USB: usb-storage: unusual_devs update for Super TOP SATA bridge
[linux/fpc-iii.git] / drivers / md / raid1.c
blobdf445091384a3795ea9a112af87188074a2eb52d
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
51 * for writeback.
53 static int max_queued_requests = 1024;
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 struct pool_info *pi = data;
61 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size, gfp_flags);
67 static void r1bio_pool_free(void *r1_bio, void *data)
69 kfree(r1_bio);
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
80 struct pool_info *pi = data;
81 struct page *page;
82 struct r1bio *r1_bio;
83 struct bio *bio;
84 int i, j;
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 if (!r1_bio)
88 return NULL;
91 * Allocate bios : 1 for reading, n-1 for writing
93 for (j = pi->raid_disks ; j-- ; ) {
94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 if (!bio)
96 goto out_free_bio;
97 r1_bio->bios[j] = bio;
100 * Allocate RESYNC_PAGES data pages and attach them to
101 * the first bio.
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 j = pi->raid_disks;
107 else
108 j = 1;
109 while(j--) {
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
113 if (unlikely(!page))
114 goto out_free_pages;
116 bio->bi_io_vec[i].bv_page = page;
117 bio->bi_vcnt = i+1;
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
128 r1_bio->master_bio = NULL;
130 return r1_bio;
132 out_free_pages:
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 j = -1;
137 out_free_bio:
138 while (++j < pi->raid_disks)
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
141 return NULL;
144 static void r1buf_pool_free(void *__r1_bio, void *data)
146 struct pool_info *pi = data;
147 int i,j;
148 struct r1bio *r1bio = __r1_bio;
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
152 if (j == 0 ||
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
160 r1bio_pool_free(r1bio, data);
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
165 int i;
167 for (i = 0; i < conf->raid_disks * 2; i++) {
168 struct bio **bio = r1_bio->bios + i;
169 if (!BIO_SPECIAL(*bio))
170 bio_put(*bio);
171 *bio = NULL;
175 static void free_r1bio(struct r1bio *r1_bio)
177 struct r1conf *conf = r1_bio->mddev->private;
179 put_all_bios(conf, r1_bio);
180 mempool_free(r1_bio, conf->r1bio_pool);
183 static void put_buf(struct r1bio *r1_bio)
185 struct r1conf *conf = r1_bio->mddev->private;
186 int i;
188 for (i = 0; i < conf->raid_disks * 2; i++) {
189 struct bio *bio = r1_bio->bios[i];
190 if (bio->bi_end_io)
191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
194 mempool_free(r1_bio, conf->r1buf_pool);
196 lower_barrier(conf);
199 static void reschedule_retry(struct r1bio *r1_bio)
201 unsigned long flags;
202 struct mddev *mddev = r1_bio->mddev;
203 struct r1conf *conf = mddev->private;
205 spin_lock_irqsave(&conf->device_lock, flags);
206 list_add(&r1_bio->retry_list, &conf->retry_list);
207 conf->nr_queued ++;
208 spin_unlock_irqrestore(&conf->device_lock, flags);
210 wake_up(&conf->wait_barrier);
211 md_wakeup_thread(mddev->thread);
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
217 * cache layer.
219 static void call_bio_endio(struct r1bio *r1_bio)
221 struct bio *bio = r1_bio->master_bio;
222 int done;
223 struct r1conf *conf = r1_bio->mddev->private;
225 if (bio->bi_phys_segments) {
226 unsigned long flags;
227 spin_lock_irqsave(&conf->device_lock, flags);
228 bio->bi_phys_segments--;
229 done = (bio->bi_phys_segments == 0);
230 spin_unlock_irqrestore(&conf->device_lock, flags);
231 } else
232 done = 1;
234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 if (done) {
237 bio_endio(bio, 0);
239 * Wake up any possible resync thread that waits for the device
240 * to go idle.
242 allow_barrier(conf);
246 static void raid_end_bio_io(struct r1bio *r1_bio)
248 struct bio *bio = r1_bio->master_bio;
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 (unsigned long long) bio->bi_sector,
255 (unsigned long long) bio->bi_sector +
256 (bio->bi_size >> 9) - 1);
258 call_bio_endio(r1_bio);
260 free_r1bio(r1_bio);
264 * Update disk head position estimator based on IRQ completion info.
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
268 struct r1conf *conf = r1_bio->mddev->private;
270 conf->mirrors[disk].head_position =
271 r1_bio->sector + (r1_bio->sectors);
275 * Find the disk number which triggered given bio
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
279 int mirror;
280 struct r1conf *conf = r1_bio->mddev->private;
281 int raid_disks = conf->raid_disks;
283 for (mirror = 0; mirror < raid_disks * 2; mirror++)
284 if (r1_bio->bios[mirror] == bio)
285 break;
287 BUG_ON(mirror == raid_disks * 2);
288 update_head_pos(mirror, r1_bio);
290 return mirror;
293 static void raid1_end_read_request(struct bio *bio, int error)
295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 struct r1bio *r1_bio = bio->bi_private;
297 int mirror;
298 struct r1conf *conf = r1_bio->mddev->private;
300 mirror = r1_bio->read_disk;
302 * this branch is our 'one mirror IO has finished' event handler:
304 update_head_pos(mirror, r1_bio);
306 if (uptodate)
307 set_bit(R1BIO_Uptodate, &r1_bio->state);
308 else {
309 /* If all other devices have failed, we want to return
310 * the error upwards rather than fail the last device.
311 * Here we redefine "uptodate" to mean "Don't want to retry"
313 unsigned long flags;
314 spin_lock_irqsave(&conf->device_lock, flags);
315 if (r1_bio->mddev->degraded == conf->raid_disks ||
316 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318 uptodate = 1;
319 spin_unlock_irqrestore(&conf->device_lock, flags);
322 if (uptodate)
323 raid_end_bio_io(r1_bio);
324 else {
326 * oops, read error:
328 char b[BDEVNAME_SIZE];
329 printk_ratelimited(
330 KERN_ERR "md/raid1:%s: %s: "
331 "rescheduling sector %llu\n",
332 mdname(conf->mddev),
333 bdevname(conf->mirrors[mirror].rdev->bdev,
335 (unsigned long long)r1_bio->sector);
336 set_bit(R1BIO_ReadError, &r1_bio->state);
337 reschedule_retry(r1_bio);
340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
343 static void close_write(struct r1bio *r1_bio)
345 /* it really is the end of this request */
346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 /* free extra copy of the data pages */
348 int i = r1_bio->behind_page_count;
349 while (i--)
350 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 kfree(r1_bio->behind_bvecs);
352 r1_bio->behind_bvecs = NULL;
354 /* clear the bitmap if all writes complete successfully */
355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 r1_bio->sectors,
357 !test_bit(R1BIO_Degraded, &r1_bio->state),
358 test_bit(R1BIO_BehindIO, &r1_bio->state));
359 md_write_end(r1_bio->mddev);
362 static void r1_bio_write_done(struct r1bio *r1_bio)
364 if (!atomic_dec_and_test(&r1_bio->remaining))
365 return;
367 if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 reschedule_retry(r1_bio);
369 else {
370 close_write(r1_bio);
371 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 reschedule_retry(r1_bio);
373 else
374 raid_end_bio_io(r1_bio);
378 static void raid1_end_write_request(struct bio *bio, int error)
380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
381 struct r1bio *r1_bio = bio->bi_private;
382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
383 struct r1conf *conf = r1_bio->mddev->private;
384 struct bio *to_put = NULL;
386 mirror = find_bio_disk(r1_bio, bio);
389 * 'one mirror IO has finished' event handler:
391 if (!uptodate) {
392 set_bit(WriteErrorSeen,
393 &conf->mirrors[mirror].rdev->flags);
394 if (!test_and_set_bit(WantReplacement,
395 &conf->mirrors[mirror].rdev->flags))
396 set_bit(MD_RECOVERY_NEEDED, &
397 conf->mddev->recovery);
399 set_bit(R1BIO_WriteError, &r1_bio->state);
400 } else {
402 * Set R1BIO_Uptodate in our master bio, so that we
403 * will return a good error code for to the higher
404 * levels even if IO on some other mirrored buffer
405 * fails.
407 * The 'master' represents the composite IO operation
408 * to user-side. So if something waits for IO, then it
409 * will wait for the 'master' bio.
411 sector_t first_bad;
412 int bad_sectors;
414 r1_bio->bios[mirror] = NULL;
415 to_put = bio;
416 set_bit(R1BIO_Uptodate, &r1_bio->state);
418 /* Maybe we can clear some bad blocks. */
419 if (is_badblock(conf->mirrors[mirror].rdev,
420 r1_bio->sector, r1_bio->sectors,
421 &first_bad, &bad_sectors)) {
422 r1_bio->bios[mirror] = IO_MADE_GOOD;
423 set_bit(R1BIO_MadeGood, &r1_bio->state);
427 if (behind) {
428 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429 atomic_dec(&r1_bio->behind_remaining);
432 * In behind mode, we ACK the master bio once the I/O
433 * has safely reached all non-writemostly
434 * disks. Setting the Returned bit ensures that this
435 * gets done only once -- we don't ever want to return
436 * -EIO here, instead we'll wait
438 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440 /* Maybe we can return now */
441 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442 struct bio *mbio = r1_bio->master_bio;
443 pr_debug("raid1: behind end write sectors"
444 " %llu-%llu\n",
445 (unsigned long long) mbio->bi_sector,
446 (unsigned long long) mbio->bi_sector +
447 (mbio->bi_size >> 9) - 1);
448 call_bio_endio(r1_bio);
452 if (r1_bio->bios[mirror] == NULL)
453 rdev_dec_pending(conf->mirrors[mirror].rdev,
454 conf->mddev);
457 * Let's see if all mirrored write operations have finished
458 * already.
460 r1_bio_write_done(r1_bio);
462 if (to_put)
463 bio_put(to_put);
468 * This routine returns the disk from which the requested read should
469 * be done. There is a per-array 'next expected sequential IO' sector
470 * number - if this matches on the next IO then we use the last disk.
471 * There is also a per-disk 'last know head position' sector that is
472 * maintained from IRQ contexts, both the normal and the resync IO
473 * completion handlers update this position correctly. If there is no
474 * perfect sequential match then we pick the disk whose head is closest.
476 * If there are 2 mirrors in the same 2 devices, performance degrades
477 * because position is mirror, not device based.
479 * The rdev for the device selected will have nr_pending incremented.
481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
483 const sector_t this_sector = r1_bio->sector;
484 int sectors;
485 int best_good_sectors;
486 int start_disk;
487 int best_disk;
488 int i;
489 sector_t best_dist;
490 struct md_rdev *rdev;
491 int choose_first;
493 rcu_read_lock();
495 * Check if we can balance. We can balance on the whole
496 * device if no resync is going on, or below the resync window.
497 * We take the first readable disk when above the resync window.
499 retry:
500 sectors = r1_bio->sectors;
501 best_disk = -1;
502 best_dist = MaxSector;
503 best_good_sectors = 0;
505 if (conf->mddev->recovery_cp < MaxSector &&
506 (this_sector + sectors >= conf->next_resync)) {
507 choose_first = 1;
508 start_disk = 0;
509 } else {
510 choose_first = 0;
511 start_disk = conf->last_used;
514 for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
515 sector_t dist;
516 sector_t first_bad;
517 int bad_sectors;
519 int disk = start_disk + i;
520 if (disk >= conf->raid_disks)
521 disk -= conf->raid_disks;
523 rdev = rcu_dereference(conf->mirrors[disk].rdev);
524 if (r1_bio->bios[disk] == IO_BLOCKED
525 || rdev == NULL
526 || test_bit(Unmerged, &rdev->flags)
527 || test_bit(Faulty, &rdev->flags))
528 continue;
529 if (!test_bit(In_sync, &rdev->flags) &&
530 rdev->recovery_offset < this_sector + sectors)
531 continue;
532 if (test_bit(WriteMostly, &rdev->flags)) {
533 /* Don't balance among write-mostly, just
534 * use the first as a last resort */
535 if (best_disk < 0) {
536 if (is_badblock(rdev, this_sector, sectors,
537 &first_bad, &bad_sectors)) {
538 if (first_bad < this_sector)
539 /* Cannot use this */
540 continue;
541 best_good_sectors = first_bad - this_sector;
542 } else
543 best_good_sectors = sectors;
544 best_disk = disk;
546 continue;
548 /* This is a reasonable device to use. It might
549 * even be best.
551 if (is_badblock(rdev, this_sector, sectors,
552 &first_bad, &bad_sectors)) {
553 if (best_dist < MaxSector)
554 /* already have a better device */
555 continue;
556 if (first_bad <= this_sector) {
557 /* cannot read here. If this is the 'primary'
558 * device, then we must not read beyond
559 * bad_sectors from another device..
561 bad_sectors -= (this_sector - first_bad);
562 if (choose_first && sectors > bad_sectors)
563 sectors = bad_sectors;
564 if (best_good_sectors > sectors)
565 best_good_sectors = sectors;
567 } else {
568 sector_t good_sectors = first_bad - this_sector;
569 if (good_sectors > best_good_sectors) {
570 best_good_sectors = good_sectors;
571 best_disk = disk;
573 if (choose_first)
574 break;
576 continue;
577 } else
578 best_good_sectors = sectors;
580 dist = abs(this_sector - conf->mirrors[disk].head_position);
581 if (choose_first
582 /* Don't change to another disk for sequential reads */
583 || conf->next_seq_sect == this_sector
584 || dist == 0
585 /* If device is idle, use it */
586 || atomic_read(&rdev->nr_pending) == 0) {
587 best_disk = disk;
588 break;
590 if (dist < best_dist) {
591 best_dist = dist;
592 best_disk = disk;
596 if (best_disk >= 0) {
597 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
598 if (!rdev)
599 goto retry;
600 atomic_inc(&rdev->nr_pending);
601 if (test_bit(Faulty, &rdev->flags)) {
602 /* cannot risk returning a device that failed
603 * before we inc'ed nr_pending
605 rdev_dec_pending(rdev, conf->mddev);
606 goto retry;
608 sectors = best_good_sectors;
609 conf->next_seq_sect = this_sector + sectors;
610 conf->last_used = best_disk;
612 rcu_read_unlock();
613 *max_sectors = sectors;
615 return best_disk;
618 static int raid1_mergeable_bvec(struct request_queue *q,
619 struct bvec_merge_data *bvm,
620 struct bio_vec *biovec)
622 struct mddev *mddev = q->queuedata;
623 struct r1conf *conf = mddev->private;
624 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625 int max = biovec->bv_len;
627 if (mddev->merge_check_needed) {
628 int disk;
629 rcu_read_lock();
630 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
631 struct md_rdev *rdev = rcu_dereference(
632 conf->mirrors[disk].rdev);
633 if (rdev && !test_bit(Faulty, &rdev->flags)) {
634 struct request_queue *q =
635 bdev_get_queue(rdev->bdev);
636 if (q->merge_bvec_fn) {
637 bvm->bi_sector = sector +
638 rdev->data_offset;
639 bvm->bi_bdev = rdev->bdev;
640 max = min(max, q->merge_bvec_fn(
641 q, bvm, biovec));
645 rcu_read_unlock();
647 return max;
651 int md_raid1_congested(struct mddev *mddev, int bits)
653 struct r1conf *conf = mddev->private;
654 int i, ret = 0;
656 if ((bits & (1 << BDI_async_congested)) &&
657 conf->pending_count >= max_queued_requests)
658 return 1;
660 rcu_read_lock();
661 for (i = 0; i < conf->raid_disks * 2; i++) {
662 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
663 if (rdev && !test_bit(Faulty, &rdev->flags)) {
664 struct request_queue *q = bdev_get_queue(rdev->bdev);
666 BUG_ON(!q);
668 /* Note the '|| 1' - when read_balance prefers
669 * non-congested targets, it can be removed
671 if ((bits & (1<<BDI_async_congested)) || 1)
672 ret |= bdi_congested(&q->backing_dev_info, bits);
673 else
674 ret &= bdi_congested(&q->backing_dev_info, bits);
677 rcu_read_unlock();
678 return ret;
680 EXPORT_SYMBOL_GPL(md_raid1_congested);
682 static int raid1_congested(void *data, int bits)
684 struct mddev *mddev = data;
686 return mddev_congested(mddev, bits) ||
687 md_raid1_congested(mddev, bits);
690 static void flush_pending_writes(struct r1conf *conf)
692 /* Any writes that have been queued but are awaiting
693 * bitmap updates get flushed here.
695 spin_lock_irq(&conf->device_lock);
697 if (conf->pending_bio_list.head) {
698 struct bio *bio;
699 bio = bio_list_get(&conf->pending_bio_list);
700 conf->pending_count = 0;
701 spin_unlock_irq(&conf->device_lock);
702 /* flush any pending bitmap writes to
703 * disk before proceeding w/ I/O */
704 bitmap_unplug(conf->mddev->bitmap);
705 wake_up(&conf->wait_barrier);
707 while (bio) { /* submit pending writes */
708 struct bio *next = bio->bi_next;
709 bio->bi_next = NULL;
710 generic_make_request(bio);
711 bio = next;
713 } else
714 spin_unlock_irq(&conf->device_lock);
717 /* Barriers....
718 * Sometimes we need to suspend IO while we do something else,
719 * either some resync/recovery, or reconfigure the array.
720 * To do this we raise a 'barrier'.
721 * The 'barrier' is a counter that can be raised multiple times
722 * to count how many activities are happening which preclude
723 * normal IO.
724 * We can only raise the barrier if there is no pending IO.
725 * i.e. if nr_pending == 0.
726 * We choose only to raise the barrier if no-one is waiting for the
727 * barrier to go down. This means that as soon as an IO request
728 * is ready, no other operations which require a barrier will start
729 * until the IO request has had a chance.
731 * So: regular IO calls 'wait_barrier'. When that returns there
732 * is no backgroup IO happening, It must arrange to call
733 * allow_barrier when it has finished its IO.
734 * backgroup IO calls must call raise_barrier. Once that returns
735 * there is no normal IO happeing. It must arrange to call
736 * lower_barrier when the particular background IO completes.
738 #define RESYNC_DEPTH 32
740 static void raise_barrier(struct r1conf *conf)
742 spin_lock_irq(&conf->resync_lock);
744 /* Wait until no block IO is waiting */
745 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
746 conf->resync_lock, );
748 /* block any new IO from starting */
749 conf->barrier++;
751 /* Now wait for all pending IO to complete */
752 wait_event_lock_irq(conf->wait_barrier,
753 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
754 conf->resync_lock, );
756 spin_unlock_irq(&conf->resync_lock);
759 static void lower_barrier(struct r1conf *conf)
761 unsigned long flags;
762 BUG_ON(conf->barrier <= 0);
763 spin_lock_irqsave(&conf->resync_lock, flags);
764 conf->barrier--;
765 spin_unlock_irqrestore(&conf->resync_lock, flags);
766 wake_up(&conf->wait_barrier);
769 static void wait_barrier(struct r1conf *conf)
771 spin_lock_irq(&conf->resync_lock);
772 if (conf->barrier) {
773 conf->nr_waiting++;
774 /* Wait for the barrier to drop.
775 * However if there are already pending
776 * requests (preventing the barrier from
777 * rising completely), and the
778 * pre-process bio queue isn't empty,
779 * then don't wait, as we need to empty
780 * that queue to get the nr_pending
781 * count down.
783 wait_event_lock_irq(conf->wait_barrier,
784 !conf->barrier ||
785 (conf->nr_pending &&
786 current->bio_list &&
787 !bio_list_empty(current->bio_list)),
788 conf->resync_lock,
790 conf->nr_waiting--;
792 conf->nr_pending++;
793 spin_unlock_irq(&conf->resync_lock);
796 static void allow_barrier(struct r1conf *conf)
798 unsigned long flags;
799 spin_lock_irqsave(&conf->resync_lock, flags);
800 conf->nr_pending--;
801 spin_unlock_irqrestore(&conf->resync_lock, flags);
802 wake_up(&conf->wait_barrier);
805 static void freeze_array(struct r1conf *conf)
807 /* stop syncio and normal IO and wait for everything to
808 * go quite.
809 * We increment barrier and nr_waiting, and then
810 * wait until nr_pending match nr_queued+1
811 * This is called in the context of one normal IO request
812 * that has failed. Thus any sync request that might be pending
813 * will be blocked by nr_pending, and we need to wait for
814 * pending IO requests to complete or be queued for re-try.
815 * Thus the number queued (nr_queued) plus this request (1)
816 * must match the number of pending IOs (nr_pending) before
817 * we continue.
819 spin_lock_irq(&conf->resync_lock);
820 conf->barrier++;
821 conf->nr_waiting++;
822 wait_event_lock_irq(conf->wait_barrier,
823 conf->nr_pending == conf->nr_queued+1,
824 conf->resync_lock,
825 flush_pending_writes(conf));
826 spin_unlock_irq(&conf->resync_lock);
828 static void unfreeze_array(struct r1conf *conf)
830 /* reverse the effect of the freeze */
831 spin_lock_irq(&conf->resync_lock);
832 conf->barrier--;
833 conf->nr_waiting--;
834 wake_up(&conf->wait_barrier);
835 spin_unlock_irq(&conf->resync_lock);
839 /* duplicate the data pages for behind I/O
841 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
843 int i;
844 struct bio_vec *bvec;
845 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
846 GFP_NOIO);
847 if (unlikely(!bvecs))
848 return;
850 bio_for_each_segment(bvec, bio, i) {
851 bvecs[i] = *bvec;
852 bvecs[i].bv_page = alloc_page(GFP_NOIO);
853 if (unlikely(!bvecs[i].bv_page))
854 goto do_sync_io;
855 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
856 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
857 kunmap(bvecs[i].bv_page);
858 kunmap(bvec->bv_page);
860 r1_bio->behind_bvecs = bvecs;
861 r1_bio->behind_page_count = bio->bi_vcnt;
862 set_bit(R1BIO_BehindIO, &r1_bio->state);
863 return;
865 do_sync_io:
866 for (i = 0; i < bio->bi_vcnt; i++)
867 if (bvecs[i].bv_page)
868 put_page(bvecs[i].bv_page);
869 kfree(bvecs);
870 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
873 static void make_request(struct mddev *mddev, struct bio * bio)
875 struct r1conf *conf = mddev->private;
876 struct mirror_info *mirror;
877 struct r1bio *r1_bio;
878 struct bio *read_bio;
879 int i, disks;
880 struct bitmap *bitmap;
881 unsigned long flags;
882 const int rw = bio_data_dir(bio);
883 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
884 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
885 struct md_rdev *blocked_rdev;
886 int plugged;
887 int first_clone;
888 int sectors_handled;
889 int max_sectors;
892 * Register the new request and wait if the reconstruction
893 * thread has put up a bar for new requests.
894 * Continue immediately if no resync is active currently.
897 md_write_start(mddev, bio); /* wait on superblock update early */
899 if (bio_data_dir(bio) == WRITE &&
900 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
901 bio->bi_sector < mddev->suspend_hi) {
902 /* As the suspend_* range is controlled by
903 * userspace, we want an interruptible
904 * wait.
906 DEFINE_WAIT(w);
907 for (;;) {
908 flush_signals(current);
909 prepare_to_wait(&conf->wait_barrier,
910 &w, TASK_INTERRUPTIBLE);
911 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
912 bio->bi_sector >= mddev->suspend_hi)
913 break;
914 schedule();
916 finish_wait(&conf->wait_barrier, &w);
919 wait_barrier(conf);
921 bitmap = mddev->bitmap;
924 * make_request() can abort the operation when READA is being
925 * used and no empty request is available.
928 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
930 r1_bio->master_bio = bio;
931 r1_bio->sectors = bio->bi_size >> 9;
932 r1_bio->state = 0;
933 r1_bio->mddev = mddev;
934 r1_bio->sector = bio->bi_sector;
936 /* We might need to issue multiple reads to different
937 * devices if there are bad blocks around, so we keep
938 * track of the number of reads in bio->bi_phys_segments.
939 * If this is 0, there is only one r1_bio and no locking
940 * will be needed when requests complete. If it is
941 * non-zero, then it is the number of not-completed requests.
943 bio->bi_phys_segments = 0;
944 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
946 if (rw == READ) {
948 * read balancing logic:
950 int rdisk;
952 read_again:
953 rdisk = read_balance(conf, r1_bio, &max_sectors);
955 if (rdisk < 0) {
956 /* couldn't find anywhere to read from */
957 raid_end_bio_io(r1_bio);
958 return;
960 mirror = conf->mirrors + rdisk;
962 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
963 bitmap) {
964 /* Reading from a write-mostly device must
965 * take care not to over-take any writes
966 * that are 'behind'
968 wait_event(bitmap->behind_wait,
969 atomic_read(&bitmap->behind_writes) == 0);
971 r1_bio->read_disk = rdisk;
973 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
974 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
975 max_sectors);
977 r1_bio->bios[rdisk] = read_bio;
979 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
980 read_bio->bi_bdev = mirror->rdev->bdev;
981 read_bio->bi_end_io = raid1_end_read_request;
982 read_bio->bi_rw = READ | do_sync;
983 read_bio->bi_private = r1_bio;
985 if (max_sectors < r1_bio->sectors) {
986 /* could not read all from this device, so we will
987 * need another r1_bio.
990 sectors_handled = (r1_bio->sector + max_sectors
991 - bio->bi_sector);
992 r1_bio->sectors = max_sectors;
993 spin_lock_irq(&conf->device_lock);
994 if (bio->bi_phys_segments == 0)
995 bio->bi_phys_segments = 2;
996 else
997 bio->bi_phys_segments++;
998 spin_unlock_irq(&conf->device_lock);
999 /* Cannot call generic_make_request directly
1000 * as that will be queued in __make_request
1001 * and subsequent mempool_alloc might block waiting
1002 * for it. So hand bio over to raid1d.
1004 reschedule_retry(r1_bio);
1006 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1008 r1_bio->master_bio = bio;
1009 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1010 r1_bio->state = 0;
1011 r1_bio->mddev = mddev;
1012 r1_bio->sector = bio->bi_sector + sectors_handled;
1013 goto read_again;
1014 } else
1015 generic_make_request(read_bio);
1016 return;
1020 * WRITE:
1022 if (conf->pending_count >= max_queued_requests) {
1023 md_wakeup_thread(mddev->thread);
1024 wait_event(conf->wait_barrier,
1025 conf->pending_count < max_queued_requests);
1027 /* first select target devices under rcu_lock and
1028 * inc refcount on their rdev. Record them by setting
1029 * bios[x] to bio
1030 * If there are known/acknowledged bad blocks on any device on
1031 * which we have seen a write error, we want to avoid writing those
1032 * blocks.
1033 * This potentially requires several writes to write around
1034 * the bad blocks. Each set of writes gets it's own r1bio
1035 * with a set of bios attached.
1037 plugged = mddev_check_plugged(mddev);
1039 disks = conf->raid_disks * 2;
1040 retry_write:
1041 blocked_rdev = NULL;
1042 rcu_read_lock();
1043 max_sectors = r1_bio->sectors;
1044 for (i = 0; i < disks; i++) {
1045 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1046 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1047 atomic_inc(&rdev->nr_pending);
1048 blocked_rdev = rdev;
1049 break;
1051 r1_bio->bios[i] = NULL;
1052 if (!rdev || test_bit(Faulty, &rdev->flags)
1053 || test_bit(Unmerged, &rdev->flags)) {
1054 if (i < conf->raid_disks)
1055 set_bit(R1BIO_Degraded, &r1_bio->state);
1056 continue;
1059 atomic_inc(&rdev->nr_pending);
1060 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1061 sector_t first_bad;
1062 int bad_sectors;
1063 int is_bad;
1065 is_bad = is_badblock(rdev, r1_bio->sector,
1066 max_sectors,
1067 &first_bad, &bad_sectors);
1068 if (is_bad < 0) {
1069 /* mustn't write here until the bad block is
1070 * acknowledged*/
1071 set_bit(BlockedBadBlocks, &rdev->flags);
1072 blocked_rdev = rdev;
1073 break;
1075 if (is_bad && first_bad <= r1_bio->sector) {
1076 /* Cannot write here at all */
1077 bad_sectors -= (r1_bio->sector - first_bad);
1078 if (bad_sectors < max_sectors)
1079 /* mustn't write more than bad_sectors
1080 * to other devices yet
1082 max_sectors = bad_sectors;
1083 rdev_dec_pending(rdev, mddev);
1084 /* We don't set R1BIO_Degraded as that
1085 * only applies if the disk is
1086 * missing, so it might be re-added,
1087 * and we want to know to recover this
1088 * chunk.
1089 * In this case the device is here,
1090 * and the fact that this chunk is not
1091 * in-sync is recorded in the bad
1092 * block log
1094 continue;
1096 if (is_bad) {
1097 int good_sectors = first_bad - r1_bio->sector;
1098 if (good_sectors < max_sectors)
1099 max_sectors = good_sectors;
1102 r1_bio->bios[i] = bio;
1104 rcu_read_unlock();
1106 if (unlikely(blocked_rdev)) {
1107 /* Wait for this device to become unblocked */
1108 int j;
1110 for (j = 0; j < i; j++)
1111 if (r1_bio->bios[j])
1112 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1113 r1_bio->state = 0;
1114 allow_barrier(conf);
1115 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1116 wait_barrier(conf);
1117 goto retry_write;
1120 if (max_sectors < r1_bio->sectors) {
1121 /* We are splitting this write into multiple parts, so
1122 * we need to prepare for allocating another r1_bio.
1124 r1_bio->sectors = max_sectors;
1125 spin_lock_irq(&conf->device_lock);
1126 if (bio->bi_phys_segments == 0)
1127 bio->bi_phys_segments = 2;
1128 else
1129 bio->bi_phys_segments++;
1130 spin_unlock_irq(&conf->device_lock);
1132 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1134 atomic_set(&r1_bio->remaining, 1);
1135 atomic_set(&r1_bio->behind_remaining, 0);
1137 first_clone = 1;
1138 for (i = 0; i < disks; i++) {
1139 struct bio *mbio;
1140 if (!r1_bio->bios[i])
1141 continue;
1143 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1144 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1146 if (first_clone) {
1147 /* do behind I/O ?
1148 * Not if there are too many, or cannot
1149 * allocate memory, or a reader on WriteMostly
1150 * is waiting for behind writes to flush */
1151 if (bitmap &&
1152 (atomic_read(&bitmap->behind_writes)
1153 < mddev->bitmap_info.max_write_behind) &&
1154 !waitqueue_active(&bitmap->behind_wait))
1155 alloc_behind_pages(mbio, r1_bio);
1157 bitmap_startwrite(bitmap, r1_bio->sector,
1158 r1_bio->sectors,
1159 test_bit(R1BIO_BehindIO,
1160 &r1_bio->state));
1161 first_clone = 0;
1163 if (r1_bio->behind_bvecs) {
1164 struct bio_vec *bvec;
1165 int j;
1167 /* Yes, I really want the '__' version so that
1168 * we clear any unused pointer in the io_vec, rather
1169 * than leave them unchanged. This is important
1170 * because when we come to free the pages, we won't
1171 * know the original bi_idx, so we just free
1172 * them all
1174 __bio_for_each_segment(bvec, mbio, j, 0)
1175 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1176 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1177 atomic_inc(&r1_bio->behind_remaining);
1180 r1_bio->bios[i] = mbio;
1182 mbio->bi_sector = (r1_bio->sector +
1183 conf->mirrors[i].rdev->data_offset);
1184 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1185 mbio->bi_end_io = raid1_end_write_request;
1186 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1187 mbio->bi_private = r1_bio;
1189 atomic_inc(&r1_bio->remaining);
1190 spin_lock_irqsave(&conf->device_lock, flags);
1191 bio_list_add(&conf->pending_bio_list, mbio);
1192 conf->pending_count++;
1193 spin_unlock_irqrestore(&conf->device_lock, flags);
1195 /* Mustn't call r1_bio_write_done before this next test,
1196 * as it could result in the bio being freed.
1198 if (sectors_handled < (bio->bi_size >> 9)) {
1199 r1_bio_write_done(r1_bio);
1200 /* We need another r1_bio. It has already been counted
1201 * in bio->bi_phys_segments
1203 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1204 r1_bio->master_bio = bio;
1205 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1206 r1_bio->state = 0;
1207 r1_bio->mddev = mddev;
1208 r1_bio->sector = bio->bi_sector + sectors_handled;
1209 goto retry_write;
1212 r1_bio_write_done(r1_bio);
1214 /* In case raid1d snuck in to freeze_array */
1215 wake_up(&conf->wait_barrier);
1217 if (do_sync || !bitmap || !plugged)
1218 md_wakeup_thread(mddev->thread);
1221 static void status(struct seq_file *seq, struct mddev *mddev)
1223 struct r1conf *conf = mddev->private;
1224 int i;
1226 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1227 conf->raid_disks - mddev->degraded);
1228 rcu_read_lock();
1229 for (i = 0; i < conf->raid_disks; i++) {
1230 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1231 seq_printf(seq, "%s",
1232 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1234 rcu_read_unlock();
1235 seq_printf(seq, "]");
1239 static void error(struct mddev *mddev, struct md_rdev *rdev)
1241 char b[BDEVNAME_SIZE];
1242 struct r1conf *conf = mddev->private;
1245 * If it is not operational, then we have already marked it as dead
1246 * else if it is the last working disks, ignore the error, let the
1247 * next level up know.
1248 * else mark the drive as failed
1250 if (test_bit(In_sync, &rdev->flags)
1251 && (conf->raid_disks - mddev->degraded) == 1) {
1253 * Don't fail the drive, act as though we were just a
1254 * normal single drive.
1255 * However don't try a recovery from this drive as
1256 * it is very likely to fail.
1258 conf->recovery_disabled = mddev->recovery_disabled;
1259 return;
1261 set_bit(Blocked, &rdev->flags);
1262 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1263 unsigned long flags;
1264 spin_lock_irqsave(&conf->device_lock, flags);
1265 mddev->degraded++;
1266 set_bit(Faulty, &rdev->flags);
1267 spin_unlock_irqrestore(&conf->device_lock, flags);
1269 * if recovery is running, make sure it aborts.
1271 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1272 } else
1273 set_bit(Faulty, &rdev->flags);
1274 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1275 printk(KERN_ALERT
1276 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1277 "md/raid1:%s: Operation continuing on %d devices.\n",
1278 mdname(mddev), bdevname(rdev->bdev, b),
1279 mdname(mddev), conf->raid_disks - mddev->degraded);
1282 static void print_conf(struct r1conf *conf)
1284 int i;
1286 printk(KERN_DEBUG "RAID1 conf printout:\n");
1287 if (!conf) {
1288 printk(KERN_DEBUG "(!conf)\n");
1289 return;
1291 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1292 conf->raid_disks);
1294 rcu_read_lock();
1295 for (i = 0; i < conf->raid_disks; i++) {
1296 char b[BDEVNAME_SIZE];
1297 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1298 if (rdev)
1299 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1300 i, !test_bit(In_sync, &rdev->flags),
1301 !test_bit(Faulty, &rdev->flags),
1302 bdevname(rdev->bdev,b));
1304 rcu_read_unlock();
1307 static void close_sync(struct r1conf *conf)
1309 wait_barrier(conf);
1310 allow_barrier(conf);
1312 mempool_destroy(conf->r1buf_pool);
1313 conf->r1buf_pool = NULL;
1316 static int raid1_spare_active(struct mddev *mddev)
1318 int i;
1319 struct r1conf *conf = mddev->private;
1320 int count = 0;
1321 unsigned long flags;
1324 * Find all failed disks within the RAID1 configuration
1325 * and mark them readable.
1326 * Called under mddev lock, so rcu protection not needed.
1328 for (i = 0; i < conf->raid_disks; i++) {
1329 struct md_rdev *rdev = conf->mirrors[i].rdev;
1330 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1331 if (repl
1332 && repl->recovery_offset == MaxSector
1333 && !test_bit(Faulty, &repl->flags)
1334 && !test_and_set_bit(In_sync, &repl->flags)) {
1335 /* replacement has just become active */
1336 if (!rdev ||
1337 !test_and_clear_bit(In_sync, &rdev->flags))
1338 count++;
1339 if (rdev) {
1340 /* Replaced device not technically
1341 * faulty, but we need to be sure
1342 * it gets removed and never re-added
1344 set_bit(Faulty, &rdev->flags);
1345 sysfs_notify_dirent_safe(
1346 rdev->sysfs_state);
1349 if (rdev
1350 && !test_bit(Faulty, &rdev->flags)
1351 && !test_and_set_bit(In_sync, &rdev->flags)) {
1352 count++;
1353 sysfs_notify_dirent_safe(rdev->sysfs_state);
1356 spin_lock_irqsave(&conf->device_lock, flags);
1357 mddev->degraded -= count;
1358 spin_unlock_irqrestore(&conf->device_lock, flags);
1360 print_conf(conf);
1361 return count;
1365 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1367 struct r1conf *conf = mddev->private;
1368 int err = -EEXIST;
1369 int mirror = 0;
1370 struct mirror_info *p;
1371 int first = 0;
1372 int last = conf->raid_disks - 1;
1373 struct request_queue *q = bdev_get_queue(rdev->bdev);
1375 if (mddev->recovery_disabled == conf->recovery_disabled)
1376 return -EBUSY;
1378 if (rdev->raid_disk >= 0)
1379 first = last = rdev->raid_disk;
1381 if (q->merge_bvec_fn) {
1382 set_bit(Unmerged, &rdev->flags);
1383 mddev->merge_check_needed = 1;
1386 for (mirror = first; mirror <= last; mirror++) {
1387 p = conf->mirrors+mirror;
1388 if (!p->rdev) {
1390 disk_stack_limits(mddev->gendisk, rdev->bdev,
1391 rdev->data_offset << 9);
1393 p->head_position = 0;
1394 rdev->raid_disk = mirror;
1395 err = 0;
1396 /* As all devices are equivalent, we don't need a full recovery
1397 * if this was recently any drive of the array
1399 if (rdev->saved_raid_disk < 0)
1400 conf->fullsync = 1;
1401 rcu_assign_pointer(p->rdev, rdev);
1402 break;
1404 if (test_bit(WantReplacement, &p->rdev->flags) &&
1405 p[conf->raid_disks].rdev == NULL) {
1406 /* Add this device as a replacement */
1407 clear_bit(In_sync, &rdev->flags);
1408 set_bit(Replacement, &rdev->flags);
1409 rdev->raid_disk = mirror;
1410 err = 0;
1411 conf->fullsync = 1;
1412 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1413 break;
1416 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1417 /* Some requests might not have seen this new
1418 * merge_bvec_fn. We must wait for them to complete
1419 * before merging the device fully.
1420 * First we make sure any code which has tested
1421 * our function has submitted the request, then
1422 * we wait for all outstanding requests to complete.
1424 synchronize_sched();
1425 raise_barrier(conf);
1426 lower_barrier(conf);
1427 clear_bit(Unmerged, &rdev->flags);
1429 md_integrity_add_rdev(rdev, mddev);
1430 print_conf(conf);
1431 return err;
1434 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1436 struct r1conf *conf = mddev->private;
1437 int err = 0;
1438 int number = rdev->raid_disk;
1439 struct mirror_info *p = conf->mirrors+ number;
1441 if (rdev != p->rdev)
1442 p = conf->mirrors + conf->raid_disks + number;
1444 print_conf(conf);
1445 if (rdev == p->rdev) {
1446 if (test_bit(In_sync, &rdev->flags) ||
1447 atomic_read(&rdev->nr_pending)) {
1448 err = -EBUSY;
1449 goto abort;
1451 /* Only remove non-faulty devices if recovery
1452 * is not possible.
1454 if (!test_bit(Faulty, &rdev->flags) &&
1455 mddev->recovery_disabled != conf->recovery_disabled &&
1456 mddev->degraded < conf->raid_disks) {
1457 err = -EBUSY;
1458 goto abort;
1460 p->rdev = NULL;
1461 synchronize_rcu();
1462 if (atomic_read(&rdev->nr_pending)) {
1463 /* lost the race, try later */
1464 err = -EBUSY;
1465 p->rdev = rdev;
1466 goto abort;
1467 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1468 /* We just removed a device that is being replaced.
1469 * Move down the replacement. We drain all IO before
1470 * doing this to avoid confusion.
1472 struct md_rdev *repl =
1473 conf->mirrors[conf->raid_disks + number].rdev;
1474 raise_barrier(conf);
1475 clear_bit(Replacement, &repl->flags);
1476 p->rdev = repl;
1477 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1478 lower_barrier(conf);
1479 clear_bit(WantReplacement, &rdev->flags);
1480 } else
1481 clear_bit(WantReplacement, &rdev->flags);
1482 err = md_integrity_register(mddev);
1484 abort:
1486 print_conf(conf);
1487 return err;
1491 static void end_sync_read(struct bio *bio, int error)
1493 struct r1bio *r1_bio = bio->bi_private;
1495 update_head_pos(r1_bio->read_disk, r1_bio);
1498 * we have read a block, now it needs to be re-written,
1499 * or re-read if the read failed.
1500 * We don't do much here, just schedule handling by raid1d
1502 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1503 set_bit(R1BIO_Uptodate, &r1_bio->state);
1505 if (atomic_dec_and_test(&r1_bio->remaining))
1506 reschedule_retry(r1_bio);
1509 static void end_sync_write(struct bio *bio, int error)
1511 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1512 struct r1bio *r1_bio = bio->bi_private;
1513 struct mddev *mddev = r1_bio->mddev;
1514 struct r1conf *conf = mddev->private;
1515 int mirror=0;
1516 sector_t first_bad;
1517 int bad_sectors;
1519 mirror = find_bio_disk(r1_bio, bio);
1521 if (!uptodate) {
1522 sector_t sync_blocks = 0;
1523 sector_t s = r1_bio->sector;
1524 long sectors_to_go = r1_bio->sectors;
1525 /* make sure these bits doesn't get cleared. */
1526 do {
1527 bitmap_end_sync(mddev->bitmap, s,
1528 &sync_blocks, 1);
1529 s += sync_blocks;
1530 sectors_to_go -= sync_blocks;
1531 } while (sectors_to_go > 0);
1532 set_bit(WriteErrorSeen,
1533 &conf->mirrors[mirror].rdev->flags);
1534 if (!test_and_set_bit(WantReplacement,
1535 &conf->mirrors[mirror].rdev->flags))
1536 set_bit(MD_RECOVERY_NEEDED, &
1537 mddev->recovery);
1538 set_bit(R1BIO_WriteError, &r1_bio->state);
1539 } else if (is_badblock(conf->mirrors[mirror].rdev,
1540 r1_bio->sector,
1541 r1_bio->sectors,
1542 &first_bad, &bad_sectors) &&
1543 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1544 r1_bio->sector,
1545 r1_bio->sectors,
1546 &first_bad, &bad_sectors)
1548 set_bit(R1BIO_MadeGood, &r1_bio->state);
1550 if (atomic_dec_and_test(&r1_bio->remaining)) {
1551 int s = r1_bio->sectors;
1552 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1553 test_bit(R1BIO_WriteError, &r1_bio->state))
1554 reschedule_retry(r1_bio);
1555 else {
1556 put_buf(r1_bio);
1557 md_done_sync(mddev, s, uptodate);
1562 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1563 int sectors, struct page *page, int rw)
1565 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1566 /* success */
1567 return 1;
1568 if (rw == WRITE) {
1569 set_bit(WriteErrorSeen, &rdev->flags);
1570 if (!test_and_set_bit(WantReplacement,
1571 &rdev->flags))
1572 set_bit(MD_RECOVERY_NEEDED, &
1573 rdev->mddev->recovery);
1575 /* need to record an error - either for the block or the device */
1576 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1577 md_error(rdev->mddev, rdev);
1578 return 0;
1581 static int fix_sync_read_error(struct r1bio *r1_bio)
1583 /* Try some synchronous reads of other devices to get
1584 * good data, much like with normal read errors. Only
1585 * read into the pages we already have so we don't
1586 * need to re-issue the read request.
1587 * We don't need to freeze the array, because being in an
1588 * active sync request, there is no normal IO, and
1589 * no overlapping syncs.
1590 * We don't need to check is_badblock() again as we
1591 * made sure that anything with a bad block in range
1592 * will have bi_end_io clear.
1594 struct mddev *mddev = r1_bio->mddev;
1595 struct r1conf *conf = mddev->private;
1596 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1597 sector_t sect = r1_bio->sector;
1598 int sectors = r1_bio->sectors;
1599 int idx = 0;
1601 while(sectors) {
1602 int s = sectors;
1603 int d = r1_bio->read_disk;
1604 int success = 0;
1605 struct md_rdev *rdev;
1606 int start;
1608 if (s > (PAGE_SIZE>>9))
1609 s = PAGE_SIZE >> 9;
1610 do {
1611 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1612 /* No rcu protection needed here devices
1613 * can only be removed when no resync is
1614 * active, and resync is currently active
1616 rdev = conf->mirrors[d].rdev;
1617 if (sync_page_io(rdev, sect, s<<9,
1618 bio->bi_io_vec[idx].bv_page,
1619 READ, false)) {
1620 success = 1;
1621 break;
1624 d++;
1625 if (d == conf->raid_disks * 2)
1626 d = 0;
1627 } while (!success && d != r1_bio->read_disk);
1629 if (!success) {
1630 char b[BDEVNAME_SIZE];
1631 int abort = 0;
1632 /* Cannot read from anywhere, this block is lost.
1633 * Record a bad block on each device. If that doesn't
1634 * work just disable and interrupt the recovery.
1635 * Don't fail devices as that won't really help.
1637 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1638 " for block %llu\n",
1639 mdname(mddev),
1640 bdevname(bio->bi_bdev, b),
1641 (unsigned long long)r1_bio->sector);
1642 for (d = 0; d < conf->raid_disks * 2; d++) {
1643 rdev = conf->mirrors[d].rdev;
1644 if (!rdev || test_bit(Faulty, &rdev->flags))
1645 continue;
1646 if (!rdev_set_badblocks(rdev, sect, s, 0))
1647 abort = 1;
1649 if (abort) {
1650 conf->recovery_disabled =
1651 mddev->recovery_disabled;
1652 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1653 md_done_sync(mddev, r1_bio->sectors, 0);
1654 put_buf(r1_bio);
1655 return 0;
1657 /* Try next page */
1658 sectors -= s;
1659 sect += s;
1660 idx++;
1661 continue;
1664 start = d;
1665 /* write it back and re-read */
1666 while (d != r1_bio->read_disk) {
1667 if (d == 0)
1668 d = conf->raid_disks * 2;
1669 d--;
1670 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1671 continue;
1672 rdev = conf->mirrors[d].rdev;
1673 if (r1_sync_page_io(rdev, sect, s,
1674 bio->bi_io_vec[idx].bv_page,
1675 WRITE) == 0) {
1676 r1_bio->bios[d]->bi_end_io = NULL;
1677 rdev_dec_pending(rdev, mddev);
1680 d = start;
1681 while (d != r1_bio->read_disk) {
1682 if (d == 0)
1683 d = conf->raid_disks * 2;
1684 d--;
1685 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1686 continue;
1687 rdev = conf->mirrors[d].rdev;
1688 if (r1_sync_page_io(rdev, sect, s,
1689 bio->bi_io_vec[idx].bv_page,
1690 READ) != 0)
1691 atomic_add(s, &rdev->corrected_errors);
1693 sectors -= s;
1694 sect += s;
1695 idx ++;
1697 set_bit(R1BIO_Uptodate, &r1_bio->state);
1698 set_bit(BIO_UPTODATE, &bio->bi_flags);
1699 return 1;
1702 static int process_checks(struct r1bio *r1_bio)
1704 /* We have read all readable devices. If we haven't
1705 * got the block, then there is no hope left.
1706 * If we have, then we want to do a comparison
1707 * and skip the write if everything is the same.
1708 * If any blocks failed to read, then we need to
1709 * attempt an over-write
1711 struct mddev *mddev = r1_bio->mddev;
1712 struct r1conf *conf = mddev->private;
1713 int primary;
1714 int i;
1715 int vcnt;
1717 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1718 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1719 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1720 r1_bio->bios[primary]->bi_end_io = NULL;
1721 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1722 break;
1724 r1_bio->read_disk = primary;
1725 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1726 for (i = 0; i < conf->raid_disks * 2; i++) {
1727 int j;
1728 struct bio *pbio = r1_bio->bios[primary];
1729 struct bio *sbio = r1_bio->bios[i];
1730 int size;
1732 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1733 continue;
1735 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1736 for (j = vcnt; j-- ; ) {
1737 struct page *p, *s;
1738 p = pbio->bi_io_vec[j].bv_page;
1739 s = sbio->bi_io_vec[j].bv_page;
1740 if (memcmp(page_address(p),
1741 page_address(s),
1742 sbio->bi_io_vec[j].bv_len))
1743 break;
1745 } else
1746 j = 0;
1747 if (j >= 0)
1748 mddev->resync_mismatches += r1_bio->sectors;
1749 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1750 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1751 /* No need to write to this device. */
1752 sbio->bi_end_io = NULL;
1753 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1754 continue;
1756 /* fixup the bio for reuse */
1757 sbio->bi_vcnt = vcnt;
1758 sbio->bi_size = r1_bio->sectors << 9;
1759 sbio->bi_idx = 0;
1760 sbio->bi_phys_segments = 0;
1761 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1762 sbio->bi_flags |= 1 << BIO_UPTODATE;
1763 sbio->bi_next = NULL;
1764 sbio->bi_sector = r1_bio->sector +
1765 conf->mirrors[i].rdev->data_offset;
1766 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1767 size = sbio->bi_size;
1768 for (j = 0; j < vcnt ; j++) {
1769 struct bio_vec *bi;
1770 bi = &sbio->bi_io_vec[j];
1771 bi->bv_offset = 0;
1772 if (size > PAGE_SIZE)
1773 bi->bv_len = PAGE_SIZE;
1774 else
1775 bi->bv_len = size;
1776 size -= PAGE_SIZE;
1777 memcpy(page_address(bi->bv_page),
1778 page_address(pbio->bi_io_vec[j].bv_page),
1779 PAGE_SIZE);
1782 return 0;
1785 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1787 struct r1conf *conf = mddev->private;
1788 int i;
1789 int disks = conf->raid_disks * 2;
1790 struct bio *bio, *wbio;
1792 bio = r1_bio->bios[r1_bio->read_disk];
1794 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1795 /* ouch - failed to read all of that. */
1796 if (!fix_sync_read_error(r1_bio))
1797 return;
1799 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1800 if (process_checks(r1_bio) < 0)
1801 return;
1803 * schedule writes
1805 atomic_set(&r1_bio->remaining, 1);
1806 for (i = 0; i < disks ; i++) {
1807 wbio = r1_bio->bios[i];
1808 if (wbio->bi_end_io == NULL ||
1809 (wbio->bi_end_io == end_sync_read &&
1810 (i == r1_bio->read_disk ||
1811 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1812 continue;
1814 wbio->bi_rw = WRITE;
1815 wbio->bi_end_io = end_sync_write;
1816 atomic_inc(&r1_bio->remaining);
1817 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1819 generic_make_request(wbio);
1822 if (atomic_dec_and_test(&r1_bio->remaining)) {
1823 /* if we're here, all write(s) have completed, so clean up */
1824 int s = r1_bio->sectors;
1825 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1826 test_bit(R1BIO_WriteError, &r1_bio->state))
1827 reschedule_retry(r1_bio);
1828 else {
1829 put_buf(r1_bio);
1830 md_done_sync(mddev, s, 1);
1836 * This is a kernel thread which:
1838 * 1. Retries failed read operations on working mirrors.
1839 * 2. Updates the raid superblock when problems encounter.
1840 * 3. Performs writes following reads for array synchronising.
1843 static void fix_read_error(struct r1conf *conf, int read_disk,
1844 sector_t sect, int sectors)
1846 struct mddev *mddev = conf->mddev;
1847 while(sectors) {
1848 int s = sectors;
1849 int d = read_disk;
1850 int success = 0;
1851 int start;
1852 struct md_rdev *rdev;
1854 if (s > (PAGE_SIZE>>9))
1855 s = PAGE_SIZE >> 9;
1857 do {
1858 /* Note: no rcu protection needed here
1859 * as this is synchronous in the raid1d thread
1860 * which is the thread that might remove
1861 * a device. If raid1d ever becomes multi-threaded....
1863 sector_t first_bad;
1864 int bad_sectors;
1866 rdev = conf->mirrors[d].rdev;
1867 if (rdev &&
1868 test_bit(In_sync, &rdev->flags) &&
1869 is_badblock(rdev, sect, s,
1870 &first_bad, &bad_sectors) == 0 &&
1871 sync_page_io(rdev, sect, s<<9,
1872 conf->tmppage, READ, false))
1873 success = 1;
1874 else {
1875 d++;
1876 if (d == conf->raid_disks * 2)
1877 d = 0;
1879 } while (!success && d != read_disk);
1881 if (!success) {
1882 /* Cannot read from anywhere - mark it bad */
1883 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1884 if (!rdev_set_badblocks(rdev, sect, s, 0))
1885 md_error(mddev, rdev);
1886 break;
1888 /* write it back and re-read */
1889 start = d;
1890 while (d != read_disk) {
1891 if (d==0)
1892 d = conf->raid_disks * 2;
1893 d--;
1894 rdev = conf->mirrors[d].rdev;
1895 if (rdev &&
1896 test_bit(In_sync, &rdev->flags))
1897 r1_sync_page_io(rdev, sect, s,
1898 conf->tmppage, WRITE);
1900 d = start;
1901 while (d != read_disk) {
1902 char b[BDEVNAME_SIZE];
1903 if (d==0)
1904 d = conf->raid_disks * 2;
1905 d--;
1906 rdev = conf->mirrors[d].rdev;
1907 if (rdev &&
1908 test_bit(In_sync, &rdev->flags)) {
1909 if (r1_sync_page_io(rdev, sect, s,
1910 conf->tmppage, READ)) {
1911 atomic_add(s, &rdev->corrected_errors);
1912 printk(KERN_INFO
1913 "md/raid1:%s: read error corrected "
1914 "(%d sectors at %llu on %s)\n",
1915 mdname(mddev), s,
1916 (unsigned long long)(sect +
1917 rdev->data_offset),
1918 bdevname(rdev->bdev, b));
1922 sectors -= s;
1923 sect += s;
1927 static void bi_complete(struct bio *bio, int error)
1929 complete((struct completion *)bio->bi_private);
1932 static int submit_bio_wait(int rw, struct bio *bio)
1934 struct completion event;
1935 rw |= REQ_SYNC;
1937 init_completion(&event);
1938 bio->bi_private = &event;
1939 bio->bi_end_io = bi_complete;
1940 submit_bio(rw, bio);
1941 wait_for_completion(&event);
1943 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1946 static int narrow_write_error(struct r1bio *r1_bio, int i)
1948 struct mddev *mddev = r1_bio->mddev;
1949 struct r1conf *conf = mddev->private;
1950 struct md_rdev *rdev = conf->mirrors[i].rdev;
1951 int vcnt, idx;
1952 struct bio_vec *vec;
1954 /* bio has the data to be written to device 'i' where
1955 * we just recently had a write error.
1956 * We repeatedly clone the bio and trim down to one block,
1957 * then try the write. Where the write fails we record
1958 * a bad block.
1959 * It is conceivable that the bio doesn't exactly align with
1960 * blocks. We must handle this somehow.
1962 * We currently own a reference on the rdev.
1965 int block_sectors;
1966 sector_t sector;
1967 int sectors;
1968 int sect_to_write = r1_bio->sectors;
1969 int ok = 1;
1971 if (rdev->badblocks.shift < 0)
1972 return 0;
1974 block_sectors = 1 << rdev->badblocks.shift;
1975 sector = r1_bio->sector;
1976 sectors = ((sector + block_sectors)
1977 & ~(sector_t)(block_sectors - 1))
1978 - sector;
1980 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1981 vcnt = r1_bio->behind_page_count;
1982 vec = r1_bio->behind_bvecs;
1983 idx = 0;
1984 while (vec[idx].bv_page == NULL)
1985 idx++;
1986 } else {
1987 vcnt = r1_bio->master_bio->bi_vcnt;
1988 vec = r1_bio->master_bio->bi_io_vec;
1989 idx = r1_bio->master_bio->bi_idx;
1991 while (sect_to_write) {
1992 struct bio *wbio;
1993 if (sectors > sect_to_write)
1994 sectors = sect_to_write;
1995 /* Write at 'sector' for 'sectors'*/
1997 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1998 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1999 wbio->bi_sector = r1_bio->sector;
2000 wbio->bi_rw = WRITE;
2001 wbio->bi_vcnt = vcnt;
2002 wbio->bi_size = r1_bio->sectors << 9;
2003 wbio->bi_idx = idx;
2005 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2006 wbio->bi_sector += rdev->data_offset;
2007 wbio->bi_bdev = rdev->bdev;
2008 if (submit_bio_wait(WRITE, wbio) == 0)
2009 /* failure! */
2010 ok = rdev_set_badblocks(rdev, sector,
2011 sectors, 0)
2012 && ok;
2014 bio_put(wbio);
2015 sect_to_write -= sectors;
2016 sector += sectors;
2017 sectors = block_sectors;
2019 return ok;
2022 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2024 int m;
2025 int s = r1_bio->sectors;
2026 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2027 struct md_rdev *rdev = conf->mirrors[m].rdev;
2028 struct bio *bio = r1_bio->bios[m];
2029 if (bio->bi_end_io == NULL)
2030 continue;
2031 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2032 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2033 rdev_clear_badblocks(rdev, r1_bio->sector, s);
2035 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2036 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2037 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2038 md_error(conf->mddev, rdev);
2041 put_buf(r1_bio);
2042 md_done_sync(conf->mddev, s, 1);
2045 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2047 int m;
2048 for (m = 0; m < conf->raid_disks * 2 ; m++)
2049 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2050 struct md_rdev *rdev = conf->mirrors[m].rdev;
2051 rdev_clear_badblocks(rdev,
2052 r1_bio->sector,
2053 r1_bio->sectors);
2054 rdev_dec_pending(rdev, conf->mddev);
2055 } else if (r1_bio->bios[m] != NULL) {
2056 /* This drive got a write error. We need to
2057 * narrow down and record precise write
2058 * errors.
2060 if (!narrow_write_error(r1_bio, m)) {
2061 md_error(conf->mddev,
2062 conf->mirrors[m].rdev);
2063 /* an I/O failed, we can't clear the bitmap */
2064 set_bit(R1BIO_Degraded, &r1_bio->state);
2066 rdev_dec_pending(conf->mirrors[m].rdev,
2067 conf->mddev);
2069 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2070 close_write(r1_bio);
2071 raid_end_bio_io(r1_bio);
2074 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2076 int disk;
2077 int max_sectors;
2078 struct mddev *mddev = conf->mddev;
2079 struct bio *bio;
2080 char b[BDEVNAME_SIZE];
2081 struct md_rdev *rdev;
2083 clear_bit(R1BIO_ReadError, &r1_bio->state);
2084 /* we got a read error. Maybe the drive is bad. Maybe just
2085 * the block and we can fix it.
2086 * We freeze all other IO, and try reading the block from
2087 * other devices. When we find one, we re-write
2088 * and check it that fixes the read error.
2089 * This is all done synchronously while the array is
2090 * frozen
2092 if (mddev->ro == 0) {
2093 freeze_array(conf);
2094 fix_read_error(conf, r1_bio->read_disk,
2095 r1_bio->sector, r1_bio->sectors);
2096 unfreeze_array(conf);
2097 } else
2098 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2100 bio = r1_bio->bios[r1_bio->read_disk];
2101 bdevname(bio->bi_bdev, b);
2102 read_more:
2103 disk = read_balance(conf, r1_bio, &max_sectors);
2104 if (disk == -1) {
2105 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2106 " read error for block %llu\n",
2107 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2108 raid_end_bio_io(r1_bio);
2109 } else {
2110 const unsigned long do_sync
2111 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2112 if (bio) {
2113 r1_bio->bios[r1_bio->read_disk] =
2114 mddev->ro ? IO_BLOCKED : NULL;
2115 bio_put(bio);
2117 r1_bio->read_disk = disk;
2118 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2119 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2120 r1_bio->bios[r1_bio->read_disk] = bio;
2121 rdev = conf->mirrors[disk].rdev;
2122 printk_ratelimited(KERN_ERR
2123 "md/raid1:%s: redirecting sector %llu"
2124 " to other mirror: %s\n",
2125 mdname(mddev),
2126 (unsigned long long)r1_bio->sector,
2127 bdevname(rdev->bdev, b));
2128 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2129 bio->bi_bdev = rdev->bdev;
2130 bio->bi_end_io = raid1_end_read_request;
2131 bio->bi_rw = READ | do_sync;
2132 bio->bi_private = r1_bio;
2133 if (max_sectors < r1_bio->sectors) {
2134 /* Drat - have to split this up more */
2135 struct bio *mbio = r1_bio->master_bio;
2136 int sectors_handled = (r1_bio->sector + max_sectors
2137 - mbio->bi_sector);
2138 r1_bio->sectors = max_sectors;
2139 spin_lock_irq(&conf->device_lock);
2140 if (mbio->bi_phys_segments == 0)
2141 mbio->bi_phys_segments = 2;
2142 else
2143 mbio->bi_phys_segments++;
2144 spin_unlock_irq(&conf->device_lock);
2145 generic_make_request(bio);
2146 bio = NULL;
2148 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2150 r1_bio->master_bio = mbio;
2151 r1_bio->sectors = (mbio->bi_size >> 9)
2152 - sectors_handled;
2153 r1_bio->state = 0;
2154 set_bit(R1BIO_ReadError, &r1_bio->state);
2155 r1_bio->mddev = mddev;
2156 r1_bio->sector = mbio->bi_sector + sectors_handled;
2158 goto read_more;
2159 } else
2160 generic_make_request(bio);
2164 static void raid1d(struct mddev *mddev)
2166 struct r1bio *r1_bio;
2167 unsigned long flags;
2168 struct r1conf *conf = mddev->private;
2169 struct list_head *head = &conf->retry_list;
2170 struct blk_plug plug;
2172 md_check_recovery(mddev);
2174 blk_start_plug(&plug);
2175 for (;;) {
2177 if (atomic_read(&mddev->plug_cnt) == 0)
2178 flush_pending_writes(conf);
2180 spin_lock_irqsave(&conf->device_lock, flags);
2181 if (list_empty(head)) {
2182 spin_unlock_irqrestore(&conf->device_lock, flags);
2183 break;
2185 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2186 list_del(head->prev);
2187 conf->nr_queued--;
2188 spin_unlock_irqrestore(&conf->device_lock, flags);
2190 mddev = r1_bio->mddev;
2191 conf = mddev->private;
2192 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2193 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2194 test_bit(R1BIO_WriteError, &r1_bio->state))
2195 handle_sync_write_finished(conf, r1_bio);
2196 else
2197 sync_request_write(mddev, r1_bio);
2198 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2199 test_bit(R1BIO_WriteError, &r1_bio->state))
2200 handle_write_finished(conf, r1_bio);
2201 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2202 handle_read_error(conf, r1_bio);
2203 else
2204 /* just a partial read to be scheduled from separate
2205 * context
2207 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2209 cond_resched();
2210 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2211 md_check_recovery(mddev);
2213 blk_finish_plug(&plug);
2217 static int init_resync(struct r1conf *conf)
2219 int buffs;
2221 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2222 BUG_ON(conf->r1buf_pool);
2223 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2224 conf->poolinfo);
2225 if (!conf->r1buf_pool)
2226 return -ENOMEM;
2227 conf->next_resync = 0;
2228 return 0;
2232 * perform a "sync" on one "block"
2234 * We need to make sure that no normal I/O request - particularly write
2235 * requests - conflict with active sync requests.
2237 * This is achieved by tracking pending requests and a 'barrier' concept
2238 * that can be installed to exclude normal IO requests.
2241 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2243 struct r1conf *conf = mddev->private;
2244 struct r1bio *r1_bio;
2245 struct bio *bio;
2246 sector_t max_sector, nr_sectors;
2247 int disk = -1;
2248 int i;
2249 int wonly = -1;
2250 int write_targets = 0, read_targets = 0;
2251 sector_t sync_blocks;
2252 int still_degraded = 0;
2253 int good_sectors = RESYNC_SECTORS;
2254 int min_bad = 0; /* number of sectors that are bad in all devices */
2256 if (!conf->r1buf_pool)
2257 if (init_resync(conf))
2258 return 0;
2260 max_sector = mddev->dev_sectors;
2261 if (sector_nr >= max_sector) {
2262 /* If we aborted, we need to abort the
2263 * sync on the 'current' bitmap chunk (there will
2264 * only be one in raid1 resync.
2265 * We can find the current addess in mddev->curr_resync
2267 if (mddev->curr_resync < max_sector) /* aborted */
2268 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2269 &sync_blocks, 1);
2270 else /* completed sync */
2271 conf->fullsync = 0;
2273 bitmap_close_sync(mddev->bitmap);
2274 close_sync(conf);
2275 return 0;
2278 if (mddev->bitmap == NULL &&
2279 mddev->recovery_cp == MaxSector &&
2280 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2281 conf->fullsync == 0) {
2282 *skipped = 1;
2283 return max_sector - sector_nr;
2285 /* before building a request, check if we can skip these blocks..
2286 * This call the bitmap_start_sync doesn't actually record anything
2288 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2289 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2290 /* We can skip this block, and probably several more */
2291 *skipped = 1;
2292 return sync_blocks;
2295 * If there is non-resync activity waiting for a turn,
2296 * and resync is going fast enough,
2297 * then let it though before starting on this new sync request.
2299 if (!go_faster && conf->nr_waiting)
2300 msleep_interruptible(1000);
2302 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2303 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2304 raise_barrier(conf);
2306 conf->next_resync = sector_nr;
2308 rcu_read_lock();
2310 * If we get a correctably read error during resync or recovery,
2311 * we might want to read from a different device. So we
2312 * flag all drives that could conceivably be read from for READ,
2313 * and any others (which will be non-In_sync devices) for WRITE.
2314 * If a read fails, we try reading from something else for which READ
2315 * is OK.
2318 r1_bio->mddev = mddev;
2319 r1_bio->sector = sector_nr;
2320 r1_bio->state = 0;
2321 set_bit(R1BIO_IsSync, &r1_bio->state);
2323 for (i = 0; i < conf->raid_disks * 2; i++) {
2324 struct md_rdev *rdev;
2325 bio = r1_bio->bios[i];
2327 /* take from bio_init */
2328 bio->bi_next = NULL;
2329 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2330 bio->bi_flags |= 1 << BIO_UPTODATE;
2331 bio->bi_rw = READ;
2332 bio->bi_vcnt = 0;
2333 bio->bi_idx = 0;
2334 bio->bi_phys_segments = 0;
2335 bio->bi_size = 0;
2336 bio->bi_end_io = NULL;
2337 bio->bi_private = NULL;
2339 rdev = rcu_dereference(conf->mirrors[i].rdev);
2340 if (rdev == NULL ||
2341 test_bit(Faulty, &rdev->flags)) {
2342 if (i < conf->raid_disks)
2343 still_degraded = 1;
2344 } else if (!test_bit(In_sync, &rdev->flags)) {
2345 bio->bi_rw = WRITE;
2346 bio->bi_end_io = end_sync_write;
2347 write_targets ++;
2348 } else {
2349 /* may need to read from here */
2350 sector_t first_bad = MaxSector;
2351 int bad_sectors;
2353 if (is_badblock(rdev, sector_nr, good_sectors,
2354 &first_bad, &bad_sectors)) {
2355 if (first_bad > sector_nr)
2356 good_sectors = first_bad - sector_nr;
2357 else {
2358 bad_sectors -= (sector_nr - first_bad);
2359 if (min_bad == 0 ||
2360 min_bad > bad_sectors)
2361 min_bad = bad_sectors;
2364 if (sector_nr < first_bad) {
2365 if (test_bit(WriteMostly, &rdev->flags)) {
2366 if (wonly < 0)
2367 wonly = i;
2368 } else {
2369 if (disk < 0)
2370 disk = i;
2372 bio->bi_rw = READ;
2373 bio->bi_end_io = end_sync_read;
2374 read_targets++;
2377 if (bio->bi_end_io) {
2378 atomic_inc(&rdev->nr_pending);
2379 bio->bi_sector = sector_nr + rdev->data_offset;
2380 bio->bi_bdev = rdev->bdev;
2381 bio->bi_private = r1_bio;
2384 rcu_read_unlock();
2385 if (disk < 0)
2386 disk = wonly;
2387 r1_bio->read_disk = disk;
2389 if (read_targets == 0 && min_bad > 0) {
2390 /* These sectors are bad on all InSync devices, so we
2391 * need to mark them bad on all write targets
2393 int ok = 1;
2394 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2395 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2396 struct md_rdev *rdev = conf->mirrors[i].rdev;
2397 ok = rdev_set_badblocks(rdev, sector_nr,
2398 min_bad, 0
2399 ) && ok;
2401 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2402 *skipped = 1;
2403 put_buf(r1_bio);
2405 if (!ok) {
2406 /* Cannot record the badblocks, so need to
2407 * abort the resync.
2408 * If there are multiple read targets, could just
2409 * fail the really bad ones ???
2411 conf->recovery_disabled = mddev->recovery_disabled;
2412 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2413 return 0;
2414 } else
2415 return min_bad;
2418 if (min_bad > 0 && min_bad < good_sectors) {
2419 /* only resync enough to reach the next bad->good
2420 * transition */
2421 good_sectors = min_bad;
2424 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2425 /* extra read targets are also write targets */
2426 write_targets += read_targets-1;
2428 if (write_targets == 0 || read_targets == 0) {
2429 /* There is nowhere to write, so all non-sync
2430 * drives must be failed - so we are finished
2432 sector_t rv;
2433 if (min_bad > 0)
2434 max_sector = sector_nr + min_bad;
2435 rv = max_sector - sector_nr;
2436 *skipped = 1;
2437 put_buf(r1_bio);
2438 return rv;
2441 if (max_sector > mddev->resync_max)
2442 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2443 if (max_sector > sector_nr + good_sectors)
2444 max_sector = sector_nr + good_sectors;
2445 nr_sectors = 0;
2446 sync_blocks = 0;
2447 do {
2448 struct page *page;
2449 int len = PAGE_SIZE;
2450 if (sector_nr + (len>>9) > max_sector)
2451 len = (max_sector - sector_nr) << 9;
2452 if (len == 0)
2453 break;
2454 if (sync_blocks == 0) {
2455 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2456 &sync_blocks, still_degraded) &&
2457 !conf->fullsync &&
2458 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2459 break;
2460 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2461 if ((len >> 9) > sync_blocks)
2462 len = sync_blocks<<9;
2465 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2466 bio = r1_bio->bios[i];
2467 if (bio->bi_end_io) {
2468 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2469 if (bio_add_page(bio, page, len, 0) == 0) {
2470 /* stop here */
2471 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2472 while (i > 0) {
2473 i--;
2474 bio = r1_bio->bios[i];
2475 if (bio->bi_end_io==NULL)
2476 continue;
2477 /* remove last page from this bio */
2478 bio->bi_vcnt--;
2479 bio->bi_size -= len;
2480 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2482 goto bio_full;
2486 nr_sectors += len>>9;
2487 sector_nr += len>>9;
2488 sync_blocks -= (len>>9);
2489 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2490 bio_full:
2491 r1_bio->sectors = nr_sectors;
2493 /* For a user-requested sync, we read all readable devices and do a
2494 * compare
2496 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2497 atomic_set(&r1_bio->remaining, read_targets);
2498 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2499 bio = r1_bio->bios[i];
2500 if (bio->bi_end_io == end_sync_read) {
2501 read_targets--;
2502 md_sync_acct(bio->bi_bdev, nr_sectors);
2503 generic_make_request(bio);
2506 } else {
2507 atomic_set(&r1_bio->remaining, 1);
2508 bio = r1_bio->bios[r1_bio->read_disk];
2509 md_sync_acct(bio->bi_bdev, nr_sectors);
2510 generic_make_request(bio);
2513 return nr_sectors;
2516 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2518 if (sectors)
2519 return sectors;
2521 return mddev->dev_sectors;
2524 static struct r1conf *setup_conf(struct mddev *mddev)
2526 struct r1conf *conf;
2527 int i;
2528 struct mirror_info *disk;
2529 struct md_rdev *rdev;
2530 int err = -ENOMEM;
2532 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2533 if (!conf)
2534 goto abort;
2536 conf->mirrors = kzalloc(sizeof(struct mirror_info)
2537 * mddev->raid_disks * 2,
2538 GFP_KERNEL);
2539 if (!conf->mirrors)
2540 goto abort;
2542 conf->tmppage = alloc_page(GFP_KERNEL);
2543 if (!conf->tmppage)
2544 goto abort;
2546 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2547 if (!conf->poolinfo)
2548 goto abort;
2549 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2550 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2551 r1bio_pool_free,
2552 conf->poolinfo);
2553 if (!conf->r1bio_pool)
2554 goto abort;
2556 conf->poolinfo->mddev = mddev;
2558 err = -EINVAL;
2559 spin_lock_init(&conf->device_lock);
2560 rdev_for_each(rdev, mddev) {
2561 struct request_queue *q;
2562 int disk_idx = rdev->raid_disk;
2563 if (disk_idx >= mddev->raid_disks
2564 || disk_idx < 0)
2565 continue;
2566 if (test_bit(Replacement, &rdev->flags))
2567 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2568 else
2569 disk = conf->mirrors + disk_idx;
2571 if (disk->rdev)
2572 goto abort;
2573 disk->rdev = rdev;
2574 q = bdev_get_queue(rdev->bdev);
2575 if (q->merge_bvec_fn)
2576 mddev->merge_check_needed = 1;
2578 disk->head_position = 0;
2580 conf->raid_disks = mddev->raid_disks;
2581 conf->mddev = mddev;
2582 INIT_LIST_HEAD(&conf->retry_list);
2584 spin_lock_init(&conf->resync_lock);
2585 init_waitqueue_head(&conf->wait_barrier);
2587 bio_list_init(&conf->pending_bio_list);
2588 conf->pending_count = 0;
2589 conf->recovery_disabled = mddev->recovery_disabled - 1;
2591 err = -EIO;
2592 conf->last_used = -1;
2593 for (i = 0; i < conf->raid_disks * 2; i++) {
2595 disk = conf->mirrors + i;
2597 if (i < conf->raid_disks &&
2598 disk[conf->raid_disks].rdev) {
2599 /* This slot has a replacement. */
2600 if (!disk->rdev) {
2601 /* No original, just make the replacement
2602 * a recovering spare
2604 disk->rdev =
2605 disk[conf->raid_disks].rdev;
2606 disk[conf->raid_disks].rdev = NULL;
2607 } else if (!test_bit(In_sync, &disk->rdev->flags))
2608 /* Original is not in_sync - bad */
2609 goto abort;
2612 if (!disk->rdev ||
2613 !test_bit(In_sync, &disk->rdev->flags)) {
2614 disk->head_position = 0;
2615 if (disk->rdev)
2616 conf->fullsync = 1;
2617 } else if (conf->last_used < 0)
2619 * The first working device is used as a
2620 * starting point to read balancing.
2622 conf->last_used = i;
2625 if (conf->last_used < 0) {
2626 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2627 mdname(mddev));
2628 goto abort;
2630 err = -ENOMEM;
2631 conf->thread = md_register_thread(raid1d, mddev, NULL);
2632 if (!conf->thread) {
2633 printk(KERN_ERR
2634 "md/raid1:%s: couldn't allocate thread\n",
2635 mdname(mddev));
2636 goto abort;
2639 return conf;
2641 abort:
2642 if (conf) {
2643 if (conf->r1bio_pool)
2644 mempool_destroy(conf->r1bio_pool);
2645 kfree(conf->mirrors);
2646 safe_put_page(conf->tmppage);
2647 kfree(conf->poolinfo);
2648 kfree(conf);
2650 return ERR_PTR(err);
2653 static int stop(struct mddev *mddev);
2654 static int run(struct mddev *mddev)
2656 struct r1conf *conf;
2657 int i;
2658 struct md_rdev *rdev;
2659 int ret;
2661 if (mddev->level != 1) {
2662 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2663 mdname(mddev), mddev->level);
2664 return -EIO;
2666 if (mddev->reshape_position != MaxSector) {
2667 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2668 mdname(mddev));
2669 return -EIO;
2672 * copy the already verified devices into our private RAID1
2673 * bookkeeping area. [whatever we allocate in run(),
2674 * should be freed in stop()]
2676 if (mddev->private == NULL)
2677 conf = setup_conf(mddev);
2678 else
2679 conf = mddev->private;
2681 if (IS_ERR(conf))
2682 return PTR_ERR(conf);
2684 rdev_for_each(rdev, mddev) {
2685 if (!mddev->gendisk)
2686 continue;
2687 disk_stack_limits(mddev->gendisk, rdev->bdev,
2688 rdev->data_offset << 9);
2691 mddev->degraded = 0;
2692 for (i=0; i < conf->raid_disks; i++)
2693 if (conf->mirrors[i].rdev == NULL ||
2694 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2695 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2696 mddev->degraded++;
2698 if (conf->raid_disks - mddev->degraded == 1)
2699 mddev->recovery_cp = MaxSector;
2701 if (mddev->recovery_cp != MaxSector)
2702 printk(KERN_NOTICE "md/raid1:%s: not clean"
2703 " -- starting background reconstruction\n",
2704 mdname(mddev));
2705 printk(KERN_INFO
2706 "md/raid1:%s: active with %d out of %d mirrors\n",
2707 mdname(mddev), mddev->raid_disks - mddev->degraded,
2708 mddev->raid_disks);
2711 * Ok, everything is just fine now
2713 mddev->thread = conf->thread;
2714 conf->thread = NULL;
2715 mddev->private = conf;
2717 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2719 if (mddev->queue) {
2720 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2721 mddev->queue->backing_dev_info.congested_data = mddev;
2722 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2725 ret = md_integrity_register(mddev);
2726 if (ret)
2727 stop(mddev);
2728 return ret;
2731 static int stop(struct mddev *mddev)
2733 struct r1conf *conf = mddev->private;
2734 struct bitmap *bitmap = mddev->bitmap;
2736 /* wait for behind writes to complete */
2737 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2738 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2739 mdname(mddev));
2740 /* need to kick something here to make sure I/O goes? */
2741 wait_event(bitmap->behind_wait,
2742 atomic_read(&bitmap->behind_writes) == 0);
2745 raise_barrier(conf);
2746 lower_barrier(conf);
2748 md_unregister_thread(&mddev->thread);
2749 if (conf->r1bio_pool)
2750 mempool_destroy(conf->r1bio_pool);
2751 kfree(conf->mirrors);
2752 kfree(conf->poolinfo);
2753 kfree(conf);
2754 mddev->private = NULL;
2755 return 0;
2758 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2760 /* no resync is happening, and there is enough space
2761 * on all devices, so we can resize.
2762 * We need to make sure resync covers any new space.
2763 * If the array is shrinking we should possibly wait until
2764 * any io in the removed space completes, but it hardly seems
2765 * worth it.
2767 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2768 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2769 return -EINVAL;
2770 set_capacity(mddev->gendisk, mddev->array_sectors);
2771 revalidate_disk(mddev->gendisk);
2772 if (sectors > mddev->dev_sectors &&
2773 mddev->recovery_cp > mddev->dev_sectors) {
2774 mddev->recovery_cp = mddev->dev_sectors;
2775 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2777 mddev->dev_sectors = sectors;
2778 mddev->resync_max_sectors = sectors;
2779 return 0;
2782 static int raid1_reshape(struct mddev *mddev)
2784 /* We need to:
2785 * 1/ resize the r1bio_pool
2786 * 2/ resize conf->mirrors
2788 * We allocate a new r1bio_pool if we can.
2789 * Then raise a device barrier and wait until all IO stops.
2790 * Then resize conf->mirrors and swap in the new r1bio pool.
2792 * At the same time, we "pack" the devices so that all the missing
2793 * devices have the higher raid_disk numbers.
2795 mempool_t *newpool, *oldpool;
2796 struct pool_info *newpoolinfo;
2797 struct mirror_info *newmirrors;
2798 struct r1conf *conf = mddev->private;
2799 int cnt, raid_disks;
2800 unsigned long flags;
2801 int d, d2, err;
2803 /* Cannot change chunk_size, layout, or level */
2804 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2805 mddev->layout != mddev->new_layout ||
2806 mddev->level != mddev->new_level) {
2807 mddev->new_chunk_sectors = mddev->chunk_sectors;
2808 mddev->new_layout = mddev->layout;
2809 mddev->new_level = mddev->level;
2810 return -EINVAL;
2813 err = md_allow_write(mddev);
2814 if (err)
2815 return err;
2817 raid_disks = mddev->raid_disks + mddev->delta_disks;
2819 if (raid_disks < conf->raid_disks) {
2820 cnt=0;
2821 for (d= 0; d < conf->raid_disks; d++)
2822 if (conf->mirrors[d].rdev)
2823 cnt++;
2824 if (cnt > raid_disks)
2825 return -EBUSY;
2828 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2829 if (!newpoolinfo)
2830 return -ENOMEM;
2831 newpoolinfo->mddev = mddev;
2832 newpoolinfo->raid_disks = raid_disks * 2;
2834 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2835 r1bio_pool_free, newpoolinfo);
2836 if (!newpool) {
2837 kfree(newpoolinfo);
2838 return -ENOMEM;
2840 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2841 GFP_KERNEL);
2842 if (!newmirrors) {
2843 kfree(newpoolinfo);
2844 mempool_destroy(newpool);
2845 return -ENOMEM;
2848 raise_barrier(conf);
2850 /* ok, everything is stopped */
2851 oldpool = conf->r1bio_pool;
2852 conf->r1bio_pool = newpool;
2854 for (d = d2 = 0; d < conf->raid_disks; d++) {
2855 struct md_rdev *rdev = conf->mirrors[d].rdev;
2856 if (rdev && rdev->raid_disk != d2) {
2857 sysfs_unlink_rdev(mddev, rdev);
2858 rdev->raid_disk = d2;
2859 sysfs_unlink_rdev(mddev, rdev);
2860 if (sysfs_link_rdev(mddev, rdev))
2861 printk(KERN_WARNING
2862 "md/raid1:%s: cannot register rd%d\n",
2863 mdname(mddev), rdev->raid_disk);
2865 if (rdev)
2866 newmirrors[d2++].rdev = rdev;
2868 kfree(conf->mirrors);
2869 conf->mirrors = newmirrors;
2870 kfree(conf->poolinfo);
2871 conf->poolinfo = newpoolinfo;
2873 spin_lock_irqsave(&conf->device_lock, flags);
2874 mddev->degraded += (raid_disks - conf->raid_disks);
2875 spin_unlock_irqrestore(&conf->device_lock, flags);
2876 conf->raid_disks = mddev->raid_disks = raid_disks;
2877 mddev->delta_disks = 0;
2879 conf->last_used = 0; /* just make sure it is in-range */
2880 lower_barrier(conf);
2882 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2883 md_wakeup_thread(mddev->thread);
2885 mempool_destroy(oldpool);
2886 return 0;
2889 static void raid1_quiesce(struct mddev *mddev, int state)
2891 struct r1conf *conf = mddev->private;
2893 switch(state) {
2894 case 2: /* wake for suspend */
2895 wake_up(&conf->wait_barrier);
2896 break;
2897 case 1:
2898 raise_barrier(conf);
2899 break;
2900 case 0:
2901 lower_barrier(conf);
2902 break;
2906 static void *raid1_takeover(struct mddev *mddev)
2908 /* raid1 can take over:
2909 * raid5 with 2 devices, any layout or chunk size
2911 if (mddev->level == 5 && mddev->raid_disks == 2) {
2912 struct r1conf *conf;
2913 mddev->new_level = 1;
2914 mddev->new_layout = 0;
2915 mddev->new_chunk_sectors = 0;
2916 conf = setup_conf(mddev);
2917 if (!IS_ERR(conf))
2918 conf->barrier = 1;
2919 return conf;
2921 return ERR_PTR(-EINVAL);
2924 static struct md_personality raid1_personality =
2926 .name = "raid1",
2927 .level = 1,
2928 .owner = THIS_MODULE,
2929 .make_request = make_request,
2930 .run = run,
2931 .stop = stop,
2932 .status = status,
2933 .error_handler = error,
2934 .hot_add_disk = raid1_add_disk,
2935 .hot_remove_disk= raid1_remove_disk,
2936 .spare_active = raid1_spare_active,
2937 .sync_request = sync_request,
2938 .resize = raid1_resize,
2939 .size = raid1_size,
2940 .check_reshape = raid1_reshape,
2941 .quiesce = raid1_quiesce,
2942 .takeover = raid1_takeover,
2945 static int __init raid_init(void)
2947 return register_md_personality(&raid1_personality);
2950 static void raid_exit(void)
2952 unregister_md_personality(&raid1_personality);
2955 module_init(raid_init);
2956 module_exit(raid_exit);
2957 MODULE_LICENSE("GPL");
2958 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2959 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2960 MODULE_ALIAS("md-raid1");
2961 MODULE_ALIAS("md-level-1");
2963 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);