606 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2607 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2608 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2609 schedule_work(&local->tdls_chsw_work);
2610 if (rx->sta)
2611 rx->sta->rx_stats.packets++;
2613 return RX_QUEUED;
2617 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2618 unlikely(port_control) && sdata->bss) {
2619 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2620 u.ap);
2621 dev = sdata->dev;
2622 rx->sdata = sdata;
2625 rx->skb->dev = dev;
2627 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2628 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2629 !is_multicast_ether_addr(
2630 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2631 (!local->scanning &&
2632 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2633 mod_timer(&local->dynamic_ps_timer, jiffies +
2634 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2636 ieee80211_deliver_skb(rx);
2638 return RX_QUEUED;
2641 static ieee80211_rx_result debug_noinline
2642 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2644 struct sk_buff *skb = rx->skb;
2645 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2646 struct tid_ampdu_rx *tid_agg_rx;
2647 u16 start_seq_num;
2648 u16 tid;
2650 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2651 return RX_CONTINUE;
2653 if (ieee80211_is_back_req(bar->frame_control)) {
2654 struct {
2655 __le16 control, start_seq_num;
2656 } __packed bar_data;
2657 struct ieee80211_event event = {
2658 .type = BAR_RX_EVENT,
2661 if (!rx->sta)
2662 return RX_DROP_MONITOR;
2664 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2665 &bar_data, sizeof(bar_data)))
2666 return RX_DROP_MONITOR;
2668 tid = le16_to_cpu(bar_data.control) >> 12;
2670 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2671 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2672 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2673 WLAN_BACK_RECIPIENT,
2674 WLAN_REASON_QSTA_REQUIRE_SETUP);
2676 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2677 if (!tid_agg_rx)
2678 return RX_DROP_MONITOR;
2680 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2681 event.u.ba.tid = tid;
2682 event.u.ba.ssn = start_seq_num;
2683 event.u.ba.sta = &rx->sta->sta;
2685 /* reset session timer */
2686 if (tid_agg_rx->timeout)
2687 mod_timer(&tid_agg_rx->session_timer,
2688 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2690 spin_lock(&tid_agg_rx->reorder_lock);
2691 /* release stored frames up to start of BAR */
2692 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2693 start_seq_num, frames);
2694 spin_unlock(&tid_agg_rx->reorder_lock);
2696 drv_event_callback(rx->local, rx->sdata, &event);
2698 kfree_skb(skb);
2699 return RX_QUEUED;
2703 * After this point, we only want management frames,
2704 * so we can drop all remaining control frames to
2705 * cooked monitor interfaces.
2707 return RX_DROP_MONITOR;
2710 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2711 struct ieee80211_mgmt *mgmt,
2712 size_t len)
2714 struct ieee80211_local *local = sdata->local;
2715 struct sk_buff *skb;
2716 struct ieee80211_mgmt *resp;
2718 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2719 /* Not to own unicast address */
2720 return;
2723 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2724 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2725 /* Not from the current AP or not associated yet. */
2726 return;
2729 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2730 /* Too short SA Query request frame */
2731 return;
2734 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2735 if (skb == NULL)
2736 return;
2738 skb_reserve(skb, local->hw.extra_tx_headroom);
2739 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2740 memset(resp, 0, 24);
2741 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2742 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2743 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2744 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2745 IEEE80211_STYPE_ACTION);
2746 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2747 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2748 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2749 memcpy(resp->u.action.u.sa_query.trans_id,
2750 mgmt->u.action.u.sa_query.trans_id,
2751 WLAN_SA_QUERY_TR_ID_LEN);
2753 ieee80211_tx_skb(sdata, skb);
2756 static ieee80211_rx_result debug_noinline
2757 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2759 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2760 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2763 * From here on, look only at management frames.
2764 * Data and control frames are already handled,
2765 * and unknown (reserved) frames are useless.
2767 if (rx->skb->len < 24)
2768 return RX_DROP_MONITOR;
2770 if (!ieee80211_is_mgmt(mgmt->frame_control))
2771 return RX_DROP_MONITOR;
2773 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2774 ieee80211_is_beacon(mgmt->frame_control) &&
2775 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2776 int sig = 0;
2778 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2779 sig = status->signal;
2781 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2782 rx->skb->data, rx->skb->len,
2783 status->freq, sig);
2784 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2787 if (ieee80211_drop_unencrypted_mgmt(rx))
2788 return RX_DROP_UNUSABLE;
2790 return RX_CONTINUE;
2793 static ieee80211_rx_result debug_noinline
2794 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2796 struct ieee80211_local *local = rx->local;
2797 struct ieee80211_sub_if_data *sdata = rx->sdata;
2798 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2799 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2800 int len = rx->skb->len;
2802 if (!ieee80211_is_action(mgmt->frame_control))
2803 return RX_CONTINUE;
2805 /* drop too small frames */
2806 if (len < IEEE80211_MIN_ACTION_SIZE)
2807 return RX_DROP_UNUSABLE;
2809 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2810 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2811 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2812 return RX_DROP_UNUSABLE;
2814 switch (mgmt->u.action.category) {
2815 case WLAN_CATEGORY_HT:
2816 /* reject HT action frames from stations not supporting HT */
2817 if (!rx->sta->sta.ht_cap.ht_supported)
2818 goto invalid;
2820 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2821 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2822 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2823 sdata->vif.type != NL80211_IFTYPE_AP &&
2824 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2825 break;
2827 /* verify action & smps_control/chanwidth are present */
2828 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2829 goto invalid;
2831 switch (mgmt->u.action.u.ht_smps.action) {
2832 case WLAN_HT_ACTION_SMPS: {
2833 struct ieee80211_supported_band *sband;
2834 enum ieee80211_smps_mode smps_mode;
2836 /* convert to HT capability */
2837 switch (mgmt->u.action.u.ht_smps.smps_control) {
2838 case WLAN_HT_SMPS_CONTROL_DISABLED:
2839 smps_mode = IEEE80211_SMPS_OFF;
2840 break;
2841 case WLAN_HT_SMPS_CONTROL_STATIC:
2842 smps_mode = IEEE80211_SMPS_STATIC;
2843 break;
2844 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2845 smps_mode = IEEE80211_SMPS_DYNAMIC;
2846 break;
2847 default:
2848 goto invalid;
2851 /* if no change do nothing */
2852 if (rx->sta->sta.smps_mode == smps_mode)
2853 goto handled;
2854 rx->sta->sta.smps_mode = smps_mode;
2856 sband = rx->local->hw.wiphy->bands[status->band];
2858 rate_control_rate_update(local, sband, rx->sta,
2859 IEEE80211_RC_SMPS_CHANGED);
2860 goto handled;
2862 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2863 struct ieee80211_supported_band *sband;
2864 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2865 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2867 /* If it doesn't support 40 MHz it can't change ... */
2868 if (!(rx->sta->sta.ht_cap.cap &
2869 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2870 goto handled;
2872 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2873 max_bw = IEEE80211_STA_RX_BW_20;
2874 else
2875 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2877 /* set cur_max_bandwidth and recalc sta bw */
2878 rx->sta->cur_max_bandwidth = max_bw;
2879 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2881 if (rx->sta->sta.bandwidth == new_bw)
2882 goto handled;
2884 rx->sta->sta.bandwidth = new_bw;
2885 sband = rx->local->hw.wiphy->bands[status->band];
2887 rate_control_rate_update(local, sband, rx->sta,
2888 IEEE80211_RC_BW_CHANGED);
2889 goto handled;
2891 default:
2892 goto invalid;
2895 break;
2896 case WLAN_CATEGORY_PUBLIC:
2897 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2898 goto invalid;
2899 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2900 break;
2901 if (!rx->sta)
2902 break;
2903 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2904 break;
2905 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2906 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2907 break;
2908 if (len < offsetof(struct ieee80211_mgmt,
2909 u.action.u.ext_chan_switch.variable))
2910 goto invalid;
2911 goto queue;
2912 case WLAN_CATEGORY_VHT:
2913 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2914 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2915 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2916 sdata->vif.type != NL80211_IFTYPE_AP &&
2917 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2918 break;
2920 /* verify action code is present */
2921 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2922 goto invalid;
2924 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2925 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2926 /* verify opmode is present */
2927 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2928 goto invalid;
2929 goto queue;
2931 case WLAN_VHT_ACTION_GROUPID_MGMT: {
2932 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2933 goto invalid;
2934 goto queue;
2936 default:
2937 break;
2939 break;
2940 case WLAN_CATEGORY_BACK:
2941 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2942 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2943 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2944 sdata->vif.type != NL80211_IFTYPE_AP &&
2945 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2946 break;
2948 /* verify action_code is present */
2949 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2950 break;
2952 switch (mgmt->u.action.u.addba_req.action_code) {
2953 case WLAN_ACTION_ADDBA_REQ:
2954 if (len < (IEEE80211_MIN_ACTION_SIZE +
2955 sizeof(mgmt->u.action.u.addba_req)))
2956 goto invalid;
2957 break;
2958 case WLAN_ACTION_ADDBA_RESP:
2959 if (len < (IEEE80211_MIN_ACTION_SIZE +
2960 sizeof(mgmt->u.action.u.addba_resp)))
2961 goto invalid;
2962 break;
2963 case WLAN_ACTION_DELBA:
2964 if (len < (IEEE80211_MIN_ACTION_SIZE +
2965 sizeof(mgmt->u.action.u.delba)))
2966 goto invalid;
2967 break;
2968 default:
2969 goto invalid;
2972 goto queue;
2973 case WLAN_CATEGORY_SPECTRUM_MGMT:
2974 /* verify action_code is present */
2975 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2976 break;
2978 switch (mgmt->u.action.u.measurement.action_code) {
2979 case WLAN_ACTION_SPCT_MSR_REQ:
2980 if (status->band != NL80211_BAND_5GHZ)
2981 break;
2983 if (len < (IEEE80211_MIN_ACTION_SIZE +
2984 sizeof(mgmt->u.action.u.measurement)))
2985 break;
2987 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2988 break;
2990 ieee80211_process_measurement_req(sdata, mgmt, len);
2991 goto handled;
2992 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2993 u8 *bssid;
2994 if (len < (IEEE80211_MIN_ACTION_SIZE +
2995 sizeof(mgmt->u.action.u.chan_switch)))
2996 break;
2998 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2999 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3000 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3001 break;
3003 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3004 bssid = sdata->u.mgd.bssid;
3005 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3006 bssid = sdata->u.ibss.bssid;
3007 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3008 bssid = mgmt->sa;
3009 else
3010 break;
3012 if (!ether_addr_equal(mgmt->bssid, bssid))
3013 break;
3015 goto queue;
3018 break;
3019 case WLAN_CATEGORY_SA_QUERY:
3020 if (len < (IEEE80211_MIN_ACTION_SIZE +
3021 sizeof(mgmt->u.action.u.sa_query)))
3022 break;
3024 switch (mgmt->u.action.u.sa_query.action) {
3025 case WLAN_ACTION_SA_QUERY_REQUEST:
3026 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3027 break;
3028 ieee80211_process_sa_query_req(sdata, mgmt, len);
3029 goto handled;
3031 break;
3032 case WLAN_CATEGORY_SELF_PROTECTED:
3033 if (len < (IEEE80211_MIN_ACTION_SIZE +
3034 sizeof(mgmt->u.action.u.self_prot.action_code)))
3035 break;
3037 switch (mgmt->u.action.u.self_prot.action_code) {
3038 case WLAN_SP_MESH_PEERING_OPEN:
3039 case WLAN_SP_MESH_PEERING_CLOSE:
3040 case WLAN_SP_MESH_PEERING_CONFIRM:
3041 if (!ieee80211_vif_is_mesh(&sdata->vif))
3042 goto invalid;
3043 if (sdata->u.mesh.user_mpm)
3044 /* userspace handles this frame */
3045 break;
3046 goto queue;
3047 case WLAN_SP_MGK_INFORM:
3048 case WLAN_SP_MGK_ACK:
3049 if (!ieee80211_vif_is_mesh(&sdata->vif))
3050 goto invalid;
3051 break;
3053 break;
3054 case WLAN_CATEGORY_MESH_ACTION:
3055 if (len < (IEEE80211_MIN_ACTION_SIZE +
3056 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3057 break;
3059 if (!ieee80211_vif_is_mesh(&sdata->vif))
3060 break;
3061 if (mesh_action_is_path_sel(mgmt) &&
3062 !mesh_path_sel_is_hwmp(sdata))
3063 break;
3064 goto queue;
3067 return RX_CONTINUE;
3069 invalid:
3070 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3071 /* will return in the next handlers */
3072 return RX_CONTINUE;
3074 handled:
3075 if (rx->sta)
3076 rx->sta->rx_stats.packets++;
3077 dev_kfree_skb(rx->skb);
3078 return RX_QUEUED;
3080 queue:
3081 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3082 skb_queue_tail(&sdata->skb_queue, rx->skb);
3083 ieee80211_queue_work(&local->hw, &sdata->work);
3084 if (rx->sta)
3085 rx->sta->rx_stats.packets++;
3086 return RX_QUEUED;
3089 static ieee80211_rx_result debug_noinline
3090 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3092 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3093 int sig = 0;
3095 /* skip known-bad action frames and return them in the next handler */
3096 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3097 return RX_CONTINUE;
3100 * Getting here means the kernel doesn't know how to handle
3101 * it, but maybe userspace does ... include returned frames
3102 * so userspace can register for those to know whether ones
3103 * it transmitted were processed or returned.
3106 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3107 sig = status->signal;
3109 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3110 rx->skb->data, rx->skb->len, 0)) {
3111 if (rx->sta)
3112 rx->sta->rx_stats.packets++;
3113 dev_kfree_skb(rx->skb);
3114 return RX_QUEUED;
3117 return RX_CONTINUE;
3120 static ieee80211_rx_result debug_noinline
3121 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3123 struct ieee80211_local *local = rx->local;
3124 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3125 struct sk_buff *nskb;
3126 struct ieee80211_sub_if_data *sdata = rx->sdata;
3127 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3129 if (!ieee80211_is_action(mgmt->frame_control))
3130 return RX_CONTINUE;
3133 * For AP mode, hostapd is responsible for handling any action
3134 * frames that we didn't handle, including returning unknown
3135 * ones. For all other modes we will return them to the sender,
3136 * setting the 0x80 bit in the action category, as required by
3137 * 802.11-2012 9.24.4.
3138 * Newer versions of hostapd shall also use the management frame
3139 * registration mechanisms, but older ones still use cooked
3140 * monitor interfaces so push all frames there.
3142 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3143 (sdata->vif.type == NL80211_IFTYPE_AP ||
3144 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3145 return RX_DROP_MONITOR;
3147 if (is_multicast_ether_addr(mgmt->da))
3148 return RX_DROP_MONITOR;
3150 /* do not return rejected action frames */
3151 if (mgmt->u.action.category & 0x80)
3152 return RX_DROP_UNUSABLE;
3154 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3155 GFP_ATOMIC);
3156 if (nskb) {
3157 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3159 nmgmt->u.action.category |= 0x80;
3160 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3161 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3163 memset(nskb->cb, 0, sizeof(nskb->cb));
3165 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3166 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3168 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3169 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3170 IEEE80211_TX_CTL_NO_CCK_RATE;
3171 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3172 info->hw_queue =
3173 local->hw.offchannel_tx_hw_queue;
3176 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3177 status->band);
3179 dev_kfree_skb(rx->skb);
3180 return RX_QUEUED;
3183 static ieee80211_rx_result debug_noinline
3184 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3186 struct ieee80211_sub_if_data *sdata = rx->sdata;
3187 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3188 __le16 stype;
3190 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3192 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3193 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3194 sdata->vif.type != NL80211_IFTYPE_OCB &&
3195 sdata->vif.type != NL80211_IFTYPE_STATION)
3196 return RX_DROP_MONITOR;
3198 switch (stype) {
3199 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3200 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3201 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3202 /* process for all: mesh, mlme, ibss */
3203 break;
3204 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3205 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3206 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3207 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3208 if (is_multicast_ether_addr(mgmt->da) &&
3209 !is_broadcast_ether_addr(mgmt->da))
3210 return RX_DROP_MONITOR;
3212 /* process only for station */
3213 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3214 return RX_DROP_MONITOR;
3215 break;
3216 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3217 /* process only for ibss and mesh */
3218 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3219 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3220 return RX_DROP_MONITOR;
3221 break;
3222 default:
3223 return RX_DROP_MONITOR;
3226 /* queue up frame and kick off work to process it */
3227 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3228 skb_queue_tail(&sdata->skb_queue, rx->skb);
3229 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3230 if (rx->sta)
3231 rx->sta->rx_stats.packets++;
3233 return RX_QUEUED;
3236 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3237 struct ieee80211_rate *rate)
3239 struct ieee80211_sub_if_data *sdata;
3240 struct ieee80211_local *local = rx->local;
3241 struct sk_buff *skb = rx->skb, *skb2;
3242 struct net_device *prev_dev = NULL;
3243 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3244 int needed_headroom;
3247 * If cooked monitor has been processed already, then
3248 * don't do it again. If not, set the flag.
3250 if (rx->flags & IEEE80211_RX_CMNTR)
3251 goto out_free_skb;
3252 rx->flags |= IEEE80211_RX_CMNTR;
3254 /* If there are no cooked monitor interfaces, just free the SKB */
3255 if (!local->cooked_mntrs)
3256 goto out_free_skb;
3258 /* vendor data is long removed here */
3259 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3260 /* room for the radiotap header based on driver features */
3261 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3263 if (skb_headroom(skb) < needed_headroom &&
3264 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3265 goto out_free_skb;
3267 /* prepend radiotap information */
3268 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3269 false);
3271 skb_reset_mac_header(skb);
3272 skb->ip_summed = CHECKSUM_UNNECESSARY;
3273 skb->pkt_type = PACKET_OTHERHOST;
3274 skb->protocol = htons(ETH_P_802_2);
3276 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3277 if (!ieee80211_sdata_running(sdata))
3278 continue;
3280 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3281 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3282 continue;
3284 if (prev_dev) {
3285 skb2 = skb_clone(skb, GFP_ATOMIC);
3286 if (skb2) {
3287 skb2->dev = prev_dev;
3288 netif_receive_skb(skb2);
3292 prev_dev = sdata->dev;
3293 ieee80211_rx_stats(sdata->dev, skb->len);
3296 if (prev_dev) {
3297 skb->dev = prev_dev;
3298 netif_receive_skb(skb);
3299 return;
3302 out_free_skb:
3303 dev_kfree_skb(skb);
3306 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3307 ieee80211_rx_result res)
3309 switch (res) {
3310 case RX_DROP_MONITOR:
3311 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3312 if (rx->sta)
3313 rx->sta->rx_stats.dropped++;
3314 /* fall through */
3315 case RX_CONTINUE: {
3316 struct ieee80211_rate *rate = NULL;
3317 struct ieee80211_supported_band *sband;
3318 struct ieee80211_rx_status *status;
3320 status = IEEE80211_SKB_RXCB((rx->skb));
3322 sband = rx->local->hw.wiphy->bands[status->band];
3323 if (!(status->flag & RX_FLAG_HT) &&
3324 !(status->flag & RX_FLAG_VHT))
3325 rate = &sband->bitrates[status->rate_idx];
3327 ieee80211_rx_cooked_monitor(rx, rate);
3328 break;
3330 case RX_DROP_UNUSABLE:
3331 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3332 if (rx->sta)
3333 rx->sta->rx_stats.dropped++;
3334 dev_kfree_skb(rx->skb);
3335 break;
3336 case RX_QUEUED:
3337 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3338 break;
3342 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3343 struct sk_buff_head *frames)
3345 ieee80211_rx_result res = RX_DROP_MONITOR;
3346 struct sk_buff *skb;
3348 #define CALL_RXH(rxh) \
3349 do { \
3350 res = rxh(rx); \
3351 if (res != RX_CONTINUE) \
3352 goto rxh_next; \
3353 } while (0)
3355 /* Lock here to avoid hitting all of the data used in the RX
3356 * path (e.g. key data, station data, ...) concurrently when
3357 * a frame is released from the reorder buffer due to timeout
3358 * from the timer, potentially concurrently with RX from the
3359 * driver.
3361 spin_lock_bh(&rx->local->rx_path_lock);
3363 while ((skb = __skb_dequeue(frames))) {
3365 * all the other fields are valid across frames
3366 * that belong to an aMPDU since they are on the
3367 * same TID from the same station
3369 rx->skb = skb;
3371 CALL_RXH(ieee80211_rx_h_check_more_data);
3372 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3373 CALL_RXH(ieee80211_rx_h_sta_process);
3374 CALL_RXH(ieee80211_rx_h_decrypt);
3375 CALL_RXH(ieee80211_rx_h_defragment);
3376 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3377 /* must be after MMIC verify so header is counted in MPDU mic */
3378 #ifdef CONFIG_MAC80211_MESH
3379 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3380 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3381 #endif
3382 CALL_RXH(ieee80211_rx_h_amsdu);
3383 CALL_RXH(ieee80211_rx_h_data);
3385 /* special treatment -- needs the queue */
3386 res = ieee80211_rx_h_ctrl(rx, frames);
3387 if (res != RX_CONTINUE)
3388 goto rxh_next;
3390 CALL_RXH(ieee80211_rx_h_mgmt_check);
3391 CALL_RXH(ieee80211_rx_h_action);
3392 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3393 CALL_RXH(ieee80211_rx_h_action_return);
3394 CALL_RXH(ieee80211_rx_h_mgmt);
3396 rxh_next:
3397 ieee80211_rx_handlers_result(rx, res);
3399 #undef CALL_RXH
3402 spin_unlock_bh(&rx->local->rx_path_lock);
3405 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3407 struct sk_buff_head reorder_release;
3408 ieee80211_rx_result res = RX_DROP_MONITOR;
3410 __skb_queue_head_init(&reorder_release);
3412 #define CALL_RXH(rxh) \
3413 do { \
3414 res = rxh(rx); \
3415 if (res != RX_CONTINUE) \
3416 goto rxh_next; \
3417 } while (0)
3419 CALL_RXH(ieee80211_rx_h_check_dup);
3420 CALL_RXH(ieee80211_rx_h_check);
3422 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3424 ieee80211_rx_handlers(rx, &reorder_release);
3425 return;
3427 rxh_next:
3428 ieee80211_rx_handlers_result(rx, res);
3430 #undef CALL_RXH
3434 * This function makes calls into the RX path, therefore
3435 * it has to be invoked under RCU read lock.
3437 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3439 struct sk_buff_head frames;
3440 struct ieee80211_rx_data rx = {
3441 .sta = sta,
3442 .sdata = sta->sdata,
3443 .local = sta->local,
3444 /* This is OK -- must be QoS data frame */
3445 .security_idx = tid,
3446 .seqno_idx = tid,
3447 .napi = NULL, /* must be NULL to not have races */
3449 struct tid_ampdu_rx *tid_agg_rx;
3451 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3452 if (!tid_agg_rx)
3453 return;
3455 __skb_queue_head_init(&frames);
3457 spin_lock(&tid_agg_rx->reorder_lock);
3458 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3459 spin_unlock(&tid_agg_rx->reorder_lock);
3461 if (!skb_queue_empty(&frames)) {
3462 struct ieee80211_event event = {
3463 .type = BA_FRAME_TIMEOUT,
3464 .u.ba.tid = tid,
3465 .u.ba.sta = &sta->sta,
3467 drv_event_callback(rx.local, rx.sdata, &event);
3470 ieee80211_rx_handlers(&rx, &frames);
3473 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3474 u16 ssn, u64 filtered,
3475 u16 received_mpdus)
3477 struct sta_info *sta;
3478 struct tid_ampdu_rx *tid_agg_rx;
3479 struct sk_buff_head frames;
3480 struct ieee80211_rx_data rx = {
3481 /* This is OK -- must be QoS data frame */
3482 .security_idx = tid,
3483 .seqno_idx = tid,
3485 int i, diff;
3487 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3488 return;
3490 __skb_queue_head_init(&frames);
3492 sta = container_of(pubsta, struct sta_info, sta);
3494 rx.sta = sta;
3495 rx.sdata = sta->sdata;
3496 rx.local = sta->local;
3498 rcu_read_lock();
3499 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3500 if (!tid_agg_rx)
3501 goto out;
3503 spin_lock_bh(&tid_agg_rx->reorder_lock);
3505 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3506 int release;
3508 /* release all frames in the reorder buffer */
3509 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3510 IEEE80211_SN_MODULO;
3511 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3512 release, &frames);
3513 /* update ssn to match received ssn */
3514 tid_agg_rx->head_seq_num = ssn;
3515 } else {
3516 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3517 &frames);
3520 /* handle the case that received ssn is behind the mac ssn.
3521 * it can be tid_agg_rx->buf_size behind and still be valid */
3522 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3523 if (diff >= tid_agg_rx->buf_size) {
3524 tid_agg_rx->reorder_buf_filtered = 0;
3525 goto release;
3527 filtered = filtered >> diff;
3528 ssn += diff;
3530 /* update bitmap */
3531 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3532 int index = (ssn + i) % tid_agg_rx->buf_size;
3534 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3535 if (filtered & BIT_ULL(i))
3536 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3539 /* now process also frames that the filter marking released */
3540 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3542 release:
3543 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3545 ieee80211_rx_handlers(&rx, &frames);
3547 out:
3548 rcu_read_unlock();
3550 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3552 /* main receive path */
3554 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3556 struct ieee80211_sub_if_data *sdata = rx->sdata;
3557 struct sk_buff *skb = rx->skb;
3558 struct ieee80211_hdr *hdr = (void *)skb->data;
3559 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3560 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3561 int multicast = is_multicast_ether_addr(hdr->addr1);
3563 switch (sdata->vif.type) {
3564 case NL80211_IFTYPE_STATION:
3565 if (!bssid && !sdata->u.mgd.use_4addr)
3566 return false;
3567 if (multicast)
3568 return true;
3569 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3570 case NL80211_IFTYPE_ADHOC:
3571 if (!bssid)
3572 return false;
3573 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3574 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3575 return false;
3576 if (ieee80211_is_beacon(hdr->frame_control))
3577 return true;
3578 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3579 return false;
3580 if (!multicast &&
3581 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3582 return false;
3583 if (!rx->sta) {
3584 int rate_idx;
3585 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3586 rate_idx = 0; /* TODO: HT/VHT rates */
3587 else
3588 rate_idx = status->rate_idx;
3589 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3590 BIT(rate_idx));
3592 return true;
3593 case NL80211_IFTYPE_OCB:
3594 if (!bssid)
3595 return false;
3596 if (!ieee80211_is_data_present(hdr->frame_control))
3597 return false;
3598 if (!is_broadcast_ether_addr(bssid))
3599 return false;
3600 if (!multicast &&
3601 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3602 return false;
3603 if (!rx->sta) {
3604 int rate_idx;
3605 if (status->flag & RX_FLAG_HT)
3606 rate_idx = 0; /* TODO: HT rates */
3607 else
3608 rate_idx = status->rate_idx;
3609 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3610 BIT(rate_idx));
3612 return true;
3613 case NL80211_IFTYPE_MESH_POINT:
3614 if (multicast)
3615 return true;
3616 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3617 case NL80211_IFTYPE_AP_VLAN:
3618 case NL80211_IFTYPE_AP:
3619 if (!bssid)
3620 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3622 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3624 * Accept public action frames even when the
3625 * BSSID doesn't match, this is used for P2P
3626 * and location updates. Note that mac80211
3627 * itself never looks at these frames.
3629 if (!multicast &&
3630 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3631 return false;
3632 if (ieee80211_is_public_action(hdr, skb->len))
3633 return true;
3634 return ieee80211_is_beacon(hdr->frame_control);
3637 if (!ieee80211_has_tods(hdr->frame_control)) {
3638 /* ignore data frames to TDLS-peers */
3639 if (ieee80211_is_data(hdr->frame_control))
3640 return false;
3641 /* ignore action frames to TDLS-peers */
3642 if (ieee80211_is_action(hdr->frame_control) &&
3643 !is_broadcast_ether_addr(bssid) &&
3644 !ether_addr_equal(bssid, hdr->addr1))
3645 return false;
3649 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3650 * the BSSID - we've checked that already but may have accepted
3651 * the wildcard (ff:ff:ff:ff:ff:ff).
3653 * It also says:
3654 * The BSSID of the Data frame is determined as follows:
3655 * a) If the STA is contained within an AP or is associated
3656 * with an AP, the BSSID is the address currently in use
3657 * by the STA contained in the AP.
3659 * So we should not accept data frames with an address that's
3660 * multicast.
3662 * Accepting it also opens a security problem because stations
3663 * could encrypt it with the GTK and inject traffic that way.
3665 if (ieee80211_is_data(hdr->frame_control) && multicast)
3666 return false;
3668 return true;
3669 case NL80211_IFTYPE_WDS:
3670 if (bssid || !ieee80211_is_data(hdr->frame_control))
3671 return false;
3672 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3673 case NL80211_IFTYPE_P2P_DEVICE:
3674 return ieee80211_is_public_action(hdr, skb->len) ||
3675 ieee80211_is_probe_req(hdr->frame_control) ||
3676 ieee80211_is_probe_resp(hdr->frame_control) ||
3677 ieee80211_is_beacon(hdr->frame_control);
3678 case NL80211_IFTYPE_NAN:
3679 /* Currently no frames on NAN interface are allowed */
3680 return false;
3681 default:
3682 break;
3685 WARN_ON_ONCE(1);
3686 return false;
3689 void ieee80211_check_fast_rx(struct sta_info *sta)
3691 struct ieee80211_sub_if_data *sdata = sta->sdata;
3692 struct ieee80211_local *local = sdata->local;
3693 struct ieee80211_key *key;
3694 struct ieee80211_fast_rx fastrx = {
3695 .dev = sdata->dev,
3696 .vif_type = sdata->vif.type,
3697 .control_port_protocol = sdata->control_port_protocol,
3698 }, *old, *new = NULL;
3699 bool assign = false;
3701 /* use sparse to check that we don't return without updating */
3702 __acquire(check_fast_rx);
3704 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3705 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3706 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3707 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3709 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3711 /* fast-rx doesn't do reordering */
3712 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3713 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3714 goto clear;
3716 switch (sdata->vif.type) {
3717 case NL80211_IFTYPE_STATION:
3718 /* 4-addr is harder to deal with, later maybe */
3719 if (sdata->u.mgd.use_4addr)
3720 goto clear;
3721 /* software powersave is a huge mess, avoid all of it */
3722 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3723 goto clear;
3724 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3725 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3726 goto clear;
3727 if (sta->sta.tdls) {
3728 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3729 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3730 fastrx.expected_ds_bits = 0;
3731 } else {
3732 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3733 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3734 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3735 fastrx.expected_ds_bits =
3736 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3738 break;
3739 case NL80211_IFTYPE_AP_VLAN:
3740 case NL80211_IFTYPE_AP:
3741 /* parallel-rx requires this, at least with calls to
3742 * ieee80211_sta_ps_transition()
3744 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3745 goto clear;
3746 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3747 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3748 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3750 fastrx.internal_forward =
3751 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3752 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3753 !sdata->u.vlan.sta);
3754 break;
3755 default:
3756 goto clear;
3759 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3760 goto clear;
3762 rcu_read_lock();
3763 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3764 if (key) {
3765 switch (key->conf.cipher) {
3766 case WLAN_CIPHER_SUITE_TKIP:
3767 /* we don't want to deal with MMIC in fast-rx */
3768 goto clear_rcu;
3769 case WLAN_CIPHER_SUITE_CCMP:
3770 case WLAN_CIPHER_SUITE_CCMP_256:
3771 case WLAN_CIPHER_SUITE_GCMP:
3772 case WLAN_CIPHER_SUITE_GCMP_256:
3773 break;
3774 default:
3775 /* we also don't want to deal with WEP or cipher scheme
3776 * since those require looking up the key idx in the
3777 * frame, rather than assuming the PTK is used
3778 * (we need to revisit this once we implement the real
3779 * PTK index, which is now valid in the spec, but we
3780 * haven't implemented that part yet)
3782 goto clear_rcu;
3785 fastrx.key = true;
3786 fastrx.icv_len = key->conf.icv_len;
3789 assign = true;
3790 clear_rcu:
3791 rcu_read_unlock();
3792 clear:
3793 __release(check_fast_rx);
3795 if (assign)
3796 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3798 spin_lock_bh(&sta->lock);
3799 old = rcu_dereference_protected(sta->fast_rx, true);
3800 rcu_assign_pointer(sta->fast_rx, new);
3801 spin_unlock_bh(&sta->lock);
3803 if (old)
3804 kfree_rcu(old, rcu_head);
3807 void ieee80211_clear_fast_rx(struct sta_info *sta)
3809 struct ieee80211_fast_rx *old;
3811 spin_lock_bh(&sta->lock);
3812 old = rcu_dereference_protected(sta->fast_rx, true);
3813 RCU_INIT_POINTER(sta->fast_rx, NULL);
3814 spin_unlock_bh(&sta->lock);
3816 if (old)
3817 kfree_rcu(old, rcu_head);
3820 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3822 struct ieee80211_local *local = sdata->local;
3823 struct sta_info *sta;
3825 lockdep_assert_held(&local->sta_mtx);
3827 list_for_each_entry_rcu(sta, &local->sta_list, list) {
3828 if (sdata != sta->sdata &&
3829 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3830 continue;
3831 ieee80211_check_fast_rx(sta);
3835 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3837 struct ieee80211_local *local = sdata->local;
3839 mutex_lock(&local->sta_mtx);
3840 __ieee80211_check_fast_rx_iface(sdata);
3841 mutex_unlock(&local->sta_mtx);
3844 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3845 struct ieee80211_fast_rx *fast_rx)
3847 struct sk_buff *skb = rx->skb;
3848 struct ieee80211_hdr *hdr = (void *)skb->data;
3849 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3850 struct sta_info *sta = rx->sta;
3851 int orig_len = skb->len;
3852 int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3853 struct {
3854 u8 snap[sizeof(rfc1042_header)];
3855 __be16 proto;
3856 } *payload __aligned(2);
3857 struct {
3858 u8 da[ETH_ALEN];
3859 u8 sa[ETH_ALEN];
3860 } addrs __aligned(2);
3861 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3863 if (fast_rx->uses_rss)
3864 stats = this_cpu_ptr(sta->pcpu_rx_stats);
3866 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3867 * to a common data structure; drivers can implement that per queue
3868 * but we don't have that information in mac80211
3870 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3871 return false;
3873 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3875 /* If using encryption, we also need to have:
3876 * - PN_VALIDATED: similar, but the implementation is tricky
3877 * - DECRYPTED: necessary for PN_VALIDATED
3879 if (fast_rx->key &&
3880 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3881 return false;
3883 /* we don't deal with A-MSDU deaggregation here */
3884 if (status->rx_flags & IEEE80211_RX_AMSDU)
3885 return false;
3887 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3888 return false;
3890 if (unlikely(ieee80211_is_frag(hdr)))
3891 return false;
3893 /* Since our interface address cannot be multicast, this
3894 * implicitly also rejects multicast frames without the
3895 * explicit check.
3897 * We shouldn't get any *data* frames not addressed to us
3898 * (AP mode will accept multicast *management* frames), but
3899 * punting here will make it go through the full checks in
3900 * ieee80211_accept_frame().
3902 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3903 return false;
3905 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3906 IEEE80211_FCTL_TODS)) !=
3907 fast_rx->expected_ds_bits)
3908 goto drop;
3910 /* assign the key to drop unencrypted frames (later)
3911 * and strip the IV/MIC if necessary
3913 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3914 /* GCMP header length is the same */
3915 snap_offs += IEEE80211_CCMP_HDR_LEN;
3918 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3919 goto drop;
3920 payload = (void *)(skb->data + snap_offs);
3922 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3923 return false;
3925 /* Don't handle these here since they require special code.
3926 * Accept AARP and IPX even though they should come with a
3927 * bridge-tunnel header - but if we get them this way then
3928 * there's little point in discarding them.
3930 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3931 payload->proto == fast_rx->control_port_protocol))
3932 return false;
3934 /* after this point, don't punt to the slowpath! */
3936 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3937 pskb_trim(skb, skb->len - fast_rx->icv_len))
3938 goto drop;
3940 if (unlikely(fast_rx->sta_notify)) {
3941 ieee80211_sta_rx_notify(rx->sdata, hdr);
3942 fast_rx->sta_notify = false;
3945 /* statistics part of ieee80211_rx_h_sta_process() */
3946 stats->last_rx = jiffies;
3947 stats->last_rate = sta_stats_encode_rate(status);
3949 stats->fragments++;
3950 stats->packets++;
3952 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3953 stats->last_signal = status->signal;
3954 if (!fast_rx->uses_rss)
3955 ewma_signal_add(&sta->rx_stats_avg.signal,
3956 -status->signal);
3959 if (status->chains) {
3960 int i;
3962 stats->chains = status->chains;
3963 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3964 int signal = status->chain_signal[i];
3966 if (!(status->chains & BIT(i)))
3967 continue;
3969 stats->chain_signal_last[i] = signal;
3970 if (!fast_rx->uses_rss)
3971 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3972 -signal);
3975 /* end of statistics */
3977 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3978 goto drop;
3980 /* do the header conversion - first grab the addresses */
3981 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3982 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3983 /* remove the SNAP but leave the ethertype */
3984 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3985 /* push the addresses in front */
3986 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3988 skb->dev = fast_rx->dev;
3990 ieee80211_rx_stats(fast_rx->dev, skb->len);
3992 /* The seqno index has the same property as needed
3993 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3994 * for non-QoS-data frames. Here we know it's a data
3995 * frame, so count MSDUs.
3997 u64_stats_update_begin(&stats->syncp);
3998 stats->msdu[rx->seqno_idx]++;
3999 stats->bytes += orig_len;
4000 u64_stats_update_end(&stats->syncp);
4002 if (fast_rx->internal_forward) {
4003 struct sk_buff *xmit_skb = NULL;
4004 bool multicast = is_multicast_ether_addr(skb->data);
4006 if (multicast) {
4007 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4008 } else if (sta_info_get(rx->sdata, skb->data)) {
4009 xmit_skb = skb;
4010 skb = NULL;
4013 if (xmit_skb) {
4015 * Send to wireless media and increase priority by 256
4016 * to keep the received priority instead of
4017 * reclassifying the frame (see cfg80211_classify8021d).
4019 xmit_skb->priority += 256;
4020 xmit_skb->protocol = htons(ETH_P_802_3);
4021 skb_reset_network_header(xmit_skb);
4022 skb_reset_mac_header(xmit_skb);
4023 dev_queue_xmit(xmit_skb);
4026 if (!skb)
4027 return true;
4030 /* deliver to local stack */
4031 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4032 memset(skb->cb, 0, sizeof(skb->cb));
4033 if (rx->napi)
4034 napi_gro_receive(rx->napi, skb);
4035 else
4036 netif_receive_skb(skb);
4038 return true;
4039 drop:
4040 dev_kfree_skb(skb);
4041 stats->dropped++;
4042 return true;
4046 * This function returns whether or not the SKB
4047 * was destined for RX processing or not, which,
4048 * if consume is true, is equivalent to whether
4049 * or not the skb was consumed.
4051 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4052 struct sk_buff *skb, bool consume)
4054 struct ieee80211_local *local = rx->local;
4055 struct ieee80211_sub_if_data *sdata = rx->sdata;
4057 rx->skb = skb;
4059 /* See if we can do fast-rx; if we have to copy we already lost,
4060 * so punt in that case. We should never have to deliver a data
4061 * frame to multiple interfaces anyway.
4063 * We skip the ieee80211_accept_frame() call and do the necessary
4064 * checking inside ieee80211_invoke_fast_rx().
4066 if (consume && rx->sta) {
4067 struct ieee80211_fast_rx *fast_rx;
4069 fast_rx = rcu_dereference(rx->sta->fast_rx);
4070 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4071 return true;
4074 if (!ieee80211_accept_frame(rx))
4075 return false;
4077 if (!consume) {
4078 skb = skb_copy(skb, GFP_ATOMIC);
4079 if (!skb) {
4080 if (net_ratelimit())
4081 wiphy_debug(local->hw.wiphy,
4082 "failed to copy skb for %s\n",
4083 sdata->name);
4084 return true;
4087 rx->skb = skb;
4090 ieee80211_invoke_rx_handlers(rx);
4091 return true;
4095 * This is the actual Rx frames handler. as it belongs to Rx path it must
4096 * be called with rcu_read_lock protection.
4098 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4099 struct ieee80211_sta *pubsta,
4100 struct sk_buff *skb,
4101 struct napi_struct *napi)
4103 struct ieee80211_local *local = hw_to_local(hw);
4104 struct ieee80211_sub_if_data *sdata;
4105 struct ieee80211_hdr *hdr;
4106 __le16 fc;
4107 struct ieee80211_rx_data rx;
4108 struct ieee80211_sub_if_data *prev;
4109 struct rhlist_head *tmp;
4110 int err = 0;
4112 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4113 memset(&rx, 0, sizeof(rx));
4114 rx.skb = skb;
4115 rx.local = local;
4116 rx.napi = napi;
4118 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4119 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4121 if (ieee80211_is_mgmt(fc)) {
4122 /* drop frame if too short for header */
4123 if (skb->len < ieee80211_hdrlen(fc))
4124 err = -ENOBUFS;
4125 else
4126 err = skb_linearize(skb);
4127 } else {
4128 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4131 if (err) {
4132 dev_kfree_skb(skb);
4133 return;
4136 hdr = (struct ieee80211_hdr *)skb->data;
4137 ieee80211_parse_qos(&rx);
4138 ieee80211_verify_alignment(&rx);
4140 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4141 ieee80211_is_beacon(hdr->frame_control)))
4142 ieee80211_scan_rx(local, skb);
4144 if (ieee80211_is_data(fc)) {
4145 struct sta_info *sta, *prev_sta;
4147 if (pubsta) {
4148 rx.sta = container_of(pubsta, struct sta_info, sta);
4149 rx.sdata = rx.sta->sdata;
4150 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4151 return;
4152 goto out;
4155 prev_sta = NULL;
4157 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4158 if (!prev_sta) {
4159 prev_sta = sta;
4160 continue;
4163 rx.sta = prev_sta;
4164 rx.sdata = prev_sta->sdata;
4165 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4167 prev_sta = sta;
4170 if (prev_sta) {
4171 rx.sta = prev_sta;
4172 rx.sdata = prev_sta->sdata;
4174 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4175 return;
4176 goto out;
4180 prev = NULL;
4182 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4183 if (!ieee80211_sdata_running(sdata))
4184 continue;
4186 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4187 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4188 continue;
4191 * frame is destined for this interface, but if it's
4192 * not also for the previous one we handle that after
4193 * the loop to avoid copying the SKB once too much
4196 if (!prev) {
4197 prev = sdata;
4198 continue;
4201 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4202 rx.sdata = prev;
4203 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4205 prev = sdata;
4208 if (prev) {
4209 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4210 rx.sdata = prev;
4212 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4213 return;
4216 out:
4217 dev_kfree_skb(skb);
4221 * This is the receive path handler. It is called by a low level driver when an
4222 * 802.11 MPDU is received from the hardware.
4224 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4225 struct sk_buff *skb, struct napi_struct *napi)
4227 struct ieee80211_local *local = hw_to_local(hw);
4228 struct ieee80211_rate *rate = NULL;
4229 struct ieee80211_supported_band *sband;
4230 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4232 WARN_ON_ONCE(softirq_count() == 0);
4234 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4235 goto drop;
4237 sband = local->hw.wiphy->bands[status->band];
4238 if (WARN_ON(!sband))
4239 goto drop;
4242 * If we're suspending, it is possible although not too likely
4243 * that we'd be receiving frames after having already partially
4244 * quiesced the stack. We can't process such frames then since
4245 * that might, for example, cause stations to be added or other
4246 * driver callbacks be invoked.
4248 if (unlikely(local->quiescing || local->suspended))
4249 goto drop;
4251 /* We might be during a HW reconfig, prevent Rx for the same reason */
4252 if (unlikely(local->in_reconfig))
4253 goto drop;
4256 * The same happens when we're not even started,
4257 * but that's worth a warning.
4259 if (WARN_ON(!local->started))
4260 goto drop;
4262 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4264 * Validate the rate, unless a PLCP error means that
4265 * we probably can't have a valid rate here anyway.
4268 if (status->flag & RX_FLAG_HT) {
4270 * rate_idx is MCS index, which can be [0-76]
4271 * as documented on:
4273 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4275 * Anything else would be some sort of driver or
4276 * hardware error. The driver should catch hardware
4277 * errors.
4279 if (WARN(status->rate_idx > 76,
4280 "Rate marked as an HT rate but passed "
4281 "status->rate_idx is not "
4282 "an MCS index [0-76]: %d (0x%02x)\n",
4283 status->rate_idx,
4284 status->rate_idx))
4285 goto drop;
4286 } else if (status->flag & RX_FLAG_VHT) {
4287 if (WARN_ONCE(status->rate_idx > 9 ||
4288 !status->vht_nss ||
4289 status->vht_nss > 8,
4290 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4291 status->rate_idx, status->vht_nss))
4292 goto drop;
4293 } else {
4294 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4295 goto drop;
4296 rate = &sband->bitrates[status->rate_idx];
4300 status->rx_flags = 0;
4303 * key references and virtual interfaces are protected using RCU
4304 * and this requires that we are in a read-side RCU section during
4305 * receive processing
4307 rcu_read_lock();
4310 * Frames with failed FCS/PLCP checksum are not returned,
4311 * all other frames are returned without radiotap header
4312 * if it was previously present.
4313 * Also, frames with less than 16 bytes are dropped.
4315 skb = ieee80211_rx_monitor(local, skb, rate);
4316 if (!skb) {
4317 rcu_read_unlock();
4318 return;
4321 ieee80211_tpt_led_trig_rx(local,
4322 ((struct ieee80211_hdr *)skb->data)->frame_control,
4323 skb->len);
4325 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4327 rcu_read_unlock();
4329 return;
4330 drop:
4331 kfree_skb(skb);
4333 EXPORT_SYMBOL(ieee80211_rx_napi);
4335 /* This is a version of the rx handler that can be called from hard irq
4336 * context. Post the skb on the queue and schedule the tasklet */
4337 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4339 struct ieee80211_local *local = hw_to_local(hw);
4341 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4343 skb->pkt_type = IEEE80211_RX_MSG;
4344 skb_queue_tail(&local->skb_queue, skb);
4345 tasklet_schedule(&local->tasklet);
4347 EXPORT_SYMBOL(ieee80211_rx_irqsafe);