USB: usb-storage: unusual_devs update for Super TOP SATA bridge
[linux/fpc-iii.git] / drivers / firewire / net.c
blob638e1f71284a18f4db656a9bc12d05e22680de88
1 /*
2 * IPv4 over IEEE 1394, per RFC 2734
4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
6 * based on eth1394 by Ben Collins et al
7 */
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
32 /* rx limits */
33 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
34 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
36 /* tx limits */
37 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
38 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
39 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
41 #define IEEE1394_BROADCAST_CHANNEL 31
42 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
43 #define IEEE1394_MAX_PAYLOAD_S100 512
44 #define FWNET_NO_FIFO_ADDR (~0ULL)
46 #define IANA_SPECIFIER_ID 0x00005eU
47 #define RFC2734_SW_VERSION 0x000001U
49 #define IEEE1394_GASP_HDR_SIZE 8
51 #define RFC2374_UNFRAG_HDR_SIZE 4
52 #define RFC2374_FRAG_HDR_SIZE 8
53 #define RFC2374_FRAG_OVERHEAD 4
55 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
56 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
57 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
58 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
60 #define RFC2734_HW_ADDR_LEN 16
62 struct rfc2734_arp {
63 __be16 hw_type; /* 0x0018 */
64 __be16 proto_type; /* 0x0806 */
65 u8 hw_addr_len; /* 16 */
66 u8 ip_addr_len; /* 4 */
67 __be16 opcode; /* ARP Opcode */
68 /* Above is exactly the same format as struct arphdr */
70 __be64 s_uniq_id; /* Sender's 64bit EUI */
71 u8 max_rec; /* Sender's max packet size */
72 u8 sspd; /* Sender's max speed */
73 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
74 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
75 __be32 sip; /* Sender's IP Address */
76 __be32 tip; /* IP Address of requested hw addr */
77 } __packed;
79 /* This header format is specific to this driver implementation. */
80 #define FWNET_ALEN 8
81 #define FWNET_HLEN 10
82 struct fwnet_header {
83 u8 h_dest[FWNET_ALEN]; /* destination address */
84 __be16 h_proto; /* packet type ID field */
85 } __packed;
87 /* IPv4 and IPv6 encapsulation header */
88 struct rfc2734_header {
89 u32 w0;
90 u32 w1;
93 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
94 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
95 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
96 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
97 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
99 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
100 #define fwnet_set_hdr_ether_type(et) (et)
101 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
102 #define fwnet_set_hdr_fg_off(fgo) (fgo)
104 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
106 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
107 unsigned ether_type)
109 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
110 | fwnet_set_hdr_ether_type(ether_type);
113 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
114 unsigned ether_type, unsigned dg_size, unsigned dgl)
116 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
117 | fwnet_set_hdr_dg_size(dg_size)
118 | fwnet_set_hdr_ether_type(ether_type);
119 hdr->w1 = fwnet_set_hdr_dgl(dgl);
122 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
123 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
125 hdr->w0 = fwnet_set_hdr_lf(lf)
126 | fwnet_set_hdr_dg_size(dg_size)
127 | fwnet_set_hdr_fg_off(fg_off);
128 hdr->w1 = fwnet_set_hdr_dgl(dgl);
131 /* This list keeps track of what parts of the datagram have been filled in */
132 struct fwnet_fragment_info {
133 struct list_head fi_link;
134 u16 offset;
135 u16 len;
138 struct fwnet_partial_datagram {
139 struct list_head pd_link;
140 struct list_head fi_list;
141 struct sk_buff *skb;
142 /* FIXME Why not use skb->data? */
143 char *pbuf;
144 u16 datagram_label;
145 u16 ether_type;
146 u16 datagram_size;
149 static DEFINE_MUTEX(fwnet_device_mutex);
150 static LIST_HEAD(fwnet_device_list);
152 struct fwnet_device {
153 struct list_head dev_link;
154 spinlock_t lock;
155 enum {
156 FWNET_BROADCAST_ERROR,
157 FWNET_BROADCAST_RUNNING,
158 FWNET_BROADCAST_STOPPED,
159 } broadcast_state;
160 struct fw_iso_context *broadcast_rcv_context;
161 struct fw_iso_buffer broadcast_rcv_buffer;
162 void **broadcast_rcv_buffer_ptrs;
163 unsigned broadcast_rcv_next_ptr;
164 unsigned num_broadcast_rcv_ptrs;
165 unsigned rcv_buffer_size;
167 * This value is the maximum unfragmented datagram size that can be
168 * sent by the hardware. It already has the GASP overhead and the
169 * unfragmented datagram header overhead calculated into it.
171 unsigned broadcast_xmt_max_payload;
172 u16 broadcast_xmt_datagramlabel;
175 * The CSR address that remote nodes must send datagrams to for us to
176 * receive them.
178 struct fw_address_handler handler;
179 u64 local_fifo;
181 /* Number of tx datagrams that have been queued but not yet acked */
182 int queued_datagrams;
184 int peer_count;
185 struct list_head peer_list;
186 struct fw_card *card;
187 struct net_device *netdev;
190 struct fwnet_peer {
191 struct list_head peer_link;
192 struct fwnet_device *dev;
193 u64 guid;
194 u64 fifo;
195 __be32 ip;
197 /* guarded by dev->lock */
198 struct list_head pd_list; /* received partial datagrams */
199 unsigned pdg_size; /* pd_list size */
201 u16 datagram_label; /* outgoing datagram label */
202 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
203 int node_id;
204 int generation;
205 unsigned speed;
208 /* This is our task struct. It's used for the packet complete callback. */
209 struct fwnet_packet_task {
210 struct fw_transaction transaction;
211 struct rfc2734_header hdr;
212 struct sk_buff *skb;
213 struct fwnet_device *dev;
215 int outstanding_pkts;
216 u64 fifo_addr;
217 u16 dest_node;
218 u16 max_payload;
219 u8 generation;
220 u8 speed;
221 u8 enqueued;
225 * saddr == NULL means use device source address.
226 * daddr == NULL means leave destination address (eg unresolved arp).
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229 unsigned short type, const void *daddr,
230 const void *saddr, unsigned len)
232 struct fwnet_header *h;
234 h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235 put_unaligned_be16(type, &h->h_proto);
237 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238 memset(h->h_dest, 0, net->addr_len);
240 return net->hard_header_len;
243 if (daddr) {
244 memcpy(h->h_dest, daddr, net->addr_len);
246 return net->hard_header_len;
249 return -net->hard_header_len;
252 static int fwnet_header_rebuild(struct sk_buff *skb)
254 struct fwnet_header *h = (struct fwnet_header *)skb->data;
256 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257 return arp_find((unsigned char *)&h->h_dest, skb);
259 dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
260 be16_to_cpu(h->h_proto));
261 return 0;
264 static int fwnet_header_cache(const struct neighbour *neigh,
265 struct hh_cache *hh, __be16 type)
267 struct net_device *net;
268 struct fwnet_header *h;
270 if (type == cpu_to_be16(ETH_P_802_3))
271 return -1;
272 net = neigh->dev;
273 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274 h->h_proto = type;
275 memcpy(h->h_dest, neigh->ha, net->addr_len);
276 hh->hh_len = FWNET_HLEN;
278 return 0;
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283 const struct net_device *net, const unsigned char *haddr)
285 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
290 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
292 return FWNET_ALEN;
295 static const struct header_ops fwnet_header_ops = {
296 .create = fwnet_header_create,
297 .rebuild = fwnet_header_rebuild,
298 .cache = fwnet_header_cache,
299 .cache_update = fwnet_header_cache_update,
300 .parse = fwnet_header_parse,
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305 unsigned offset, unsigned len)
307 struct fwnet_fragment_info *fi;
308 unsigned end = offset + len;
310 list_for_each_entry(fi, &pd->fi_list, fi_link)
311 if (offset < fi->offset + fi->len && end > fi->offset)
312 return true;
314 return false;
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
321 struct fwnet_fragment_info *fi, *fi2, *new;
322 struct list_head *list;
324 list = &pd->fi_list;
325 list_for_each_entry(fi, &pd->fi_list, fi_link) {
326 if (fi->offset + fi->len == offset) {
327 /* The new fragment can be tacked on to the end */
328 /* Did the new fragment plug a hole? */
329 fi2 = list_entry(fi->fi_link.next,
330 struct fwnet_fragment_info, fi_link);
331 if (fi->offset + fi->len == fi2->offset) {
332 /* glue fragments together */
333 fi->len += len + fi2->len;
334 list_del(&fi2->fi_link);
335 kfree(fi2);
336 } else {
337 fi->len += len;
340 return fi;
342 if (offset + len == fi->offset) {
343 /* The new fragment can be tacked on to the beginning */
344 /* Did the new fragment plug a hole? */
345 fi2 = list_entry(fi->fi_link.prev,
346 struct fwnet_fragment_info, fi_link);
347 if (fi2->offset + fi2->len == fi->offset) {
348 /* glue fragments together */
349 fi2->len += fi->len + len;
350 list_del(&fi->fi_link);
351 kfree(fi);
353 return fi2;
355 fi->offset = offset;
356 fi->len += len;
358 return fi;
360 if (offset > fi->offset + fi->len) {
361 list = &fi->fi_link;
362 break;
364 if (offset + len < fi->offset) {
365 list = fi->fi_link.prev;
366 break;
370 new = kmalloc(sizeof(*new), GFP_ATOMIC);
371 if (!new) {
372 dev_err(&pd->skb->dev->dev, "out of memory\n");
373 return NULL;
376 new->offset = offset;
377 new->len = len;
378 list_add(&new->fi_link, list);
380 return new;
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385 void *frag_buf, unsigned frag_off, unsigned frag_len)
387 struct fwnet_partial_datagram *new;
388 struct fwnet_fragment_info *fi;
390 new = kmalloc(sizeof(*new), GFP_ATOMIC);
391 if (!new)
392 goto fail;
394 INIT_LIST_HEAD(&new->fi_list);
395 fi = fwnet_frag_new(new, frag_off, frag_len);
396 if (fi == NULL)
397 goto fail_w_new;
399 new->datagram_label = datagram_label;
400 new->datagram_size = dg_size;
401 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402 if (new->skb == NULL)
403 goto fail_w_fi;
405 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406 new->pbuf = skb_put(new->skb, dg_size);
407 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408 list_add_tail(&new->pd_link, &peer->pd_list);
410 return new;
412 fail_w_fi:
413 kfree(fi);
414 fail_w_new:
415 kfree(new);
416 fail:
417 dev_err(&net->dev, "out of memory\n");
419 return NULL;
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423 u16 datagram_label)
425 struct fwnet_partial_datagram *pd;
427 list_for_each_entry(pd, &peer->pd_list, pd_link)
428 if (pd->datagram_label == datagram_label)
429 return pd;
431 return NULL;
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
437 struct fwnet_fragment_info *fi, *n;
439 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440 kfree(fi);
442 list_del(&old->pd_link);
443 dev_kfree_skb_any(old->skb);
444 kfree(old);
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448 struct fwnet_partial_datagram *pd, void *frag_buf,
449 unsigned frag_off, unsigned frag_len)
451 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452 return false;
454 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
457 * Move list entry to beginning of list so that oldest partial
458 * datagrams percolate to the end of the list
460 list_move_tail(&pd->pd_link, &peer->pd_list);
462 return true;
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
467 struct fwnet_fragment_info *fi;
469 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
471 return fi->len == pd->datagram_size;
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476 u64 guid)
478 struct fwnet_peer *peer;
480 list_for_each_entry(peer, &dev->peer_list, peer_link)
481 if (peer->guid == guid)
482 return peer;
484 return NULL;
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489 int node_id, int generation)
491 struct fwnet_peer *peer;
493 list_for_each_entry(peer, &dev->peer_list, peer_link)
494 if (peer->node_id == node_id &&
495 peer->generation == generation)
496 return peer;
498 return NULL;
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
504 max_rec = min(max_rec, speed + 8);
505 max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
507 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
511 static int fwnet_finish_incoming_packet(struct net_device *net,
512 struct sk_buff *skb, u16 source_node_id,
513 bool is_broadcast, u16 ether_type)
515 struct fwnet_device *dev;
516 static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
517 int status;
518 __be64 guid;
520 dev = netdev_priv(net);
521 /* Write metadata, and then pass to the receive level */
522 skb->dev = net;
523 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
526 * Parse the encapsulation header. This actually does the job of
527 * converting to an ethernet frame header, as well as arp
528 * conversion if needed. ARP conversion is easier in this
529 * direction, since we are using ethernet as our backend.
532 * If this is an ARP packet, convert it. First, we want to make
533 * use of some of the fields, since they tell us a little bit
534 * about the sending machine.
536 if (ether_type == ETH_P_ARP) {
537 struct rfc2734_arp *arp1394;
538 struct arphdr *arp;
539 unsigned char *arp_ptr;
540 u64 fifo_addr;
541 u64 peer_guid;
542 unsigned sspd;
543 u16 max_payload;
544 struct fwnet_peer *peer;
545 unsigned long flags;
547 arp1394 = (struct rfc2734_arp *)skb->data;
548 arp = (struct arphdr *)skb->data;
549 arp_ptr = (unsigned char *)(arp + 1);
550 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
551 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
552 | get_unaligned_be32(&arp1394->fifo_lo);
554 sspd = arp1394->sspd;
555 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */
556 if (sspd > SCODE_3200) {
557 dev_notice(&net->dev, "sspd %x out of range\n", sspd);
558 sspd = SCODE_3200;
560 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
562 spin_lock_irqsave(&dev->lock, flags);
563 peer = fwnet_peer_find_by_guid(dev, peer_guid);
564 if (peer) {
565 peer->fifo = fifo_addr;
567 if (peer->speed > sspd)
568 peer->speed = sspd;
569 if (peer->max_payload > max_payload)
570 peer->max_payload = max_payload;
572 peer->ip = arp1394->sip;
574 spin_unlock_irqrestore(&dev->lock, flags);
576 if (!peer) {
577 dev_notice(&net->dev,
578 "no peer for ARP packet from %016llx\n",
579 (unsigned long long)peer_guid);
580 goto no_peer;
584 * Now that we're done with the 1394 specific stuff, we'll
585 * need to alter some of the data. Believe it or not, all
586 * that needs to be done is sender_IP_address needs to be
587 * moved, the destination hardware address get stuffed
588 * in and the hardware address length set to 8.
590 * IMPORTANT: The code below overwrites 1394 specific data
591 * needed above so keep the munging of the data for the
592 * higher level IP stack last.
595 arp->ar_hln = 8;
596 /* skip over sender unique id */
597 arp_ptr += arp->ar_hln;
598 /* move sender IP addr */
599 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
600 /* skip over sender IP addr */
601 arp_ptr += arp->ar_pln;
603 if (arp->ar_op == htons(ARPOP_REQUEST))
604 memset(arp_ptr, 0, sizeof(u64));
605 else
606 memcpy(arp_ptr, net->dev_addr, sizeof(u64));
609 /* Now add the ethernet header. */
610 guid = cpu_to_be64(dev->card->guid);
611 if (dev_hard_header(skb, net, ether_type,
612 is_broadcast ? &broadcast_hw : &guid,
613 NULL, skb->len) >= 0) {
614 struct fwnet_header *eth;
615 u16 *rawp;
616 __be16 protocol;
618 skb_reset_mac_header(skb);
619 skb_pull(skb, sizeof(*eth));
620 eth = (struct fwnet_header *)skb_mac_header(skb);
621 if (*eth->h_dest & 1) {
622 if (memcmp(eth->h_dest, net->broadcast,
623 net->addr_len) == 0)
624 skb->pkt_type = PACKET_BROADCAST;
625 #if 0
626 else
627 skb->pkt_type = PACKET_MULTICAST;
628 #endif
629 } else {
630 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
631 skb->pkt_type = PACKET_OTHERHOST;
633 if (ntohs(eth->h_proto) >= 1536) {
634 protocol = eth->h_proto;
635 } else {
636 rawp = (u16 *)skb->data;
637 if (*rawp == 0xffff)
638 protocol = htons(ETH_P_802_3);
639 else
640 protocol = htons(ETH_P_802_2);
642 skb->protocol = protocol;
644 status = netif_rx(skb);
645 if (status == NET_RX_DROP) {
646 net->stats.rx_errors++;
647 net->stats.rx_dropped++;
648 } else {
649 net->stats.rx_packets++;
650 net->stats.rx_bytes += skb->len;
653 return 0;
655 no_peer:
656 net->stats.rx_errors++;
657 net->stats.rx_dropped++;
659 dev_kfree_skb_any(skb);
661 return -ENOENT;
664 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
665 int source_node_id, int generation,
666 bool is_broadcast)
668 struct sk_buff *skb;
669 struct net_device *net = dev->netdev;
670 struct rfc2734_header hdr;
671 unsigned lf;
672 unsigned long flags;
673 struct fwnet_peer *peer;
674 struct fwnet_partial_datagram *pd;
675 int fg_off;
676 int dg_size;
677 u16 datagram_label;
678 int retval;
679 u16 ether_type;
681 hdr.w0 = be32_to_cpu(buf[0]);
682 lf = fwnet_get_hdr_lf(&hdr);
683 if (lf == RFC2374_HDR_UNFRAG) {
685 * An unfragmented datagram has been received by the ieee1394
686 * bus. Build an skbuff around it so we can pass it to the
687 * high level network layer.
689 ether_type = fwnet_get_hdr_ether_type(&hdr);
690 buf++;
691 len -= RFC2374_UNFRAG_HDR_SIZE;
693 skb = dev_alloc_skb(len + net->hard_header_len + 15);
694 if (unlikely(!skb)) {
695 dev_err(&net->dev, "out of memory\n");
696 net->stats.rx_dropped++;
698 return -ENOMEM;
700 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
701 memcpy(skb_put(skb, len), buf, len);
703 return fwnet_finish_incoming_packet(net, skb, source_node_id,
704 is_broadcast, ether_type);
706 /* A datagram fragment has been received, now the fun begins. */
707 hdr.w1 = ntohl(buf[1]);
708 buf += 2;
709 len -= RFC2374_FRAG_HDR_SIZE;
710 if (lf == RFC2374_HDR_FIRSTFRAG) {
711 ether_type = fwnet_get_hdr_ether_type(&hdr);
712 fg_off = 0;
713 } else {
714 ether_type = 0;
715 fg_off = fwnet_get_hdr_fg_off(&hdr);
717 datagram_label = fwnet_get_hdr_dgl(&hdr);
718 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
720 spin_lock_irqsave(&dev->lock, flags);
722 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
723 if (!peer) {
724 retval = -ENOENT;
725 goto fail;
728 pd = fwnet_pd_find(peer, datagram_label);
729 if (pd == NULL) {
730 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
731 /* remove the oldest */
732 fwnet_pd_delete(list_first_entry(&peer->pd_list,
733 struct fwnet_partial_datagram, pd_link));
734 peer->pdg_size--;
736 pd = fwnet_pd_new(net, peer, datagram_label,
737 dg_size, buf, fg_off, len);
738 if (pd == NULL) {
739 retval = -ENOMEM;
740 goto fail;
742 peer->pdg_size++;
743 } else {
744 if (fwnet_frag_overlap(pd, fg_off, len) ||
745 pd->datagram_size != dg_size) {
747 * Differing datagram sizes or overlapping fragments,
748 * discard old datagram and start a new one.
750 fwnet_pd_delete(pd);
751 pd = fwnet_pd_new(net, peer, datagram_label,
752 dg_size, buf, fg_off, len);
753 if (pd == NULL) {
754 peer->pdg_size--;
755 retval = -ENOMEM;
756 goto fail;
758 } else {
759 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
761 * Couldn't save off fragment anyway
762 * so might as well obliterate the
763 * datagram now.
765 fwnet_pd_delete(pd);
766 peer->pdg_size--;
767 retval = -ENOMEM;
768 goto fail;
771 } /* new datagram or add to existing one */
773 if (lf == RFC2374_HDR_FIRSTFRAG)
774 pd->ether_type = ether_type;
776 if (fwnet_pd_is_complete(pd)) {
777 ether_type = pd->ether_type;
778 peer->pdg_size--;
779 skb = skb_get(pd->skb);
780 fwnet_pd_delete(pd);
782 spin_unlock_irqrestore(&dev->lock, flags);
784 return fwnet_finish_incoming_packet(net, skb, source_node_id,
785 false, ether_type);
788 * Datagram is not complete, we're done for the
789 * moment.
791 retval = 0;
792 fail:
793 spin_unlock_irqrestore(&dev->lock, flags);
795 return retval;
798 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
799 int tcode, int destination, int source, int generation,
800 unsigned long long offset, void *payload, size_t length,
801 void *callback_data)
803 struct fwnet_device *dev = callback_data;
804 int rcode;
806 if (destination == IEEE1394_ALL_NODES) {
807 kfree(r);
809 return;
812 if (offset != dev->handler.offset)
813 rcode = RCODE_ADDRESS_ERROR;
814 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
815 rcode = RCODE_TYPE_ERROR;
816 else if (fwnet_incoming_packet(dev, payload, length,
817 source, generation, false) != 0) {
818 dev_err(&dev->netdev->dev, "incoming packet failure\n");
819 rcode = RCODE_CONFLICT_ERROR;
820 } else
821 rcode = RCODE_COMPLETE;
823 fw_send_response(card, r, rcode);
826 static void fwnet_receive_broadcast(struct fw_iso_context *context,
827 u32 cycle, size_t header_length, void *header, void *data)
829 struct fwnet_device *dev;
830 struct fw_iso_packet packet;
831 struct fw_card *card;
832 __be16 *hdr_ptr;
833 __be32 *buf_ptr;
834 int retval;
835 u32 length;
836 u16 source_node_id;
837 u32 specifier_id;
838 u32 ver;
839 unsigned long offset;
840 unsigned long flags;
842 dev = data;
843 card = dev->card;
844 hdr_ptr = header;
845 length = be16_to_cpup(hdr_ptr);
847 spin_lock_irqsave(&dev->lock, flags);
849 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
850 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
851 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
852 dev->broadcast_rcv_next_ptr = 0;
854 spin_unlock_irqrestore(&dev->lock, flags);
856 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
857 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
858 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
859 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
861 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
862 buf_ptr += 2;
863 length -= IEEE1394_GASP_HDR_SIZE;
864 fwnet_incoming_packet(dev, buf_ptr, length, source_node_id,
865 context->card->generation, true);
868 packet.payload_length = dev->rcv_buffer_size;
869 packet.interrupt = 1;
870 packet.skip = 0;
871 packet.tag = 3;
872 packet.sy = 0;
873 packet.header_length = IEEE1394_GASP_HDR_SIZE;
875 spin_lock_irqsave(&dev->lock, flags);
877 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
878 &dev->broadcast_rcv_buffer, offset);
880 spin_unlock_irqrestore(&dev->lock, flags);
882 if (retval >= 0)
883 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
884 else
885 dev_err(&dev->netdev->dev, "requeue failed\n");
888 static struct kmem_cache *fwnet_packet_task_cache;
890 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
892 dev_kfree_skb_any(ptask->skb);
893 kmem_cache_free(fwnet_packet_task_cache, ptask);
896 /* Caller must hold dev->lock. */
897 static void dec_queued_datagrams(struct fwnet_device *dev)
899 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
900 netif_wake_queue(dev->netdev);
903 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
905 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
907 struct fwnet_device *dev = ptask->dev;
908 struct sk_buff *skb = ptask->skb;
909 unsigned long flags;
910 bool free;
912 spin_lock_irqsave(&dev->lock, flags);
914 ptask->outstanding_pkts--;
916 /* Check whether we or the networking TX soft-IRQ is last user. */
917 free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
918 if (free)
919 dec_queued_datagrams(dev);
921 if (ptask->outstanding_pkts == 0) {
922 dev->netdev->stats.tx_packets++;
923 dev->netdev->stats.tx_bytes += skb->len;
926 spin_unlock_irqrestore(&dev->lock, flags);
928 if (ptask->outstanding_pkts > 0) {
929 u16 dg_size;
930 u16 fg_off;
931 u16 datagram_label;
932 u16 lf;
934 /* Update the ptask to point to the next fragment and send it */
935 lf = fwnet_get_hdr_lf(&ptask->hdr);
936 switch (lf) {
937 case RFC2374_HDR_LASTFRAG:
938 case RFC2374_HDR_UNFRAG:
939 default:
940 dev_err(&dev->netdev->dev,
941 "outstanding packet %x lf %x, header %x,%x\n",
942 ptask->outstanding_pkts, lf, ptask->hdr.w0,
943 ptask->hdr.w1);
944 BUG();
946 case RFC2374_HDR_FIRSTFRAG:
947 /* Set frag type here for future interior fragments */
948 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
949 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
950 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
951 break;
953 case RFC2374_HDR_INTFRAG:
954 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
955 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
956 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
957 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
958 break;
961 if (ptask->dest_node == IEEE1394_ALL_NODES) {
962 skb_pull(skb,
963 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
964 } else {
965 skb_pull(skb, ptask->max_payload);
967 if (ptask->outstanding_pkts > 1) {
968 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
969 dg_size, fg_off, datagram_label);
970 } else {
971 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
972 dg_size, fg_off, datagram_label);
973 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
975 fwnet_send_packet(ptask);
978 if (free)
979 fwnet_free_ptask(ptask);
982 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
984 struct fwnet_device *dev = ptask->dev;
985 unsigned long flags;
986 bool free;
988 spin_lock_irqsave(&dev->lock, flags);
990 /* One fragment failed; don't try to send remaining fragments. */
991 ptask->outstanding_pkts = 0;
993 /* Check whether we or the networking TX soft-IRQ is last user. */
994 free = ptask->enqueued;
995 if (free)
996 dec_queued_datagrams(dev);
998 dev->netdev->stats.tx_dropped++;
999 dev->netdev->stats.tx_errors++;
1001 spin_unlock_irqrestore(&dev->lock, flags);
1003 if (free)
1004 fwnet_free_ptask(ptask);
1007 static void fwnet_write_complete(struct fw_card *card, int rcode,
1008 void *payload, size_t length, void *data)
1010 struct fwnet_packet_task *ptask = data;
1011 static unsigned long j;
1012 static int last_rcode, errors_skipped;
1014 if (rcode == RCODE_COMPLETE) {
1015 fwnet_transmit_packet_done(ptask);
1016 } else {
1017 fwnet_transmit_packet_failed(ptask);
1019 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
1020 dev_err(&ptask->dev->netdev->dev,
1021 "fwnet_write_complete failed: %x (skipped %d)\n",
1022 rcode, errors_skipped);
1024 errors_skipped = 0;
1025 last_rcode = rcode;
1026 } else
1027 errors_skipped++;
1031 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1033 struct fwnet_device *dev;
1034 unsigned tx_len;
1035 struct rfc2734_header *bufhdr;
1036 unsigned long flags;
1037 bool free;
1039 dev = ptask->dev;
1040 tx_len = ptask->max_payload;
1041 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1042 case RFC2374_HDR_UNFRAG:
1043 bufhdr = (struct rfc2734_header *)
1044 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1045 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1046 break;
1048 case RFC2374_HDR_FIRSTFRAG:
1049 case RFC2374_HDR_INTFRAG:
1050 case RFC2374_HDR_LASTFRAG:
1051 bufhdr = (struct rfc2734_header *)
1052 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1053 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1054 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1055 break;
1057 default:
1058 BUG();
1060 if (ptask->dest_node == IEEE1394_ALL_NODES) {
1061 u8 *p;
1062 int generation;
1063 int node_id;
1065 /* ptask->generation may not have been set yet */
1066 generation = dev->card->generation;
1067 smp_rmb();
1068 node_id = dev->card->node_id;
1070 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
1071 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1072 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1073 | RFC2734_SW_VERSION, &p[4]);
1075 /* We should not transmit if broadcast_channel.valid == 0. */
1076 fw_send_request(dev->card, &ptask->transaction,
1077 TCODE_STREAM_DATA,
1078 fw_stream_packet_destination_id(3,
1079 IEEE1394_BROADCAST_CHANNEL, 0),
1080 generation, SCODE_100, 0ULL, ptask->skb->data,
1081 tx_len + 8, fwnet_write_complete, ptask);
1083 spin_lock_irqsave(&dev->lock, flags);
1085 /* If the AT tasklet already ran, we may be last user. */
1086 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1087 if (!free)
1088 ptask->enqueued = true;
1089 else
1090 dec_queued_datagrams(dev);
1092 spin_unlock_irqrestore(&dev->lock, flags);
1094 goto out;
1097 fw_send_request(dev->card, &ptask->transaction,
1098 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1099 ptask->generation, ptask->speed, ptask->fifo_addr,
1100 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1102 spin_lock_irqsave(&dev->lock, flags);
1104 /* If the AT tasklet already ran, we may be last user. */
1105 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1106 if (!free)
1107 ptask->enqueued = true;
1108 else
1109 dec_queued_datagrams(dev);
1111 spin_unlock_irqrestore(&dev->lock, flags);
1113 dev->netdev->trans_start = jiffies;
1114 out:
1115 if (free)
1116 fwnet_free_ptask(ptask);
1118 return 0;
1121 static int fwnet_broadcast_start(struct fwnet_device *dev)
1123 struct fw_iso_context *context;
1124 int retval;
1125 unsigned num_packets;
1126 unsigned max_receive;
1127 struct fw_iso_packet packet;
1128 unsigned long offset;
1129 unsigned u;
1131 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1132 dev->handler.length = 4096;
1133 dev->handler.address_callback = fwnet_receive_packet;
1134 dev->handler.callback_data = dev;
1136 retval = fw_core_add_address_handler(&dev->handler,
1137 &fw_high_memory_region);
1138 if (retval < 0)
1139 goto failed_initial;
1141 dev->local_fifo = dev->handler.offset;
1144 max_receive = 1U << (dev->card->max_receive + 1);
1145 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1147 if (!dev->broadcast_rcv_context) {
1148 void **ptrptr;
1150 context = fw_iso_context_create(dev->card,
1151 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1152 dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1153 if (IS_ERR(context)) {
1154 retval = PTR_ERR(context);
1155 goto failed_context_create;
1158 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1159 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1160 if (retval < 0)
1161 goto failed_buffer_init;
1163 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1164 if (!ptrptr) {
1165 retval = -ENOMEM;
1166 goto failed_ptrs_alloc;
1169 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1170 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1171 void *ptr;
1172 unsigned v;
1174 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1175 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1176 *ptrptr++ = (void *)
1177 ((char *)ptr + v * max_receive);
1179 dev->broadcast_rcv_context = context;
1180 } else {
1181 context = dev->broadcast_rcv_context;
1184 packet.payload_length = max_receive;
1185 packet.interrupt = 1;
1186 packet.skip = 0;
1187 packet.tag = 3;
1188 packet.sy = 0;
1189 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1190 offset = 0;
1192 for (u = 0; u < num_packets; u++) {
1193 retval = fw_iso_context_queue(context, &packet,
1194 &dev->broadcast_rcv_buffer, offset);
1195 if (retval < 0)
1196 goto failed_rcv_queue;
1198 offset += max_receive;
1200 dev->num_broadcast_rcv_ptrs = num_packets;
1201 dev->rcv_buffer_size = max_receive;
1202 dev->broadcast_rcv_next_ptr = 0U;
1203 retval = fw_iso_context_start(context, -1, 0,
1204 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1205 if (retval < 0)
1206 goto failed_rcv_queue;
1208 /* FIXME: adjust it according to the min. speed of all known peers? */
1209 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1210 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1211 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1213 return 0;
1215 failed_rcv_queue:
1216 kfree(dev->broadcast_rcv_buffer_ptrs);
1217 dev->broadcast_rcv_buffer_ptrs = NULL;
1218 failed_ptrs_alloc:
1219 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1220 failed_buffer_init:
1221 fw_iso_context_destroy(context);
1222 dev->broadcast_rcv_context = NULL;
1223 failed_context_create:
1224 fw_core_remove_address_handler(&dev->handler);
1225 failed_initial:
1226 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1228 return retval;
1231 static void set_carrier_state(struct fwnet_device *dev)
1233 if (dev->peer_count > 1)
1234 netif_carrier_on(dev->netdev);
1235 else
1236 netif_carrier_off(dev->netdev);
1239 /* ifup */
1240 static int fwnet_open(struct net_device *net)
1242 struct fwnet_device *dev = netdev_priv(net);
1243 int ret;
1245 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1246 ret = fwnet_broadcast_start(dev);
1247 if (ret)
1248 return ret;
1250 netif_start_queue(net);
1252 spin_lock_irq(&dev->lock);
1253 set_carrier_state(dev);
1254 spin_unlock_irq(&dev->lock);
1256 return 0;
1259 /* ifdown */
1260 static int fwnet_stop(struct net_device *net)
1262 netif_stop_queue(net);
1264 /* Deallocate iso context for use by other applications? */
1266 return 0;
1269 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1271 struct fwnet_header hdr_buf;
1272 struct fwnet_device *dev = netdev_priv(net);
1273 __be16 proto;
1274 u16 dest_node;
1275 unsigned max_payload;
1276 u16 dg_size;
1277 u16 *datagram_label_ptr;
1278 struct fwnet_packet_task *ptask;
1279 struct fwnet_peer *peer;
1280 unsigned long flags;
1282 spin_lock_irqsave(&dev->lock, flags);
1284 /* Can this happen? */
1285 if (netif_queue_stopped(dev->netdev)) {
1286 spin_unlock_irqrestore(&dev->lock, flags);
1288 return NETDEV_TX_BUSY;
1291 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1292 if (ptask == NULL)
1293 goto fail;
1295 skb = skb_share_check(skb, GFP_ATOMIC);
1296 if (!skb)
1297 goto fail;
1300 * Make a copy of the driver-specific header.
1301 * We might need to rebuild the header on tx failure.
1303 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1304 skb_pull(skb, sizeof(hdr_buf));
1306 proto = hdr_buf.h_proto;
1307 dg_size = skb->len;
1310 * Set the transmission type for the packet. ARP packets and IP
1311 * broadcast packets are sent via GASP.
1313 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1314 || proto == htons(ETH_P_ARP)
1315 || (proto == htons(ETH_P_IP)
1316 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1317 max_payload = dev->broadcast_xmt_max_payload;
1318 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1320 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1321 ptask->generation = 0;
1322 ptask->dest_node = IEEE1394_ALL_NODES;
1323 ptask->speed = SCODE_100;
1324 } else {
1325 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1326 u8 generation;
1328 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1329 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1330 goto fail;
1332 generation = peer->generation;
1333 dest_node = peer->node_id;
1334 max_payload = peer->max_payload;
1335 datagram_label_ptr = &peer->datagram_label;
1337 ptask->fifo_addr = peer->fifo;
1338 ptask->generation = generation;
1339 ptask->dest_node = dest_node;
1340 ptask->speed = peer->speed;
1343 /* If this is an ARP packet, convert it */
1344 if (proto == htons(ETH_P_ARP)) {
1345 struct arphdr *arp = (struct arphdr *)skb->data;
1346 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1347 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1348 __be32 ipaddr;
1350 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1352 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
1353 arp1394->max_rec = dev->card->max_receive;
1354 arp1394->sspd = dev->card->link_speed;
1356 put_unaligned_be16(dev->local_fifo >> 32,
1357 &arp1394->fifo_hi);
1358 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1359 &arp1394->fifo_lo);
1360 put_unaligned(ipaddr, &arp1394->sip);
1363 ptask->hdr.w0 = 0;
1364 ptask->hdr.w1 = 0;
1365 ptask->skb = skb;
1366 ptask->dev = dev;
1368 /* Does it all fit in one packet? */
1369 if (dg_size <= max_payload) {
1370 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1371 ptask->outstanding_pkts = 1;
1372 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1373 } else {
1374 u16 datagram_label;
1376 max_payload -= RFC2374_FRAG_OVERHEAD;
1377 datagram_label = (*datagram_label_ptr)++;
1378 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1379 datagram_label);
1380 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1381 max_payload += RFC2374_FRAG_HDR_SIZE;
1384 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1385 netif_stop_queue(dev->netdev);
1387 spin_unlock_irqrestore(&dev->lock, flags);
1389 ptask->max_payload = max_payload;
1390 ptask->enqueued = 0;
1392 fwnet_send_packet(ptask);
1394 return NETDEV_TX_OK;
1396 fail:
1397 spin_unlock_irqrestore(&dev->lock, flags);
1399 if (ptask)
1400 kmem_cache_free(fwnet_packet_task_cache, ptask);
1402 if (skb != NULL)
1403 dev_kfree_skb(skb);
1405 net->stats.tx_dropped++;
1406 net->stats.tx_errors++;
1409 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1410 * causes serious problems" here, allegedly. Before that patch,
1411 * -ERRNO was returned which is not appropriate under Linux 2.6.
1412 * Perhaps more needs to be done? Stop the queue in serious
1413 * conditions and restart it elsewhere?
1415 return NETDEV_TX_OK;
1418 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1420 if (new_mtu < 68)
1421 return -EINVAL;
1423 net->mtu = new_mtu;
1424 return 0;
1427 static const struct ethtool_ops fwnet_ethtool_ops = {
1428 .get_link = ethtool_op_get_link,
1431 static const struct net_device_ops fwnet_netdev_ops = {
1432 .ndo_open = fwnet_open,
1433 .ndo_stop = fwnet_stop,
1434 .ndo_start_xmit = fwnet_tx,
1435 .ndo_change_mtu = fwnet_change_mtu,
1438 static void fwnet_init_dev(struct net_device *net)
1440 net->header_ops = &fwnet_header_ops;
1441 net->netdev_ops = &fwnet_netdev_ops;
1442 net->watchdog_timeo = 2 * HZ;
1443 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1444 net->features = NETIF_F_HIGHDMA;
1445 net->addr_len = FWNET_ALEN;
1446 net->hard_header_len = FWNET_HLEN;
1447 net->type = ARPHRD_IEEE1394;
1448 net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1449 net->ethtool_ops = &fwnet_ethtool_ops;
1452 /* caller must hold fwnet_device_mutex */
1453 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1455 struct fwnet_device *dev;
1457 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1458 if (dev->card == card)
1459 return dev;
1461 return NULL;
1464 static int fwnet_add_peer(struct fwnet_device *dev,
1465 struct fw_unit *unit, struct fw_device *device)
1467 struct fwnet_peer *peer;
1469 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1470 if (!peer)
1471 return -ENOMEM;
1473 dev_set_drvdata(&unit->device, peer);
1475 peer->dev = dev;
1476 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1477 peer->fifo = FWNET_NO_FIFO_ADDR;
1478 peer->ip = 0;
1479 INIT_LIST_HEAD(&peer->pd_list);
1480 peer->pdg_size = 0;
1481 peer->datagram_label = 0;
1482 peer->speed = device->max_speed;
1483 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1485 peer->generation = device->generation;
1486 smp_rmb();
1487 peer->node_id = device->node_id;
1489 spin_lock_irq(&dev->lock);
1490 list_add_tail(&peer->peer_link, &dev->peer_list);
1491 dev->peer_count++;
1492 set_carrier_state(dev);
1493 spin_unlock_irq(&dev->lock);
1495 return 0;
1498 static int fwnet_probe(struct device *_dev)
1500 struct fw_unit *unit = fw_unit(_dev);
1501 struct fw_device *device = fw_parent_device(unit);
1502 struct fw_card *card = device->card;
1503 struct net_device *net;
1504 bool allocated_netdev = false;
1505 struct fwnet_device *dev;
1506 unsigned max_mtu;
1507 int ret;
1509 mutex_lock(&fwnet_device_mutex);
1511 dev = fwnet_dev_find(card);
1512 if (dev) {
1513 net = dev->netdev;
1514 goto have_dev;
1517 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1518 if (net == NULL) {
1519 ret = -ENOMEM;
1520 goto out;
1523 allocated_netdev = true;
1524 SET_NETDEV_DEV(net, card->device);
1525 dev = netdev_priv(net);
1527 spin_lock_init(&dev->lock);
1528 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1529 dev->broadcast_rcv_context = NULL;
1530 dev->broadcast_xmt_max_payload = 0;
1531 dev->broadcast_xmt_datagramlabel = 0;
1532 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1533 dev->queued_datagrams = 0;
1534 INIT_LIST_HEAD(&dev->peer_list);
1535 dev->card = card;
1536 dev->netdev = net;
1539 * Use the RFC 2734 default 1500 octets or the maximum payload
1540 * as initial MTU
1542 max_mtu = (1 << (card->max_receive + 1))
1543 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1544 net->mtu = min(1500U, max_mtu);
1546 /* Set our hardware address while we're at it */
1547 put_unaligned_be64(card->guid, net->dev_addr);
1548 put_unaligned_be64(~0ULL, net->broadcast);
1549 ret = register_netdev(net);
1550 if (ret)
1551 goto out;
1553 list_add_tail(&dev->dev_link, &fwnet_device_list);
1554 dev_notice(&net->dev, "IPv4 over IEEE 1394 on card %s\n",
1555 dev_name(card->device));
1556 have_dev:
1557 ret = fwnet_add_peer(dev, unit, device);
1558 if (ret && allocated_netdev) {
1559 unregister_netdev(net);
1560 list_del(&dev->dev_link);
1562 out:
1563 if (ret && allocated_netdev)
1564 free_netdev(net);
1566 mutex_unlock(&fwnet_device_mutex);
1568 return ret;
1571 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1573 struct fwnet_partial_datagram *pd, *pd_next;
1575 spin_lock_irq(&dev->lock);
1576 list_del(&peer->peer_link);
1577 dev->peer_count--;
1578 set_carrier_state(dev);
1579 spin_unlock_irq(&dev->lock);
1581 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1582 fwnet_pd_delete(pd);
1584 kfree(peer);
1587 static int fwnet_remove(struct device *_dev)
1589 struct fwnet_peer *peer = dev_get_drvdata(_dev);
1590 struct fwnet_device *dev = peer->dev;
1591 struct net_device *net;
1592 int i;
1594 mutex_lock(&fwnet_device_mutex);
1596 net = dev->netdev;
1597 if (net && peer->ip)
1598 arp_invalidate(net, peer->ip);
1600 fwnet_remove_peer(peer, dev);
1602 if (list_empty(&dev->peer_list)) {
1603 unregister_netdev(net);
1605 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1606 fw_core_remove_address_handler(&dev->handler);
1607 if (dev->broadcast_rcv_context) {
1608 fw_iso_context_stop(dev->broadcast_rcv_context);
1609 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1610 dev->card);
1611 fw_iso_context_destroy(dev->broadcast_rcv_context);
1613 for (i = 0; dev->queued_datagrams && i < 5; i++)
1614 ssleep(1);
1615 WARN_ON(dev->queued_datagrams);
1616 list_del(&dev->dev_link);
1618 free_netdev(net);
1621 mutex_unlock(&fwnet_device_mutex);
1623 return 0;
1627 * FIXME abort partially sent fragmented datagrams,
1628 * discard partially received fragmented datagrams
1630 static void fwnet_update(struct fw_unit *unit)
1632 struct fw_device *device = fw_parent_device(unit);
1633 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1634 int generation;
1636 generation = device->generation;
1638 spin_lock_irq(&peer->dev->lock);
1639 peer->node_id = device->node_id;
1640 peer->generation = generation;
1641 spin_unlock_irq(&peer->dev->lock);
1644 static const struct ieee1394_device_id fwnet_id_table[] = {
1646 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1647 IEEE1394_MATCH_VERSION,
1648 .specifier_id = IANA_SPECIFIER_ID,
1649 .version = RFC2734_SW_VERSION,
1654 static struct fw_driver fwnet_driver = {
1655 .driver = {
1656 .owner = THIS_MODULE,
1657 .name = KBUILD_MODNAME,
1658 .bus = &fw_bus_type,
1659 .probe = fwnet_probe,
1660 .remove = fwnet_remove,
1662 .update = fwnet_update,
1663 .id_table = fwnet_id_table,
1666 static const u32 rfc2374_unit_directory_data[] = {
1667 0x00040000, /* directory_length */
1668 0x1200005e, /* unit_specifier_id: IANA */
1669 0x81000003, /* textual descriptor offset */
1670 0x13000001, /* unit_sw_version: RFC 2734 */
1671 0x81000005, /* textual descriptor offset */
1672 0x00030000, /* descriptor_length */
1673 0x00000000, /* text */
1674 0x00000000, /* minimal ASCII, en */
1675 0x49414e41, /* I A N A */
1676 0x00030000, /* descriptor_length */
1677 0x00000000, /* text */
1678 0x00000000, /* minimal ASCII, en */
1679 0x49507634, /* I P v 4 */
1682 static struct fw_descriptor rfc2374_unit_directory = {
1683 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1684 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1685 .data = rfc2374_unit_directory_data
1688 static int __init fwnet_init(void)
1690 int err;
1692 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1693 if (err)
1694 return err;
1696 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1697 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1698 if (!fwnet_packet_task_cache) {
1699 err = -ENOMEM;
1700 goto out;
1703 err = driver_register(&fwnet_driver.driver);
1704 if (!err)
1705 return 0;
1707 kmem_cache_destroy(fwnet_packet_task_cache);
1708 out:
1709 fw_core_remove_descriptor(&rfc2374_unit_directory);
1711 return err;
1713 module_init(fwnet_init);
1715 static void __exit fwnet_cleanup(void)
1717 driver_unregister(&fwnet_driver.driver);
1718 kmem_cache_destroy(fwnet_packet_task_cache);
1719 fw_core_remove_descriptor(&rfc2374_unit_directory);
1721 module_exit(fwnet_cleanup);
1723 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1724 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1725 MODULE_LICENSE("GPL");
1726 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);