2 * Copyright (C) 2011 Red Hat, Inc.
4 * This file is released under the GPL.
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
14 #define DM_MSG_PREFIX "btree"
16 /*----------------------------------------------------------------
18 *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest
, const void *src
, size_t len
)
20 __dm_written_to_disk(src
)
22 memcpy(dest
, src
, len
);
23 __dm_unbless_for_disk(src
);
26 static void array_insert(void *base
, size_t elt_size
, unsigned nr_elts
,
27 unsigned index
, void *elt
)
28 __dm_written_to_disk(elt
)
31 memmove(base
+ (elt_size
* (index
+ 1)),
32 base
+ (elt_size
* index
),
33 (nr_elts
- index
) * elt_size
);
35 memcpy_disk(base
+ (elt_size
* index
), elt
, elt_size
);
38 /*----------------------------------------------------------------*/
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node
*n
, uint64_t key
, int want_hi
)
43 int lo
= -1, hi
= le32_to_cpu(n
->header
.nr_entries
);
46 int mid
= lo
+ ((hi
- lo
) / 2);
47 uint64_t mid_key
= le64_to_cpu(n
->keys
[mid
]);
58 return want_hi
? hi
: lo
;
61 int lower_bound(struct btree_node
*n
, uint64_t key
)
63 return bsearch(n
, key
, 0);
66 void inc_children(struct dm_transaction_manager
*tm
, struct btree_node
*n
,
67 struct dm_btree_value_type
*vt
)
70 uint32_t nr_entries
= le32_to_cpu(n
->header
.nr_entries
);
72 if (le32_to_cpu(n
->header
.flags
) & INTERNAL_NODE
)
73 for (i
= 0; i
< nr_entries
; i
++)
74 dm_tm_inc(tm
, value64(n
, i
));
76 for (i
= 0; i
< nr_entries
; i
++)
77 vt
->inc(vt
->context
, value_ptr(n
, i
));
80 static int insert_at(size_t value_size
, struct btree_node
*node
, unsigned index
,
81 uint64_t key
, void *value
)
82 __dm_written_to_disk(value
)
84 uint32_t nr_entries
= le32_to_cpu(node
->header
.nr_entries
);
85 __le64 key_le
= cpu_to_le64(key
);
87 if (index
> nr_entries
||
88 index
>= le32_to_cpu(node
->header
.max_entries
)) {
89 DMERR("too many entries in btree node for insert");
90 __dm_unbless_for_disk(value
);
94 __dm_bless_for_disk(&key_le
);
96 array_insert(node
->keys
, sizeof(*node
->keys
), nr_entries
, index
, &key_le
);
97 array_insert(value_base(node
), value_size
, nr_entries
, index
, value
);
98 node
->header
.nr_entries
= cpu_to_le32(nr_entries
+ 1);
103 /*----------------------------------------------------------------*/
106 * We want 3n entries (for some n). This works more nicely for repeated
107 * insert remove loops than (2n + 1).
109 static uint32_t calc_max_entries(size_t value_size
, size_t block_size
)
112 size_t elt_size
= sizeof(uint64_t) + value_size
; /* key + value */
114 block_size
-= sizeof(struct node_header
);
115 total
= block_size
/ elt_size
;
116 n
= total
/ 3; /* rounds down */
121 int dm_btree_empty(struct dm_btree_info
*info
, dm_block_t
*root
)
125 struct btree_node
*n
;
127 uint32_t max_entries
;
129 r
= new_block(info
, &b
);
133 block_size
= dm_bm_block_size(dm_tm_get_bm(info
->tm
));
134 max_entries
= calc_max_entries(info
->value_type
.size
, block_size
);
136 n
= dm_block_data(b
);
137 memset(n
, 0, block_size
);
138 n
->header
.flags
= cpu_to_le32(LEAF_NODE
);
139 n
->header
.nr_entries
= cpu_to_le32(0);
140 n
->header
.max_entries
= cpu_to_le32(max_entries
);
141 n
->header
.value_size
= cpu_to_le32(info
->value_type
.size
);
143 *root
= dm_block_location(b
);
144 return unlock_block(info
, b
);
146 EXPORT_SYMBOL_GPL(dm_btree_empty
);
148 /*----------------------------------------------------------------*/
151 * Deletion uses a recursive algorithm, since we have limited stack space
152 * we explicitly manage our own stack on the heap.
154 #define MAX_SPINE_DEPTH 64
157 struct btree_node
*n
;
159 unsigned nr_children
;
160 unsigned current_child
;
164 struct dm_transaction_manager
*tm
;
166 struct frame spine
[MAX_SPINE_DEPTH
];
169 static int top_frame(struct del_stack
*s
, struct frame
**f
)
172 DMERR("btree deletion stack empty");
176 *f
= s
->spine
+ s
->top
;
181 static int unprocessed_frames(struct del_stack
*s
)
186 static int push_frame(struct del_stack
*s
, dm_block_t b
, unsigned level
)
191 if (s
->top
>= MAX_SPINE_DEPTH
- 1) {
192 DMERR("btree deletion stack out of memory");
196 r
= dm_tm_ref(s
->tm
, b
, &ref_count
);
202 * This is a shared node, so we can just decrement it's
203 * reference counter and leave the children.
208 struct frame
*f
= s
->spine
+ ++s
->top
;
210 r
= dm_tm_read_lock(s
->tm
, b
, &btree_node_validator
, &f
->b
);
216 f
->n
= dm_block_data(f
->b
);
218 f
->nr_children
= le32_to_cpu(f
->n
->header
.nr_entries
);
219 f
->current_child
= 0;
225 static void pop_frame(struct del_stack
*s
)
227 struct frame
*f
= s
->spine
+ s
->top
--;
229 dm_tm_dec(s
->tm
, dm_block_location(f
->b
));
230 dm_tm_unlock(s
->tm
, f
->b
);
233 int dm_btree_del(struct dm_btree_info
*info
, dm_block_t root
)
238 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
244 r
= push_frame(s
, root
, 1);
248 while (unprocessed_frames(s
)) {
253 r
= top_frame(s
, &f
);
257 if (f
->current_child
>= f
->nr_children
) {
262 flags
= le32_to_cpu(f
->n
->header
.flags
);
263 if (flags
& INTERNAL_NODE
) {
264 b
= value64(f
->n
, f
->current_child
);
266 r
= push_frame(s
, b
, f
->level
);
270 } else if (f
->level
!= (info
->levels
- 1)) {
271 b
= value64(f
->n
, f
->current_child
);
273 r
= push_frame(s
, b
, f
->level
+ 1);
278 if (info
->value_type
.dec
) {
281 for (i
= 0; i
< f
->nr_children
; i
++)
282 info
->value_type
.dec(info
->value_type
.context
,
285 f
->current_child
= f
->nr_children
;
293 EXPORT_SYMBOL_GPL(dm_btree_del
);
295 /*----------------------------------------------------------------*/
297 static int btree_lookup_raw(struct ro_spine
*s
, dm_block_t block
, uint64_t key
,
298 int (*search_fn
)(struct btree_node
*, uint64_t),
299 uint64_t *result_key
, void *v
, size_t value_size
)
302 uint32_t flags
, nr_entries
;
305 r
= ro_step(s
, block
);
309 i
= search_fn(ro_node(s
), key
);
311 flags
= le32_to_cpu(ro_node(s
)->header
.flags
);
312 nr_entries
= le32_to_cpu(ro_node(s
)->header
.nr_entries
);
313 if (i
< 0 || i
>= nr_entries
)
316 if (flags
& INTERNAL_NODE
)
317 block
= value64(ro_node(s
), i
);
319 } while (!(flags
& LEAF_NODE
));
321 *result_key
= le64_to_cpu(ro_node(s
)->keys
[i
]);
322 memcpy(v
, value_ptr(ro_node(s
), i
), value_size
);
327 int dm_btree_lookup(struct dm_btree_info
*info
, dm_block_t root
,
328 uint64_t *keys
, void *value_le
)
330 unsigned level
, last_level
= info
->levels
- 1;
333 __le64 internal_value_le
;
334 struct ro_spine spine
;
336 init_ro_spine(&spine
, info
);
337 for (level
= 0; level
< info
->levels
; level
++) {
341 if (level
== last_level
) {
343 size
= info
->value_type
.size
;
346 value_p
= &internal_value_le
;
347 size
= sizeof(uint64_t);
350 r
= btree_lookup_raw(&spine
, root
, keys
[level
],
355 if (rkey
!= keys
[level
]) {
356 exit_ro_spine(&spine
);
360 exit_ro_spine(&spine
);
364 root
= le64_to_cpu(internal_value_le
);
366 exit_ro_spine(&spine
);
370 EXPORT_SYMBOL_GPL(dm_btree_lookup
);
373 * Splits a node by creating a sibling node and shifting half the nodes
374 * contents across. Assumes there is a parent node, and it has room for
396 * +---------+ +-------+
400 * Where A* is a shadow of A.
402 static int btree_split_sibling(struct shadow_spine
*s
, dm_block_t root
,
403 unsigned parent_index
, uint64_t key
)
407 unsigned nr_left
, nr_right
;
408 struct dm_block
*left
, *right
, *parent
;
409 struct btree_node
*ln
, *rn
, *pn
;
412 left
= shadow_current(s
);
414 r
= new_block(s
->info
, &right
);
418 ln
= dm_block_data(left
);
419 rn
= dm_block_data(right
);
421 nr_left
= le32_to_cpu(ln
->header
.nr_entries
) / 2;
422 nr_right
= le32_to_cpu(ln
->header
.nr_entries
) - nr_left
;
424 ln
->header
.nr_entries
= cpu_to_le32(nr_left
);
426 rn
->header
.flags
= ln
->header
.flags
;
427 rn
->header
.nr_entries
= cpu_to_le32(nr_right
);
428 rn
->header
.max_entries
= ln
->header
.max_entries
;
429 rn
->header
.value_size
= ln
->header
.value_size
;
430 memcpy(rn
->keys
, ln
->keys
+ nr_left
, nr_right
* sizeof(rn
->keys
[0]));
432 size
= le32_to_cpu(ln
->header
.flags
) & INTERNAL_NODE
?
433 sizeof(uint64_t) : s
->info
->value_type
.size
;
434 memcpy(value_ptr(rn
, 0), value_ptr(ln
, nr_left
),
438 * Patch up the parent
440 parent
= shadow_parent(s
);
442 pn
= dm_block_data(parent
);
443 location
= cpu_to_le64(dm_block_location(left
));
444 __dm_bless_for_disk(&location
);
445 memcpy_disk(value_ptr(pn
, parent_index
),
446 &location
, sizeof(__le64
));
448 location
= cpu_to_le64(dm_block_location(right
));
449 __dm_bless_for_disk(&location
);
451 r
= insert_at(sizeof(__le64
), pn
, parent_index
+ 1,
452 le64_to_cpu(rn
->keys
[0]), &location
);
456 if (key
< le64_to_cpu(rn
->keys
[0])) {
457 unlock_block(s
->info
, right
);
460 unlock_block(s
->info
, left
);
468 * Splits a node by creating two new children beneath the given node.
484 * +-------+ +-------+
485 * | B +++ | | C +++ |
486 * +-------+ +-------+
488 static int btree_split_beneath(struct shadow_spine
*s
, uint64_t key
)
492 unsigned nr_left
, nr_right
;
493 struct dm_block
*left
, *right
, *new_parent
;
494 struct btree_node
*pn
, *ln
, *rn
;
497 new_parent
= shadow_current(s
);
499 r
= new_block(s
->info
, &left
);
503 r
= new_block(s
->info
, &right
);
505 /* FIXME: put left */
509 pn
= dm_block_data(new_parent
);
510 ln
= dm_block_data(left
);
511 rn
= dm_block_data(right
);
513 nr_left
= le32_to_cpu(pn
->header
.nr_entries
) / 2;
514 nr_right
= le32_to_cpu(pn
->header
.nr_entries
) - nr_left
;
516 ln
->header
.flags
= pn
->header
.flags
;
517 ln
->header
.nr_entries
= cpu_to_le32(nr_left
);
518 ln
->header
.max_entries
= pn
->header
.max_entries
;
519 ln
->header
.value_size
= pn
->header
.value_size
;
521 rn
->header
.flags
= pn
->header
.flags
;
522 rn
->header
.nr_entries
= cpu_to_le32(nr_right
);
523 rn
->header
.max_entries
= pn
->header
.max_entries
;
524 rn
->header
.value_size
= pn
->header
.value_size
;
526 memcpy(ln
->keys
, pn
->keys
, nr_left
* sizeof(pn
->keys
[0]));
527 memcpy(rn
->keys
, pn
->keys
+ nr_left
, nr_right
* sizeof(pn
->keys
[0]));
529 size
= le32_to_cpu(pn
->header
.flags
) & INTERNAL_NODE
?
530 sizeof(__le64
) : s
->info
->value_type
.size
;
531 memcpy(value_ptr(ln
, 0), value_ptr(pn
, 0), nr_left
* size
);
532 memcpy(value_ptr(rn
, 0), value_ptr(pn
, nr_left
),
535 /* new_parent should just point to l and r now */
536 pn
->header
.flags
= cpu_to_le32(INTERNAL_NODE
);
537 pn
->header
.nr_entries
= cpu_to_le32(2);
538 pn
->header
.max_entries
= cpu_to_le32(
539 calc_max_entries(sizeof(__le64
),
541 dm_tm_get_bm(s
->info
->tm
))));
542 pn
->header
.value_size
= cpu_to_le32(sizeof(__le64
));
544 val
= cpu_to_le64(dm_block_location(left
));
545 __dm_bless_for_disk(&val
);
546 pn
->keys
[0] = ln
->keys
[0];
547 memcpy_disk(value_ptr(pn
, 0), &val
, sizeof(__le64
));
549 val
= cpu_to_le64(dm_block_location(right
));
550 __dm_bless_for_disk(&val
);
551 pn
->keys
[1] = rn
->keys
[0];
552 memcpy_disk(value_ptr(pn
, 1), &val
, sizeof(__le64
));
555 * rejig the spine. This is ugly, since it knows too
556 * much about the spine
558 if (s
->nodes
[0] != new_parent
) {
559 unlock_block(s
->info
, s
->nodes
[0]);
560 s
->nodes
[0] = new_parent
;
562 if (key
< le64_to_cpu(rn
->keys
[0])) {
563 unlock_block(s
->info
, right
);
566 unlock_block(s
->info
, left
);
574 static int btree_insert_raw(struct shadow_spine
*s
, dm_block_t root
,
575 struct dm_btree_value_type
*vt
,
576 uint64_t key
, unsigned *index
)
578 int r
, i
= *index
, top
= 1;
579 struct btree_node
*node
;
582 r
= shadow_step(s
, root
, vt
);
586 node
= dm_block_data(shadow_current(s
));
589 * We have to patch up the parent node, ugly, but I don't
590 * see a way to do this automatically as part of the spine
593 if (shadow_has_parent(s
) && i
>= 0) { /* FIXME: second clause unness. */
594 __le64 location
= cpu_to_le64(dm_block_location(shadow_current(s
)));
596 __dm_bless_for_disk(&location
);
597 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s
)), i
),
598 &location
, sizeof(__le64
));
601 node
= dm_block_data(shadow_current(s
));
603 if (node
->header
.nr_entries
== node
->header
.max_entries
) {
605 r
= btree_split_beneath(s
, key
);
607 r
= btree_split_sibling(s
, root
, i
, key
);
613 node
= dm_block_data(shadow_current(s
));
615 i
= lower_bound(node
, key
);
617 if (le32_to_cpu(node
->header
.flags
) & LEAF_NODE
)
621 /* change the bounds on the lowest key */
622 node
->keys
[0] = cpu_to_le64(key
);
626 root
= value64(node
, i
);
630 if (i
< 0 || le64_to_cpu(node
->keys
[i
]) != key
)
637 static int insert(struct dm_btree_info
*info
, dm_block_t root
,
638 uint64_t *keys
, void *value
, dm_block_t
*new_root
,
640 __dm_written_to_disk(value
)
643 unsigned level
, index
= -1, last_level
= info
->levels
- 1;
644 dm_block_t block
= root
;
645 struct shadow_spine spine
;
646 struct btree_node
*n
;
647 struct dm_btree_value_type le64_type
;
649 le64_type
.context
= NULL
;
650 le64_type
.size
= sizeof(__le64
);
651 le64_type
.inc
= NULL
;
652 le64_type
.dec
= NULL
;
653 le64_type
.equal
= NULL
;
655 init_shadow_spine(&spine
, info
);
657 for (level
= 0; level
< (info
->levels
- 1); level
++) {
658 r
= btree_insert_raw(&spine
, block
, &le64_type
, keys
[level
], &index
);
662 n
= dm_block_data(shadow_current(&spine
));
663 need_insert
= ((index
>= le32_to_cpu(n
->header
.nr_entries
)) ||
664 (le64_to_cpu(n
->keys
[index
]) != keys
[level
]));
670 r
= dm_btree_empty(info
, &new_tree
);
674 new_le
= cpu_to_le64(new_tree
);
675 __dm_bless_for_disk(&new_le
);
677 r
= insert_at(sizeof(uint64_t), n
, index
,
678 keys
[level
], &new_le
);
683 if (level
< last_level
)
684 block
= value64(n
, index
);
687 r
= btree_insert_raw(&spine
, block
, &info
->value_type
,
688 keys
[level
], &index
);
692 n
= dm_block_data(shadow_current(&spine
));
693 need_insert
= ((index
>= le32_to_cpu(n
->header
.nr_entries
)) ||
694 (le64_to_cpu(n
->keys
[index
]) != keys
[level
]));
700 r
= insert_at(info
->value_type
.size
, n
, index
,
708 if (info
->value_type
.dec
&&
709 (!info
->value_type
.equal
||
710 !info
->value_type
.equal(
711 info
->value_type
.context
,
714 info
->value_type
.dec(info
->value_type
.context
,
715 value_ptr(n
, index
));
717 memcpy_disk(value_ptr(n
, index
),
718 value
, info
->value_type
.size
);
721 *new_root
= shadow_root(&spine
);
722 exit_shadow_spine(&spine
);
727 __dm_unbless_for_disk(value
);
729 exit_shadow_spine(&spine
);
733 int dm_btree_insert(struct dm_btree_info
*info
, dm_block_t root
,
734 uint64_t *keys
, void *value
, dm_block_t
*new_root
)
735 __dm_written_to_disk(value
)
737 return insert(info
, root
, keys
, value
, new_root
, NULL
);
739 EXPORT_SYMBOL_GPL(dm_btree_insert
);
741 int dm_btree_insert_notify(struct dm_btree_info
*info
, dm_block_t root
,
742 uint64_t *keys
, void *value
, dm_block_t
*new_root
,
744 __dm_written_to_disk(value
)
746 return insert(info
, root
, keys
, value
, new_root
, inserted
);
748 EXPORT_SYMBOL_GPL(dm_btree_insert_notify
);
750 /*----------------------------------------------------------------*/
752 static int find_highest_key(struct ro_spine
*s
, dm_block_t block
,
753 uint64_t *result_key
, dm_block_t
*next_block
)
759 r
= ro_step(s
, block
);
763 flags
= le32_to_cpu(ro_node(s
)->header
.flags
);
764 i
= le32_to_cpu(ro_node(s
)->header
.nr_entries
);
770 *result_key
= le64_to_cpu(ro_node(s
)->keys
[i
]);
771 if (next_block
|| flags
& INTERNAL_NODE
)
772 block
= value64(ro_node(s
), i
);
774 } while (flags
& INTERNAL_NODE
);
781 int dm_btree_find_highest_key(struct dm_btree_info
*info
, dm_block_t root
,
782 uint64_t *result_keys
)
784 int r
= 0, count
= 0, level
;
785 struct ro_spine spine
;
787 init_ro_spine(&spine
, info
);
788 for (level
= 0; level
< info
->levels
; level
++) {
789 r
= find_highest_key(&spine
, root
, result_keys
+ level
,
790 level
== info
->levels
- 1 ? NULL
: &root
);
800 exit_ro_spine(&spine
);
802 return r
? r
: count
;
804 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key
);