2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
53 static int max_queued_requests
= 1024;
55 static void allow_barrier(struct r1conf
*conf
);
56 static void lower_barrier(struct r1conf
*conf
);
58 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
60 struct pool_info
*pi
= data
;
61 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size
, gfp_flags
);
67 static void r1bio_pool_free(void *r1_bio
, void *data
)
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
78 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
80 struct pool_info
*pi
= data
;
86 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
91 * Allocate bios : 1 for reading, n-1 for writing
93 for (j
= pi
->raid_disks
; j
-- ; ) {
94 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
97 r1_bio
->bios
[j
] = bio
;
100 * Allocate RESYNC_PAGES data pages and attach them to
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
105 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
110 bio
= r1_bio
->bios
[j
];
111 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
112 page
= alloc_page(gfp_flags
);
116 bio
->bi_io_vec
[i
].bv_page
= page
;
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
122 for (i
=0; i
<RESYNC_PAGES
; i
++)
123 for (j
=1; j
<pi
->raid_disks
; j
++)
124 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
125 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
128 r1_bio
->master_bio
= NULL
;
133 for (j
=0 ; j
< pi
->raid_disks
; j
++)
134 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
135 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
138 while (++j
< pi
->raid_disks
)
139 bio_put(r1_bio
->bios
[j
]);
140 r1bio_pool_free(r1_bio
, data
);
144 static void r1buf_pool_free(void *__r1_bio
, void *data
)
146 struct pool_info
*pi
= data
;
148 struct r1bio
*r1bio
= __r1_bio
;
150 for (i
= 0; i
< RESYNC_PAGES
; i
++)
151 for (j
= pi
->raid_disks
; j
-- ;) {
153 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
154 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
155 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
157 for (i
=0 ; i
< pi
->raid_disks
; i
++)
158 bio_put(r1bio
->bios
[i
]);
160 r1bio_pool_free(r1bio
, data
);
163 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
167 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
168 struct bio
**bio
= r1_bio
->bios
+ i
;
169 if (!BIO_SPECIAL(*bio
))
175 static void free_r1bio(struct r1bio
*r1_bio
)
177 struct r1conf
*conf
= r1_bio
->mddev
->private;
179 put_all_bios(conf
, r1_bio
);
180 mempool_free(r1_bio
, conf
->r1bio_pool
);
183 static void put_buf(struct r1bio
*r1_bio
)
185 struct r1conf
*conf
= r1_bio
->mddev
->private;
188 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
189 struct bio
*bio
= r1_bio
->bios
[i
];
191 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
194 mempool_free(r1_bio
, conf
->r1buf_pool
);
199 static void reschedule_retry(struct r1bio
*r1_bio
)
202 struct mddev
*mddev
= r1_bio
->mddev
;
203 struct r1conf
*conf
= mddev
->private;
205 spin_lock_irqsave(&conf
->device_lock
, flags
);
206 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
208 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
210 wake_up(&conf
->wait_barrier
);
211 md_wakeup_thread(mddev
->thread
);
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
219 static void call_bio_endio(struct r1bio
*r1_bio
)
221 struct bio
*bio
= r1_bio
->master_bio
;
223 struct r1conf
*conf
= r1_bio
->mddev
->private;
225 if (bio
->bi_phys_segments
) {
227 spin_lock_irqsave(&conf
->device_lock
, flags
);
228 bio
->bi_phys_segments
--;
229 done
= (bio
->bi_phys_segments
== 0);
230 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
234 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
235 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
239 * Wake up any possible resync thread that waits for the device
246 static void raid_end_bio_io(struct r1bio
*r1_bio
)
248 struct bio
*bio
= r1_bio
->master_bio
;
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
254 (unsigned long long) bio
->bi_sector
,
255 (unsigned long long) bio
->bi_sector
+
256 (bio
->bi_size
>> 9) - 1);
258 call_bio_endio(r1_bio
);
264 * Update disk head position estimator based on IRQ completion info.
266 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
268 struct r1conf
*conf
= r1_bio
->mddev
->private;
270 conf
->mirrors
[disk
].head_position
=
271 r1_bio
->sector
+ (r1_bio
->sectors
);
275 * Find the disk number which triggered given bio
277 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
280 struct r1conf
*conf
= r1_bio
->mddev
->private;
281 int raid_disks
= conf
->raid_disks
;
283 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
284 if (r1_bio
->bios
[mirror
] == bio
)
287 BUG_ON(mirror
== raid_disks
* 2);
288 update_head_pos(mirror
, r1_bio
);
293 static void raid1_end_read_request(struct bio
*bio
, int error
)
295 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
296 struct r1bio
*r1_bio
= bio
->bi_private
;
298 struct r1conf
*conf
= r1_bio
->mddev
->private;
300 mirror
= r1_bio
->read_disk
;
302 * this branch is our 'one mirror IO has finished' event handler:
304 update_head_pos(mirror
, r1_bio
);
307 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
309 /* If all other devices have failed, we want to return
310 * the error upwards rather than fail the last device.
311 * Here we redefine "uptodate" to mean "Don't want to retry"
314 spin_lock_irqsave(&conf
->device_lock
, flags
);
315 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
316 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
317 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
319 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
323 raid_end_bio_io(r1_bio
);
328 char b
[BDEVNAME_SIZE
];
330 KERN_ERR
"md/raid1:%s: %s: "
331 "rescheduling sector %llu\n",
333 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
335 (unsigned long long)r1_bio
->sector
);
336 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
337 reschedule_retry(r1_bio
);
340 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
343 static void close_write(struct r1bio
*r1_bio
)
345 /* it really is the end of this request */
346 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
347 /* free extra copy of the data pages */
348 int i
= r1_bio
->behind_page_count
;
350 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
351 kfree(r1_bio
->behind_bvecs
);
352 r1_bio
->behind_bvecs
= NULL
;
354 /* clear the bitmap if all writes complete successfully */
355 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
357 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
358 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
359 md_write_end(r1_bio
->mddev
);
362 static void r1_bio_write_done(struct r1bio
*r1_bio
)
364 if (!atomic_dec_and_test(&r1_bio
->remaining
))
367 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
368 reschedule_retry(r1_bio
);
371 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
372 reschedule_retry(r1_bio
);
374 raid_end_bio_io(r1_bio
);
378 static void raid1_end_write_request(struct bio
*bio
, int error
)
380 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
381 struct r1bio
*r1_bio
= bio
->bi_private
;
382 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
383 struct r1conf
*conf
= r1_bio
->mddev
->private;
384 struct bio
*to_put
= NULL
;
386 mirror
= find_bio_disk(r1_bio
, bio
);
389 * 'one mirror IO has finished' event handler:
392 set_bit(WriteErrorSeen
,
393 &conf
->mirrors
[mirror
].rdev
->flags
);
394 if (!test_and_set_bit(WantReplacement
,
395 &conf
->mirrors
[mirror
].rdev
->flags
))
396 set_bit(MD_RECOVERY_NEEDED
, &
397 conf
->mddev
->recovery
);
399 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
402 * Set R1BIO_Uptodate in our master bio, so that we
403 * will return a good error code for to the higher
404 * levels even if IO on some other mirrored buffer
407 * The 'master' represents the composite IO operation
408 * to user-side. So if something waits for IO, then it
409 * will wait for the 'master' bio.
414 r1_bio
->bios
[mirror
] = NULL
;
416 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
418 /* Maybe we can clear some bad blocks. */
419 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
420 r1_bio
->sector
, r1_bio
->sectors
,
421 &first_bad
, &bad_sectors
)) {
422 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
423 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
428 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
429 atomic_dec(&r1_bio
->behind_remaining
);
432 * In behind mode, we ACK the master bio once the I/O
433 * has safely reached all non-writemostly
434 * disks. Setting the Returned bit ensures that this
435 * gets done only once -- we don't ever want to return
436 * -EIO here, instead we'll wait
438 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
439 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
440 /* Maybe we can return now */
441 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
442 struct bio
*mbio
= r1_bio
->master_bio
;
443 pr_debug("raid1: behind end write sectors"
445 (unsigned long long) mbio
->bi_sector
,
446 (unsigned long long) mbio
->bi_sector
+
447 (mbio
->bi_size
>> 9) - 1);
448 call_bio_endio(r1_bio
);
452 if (r1_bio
->bios
[mirror
] == NULL
)
453 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
457 * Let's see if all mirrored write operations have finished
460 r1_bio_write_done(r1_bio
);
468 * This routine returns the disk from which the requested read should
469 * be done. There is a per-array 'next expected sequential IO' sector
470 * number - if this matches on the next IO then we use the last disk.
471 * There is also a per-disk 'last know head position' sector that is
472 * maintained from IRQ contexts, both the normal and the resync IO
473 * completion handlers update this position correctly. If there is no
474 * perfect sequential match then we pick the disk whose head is closest.
476 * If there are 2 mirrors in the same 2 devices, performance degrades
477 * because position is mirror, not device based.
479 * The rdev for the device selected will have nr_pending incremented.
481 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
483 const sector_t this_sector
= r1_bio
->sector
;
485 int best_good_sectors
;
490 struct md_rdev
*rdev
;
495 * Check if we can balance. We can balance on the whole
496 * device if no resync is going on, or below the resync window.
497 * We take the first readable disk when above the resync window.
500 sectors
= r1_bio
->sectors
;
502 best_dist
= MaxSector
;
503 best_good_sectors
= 0;
505 if (conf
->mddev
->recovery_cp
< MaxSector
&&
506 (this_sector
+ sectors
>= conf
->next_resync
)) {
511 start_disk
= conf
->last_used
;
514 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++) {
519 int disk
= start_disk
+ i
;
520 if (disk
>= conf
->raid_disks
)
521 disk
-= conf
->raid_disks
;
523 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
524 if (r1_bio
->bios
[disk
] == IO_BLOCKED
526 || test_bit(Unmerged
, &rdev
->flags
)
527 || test_bit(Faulty
, &rdev
->flags
))
529 if (!test_bit(In_sync
, &rdev
->flags
) &&
530 rdev
->recovery_offset
< this_sector
+ sectors
)
532 if (test_bit(WriteMostly
, &rdev
->flags
)) {
533 /* Don't balance among write-mostly, just
534 * use the first as a last resort */
536 if (is_badblock(rdev
, this_sector
, sectors
,
537 &first_bad
, &bad_sectors
)) {
538 if (first_bad
< this_sector
)
539 /* Cannot use this */
541 best_good_sectors
= first_bad
- this_sector
;
543 best_good_sectors
= sectors
;
548 /* This is a reasonable device to use. It might
551 if (is_badblock(rdev
, this_sector
, sectors
,
552 &first_bad
, &bad_sectors
)) {
553 if (best_dist
< MaxSector
)
554 /* already have a better device */
556 if (first_bad
<= this_sector
) {
557 /* cannot read here. If this is the 'primary'
558 * device, then we must not read beyond
559 * bad_sectors from another device..
561 bad_sectors
-= (this_sector
- first_bad
);
562 if (choose_first
&& sectors
> bad_sectors
)
563 sectors
= bad_sectors
;
564 if (best_good_sectors
> sectors
)
565 best_good_sectors
= sectors
;
568 sector_t good_sectors
= first_bad
- this_sector
;
569 if (good_sectors
> best_good_sectors
) {
570 best_good_sectors
= good_sectors
;
578 best_good_sectors
= sectors
;
580 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
582 /* Don't change to another disk for sequential reads */
583 || conf
->next_seq_sect
== this_sector
585 /* If device is idle, use it */
586 || atomic_read(&rdev
->nr_pending
) == 0) {
590 if (dist
< best_dist
) {
596 if (best_disk
>= 0) {
597 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
600 atomic_inc(&rdev
->nr_pending
);
601 if (test_bit(Faulty
, &rdev
->flags
)) {
602 /* cannot risk returning a device that failed
603 * before we inc'ed nr_pending
605 rdev_dec_pending(rdev
, conf
->mddev
);
608 sectors
= best_good_sectors
;
609 conf
->next_seq_sect
= this_sector
+ sectors
;
610 conf
->last_used
= best_disk
;
613 *max_sectors
= sectors
;
618 static int raid1_mergeable_bvec(struct request_queue
*q
,
619 struct bvec_merge_data
*bvm
,
620 struct bio_vec
*biovec
)
622 struct mddev
*mddev
= q
->queuedata
;
623 struct r1conf
*conf
= mddev
->private;
624 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
625 int max
= biovec
->bv_len
;
627 if (mddev
->merge_check_needed
) {
630 for (disk
= 0; disk
< conf
->raid_disks
* 2; disk
++) {
631 struct md_rdev
*rdev
= rcu_dereference(
632 conf
->mirrors
[disk
].rdev
);
633 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
634 struct request_queue
*q
=
635 bdev_get_queue(rdev
->bdev
);
636 if (q
->merge_bvec_fn
) {
637 bvm
->bi_sector
= sector
+
639 bvm
->bi_bdev
= rdev
->bdev
;
640 max
= min(max
, q
->merge_bvec_fn(
651 int md_raid1_congested(struct mddev
*mddev
, int bits
)
653 struct r1conf
*conf
= mddev
->private;
656 if ((bits
& (1 << BDI_async_congested
)) &&
657 conf
->pending_count
>= max_queued_requests
)
661 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
662 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
663 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
664 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
668 /* Note the '|| 1' - when read_balance prefers
669 * non-congested targets, it can be removed
671 if ((bits
& (1<<BDI_async_congested
)) || 1)
672 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
674 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
680 EXPORT_SYMBOL_GPL(md_raid1_congested
);
682 static int raid1_congested(void *data
, int bits
)
684 struct mddev
*mddev
= data
;
686 return mddev_congested(mddev
, bits
) ||
687 md_raid1_congested(mddev
, bits
);
690 static void flush_pending_writes(struct r1conf
*conf
)
692 /* Any writes that have been queued but are awaiting
693 * bitmap updates get flushed here.
695 spin_lock_irq(&conf
->device_lock
);
697 if (conf
->pending_bio_list
.head
) {
699 bio
= bio_list_get(&conf
->pending_bio_list
);
700 conf
->pending_count
= 0;
701 spin_unlock_irq(&conf
->device_lock
);
702 /* flush any pending bitmap writes to
703 * disk before proceeding w/ I/O */
704 bitmap_unplug(conf
->mddev
->bitmap
);
705 wake_up(&conf
->wait_barrier
);
707 while (bio
) { /* submit pending writes */
708 struct bio
*next
= bio
->bi_next
;
710 generic_make_request(bio
);
714 spin_unlock_irq(&conf
->device_lock
);
718 * Sometimes we need to suspend IO while we do something else,
719 * either some resync/recovery, or reconfigure the array.
720 * To do this we raise a 'barrier'.
721 * The 'barrier' is a counter that can be raised multiple times
722 * to count how many activities are happening which preclude
724 * We can only raise the barrier if there is no pending IO.
725 * i.e. if nr_pending == 0.
726 * We choose only to raise the barrier if no-one is waiting for the
727 * barrier to go down. This means that as soon as an IO request
728 * is ready, no other operations which require a barrier will start
729 * until the IO request has had a chance.
731 * So: regular IO calls 'wait_barrier'. When that returns there
732 * is no backgroup IO happening, It must arrange to call
733 * allow_barrier when it has finished its IO.
734 * backgroup IO calls must call raise_barrier. Once that returns
735 * there is no normal IO happeing. It must arrange to call
736 * lower_barrier when the particular background IO completes.
738 #define RESYNC_DEPTH 32
740 static void raise_barrier(struct r1conf
*conf
)
742 spin_lock_irq(&conf
->resync_lock
);
744 /* Wait until no block IO is waiting */
745 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
746 conf
->resync_lock
, );
748 /* block any new IO from starting */
751 /* Now wait for all pending IO to complete */
752 wait_event_lock_irq(conf
->wait_barrier
,
753 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
754 conf
->resync_lock
, );
756 spin_unlock_irq(&conf
->resync_lock
);
759 static void lower_barrier(struct r1conf
*conf
)
762 BUG_ON(conf
->barrier
<= 0);
763 spin_lock_irqsave(&conf
->resync_lock
, flags
);
765 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
766 wake_up(&conf
->wait_barrier
);
769 static void wait_barrier(struct r1conf
*conf
)
771 spin_lock_irq(&conf
->resync_lock
);
774 /* Wait for the barrier to drop.
775 * However if there are already pending
776 * requests (preventing the barrier from
777 * rising completely), and the
778 * pre-process bio queue isn't empty,
779 * then don't wait, as we need to empty
780 * that queue to get the nr_pending
783 wait_event_lock_irq(conf
->wait_barrier
,
787 !bio_list_empty(current
->bio_list
)),
793 spin_unlock_irq(&conf
->resync_lock
);
796 static void allow_barrier(struct r1conf
*conf
)
799 spin_lock_irqsave(&conf
->resync_lock
, flags
);
801 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
802 wake_up(&conf
->wait_barrier
);
805 static void freeze_array(struct r1conf
*conf
)
807 /* stop syncio and normal IO and wait for everything to
809 * We increment barrier and nr_waiting, and then
810 * wait until nr_pending match nr_queued+1
811 * This is called in the context of one normal IO request
812 * that has failed. Thus any sync request that might be pending
813 * will be blocked by nr_pending, and we need to wait for
814 * pending IO requests to complete or be queued for re-try.
815 * Thus the number queued (nr_queued) plus this request (1)
816 * must match the number of pending IOs (nr_pending) before
819 spin_lock_irq(&conf
->resync_lock
);
822 wait_event_lock_irq(conf
->wait_barrier
,
823 conf
->nr_pending
== conf
->nr_queued
+1,
825 flush_pending_writes(conf
));
826 spin_unlock_irq(&conf
->resync_lock
);
828 static void unfreeze_array(struct r1conf
*conf
)
830 /* reverse the effect of the freeze */
831 spin_lock_irq(&conf
->resync_lock
);
834 wake_up(&conf
->wait_barrier
);
835 spin_unlock_irq(&conf
->resync_lock
);
839 /* duplicate the data pages for behind I/O
841 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
844 struct bio_vec
*bvec
;
845 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
847 if (unlikely(!bvecs
))
850 bio_for_each_segment(bvec
, bio
, i
) {
852 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
853 if (unlikely(!bvecs
[i
].bv_page
))
855 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
856 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
857 kunmap(bvecs
[i
].bv_page
);
858 kunmap(bvec
->bv_page
);
860 r1_bio
->behind_bvecs
= bvecs
;
861 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
862 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
866 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
867 if (bvecs
[i
].bv_page
)
868 put_page(bvecs
[i
].bv_page
);
870 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
873 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
875 struct r1conf
*conf
= mddev
->private;
876 struct mirror_info
*mirror
;
877 struct r1bio
*r1_bio
;
878 struct bio
*read_bio
;
880 struct bitmap
*bitmap
;
882 const int rw
= bio_data_dir(bio
);
883 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
884 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
885 struct md_rdev
*blocked_rdev
;
892 * Register the new request and wait if the reconstruction
893 * thread has put up a bar for new requests.
894 * Continue immediately if no resync is active currently.
897 md_write_start(mddev
, bio
); /* wait on superblock update early */
899 if (bio_data_dir(bio
) == WRITE
&&
900 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
901 bio
->bi_sector
< mddev
->suspend_hi
) {
902 /* As the suspend_* range is controlled by
903 * userspace, we want an interruptible
908 flush_signals(current
);
909 prepare_to_wait(&conf
->wait_barrier
,
910 &w
, TASK_INTERRUPTIBLE
);
911 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
912 bio
->bi_sector
>= mddev
->suspend_hi
)
916 finish_wait(&conf
->wait_barrier
, &w
);
921 bitmap
= mddev
->bitmap
;
924 * make_request() can abort the operation when READA is being
925 * used and no empty request is available.
928 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
930 r1_bio
->master_bio
= bio
;
931 r1_bio
->sectors
= bio
->bi_size
>> 9;
933 r1_bio
->mddev
= mddev
;
934 r1_bio
->sector
= bio
->bi_sector
;
936 /* We might need to issue multiple reads to different
937 * devices if there are bad blocks around, so we keep
938 * track of the number of reads in bio->bi_phys_segments.
939 * If this is 0, there is only one r1_bio and no locking
940 * will be needed when requests complete. If it is
941 * non-zero, then it is the number of not-completed requests.
943 bio
->bi_phys_segments
= 0;
944 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
948 * read balancing logic:
953 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
956 /* couldn't find anywhere to read from */
957 raid_end_bio_io(r1_bio
);
960 mirror
= conf
->mirrors
+ rdisk
;
962 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
964 /* Reading from a write-mostly device must
965 * take care not to over-take any writes
968 wait_event(bitmap
->behind_wait
,
969 atomic_read(&bitmap
->behind_writes
) == 0);
971 r1_bio
->read_disk
= rdisk
;
973 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
974 md_trim_bio(read_bio
, r1_bio
->sector
- bio
->bi_sector
,
977 r1_bio
->bios
[rdisk
] = read_bio
;
979 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
980 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
981 read_bio
->bi_end_io
= raid1_end_read_request
;
982 read_bio
->bi_rw
= READ
| do_sync
;
983 read_bio
->bi_private
= r1_bio
;
985 if (max_sectors
< r1_bio
->sectors
) {
986 /* could not read all from this device, so we will
987 * need another r1_bio.
990 sectors_handled
= (r1_bio
->sector
+ max_sectors
992 r1_bio
->sectors
= max_sectors
;
993 spin_lock_irq(&conf
->device_lock
);
994 if (bio
->bi_phys_segments
== 0)
995 bio
->bi_phys_segments
= 2;
997 bio
->bi_phys_segments
++;
998 spin_unlock_irq(&conf
->device_lock
);
999 /* Cannot call generic_make_request directly
1000 * as that will be queued in __make_request
1001 * and subsequent mempool_alloc might block waiting
1002 * for it. So hand bio over to raid1d.
1004 reschedule_retry(r1_bio
);
1006 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1008 r1_bio
->master_bio
= bio
;
1009 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1011 r1_bio
->mddev
= mddev
;
1012 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1015 generic_make_request(read_bio
);
1022 if (conf
->pending_count
>= max_queued_requests
) {
1023 md_wakeup_thread(mddev
->thread
);
1024 wait_event(conf
->wait_barrier
,
1025 conf
->pending_count
< max_queued_requests
);
1027 /* first select target devices under rcu_lock and
1028 * inc refcount on their rdev. Record them by setting
1030 * If there are known/acknowledged bad blocks on any device on
1031 * which we have seen a write error, we want to avoid writing those
1033 * This potentially requires several writes to write around
1034 * the bad blocks. Each set of writes gets it's own r1bio
1035 * with a set of bios attached.
1037 plugged
= mddev_check_plugged(mddev
);
1039 disks
= conf
->raid_disks
* 2;
1041 blocked_rdev
= NULL
;
1043 max_sectors
= r1_bio
->sectors
;
1044 for (i
= 0; i
< disks
; i
++) {
1045 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1046 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1047 atomic_inc(&rdev
->nr_pending
);
1048 blocked_rdev
= rdev
;
1051 r1_bio
->bios
[i
] = NULL
;
1052 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)
1053 || test_bit(Unmerged
, &rdev
->flags
)) {
1054 if (i
< conf
->raid_disks
)
1055 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1059 atomic_inc(&rdev
->nr_pending
);
1060 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1065 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1067 &first_bad
, &bad_sectors
);
1069 /* mustn't write here until the bad block is
1071 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1072 blocked_rdev
= rdev
;
1075 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1076 /* Cannot write here at all */
1077 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1078 if (bad_sectors
< max_sectors
)
1079 /* mustn't write more than bad_sectors
1080 * to other devices yet
1082 max_sectors
= bad_sectors
;
1083 rdev_dec_pending(rdev
, mddev
);
1084 /* We don't set R1BIO_Degraded as that
1085 * only applies if the disk is
1086 * missing, so it might be re-added,
1087 * and we want to know to recover this
1089 * In this case the device is here,
1090 * and the fact that this chunk is not
1091 * in-sync is recorded in the bad
1097 int good_sectors
= first_bad
- r1_bio
->sector
;
1098 if (good_sectors
< max_sectors
)
1099 max_sectors
= good_sectors
;
1102 r1_bio
->bios
[i
] = bio
;
1106 if (unlikely(blocked_rdev
)) {
1107 /* Wait for this device to become unblocked */
1110 for (j
= 0; j
< i
; j
++)
1111 if (r1_bio
->bios
[j
])
1112 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1114 allow_barrier(conf
);
1115 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1120 if (max_sectors
< r1_bio
->sectors
) {
1121 /* We are splitting this write into multiple parts, so
1122 * we need to prepare for allocating another r1_bio.
1124 r1_bio
->sectors
= max_sectors
;
1125 spin_lock_irq(&conf
->device_lock
);
1126 if (bio
->bi_phys_segments
== 0)
1127 bio
->bi_phys_segments
= 2;
1129 bio
->bi_phys_segments
++;
1130 spin_unlock_irq(&conf
->device_lock
);
1132 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1134 atomic_set(&r1_bio
->remaining
, 1);
1135 atomic_set(&r1_bio
->behind_remaining
, 0);
1138 for (i
= 0; i
< disks
; i
++) {
1140 if (!r1_bio
->bios
[i
])
1143 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1144 md_trim_bio(mbio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1148 * Not if there are too many, or cannot
1149 * allocate memory, or a reader on WriteMostly
1150 * is waiting for behind writes to flush */
1152 (atomic_read(&bitmap
->behind_writes
)
1153 < mddev
->bitmap_info
.max_write_behind
) &&
1154 !waitqueue_active(&bitmap
->behind_wait
))
1155 alloc_behind_pages(mbio
, r1_bio
);
1157 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1159 test_bit(R1BIO_BehindIO
,
1163 if (r1_bio
->behind_bvecs
) {
1164 struct bio_vec
*bvec
;
1167 /* Yes, I really want the '__' version so that
1168 * we clear any unused pointer in the io_vec, rather
1169 * than leave them unchanged. This is important
1170 * because when we come to free the pages, we won't
1171 * know the original bi_idx, so we just free
1174 __bio_for_each_segment(bvec
, mbio
, j
, 0)
1175 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1176 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1177 atomic_inc(&r1_bio
->behind_remaining
);
1180 r1_bio
->bios
[i
] = mbio
;
1182 mbio
->bi_sector
= (r1_bio
->sector
+
1183 conf
->mirrors
[i
].rdev
->data_offset
);
1184 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1185 mbio
->bi_end_io
= raid1_end_write_request
;
1186 mbio
->bi_rw
= WRITE
| do_flush_fua
| do_sync
;
1187 mbio
->bi_private
= r1_bio
;
1189 atomic_inc(&r1_bio
->remaining
);
1190 spin_lock_irqsave(&conf
->device_lock
, flags
);
1191 bio_list_add(&conf
->pending_bio_list
, mbio
);
1192 conf
->pending_count
++;
1193 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1195 /* Mustn't call r1_bio_write_done before this next test,
1196 * as it could result in the bio being freed.
1198 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1199 r1_bio_write_done(r1_bio
);
1200 /* We need another r1_bio. It has already been counted
1201 * in bio->bi_phys_segments
1203 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1204 r1_bio
->master_bio
= bio
;
1205 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1207 r1_bio
->mddev
= mddev
;
1208 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1212 r1_bio_write_done(r1_bio
);
1214 /* In case raid1d snuck in to freeze_array */
1215 wake_up(&conf
->wait_barrier
);
1217 if (do_sync
|| !bitmap
|| !plugged
)
1218 md_wakeup_thread(mddev
->thread
);
1221 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1223 struct r1conf
*conf
= mddev
->private;
1226 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1227 conf
->raid_disks
- mddev
->degraded
);
1229 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1230 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1231 seq_printf(seq
, "%s",
1232 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1235 seq_printf(seq
, "]");
1239 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1241 char b
[BDEVNAME_SIZE
];
1242 struct r1conf
*conf
= mddev
->private;
1245 * If it is not operational, then we have already marked it as dead
1246 * else if it is the last working disks, ignore the error, let the
1247 * next level up know.
1248 * else mark the drive as failed
1250 if (test_bit(In_sync
, &rdev
->flags
)
1251 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1253 * Don't fail the drive, act as though we were just a
1254 * normal single drive.
1255 * However don't try a recovery from this drive as
1256 * it is very likely to fail.
1258 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1261 set_bit(Blocked
, &rdev
->flags
);
1262 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1263 unsigned long flags
;
1264 spin_lock_irqsave(&conf
->device_lock
, flags
);
1266 set_bit(Faulty
, &rdev
->flags
);
1267 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1269 * if recovery is running, make sure it aborts.
1271 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1273 set_bit(Faulty
, &rdev
->flags
);
1274 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1276 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1277 "md/raid1:%s: Operation continuing on %d devices.\n",
1278 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1279 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1282 static void print_conf(struct r1conf
*conf
)
1286 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1288 printk(KERN_DEBUG
"(!conf)\n");
1291 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1295 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1296 char b
[BDEVNAME_SIZE
];
1297 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1299 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1300 i
, !test_bit(In_sync
, &rdev
->flags
),
1301 !test_bit(Faulty
, &rdev
->flags
),
1302 bdevname(rdev
->bdev
,b
));
1307 static void close_sync(struct r1conf
*conf
)
1310 allow_barrier(conf
);
1312 mempool_destroy(conf
->r1buf_pool
);
1313 conf
->r1buf_pool
= NULL
;
1316 static int raid1_spare_active(struct mddev
*mddev
)
1319 struct r1conf
*conf
= mddev
->private;
1321 unsigned long flags
;
1324 * Find all failed disks within the RAID1 configuration
1325 * and mark them readable.
1326 * Called under mddev lock, so rcu protection not needed.
1328 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1329 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1330 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1332 && repl
->recovery_offset
== MaxSector
1333 && !test_bit(Faulty
, &repl
->flags
)
1334 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1335 /* replacement has just become active */
1337 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1340 /* Replaced device not technically
1341 * faulty, but we need to be sure
1342 * it gets removed and never re-added
1344 set_bit(Faulty
, &rdev
->flags
);
1345 sysfs_notify_dirent_safe(
1350 && !test_bit(Faulty
, &rdev
->flags
)
1351 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1353 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1356 spin_lock_irqsave(&conf
->device_lock
, flags
);
1357 mddev
->degraded
-= count
;
1358 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1365 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1367 struct r1conf
*conf
= mddev
->private;
1370 struct mirror_info
*p
;
1372 int last
= conf
->raid_disks
- 1;
1373 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1375 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1378 if (rdev
->raid_disk
>= 0)
1379 first
= last
= rdev
->raid_disk
;
1381 if (q
->merge_bvec_fn
) {
1382 set_bit(Unmerged
, &rdev
->flags
);
1383 mddev
->merge_check_needed
= 1;
1386 for (mirror
= first
; mirror
<= last
; mirror
++) {
1387 p
= conf
->mirrors
+mirror
;
1390 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1391 rdev
->data_offset
<< 9);
1393 p
->head_position
= 0;
1394 rdev
->raid_disk
= mirror
;
1396 /* As all devices are equivalent, we don't need a full recovery
1397 * if this was recently any drive of the array
1399 if (rdev
->saved_raid_disk
< 0)
1401 rcu_assign_pointer(p
->rdev
, rdev
);
1404 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1405 p
[conf
->raid_disks
].rdev
== NULL
) {
1406 /* Add this device as a replacement */
1407 clear_bit(In_sync
, &rdev
->flags
);
1408 set_bit(Replacement
, &rdev
->flags
);
1409 rdev
->raid_disk
= mirror
;
1412 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1416 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1417 /* Some requests might not have seen this new
1418 * merge_bvec_fn. We must wait for them to complete
1419 * before merging the device fully.
1420 * First we make sure any code which has tested
1421 * our function has submitted the request, then
1422 * we wait for all outstanding requests to complete.
1424 synchronize_sched();
1425 raise_barrier(conf
);
1426 lower_barrier(conf
);
1427 clear_bit(Unmerged
, &rdev
->flags
);
1429 md_integrity_add_rdev(rdev
, mddev
);
1434 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1436 struct r1conf
*conf
= mddev
->private;
1438 int number
= rdev
->raid_disk
;
1439 struct mirror_info
*p
= conf
->mirrors
+ number
;
1441 if (rdev
!= p
->rdev
)
1442 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1445 if (rdev
== p
->rdev
) {
1446 if (test_bit(In_sync
, &rdev
->flags
) ||
1447 atomic_read(&rdev
->nr_pending
)) {
1451 /* Only remove non-faulty devices if recovery
1454 if (!test_bit(Faulty
, &rdev
->flags
) &&
1455 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1456 mddev
->degraded
< conf
->raid_disks
) {
1462 if (atomic_read(&rdev
->nr_pending
)) {
1463 /* lost the race, try later */
1467 } else if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1468 /* We just removed a device that is being replaced.
1469 * Move down the replacement. We drain all IO before
1470 * doing this to avoid confusion.
1472 struct md_rdev
*repl
=
1473 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1474 raise_barrier(conf
);
1475 clear_bit(Replacement
, &repl
->flags
);
1477 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1478 lower_barrier(conf
);
1479 clear_bit(WantReplacement
, &rdev
->flags
);
1481 clear_bit(WantReplacement
, &rdev
->flags
);
1482 err
= md_integrity_register(mddev
);
1491 static void end_sync_read(struct bio
*bio
, int error
)
1493 struct r1bio
*r1_bio
= bio
->bi_private
;
1495 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1498 * we have read a block, now it needs to be re-written,
1499 * or re-read if the read failed.
1500 * We don't do much here, just schedule handling by raid1d
1502 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1503 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1505 if (atomic_dec_and_test(&r1_bio
->remaining
))
1506 reschedule_retry(r1_bio
);
1509 static void end_sync_write(struct bio
*bio
, int error
)
1511 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1512 struct r1bio
*r1_bio
= bio
->bi_private
;
1513 struct mddev
*mddev
= r1_bio
->mddev
;
1514 struct r1conf
*conf
= mddev
->private;
1519 mirror
= find_bio_disk(r1_bio
, bio
);
1522 sector_t sync_blocks
= 0;
1523 sector_t s
= r1_bio
->sector
;
1524 long sectors_to_go
= r1_bio
->sectors
;
1525 /* make sure these bits doesn't get cleared. */
1527 bitmap_end_sync(mddev
->bitmap
, s
,
1530 sectors_to_go
-= sync_blocks
;
1531 } while (sectors_to_go
> 0);
1532 set_bit(WriteErrorSeen
,
1533 &conf
->mirrors
[mirror
].rdev
->flags
);
1534 if (!test_and_set_bit(WantReplacement
,
1535 &conf
->mirrors
[mirror
].rdev
->flags
))
1536 set_bit(MD_RECOVERY_NEEDED
, &
1538 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1539 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1542 &first_bad
, &bad_sectors
) &&
1543 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1546 &first_bad
, &bad_sectors
)
1548 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1550 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1551 int s
= r1_bio
->sectors
;
1552 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1553 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1554 reschedule_retry(r1_bio
);
1557 md_done_sync(mddev
, s
, uptodate
);
1562 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1563 int sectors
, struct page
*page
, int rw
)
1565 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1569 set_bit(WriteErrorSeen
, &rdev
->flags
);
1570 if (!test_and_set_bit(WantReplacement
,
1572 set_bit(MD_RECOVERY_NEEDED
, &
1573 rdev
->mddev
->recovery
);
1575 /* need to record an error - either for the block or the device */
1576 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1577 md_error(rdev
->mddev
, rdev
);
1581 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1583 /* Try some synchronous reads of other devices to get
1584 * good data, much like with normal read errors. Only
1585 * read into the pages we already have so we don't
1586 * need to re-issue the read request.
1587 * We don't need to freeze the array, because being in an
1588 * active sync request, there is no normal IO, and
1589 * no overlapping syncs.
1590 * We don't need to check is_badblock() again as we
1591 * made sure that anything with a bad block in range
1592 * will have bi_end_io clear.
1594 struct mddev
*mddev
= r1_bio
->mddev
;
1595 struct r1conf
*conf
= mddev
->private;
1596 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1597 sector_t sect
= r1_bio
->sector
;
1598 int sectors
= r1_bio
->sectors
;
1603 int d
= r1_bio
->read_disk
;
1605 struct md_rdev
*rdev
;
1608 if (s
> (PAGE_SIZE
>>9))
1611 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1612 /* No rcu protection needed here devices
1613 * can only be removed when no resync is
1614 * active, and resync is currently active
1616 rdev
= conf
->mirrors
[d
].rdev
;
1617 if (sync_page_io(rdev
, sect
, s
<<9,
1618 bio
->bi_io_vec
[idx
].bv_page
,
1625 if (d
== conf
->raid_disks
* 2)
1627 } while (!success
&& d
!= r1_bio
->read_disk
);
1630 char b
[BDEVNAME_SIZE
];
1632 /* Cannot read from anywhere, this block is lost.
1633 * Record a bad block on each device. If that doesn't
1634 * work just disable and interrupt the recovery.
1635 * Don't fail devices as that won't really help.
1637 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1638 " for block %llu\n",
1640 bdevname(bio
->bi_bdev
, b
),
1641 (unsigned long long)r1_bio
->sector
);
1642 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1643 rdev
= conf
->mirrors
[d
].rdev
;
1644 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1646 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1650 conf
->recovery_disabled
=
1651 mddev
->recovery_disabled
;
1652 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1653 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1665 /* write it back and re-read */
1666 while (d
!= r1_bio
->read_disk
) {
1668 d
= conf
->raid_disks
* 2;
1670 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1672 rdev
= conf
->mirrors
[d
].rdev
;
1673 if (r1_sync_page_io(rdev
, sect
, s
,
1674 bio
->bi_io_vec
[idx
].bv_page
,
1676 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1677 rdev_dec_pending(rdev
, mddev
);
1681 while (d
!= r1_bio
->read_disk
) {
1683 d
= conf
->raid_disks
* 2;
1685 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1687 rdev
= conf
->mirrors
[d
].rdev
;
1688 if (r1_sync_page_io(rdev
, sect
, s
,
1689 bio
->bi_io_vec
[idx
].bv_page
,
1691 atomic_add(s
, &rdev
->corrected_errors
);
1697 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1698 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1702 static int process_checks(struct r1bio
*r1_bio
)
1704 /* We have read all readable devices. If we haven't
1705 * got the block, then there is no hope left.
1706 * If we have, then we want to do a comparison
1707 * and skip the write if everything is the same.
1708 * If any blocks failed to read, then we need to
1709 * attempt an over-write
1711 struct mddev
*mddev
= r1_bio
->mddev
;
1712 struct r1conf
*conf
= mddev
->private;
1717 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1718 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1719 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1720 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1721 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1724 r1_bio
->read_disk
= primary
;
1725 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1726 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1728 struct bio
*pbio
= r1_bio
->bios
[primary
];
1729 struct bio
*sbio
= r1_bio
->bios
[i
];
1732 if (r1_bio
->bios
[i
]->bi_end_io
!= end_sync_read
)
1735 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1736 for (j
= vcnt
; j
-- ; ) {
1738 p
= pbio
->bi_io_vec
[j
].bv_page
;
1739 s
= sbio
->bi_io_vec
[j
].bv_page
;
1740 if (memcmp(page_address(p
),
1742 sbio
->bi_io_vec
[j
].bv_len
))
1748 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1749 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1750 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1751 /* No need to write to this device. */
1752 sbio
->bi_end_io
= NULL
;
1753 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1756 /* fixup the bio for reuse */
1757 sbio
->bi_vcnt
= vcnt
;
1758 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1760 sbio
->bi_phys_segments
= 0;
1761 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1762 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1763 sbio
->bi_next
= NULL
;
1764 sbio
->bi_sector
= r1_bio
->sector
+
1765 conf
->mirrors
[i
].rdev
->data_offset
;
1766 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1767 size
= sbio
->bi_size
;
1768 for (j
= 0; j
< vcnt
; j
++) {
1770 bi
= &sbio
->bi_io_vec
[j
];
1772 if (size
> PAGE_SIZE
)
1773 bi
->bv_len
= PAGE_SIZE
;
1777 memcpy(page_address(bi
->bv_page
),
1778 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1785 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1787 struct r1conf
*conf
= mddev
->private;
1789 int disks
= conf
->raid_disks
* 2;
1790 struct bio
*bio
, *wbio
;
1792 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1794 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1795 /* ouch - failed to read all of that. */
1796 if (!fix_sync_read_error(r1_bio
))
1799 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1800 if (process_checks(r1_bio
) < 0)
1805 atomic_set(&r1_bio
->remaining
, 1);
1806 for (i
= 0; i
< disks
; i
++) {
1807 wbio
= r1_bio
->bios
[i
];
1808 if (wbio
->bi_end_io
== NULL
||
1809 (wbio
->bi_end_io
== end_sync_read
&&
1810 (i
== r1_bio
->read_disk
||
1811 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1814 wbio
->bi_rw
= WRITE
;
1815 wbio
->bi_end_io
= end_sync_write
;
1816 atomic_inc(&r1_bio
->remaining
);
1817 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1819 generic_make_request(wbio
);
1822 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1823 /* if we're here, all write(s) have completed, so clean up */
1824 int s
= r1_bio
->sectors
;
1825 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1826 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1827 reschedule_retry(r1_bio
);
1830 md_done_sync(mddev
, s
, 1);
1836 * This is a kernel thread which:
1838 * 1. Retries failed read operations on working mirrors.
1839 * 2. Updates the raid superblock when problems encounter.
1840 * 3. Performs writes following reads for array synchronising.
1843 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
1844 sector_t sect
, int sectors
)
1846 struct mddev
*mddev
= conf
->mddev
;
1852 struct md_rdev
*rdev
;
1854 if (s
> (PAGE_SIZE
>>9))
1858 /* Note: no rcu protection needed here
1859 * as this is synchronous in the raid1d thread
1860 * which is the thread that might remove
1861 * a device. If raid1d ever becomes multi-threaded....
1866 rdev
= conf
->mirrors
[d
].rdev
;
1868 test_bit(In_sync
, &rdev
->flags
) &&
1869 is_badblock(rdev
, sect
, s
,
1870 &first_bad
, &bad_sectors
) == 0 &&
1871 sync_page_io(rdev
, sect
, s
<<9,
1872 conf
->tmppage
, READ
, false))
1876 if (d
== conf
->raid_disks
* 2)
1879 } while (!success
&& d
!= read_disk
);
1882 /* Cannot read from anywhere - mark it bad */
1883 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
1884 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1885 md_error(mddev
, rdev
);
1888 /* write it back and re-read */
1890 while (d
!= read_disk
) {
1892 d
= conf
->raid_disks
* 2;
1894 rdev
= conf
->mirrors
[d
].rdev
;
1896 test_bit(In_sync
, &rdev
->flags
))
1897 r1_sync_page_io(rdev
, sect
, s
,
1898 conf
->tmppage
, WRITE
);
1901 while (d
!= read_disk
) {
1902 char b
[BDEVNAME_SIZE
];
1904 d
= conf
->raid_disks
* 2;
1906 rdev
= conf
->mirrors
[d
].rdev
;
1908 test_bit(In_sync
, &rdev
->flags
)) {
1909 if (r1_sync_page_io(rdev
, sect
, s
,
1910 conf
->tmppage
, READ
)) {
1911 atomic_add(s
, &rdev
->corrected_errors
);
1913 "md/raid1:%s: read error corrected "
1914 "(%d sectors at %llu on %s)\n",
1916 (unsigned long long)(sect
+
1918 bdevname(rdev
->bdev
, b
));
1927 static void bi_complete(struct bio
*bio
, int error
)
1929 complete((struct completion
*)bio
->bi_private
);
1932 static int submit_bio_wait(int rw
, struct bio
*bio
)
1934 struct completion event
;
1937 init_completion(&event
);
1938 bio
->bi_private
= &event
;
1939 bio
->bi_end_io
= bi_complete
;
1940 submit_bio(rw
, bio
);
1941 wait_for_completion(&event
);
1943 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1946 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
1948 struct mddev
*mddev
= r1_bio
->mddev
;
1949 struct r1conf
*conf
= mddev
->private;
1950 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1952 struct bio_vec
*vec
;
1954 /* bio has the data to be written to device 'i' where
1955 * we just recently had a write error.
1956 * We repeatedly clone the bio and trim down to one block,
1957 * then try the write. Where the write fails we record
1959 * It is conceivable that the bio doesn't exactly align with
1960 * blocks. We must handle this somehow.
1962 * We currently own a reference on the rdev.
1968 int sect_to_write
= r1_bio
->sectors
;
1971 if (rdev
->badblocks
.shift
< 0)
1974 block_sectors
= 1 << rdev
->badblocks
.shift
;
1975 sector
= r1_bio
->sector
;
1976 sectors
= ((sector
+ block_sectors
)
1977 & ~(sector_t
)(block_sectors
- 1))
1980 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
1981 vcnt
= r1_bio
->behind_page_count
;
1982 vec
= r1_bio
->behind_bvecs
;
1984 while (vec
[idx
].bv_page
== NULL
)
1987 vcnt
= r1_bio
->master_bio
->bi_vcnt
;
1988 vec
= r1_bio
->master_bio
->bi_io_vec
;
1989 idx
= r1_bio
->master_bio
->bi_idx
;
1991 while (sect_to_write
) {
1993 if (sectors
> sect_to_write
)
1994 sectors
= sect_to_write
;
1995 /* Write at 'sector' for 'sectors'*/
1997 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
1998 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
1999 wbio
->bi_sector
= r1_bio
->sector
;
2000 wbio
->bi_rw
= WRITE
;
2001 wbio
->bi_vcnt
= vcnt
;
2002 wbio
->bi_size
= r1_bio
->sectors
<< 9;
2005 md_trim_bio(wbio
, sector
- r1_bio
->sector
, sectors
);
2006 wbio
->bi_sector
+= rdev
->data_offset
;
2007 wbio
->bi_bdev
= rdev
->bdev
;
2008 if (submit_bio_wait(WRITE
, wbio
) == 0)
2010 ok
= rdev_set_badblocks(rdev
, sector
,
2015 sect_to_write
-= sectors
;
2017 sectors
= block_sectors
;
2022 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2025 int s
= r1_bio
->sectors
;
2026 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2027 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2028 struct bio
*bio
= r1_bio
->bios
[m
];
2029 if (bio
->bi_end_io
== NULL
)
2031 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2032 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2033 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
);
2035 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2036 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2037 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2038 md_error(conf
->mddev
, rdev
);
2042 md_done_sync(conf
->mddev
, s
, 1);
2045 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2048 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2049 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2050 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2051 rdev_clear_badblocks(rdev
,
2054 rdev_dec_pending(rdev
, conf
->mddev
);
2055 } else if (r1_bio
->bios
[m
] != NULL
) {
2056 /* This drive got a write error. We need to
2057 * narrow down and record precise write
2060 if (!narrow_write_error(r1_bio
, m
)) {
2061 md_error(conf
->mddev
,
2062 conf
->mirrors
[m
].rdev
);
2063 /* an I/O failed, we can't clear the bitmap */
2064 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2066 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2069 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2070 close_write(r1_bio
);
2071 raid_end_bio_io(r1_bio
);
2074 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2078 struct mddev
*mddev
= conf
->mddev
;
2080 char b
[BDEVNAME_SIZE
];
2081 struct md_rdev
*rdev
;
2083 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2084 /* we got a read error. Maybe the drive is bad. Maybe just
2085 * the block and we can fix it.
2086 * We freeze all other IO, and try reading the block from
2087 * other devices. When we find one, we re-write
2088 * and check it that fixes the read error.
2089 * This is all done synchronously while the array is
2092 if (mddev
->ro
== 0) {
2094 fix_read_error(conf
, r1_bio
->read_disk
,
2095 r1_bio
->sector
, r1_bio
->sectors
);
2096 unfreeze_array(conf
);
2098 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2100 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2101 bdevname(bio
->bi_bdev
, b
);
2103 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2105 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2106 " read error for block %llu\n",
2107 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2108 raid_end_bio_io(r1_bio
);
2110 const unsigned long do_sync
2111 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
2113 r1_bio
->bios
[r1_bio
->read_disk
] =
2114 mddev
->ro
? IO_BLOCKED
: NULL
;
2117 r1_bio
->read_disk
= disk
;
2118 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2119 md_trim_bio(bio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
2120 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2121 rdev
= conf
->mirrors
[disk
].rdev
;
2122 printk_ratelimited(KERN_ERR
2123 "md/raid1:%s: redirecting sector %llu"
2124 " to other mirror: %s\n",
2126 (unsigned long long)r1_bio
->sector
,
2127 bdevname(rdev
->bdev
, b
));
2128 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2129 bio
->bi_bdev
= rdev
->bdev
;
2130 bio
->bi_end_io
= raid1_end_read_request
;
2131 bio
->bi_rw
= READ
| do_sync
;
2132 bio
->bi_private
= r1_bio
;
2133 if (max_sectors
< r1_bio
->sectors
) {
2134 /* Drat - have to split this up more */
2135 struct bio
*mbio
= r1_bio
->master_bio
;
2136 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2138 r1_bio
->sectors
= max_sectors
;
2139 spin_lock_irq(&conf
->device_lock
);
2140 if (mbio
->bi_phys_segments
== 0)
2141 mbio
->bi_phys_segments
= 2;
2143 mbio
->bi_phys_segments
++;
2144 spin_unlock_irq(&conf
->device_lock
);
2145 generic_make_request(bio
);
2148 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2150 r1_bio
->master_bio
= mbio
;
2151 r1_bio
->sectors
= (mbio
->bi_size
>> 9)
2154 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2155 r1_bio
->mddev
= mddev
;
2156 r1_bio
->sector
= mbio
->bi_sector
+ sectors_handled
;
2160 generic_make_request(bio
);
2164 static void raid1d(struct mddev
*mddev
)
2166 struct r1bio
*r1_bio
;
2167 unsigned long flags
;
2168 struct r1conf
*conf
= mddev
->private;
2169 struct list_head
*head
= &conf
->retry_list
;
2170 struct blk_plug plug
;
2172 md_check_recovery(mddev
);
2174 blk_start_plug(&plug
);
2177 if (atomic_read(&mddev
->plug_cnt
) == 0)
2178 flush_pending_writes(conf
);
2180 spin_lock_irqsave(&conf
->device_lock
, flags
);
2181 if (list_empty(head
)) {
2182 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2185 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2186 list_del(head
->prev
);
2188 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2190 mddev
= r1_bio
->mddev
;
2191 conf
= mddev
->private;
2192 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2193 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2194 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2195 handle_sync_write_finished(conf
, r1_bio
);
2197 sync_request_write(mddev
, r1_bio
);
2198 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2199 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2200 handle_write_finished(conf
, r1_bio
);
2201 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2202 handle_read_error(conf
, r1_bio
);
2204 /* just a partial read to be scheduled from separate
2207 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2210 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2211 md_check_recovery(mddev
);
2213 blk_finish_plug(&plug
);
2217 static int init_resync(struct r1conf
*conf
)
2221 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2222 BUG_ON(conf
->r1buf_pool
);
2223 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2225 if (!conf
->r1buf_pool
)
2227 conf
->next_resync
= 0;
2232 * perform a "sync" on one "block"
2234 * We need to make sure that no normal I/O request - particularly write
2235 * requests - conflict with active sync requests.
2237 * This is achieved by tracking pending requests and a 'barrier' concept
2238 * that can be installed to exclude normal IO requests.
2241 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2243 struct r1conf
*conf
= mddev
->private;
2244 struct r1bio
*r1_bio
;
2246 sector_t max_sector
, nr_sectors
;
2250 int write_targets
= 0, read_targets
= 0;
2251 sector_t sync_blocks
;
2252 int still_degraded
= 0;
2253 int good_sectors
= RESYNC_SECTORS
;
2254 int min_bad
= 0; /* number of sectors that are bad in all devices */
2256 if (!conf
->r1buf_pool
)
2257 if (init_resync(conf
))
2260 max_sector
= mddev
->dev_sectors
;
2261 if (sector_nr
>= max_sector
) {
2262 /* If we aborted, we need to abort the
2263 * sync on the 'current' bitmap chunk (there will
2264 * only be one in raid1 resync.
2265 * We can find the current addess in mddev->curr_resync
2267 if (mddev
->curr_resync
< max_sector
) /* aborted */
2268 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2270 else /* completed sync */
2273 bitmap_close_sync(mddev
->bitmap
);
2278 if (mddev
->bitmap
== NULL
&&
2279 mddev
->recovery_cp
== MaxSector
&&
2280 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2281 conf
->fullsync
== 0) {
2283 return max_sector
- sector_nr
;
2285 /* before building a request, check if we can skip these blocks..
2286 * This call the bitmap_start_sync doesn't actually record anything
2288 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2289 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2290 /* We can skip this block, and probably several more */
2295 * If there is non-resync activity waiting for a turn,
2296 * and resync is going fast enough,
2297 * then let it though before starting on this new sync request.
2299 if (!go_faster
&& conf
->nr_waiting
)
2300 msleep_interruptible(1000);
2302 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2303 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2304 raise_barrier(conf
);
2306 conf
->next_resync
= sector_nr
;
2310 * If we get a correctably read error during resync or recovery,
2311 * we might want to read from a different device. So we
2312 * flag all drives that could conceivably be read from for READ,
2313 * and any others (which will be non-In_sync devices) for WRITE.
2314 * If a read fails, we try reading from something else for which READ
2318 r1_bio
->mddev
= mddev
;
2319 r1_bio
->sector
= sector_nr
;
2321 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2323 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2324 struct md_rdev
*rdev
;
2325 bio
= r1_bio
->bios
[i
];
2327 /* take from bio_init */
2328 bio
->bi_next
= NULL
;
2329 bio
->bi_flags
&= ~(BIO_POOL_MASK
-1);
2330 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2334 bio
->bi_phys_segments
= 0;
2336 bio
->bi_end_io
= NULL
;
2337 bio
->bi_private
= NULL
;
2339 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2341 test_bit(Faulty
, &rdev
->flags
)) {
2342 if (i
< conf
->raid_disks
)
2344 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2346 bio
->bi_end_io
= end_sync_write
;
2349 /* may need to read from here */
2350 sector_t first_bad
= MaxSector
;
2353 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2354 &first_bad
, &bad_sectors
)) {
2355 if (first_bad
> sector_nr
)
2356 good_sectors
= first_bad
- sector_nr
;
2358 bad_sectors
-= (sector_nr
- first_bad
);
2360 min_bad
> bad_sectors
)
2361 min_bad
= bad_sectors
;
2364 if (sector_nr
< first_bad
) {
2365 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2373 bio
->bi_end_io
= end_sync_read
;
2377 if (bio
->bi_end_io
) {
2378 atomic_inc(&rdev
->nr_pending
);
2379 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
2380 bio
->bi_bdev
= rdev
->bdev
;
2381 bio
->bi_private
= r1_bio
;
2387 r1_bio
->read_disk
= disk
;
2389 if (read_targets
== 0 && min_bad
> 0) {
2390 /* These sectors are bad on all InSync devices, so we
2391 * need to mark them bad on all write targets
2394 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2395 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2396 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2397 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2401 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2406 /* Cannot record the badblocks, so need to
2408 * If there are multiple read targets, could just
2409 * fail the really bad ones ???
2411 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2412 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2418 if (min_bad
> 0 && min_bad
< good_sectors
) {
2419 /* only resync enough to reach the next bad->good
2421 good_sectors
= min_bad
;
2424 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2425 /* extra read targets are also write targets */
2426 write_targets
+= read_targets
-1;
2428 if (write_targets
== 0 || read_targets
== 0) {
2429 /* There is nowhere to write, so all non-sync
2430 * drives must be failed - so we are finished
2434 max_sector
= sector_nr
+ min_bad
;
2435 rv
= max_sector
- sector_nr
;
2441 if (max_sector
> mddev
->resync_max
)
2442 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2443 if (max_sector
> sector_nr
+ good_sectors
)
2444 max_sector
= sector_nr
+ good_sectors
;
2449 int len
= PAGE_SIZE
;
2450 if (sector_nr
+ (len
>>9) > max_sector
)
2451 len
= (max_sector
- sector_nr
) << 9;
2454 if (sync_blocks
== 0) {
2455 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2456 &sync_blocks
, still_degraded
) &&
2458 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2460 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2461 if ((len
>> 9) > sync_blocks
)
2462 len
= sync_blocks
<<9;
2465 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2466 bio
= r1_bio
->bios
[i
];
2467 if (bio
->bi_end_io
) {
2468 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2469 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2471 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2474 bio
= r1_bio
->bios
[i
];
2475 if (bio
->bi_end_io
==NULL
)
2477 /* remove last page from this bio */
2479 bio
->bi_size
-= len
;
2480 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2486 nr_sectors
+= len
>>9;
2487 sector_nr
+= len
>>9;
2488 sync_blocks
-= (len
>>9);
2489 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2491 r1_bio
->sectors
= nr_sectors
;
2493 /* For a user-requested sync, we read all readable devices and do a
2496 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2497 atomic_set(&r1_bio
->remaining
, read_targets
);
2498 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2499 bio
= r1_bio
->bios
[i
];
2500 if (bio
->bi_end_io
== end_sync_read
) {
2502 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2503 generic_make_request(bio
);
2507 atomic_set(&r1_bio
->remaining
, 1);
2508 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2509 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2510 generic_make_request(bio
);
2516 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2521 return mddev
->dev_sectors
;
2524 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2526 struct r1conf
*conf
;
2528 struct mirror_info
*disk
;
2529 struct md_rdev
*rdev
;
2532 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2536 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)
2537 * mddev
->raid_disks
* 2,
2542 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2546 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2547 if (!conf
->poolinfo
)
2549 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2550 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2553 if (!conf
->r1bio_pool
)
2556 conf
->poolinfo
->mddev
= mddev
;
2559 spin_lock_init(&conf
->device_lock
);
2560 rdev_for_each(rdev
, mddev
) {
2561 struct request_queue
*q
;
2562 int disk_idx
= rdev
->raid_disk
;
2563 if (disk_idx
>= mddev
->raid_disks
2566 if (test_bit(Replacement
, &rdev
->flags
))
2567 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2569 disk
= conf
->mirrors
+ disk_idx
;
2574 q
= bdev_get_queue(rdev
->bdev
);
2575 if (q
->merge_bvec_fn
)
2576 mddev
->merge_check_needed
= 1;
2578 disk
->head_position
= 0;
2580 conf
->raid_disks
= mddev
->raid_disks
;
2581 conf
->mddev
= mddev
;
2582 INIT_LIST_HEAD(&conf
->retry_list
);
2584 spin_lock_init(&conf
->resync_lock
);
2585 init_waitqueue_head(&conf
->wait_barrier
);
2587 bio_list_init(&conf
->pending_bio_list
);
2588 conf
->pending_count
= 0;
2589 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2592 conf
->last_used
= -1;
2593 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2595 disk
= conf
->mirrors
+ i
;
2597 if (i
< conf
->raid_disks
&&
2598 disk
[conf
->raid_disks
].rdev
) {
2599 /* This slot has a replacement. */
2601 /* No original, just make the replacement
2602 * a recovering spare
2605 disk
[conf
->raid_disks
].rdev
;
2606 disk
[conf
->raid_disks
].rdev
= NULL
;
2607 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2608 /* Original is not in_sync - bad */
2613 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2614 disk
->head_position
= 0;
2617 } else if (conf
->last_used
< 0)
2619 * The first working device is used as a
2620 * starting point to read balancing.
2622 conf
->last_used
= i
;
2625 if (conf
->last_used
< 0) {
2626 printk(KERN_ERR
"md/raid1:%s: no operational mirrors\n",
2631 conf
->thread
= md_register_thread(raid1d
, mddev
, NULL
);
2632 if (!conf
->thread
) {
2634 "md/raid1:%s: couldn't allocate thread\n",
2643 if (conf
->r1bio_pool
)
2644 mempool_destroy(conf
->r1bio_pool
);
2645 kfree(conf
->mirrors
);
2646 safe_put_page(conf
->tmppage
);
2647 kfree(conf
->poolinfo
);
2650 return ERR_PTR(err
);
2653 static int stop(struct mddev
*mddev
);
2654 static int run(struct mddev
*mddev
)
2656 struct r1conf
*conf
;
2658 struct md_rdev
*rdev
;
2661 if (mddev
->level
!= 1) {
2662 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2663 mdname(mddev
), mddev
->level
);
2666 if (mddev
->reshape_position
!= MaxSector
) {
2667 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2672 * copy the already verified devices into our private RAID1
2673 * bookkeeping area. [whatever we allocate in run(),
2674 * should be freed in stop()]
2676 if (mddev
->private == NULL
)
2677 conf
= setup_conf(mddev
);
2679 conf
= mddev
->private;
2682 return PTR_ERR(conf
);
2684 rdev_for_each(rdev
, mddev
) {
2685 if (!mddev
->gendisk
)
2687 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2688 rdev
->data_offset
<< 9);
2691 mddev
->degraded
= 0;
2692 for (i
=0; i
< conf
->raid_disks
; i
++)
2693 if (conf
->mirrors
[i
].rdev
== NULL
||
2694 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2695 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2698 if (conf
->raid_disks
- mddev
->degraded
== 1)
2699 mddev
->recovery_cp
= MaxSector
;
2701 if (mddev
->recovery_cp
!= MaxSector
)
2702 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2703 " -- starting background reconstruction\n",
2706 "md/raid1:%s: active with %d out of %d mirrors\n",
2707 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2711 * Ok, everything is just fine now
2713 mddev
->thread
= conf
->thread
;
2714 conf
->thread
= NULL
;
2715 mddev
->private = conf
;
2717 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2720 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2721 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2722 blk_queue_merge_bvec(mddev
->queue
, raid1_mergeable_bvec
);
2725 ret
= md_integrity_register(mddev
);
2731 static int stop(struct mddev
*mddev
)
2733 struct r1conf
*conf
= mddev
->private;
2734 struct bitmap
*bitmap
= mddev
->bitmap
;
2736 /* wait for behind writes to complete */
2737 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2738 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2740 /* need to kick something here to make sure I/O goes? */
2741 wait_event(bitmap
->behind_wait
,
2742 atomic_read(&bitmap
->behind_writes
) == 0);
2745 raise_barrier(conf
);
2746 lower_barrier(conf
);
2748 md_unregister_thread(&mddev
->thread
);
2749 if (conf
->r1bio_pool
)
2750 mempool_destroy(conf
->r1bio_pool
);
2751 kfree(conf
->mirrors
);
2752 kfree(conf
->poolinfo
);
2754 mddev
->private = NULL
;
2758 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
2760 /* no resync is happening, and there is enough space
2761 * on all devices, so we can resize.
2762 * We need to make sure resync covers any new space.
2763 * If the array is shrinking we should possibly wait until
2764 * any io in the removed space completes, but it hardly seems
2767 md_set_array_sectors(mddev
, raid1_size(mddev
, sectors
, 0));
2768 if (mddev
->array_sectors
> raid1_size(mddev
, sectors
, 0))
2770 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2771 revalidate_disk(mddev
->gendisk
);
2772 if (sectors
> mddev
->dev_sectors
&&
2773 mddev
->recovery_cp
> mddev
->dev_sectors
) {
2774 mddev
->recovery_cp
= mddev
->dev_sectors
;
2775 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2777 mddev
->dev_sectors
= sectors
;
2778 mddev
->resync_max_sectors
= sectors
;
2782 static int raid1_reshape(struct mddev
*mddev
)
2785 * 1/ resize the r1bio_pool
2786 * 2/ resize conf->mirrors
2788 * We allocate a new r1bio_pool if we can.
2789 * Then raise a device barrier and wait until all IO stops.
2790 * Then resize conf->mirrors and swap in the new r1bio pool.
2792 * At the same time, we "pack" the devices so that all the missing
2793 * devices have the higher raid_disk numbers.
2795 mempool_t
*newpool
, *oldpool
;
2796 struct pool_info
*newpoolinfo
;
2797 struct mirror_info
*newmirrors
;
2798 struct r1conf
*conf
= mddev
->private;
2799 int cnt
, raid_disks
;
2800 unsigned long flags
;
2803 /* Cannot change chunk_size, layout, or level */
2804 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2805 mddev
->layout
!= mddev
->new_layout
||
2806 mddev
->level
!= mddev
->new_level
) {
2807 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2808 mddev
->new_layout
= mddev
->layout
;
2809 mddev
->new_level
= mddev
->level
;
2813 err
= md_allow_write(mddev
);
2817 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2819 if (raid_disks
< conf
->raid_disks
) {
2821 for (d
= 0; d
< conf
->raid_disks
; d
++)
2822 if (conf
->mirrors
[d
].rdev
)
2824 if (cnt
> raid_disks
)
2828 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2831 newpoolinfo
->mddev
= mddev
;
2832 newpoolinfo
->raid_disks
= raid_disks
* 2;
2834 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2835 r1bio_pool_free
, newpoolinfo
);
2840 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
* 2,
2844 mempool_destroy(newpool
);
2848 raise_barrier(conf
);
2850 /* ok, everything is stopped */
2851 oldpool
= conf
->r1bio_pool
;
2852 conf
->r1bio_pool
= newpool
;
2854 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2855 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
2856 if (rdev
&& rdev
->raid_disk
!= d2
) {
2857 sysfs_unlink_rdev(mddev
, rdev
);
2858 rdev
->raid_disk
= d2
;
2859 sysfs_unlink_rdev(mddev
, rdev
);
2860 if (sysfs_link_rdev(mddev
, rdev
))
2862 "md/raid1:%s: cannot register rd%d\n",
2863 mdname(mddev
), rdev
->raid_disk
);
2866 newmirrors
[d2
++].rdev
= rdev
;
2868 kfree(conf
->mirrors
);
2869 conf
->mirrors
= newmirrors
;
2870 kfree(conf
->poolinfo
);
2871 conf
->poolinfo
= newpoolinfo
;
2873 spin_lock_irqsave(&conf
->device_lock
, flags
);
2874 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2875 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2876 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2877 mddev
->delta_disks
= 0;
2879 conf
->last_used
= 0; /* just make sure it is in-range */
2880 lower_barrier(conf
);
2882 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2883 md_wakeup_thread(mddev
->thread
);
2885 mempool_destroy(oldpool
);
2889 static void raid1_quiesce(struct mddev
*mddev
, int state
)
2891 struct r1conf
*conf
= mddev
->private;
2894 case 2: /* wake for suspend */
2895 wake_up(&conf
->wait_barrier
);
2898 raise_barrier(conf
);
2901 lower_barrier(conf
);
2906 static void *raid1_takeover(struct mddev
*mddev
)
2908 /* raid1 can take over:
2909 * raid5 with 2 devices, any layout or chunk size
2911 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
2912 struct r1conf
*conf
;
2913 mddev
->new_level
= 1;
2914 mddev
->new_layout
= 0;
2915 mddev
->new_chunk_sectors
= 0;
2916 conf
= setup_conf(mddev
);
2921 return ERR_PTR(-EINVAL
);
2924 static struct md_personality raid1_personality
=
2928 .owner
= THIS_MODULE
,
2929 .make_request
= make_request
,
2933 .error_handler
= error
,
2934 .hot_add_disk
= raid1_add_disk
,
2935 .hot_remove_disk
= raid1_remove_disk
,
2936 .spare_active
= raid1_spare_active
,
2937 .sync_request
= sync_request
,
2938 .resize
= raid1_resize
,
2940 .check_reshape
= raid1_reshape
,
2941 .quiesce
= raid1_quiesce
,
2942 .takeover
= raid1_takeover
,
2945 static int __init
raid_init(void)
2947 return register_md_personality(&raid1_personality
);
2950 static void raid_exit(void)
2952 unregister_md_personality(&raid1_personality
);
2955 module_init(raid_init
);
2956 module_exit(raid_exit
);
2957 MODULE_LICENSE("GPL");
2958 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2959 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2960 MODULE_ALIAS("md-raid1");
2961 MODULE_ALIAS("md-level-1");
2963 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);