2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * near_copies and far_copies must be at least one, and their product is at most
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
58 * Number of guaranteed r10bios in case of extreme VM load:
60 #define NR_RAID10_BIOS 256
62 /* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
66 static int max_queued_requests
= 1024;
68 static void allow_barrier(struct r10conf
*conf
);
69 static void lower_barrier(struct r10conf
*conf
);
70 static int enough(struct r10conf
*conf
, int ignore
);
72 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
74 struct r10conf
*conf
= data
;
75 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
77 /* allocate a r10bio with room for raid_disks entries in the
79 return kzalloc(size
, gfp_flags
);
82 static void r10bio_pool_free(void *r10_bio
, void *data
)
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
96 * When performing a resync, we need to read and compare, so
97 * we need as many pages are there are copies.
98 * When performing a recovery, we need 2 bios, one for read,
99 * one for write (we recover only one drive per r10buf)
102 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
104 struct r10conf
*conf
= data
;
106 struct r10bio
*r10_bio
;
111 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
115 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
116 nalloc
= conf
->copies
; /* resync */
118 nalloc
= 2; /* recovery */
123 for (j
= nalloc
; j
-- ; ) {
124 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
127 r10_bio
->devs
[j
].bio
= bio
;
128 if (!conf
->have_replacement
)
130 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
133 r10_bio
->devs
[j
].repl_bio
= bio
;
136 * Allocate RESYNC_PAGES data pages and attach them
139 for (j
= 0 ; j
< nalloc
; j
++) {
140 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
141 bio
= r10_bio
->devs
[j
].bio
;
142 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
143 if (j
== 1 && !test_bit(MD_RECOVERY_SYNC
,
144 &conf
->mddev
->recovery
)) {
145 /* we can share bv_page's during recovery */
146 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
147 page
= rbio
->bi_io_vec
[i
].bv_page
;
150 page
= alloc_page(gfp_flags
);
154 bio
->bi_io_vec
[i
].bv_page
= page
;
156 rbio
->bi_io_vec
[i
].bv_page
= page
;
164 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
166 for (i
= 0; i
< RESYNC_PAGES
; i
++)
167 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
170 while (++j
< nalloc
) {
171 bio_put(r10_bio
->devs
[j
].bio
);
172 if (r10_bio
->devs
[j
].repl_bio
)
173 bio_put(r10_bio
->devs
[j
].repl_bio
);
175 r10bio_pool_free(r10_bio
, conf
);
179 static void r10buf_pool_free(void *__r10_bio
, void *data
)
182 struct r10conf
*conf
= data
;
183 struct r10bio
*r10bio
= __r10_bio
;
186 for (j
=0; j
< conf
->copies
; j
++) {
187 struct bio
*bio
= r10bio
->devs
[j
].bio
;
189 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
190 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
191 bio
->bi_io_vec
[i
].bv_page
= NULL
;
195 bio
= r10bio
->devs
[j
].repl_bio
;
199 r10bio_pool_free(r10bio
, conf
);
202 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
206 for (i
= 0; i
< conf
->copies
; i
++) {
207 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
208 if (!BIO_SPECIAL(*bio
))
211 bio
= &r10_bio
->devs
[i
].repl_bio
;
212 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
218 static void free_r10bio(struct r10bio
*r10_bio
)
220 struct r10conf
*conf
= r10_bio
->mddev
->private;
222 put_all_bios(conf
, r10_bio
);
223 mempool_free(r10_bio
, conf
->r10bio_pool
);
226 static void put_buf(struct r10bio
*r10_bio
)
228 struct r10conf
*conf
= r10_bio
->mddev
->private;
230 mempool_free(r10_bio
, conf
->r10buf_pool
);
235 static void reschedule_retry(struct r10bio
*r10_bio
)
238 struct mddev
*mddev
= r10_bio
->mddev
;
239 struct r10conf
*conf
= mddev
->private;
241 spin_lock_irqsave(&conf
->device_lock
, flags
);
242 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
244 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
246 /* wake up frozen array... */
247 wake_up(&conf
->wait_barrier
);
249 md_wakeup_thread(mddev
->thread
);
253 * raid_end_bio_io() is called when we have finished servicing a mirrored
254 * operation and are ready to return a success/failure code to the buffer
257 static void raid_end_bio_io(struct r10bio
*r10_bio
)
259 struct bio
*bio
= r10_bio
->master_bio
;
261 struct r10conf
*conf
= r10_bio
->mddev
->private;
263 if (bio
->bi_phys_segments
) {
265 spin_lock_irqsave(&conf
->device_lock
, flags
);
266 bio
->bi_phys_segments
--;
267 done
= (bio
->bi_phys_segments
== 0);
268 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
271 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
272 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
276 * Wake up any possible resync thread that waits for the device
281 free_r10bio(r10_bio
);
285 * Update disk head position estimator based on IRQ completion info.
287 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
289 struct r10conf
*conf
= r10_bio
->mddev
->private;
291 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
292 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
296 * Find the disk number which triggered given bio
298 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
299 struct bio
*bio
, int *slotp
, int *replp
)
304 for (slot
= 0; slot
< conf
->copies
; slot
++) {
305 if (r10_bio
->devs
[slot
].bio
== bio
)
307 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
313 BUG_ON(slot
== conf
->copies
);
314 update_head_pos(slot
, r10_bio
);
320 return r10_bio
->devs
[slot
].devnum
;
323 static void raid10_end_read_request(struct bio
*bio
, int error
)
325 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
326 struct r10bio
*r10_bio
= bio
->bi_private
;
328 struct md_rdev
*rdev
;
329 struct r10conf
*conf
= r10_bio
->mddev
->private;
332 slot
= r10_bio
->read_slot
;
333 dev
= r10_bio
->devs
[slot
].devnum
;
334 rdev
= r10_bio
->devs
[slot
].rdev
;
336 * this branch is our 'one mirror IO has finished' event handler:
338 update_head_pos(slot
, r10_bio
);
342 * Set R10BIO_Uptodate in our master bio, so that
343 * we will return a good error code to the higher
344 * levels even if IO on some other mirrored buffer fails.
346 * The 'master' represents the composite IO operation to
347 * user-side. So if something waits for IO, then it will
348 * wait for the 'master' bio.
350 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
352 /* If all other devices that store this block have
353 * failed, we want to return the error upwards rather
354 * than fail the last device. Here we redefine
355 * "uptodate" to mean "Don't want to retry"
358 spin_lock_irqsave(&conf
->device_lock
, flags
);
359 if (!enough(conf
, rdev
->raid_disk
))
361 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
364 raid_end_bio_io(r10_bio
);
365 rdev_dec_pending(rdev
, conf
->mddev
);
368 * oops, read error - keep the refcount on the rdev
370 char b
[BDEVNAME_SIZE
];
371 printk_ratelimited(KERN_ERR
372 "md/raid10:%s: %s: rescheduling sector %llu\n",
374 bdevname(rdev
->bdev
, b
),
375 (unsigned long long)r10_bio
->sector
);
376 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
377 reschedule_retry(r10_bio
);
381 static void close_write(struct r10bio
*r10_bio
)
383 /* clear the bitmap if all writes complete successfully */
384 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
386 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
388 md_write_end(r10_bio
->mddev
);
391 static void one_write_done(struct r10bio
*r10_bio
)
393 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
394 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
395 reschedule_retry(r10_bio
);
397 close_write(r10_bio
);
398 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
399 reschedule_retry(r10_bio
);
401 raid_end_bio_io(r10_bio
);
406 static void raid10_end_write_request(struct bio
*bio
, int error
)
408 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
409 struct r10bio
*r10_bio
= bio
->bi_private
;
412 struct r10conf
*conf
= r10_bio
->mddev
->private;
414 struct md_rdev
*rdev
= NULL
;
416 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
419 rdev
= conf
->mirrors
[dev
].replacement
;
423 rdev
= conf
->mirrors
[dev
].rdev
;
426 * this branch is our 'one mirror IO has finished' event handler:
430 /* Never record new bad blocks to replacement,
433 md_error(rdev
->mddev
, rdev
);
435 set_bit(WriteErrorSeen
, &rdev
->flags
);
436 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
437 set_bit(MD_RECOVERY_NEEDED
,
438 &rdev
->mddev
->recovery
);
439 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
444 * Set R10BIO_Uptodate in our master bio, so that
445 * we will return a good error code for to the higher
446 * levels even if IO on some other mirrored buffer fails.
448 * The 'master' represents the composite IO operation to
449 * user-side. So if something waits for IO, then it will
450 * wait for the 'master' bio.
455 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
457 /* Maybe we can clear some bad blocks. */
458 if (is_badblock(rdev
,
459 r10_bio
->devs
[slot
].addr
,
461 &first_bad
, &bad_sectors
)) {
464 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
466 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
468 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
474 * Let's see if all mirrored write operations have finished
477 one_write_done(r10_bio
);
479 rdev_dec_pending(rdev
, conf
->mddev
);
483 * RAID10 layout manager
484 * As well as the chunksize and raid_disks count, there are two
485 * parameters: near_copies and far_copies.
486 * near_copies * far_copies must be <= raid_disks.
487 * Normally one of these will be 1.
488 * If both are 1, we get raid0.
489 * If near_copies == raid_disks, we get raid1.
491 * Chunks are laid out in raid0 style with near_copies copies of the
492 * first chunk, followed by near_copies copies of the next chunk and
494 * If far_copies > 1, then after 1/far_copies of the array has been assigned
495 * as described above, we start again with a device offset of near_copies.
496 * So we effectively have another copy of the whole array further down all
497 * the drives, but with blocks on different drives.
498 * With this layout, and block is never stored twice on the one device.
500 * raid10_find_phys finds the sector offset of a given virtual sector
501 * on each device that it is on.
503 * raid10_find_virt does the reverse mapping, from a device and a
504 * sector offset to a virtual address
507 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
517 /* now calculate first sector/dev */
518 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
519 sector
= r10bio
->sector
& conf
->chunk_mask
;
521 chunk
*= conf
->near_copies
;
523 dev
= sector_div(stripe
, conf
->raid_disks
);
524 if (conf
->far_offset
)
525 stripe
*= conf
->far_copies
;
527 sector
+= stripe
<< conf
->chunk_shift
;
529 /* and calculate all the others */
530 for (n
=0; n
< conf
->near_copies
; n
++) {
533 r10bio
->devs
[slot
].addr
= sector
;
534 r10bio
->devs
[slot
].devnum
= d
;
537 for (f
= 1; f
< conf
->far_copies
; f
++) {
538 d
+= conf
->near_copies
;
539 if (d
>= conf
->raid_disks
)
540 d
-= conf
->raid_disks
;
542 r10bio
->devs
[slot
].devnum
= d
;
543 r10bio
->devs
[slot
].addr
= s
;
547 if (dev
>= conf
->raid_disks
) {
549 sector
+= (conf
->chunk_mask
+ 1);
552 BUG_ON(slot
!= conf
->copies
);
555 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
557 sector_t offset
, chunk
, vchunk
;
559 offset
= sector
& conf
->chunk_mask
;
560 if (conf
->far_offset
) {
562 chunk
= sector
>> conf
->chunk_shift
;
563 fc
= sector_div(chunk
, conf
->far_copies
);
564 dev
-= fc
* conf
->near_copies
;
566 dev
+= conf
->raid_disks
;
568 while (sector
>= conf
->stride
) {
569 sector
-= conf
->stride
;
570 if (dev
< conf
->near_copies
)
571 dev
+= conf
->raid_disks
- conf
->near_copies
;
573 dev
-= conf
->near_copies
;
575 chunk
= sector
>> conf
->chunk_shift
;
577 vchunk
= chunk
* conf
->raid_disks
+ dev
;
578 sector_div(vchunk
, conf
->near_copies
);
579 return (vchunk
<< conf
->chunk_shift
) + offset
;
583 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
585 * @bvm: properties of new bio
586 * @biovec: the request that could be merged to it.
588 * Return amount of bytes we can accept at this offset
589 * This requires checking for end-of-chunk if near_copies != raid_disks,
590 * and for subordinate merge_bvec_fns if merge_check_needed.
592 static int raid10_mergeable_bvec(struct request_queue
*q
,
593 struct bvec_merge_data
*bvm
,
594 struct bio_vec
*biovec
)
596 struct mddev
*mddev
= q
->queuedata
;
597 struct r10conf
*conf
= mddev
->private;
598 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
600 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
601 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
603 if (conf
->near_copies
< conf
->raid_disks
) {
604 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1))
605 + bio_sectors
)) << 9;
607 /* bio_add cannot handle a negative return */
609 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
610 return biovec
->bv_len
;
612 max
= biovec
->bv_len
;
614 if (mddev
->merge_check_needed
) {
616 struct r10bio r10_bio
;
617 struct r10dev devs
[conf
->copies
];
619 struct r10bio
*r10_bio
= &on_stack
.r10_bio
;
621 r10_bio
->sector
= sector
;
622 raid10_find_phys(conf
, r10_bio
);
624 for (s
= 0; s
< conf
->copies
; s
++) {
625 int disk
= r10_bio
->devs
[s
].devnum
;
626 struct md_rdev
*rdev
= rcu_dereference(
627 conf
->mirrors
[disk
].rdev
);
628 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
629 struct request_queue
*q
=
630 bdev_get_queue(rdev
->bdev
);
631 if (q
->merge_bvec_fn
) {
632 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
634 bvm
->bi_bdev
= rdev
->bdev
;
635 max
= min(max
, q
->merge_bvec_fn(
639 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
640 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
641 struct request_queue
*q
=
642 bdev_get_queue(rdev
->bdev
);
643 if (q
->merge_bvec_fn
) {
644 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
646 bvm
->bi_bdev
= rdev
->bdev
;
647 max
= min(max
, q
->merge_bvec_fn(
658 * This routine returns the disk from which the requested read should
659 * be done. There is a per-array 'next expected sequential IO' sector
660 * number - if this matches on the next IO then we use the last disk.
661 * There is also a per-disk 'last know head position' sector that is
662 * maintained from IRQ contexts, both the normal and the resync IO
663 * completion handlers update this position correctly. If there is no
664 * perfect sequential match then we pick the disk whose head is closest.
666 * If there are 2 mirrors in the same 2 devices, performance degrades
667 * because position is mirror, not device based.
669 * The rdev for the device selected will have nr_pending incremented.
673 * FIXME: possibly should rethink readbalancing and do it differently
674 * depending on near_copies / far_copies geometry.
676 static struct md_rdev
*read_balance(struct r10conf
*conf
,
677 struct r10bio
*r10_bio
,
680 const sector_t this_sector
= r10_bio
->sector
;
682 int sectors
= r10_bio
->sectors
;
683 int best_good_sectors
;
684 sector_t new_distance
, best_dist
;
685 struct md_rdev
*rdev
, *best_rdev
;
689 raid10_find_phys(conf
, r10_bio
);
692 sectors
= r10_bio
->sectors
;
695 best_dist
= MaxSector
;
696 best_good_sectors
= 0;
699 * Check if we can balance. We can balance on the whole
700 * device if no resync is going on (recovery is ok), or below
701 * the resync window. We take the first readable disk when
702 * above the resync window.
704 if (conf
->mddev
->recovery_cp
< MaxSector
705 && (this_sector
+ sectors
>= conf
->next_resync
))
708 for (slot
= 0; slot
< conf
->copies
; slot
++) {
713 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
715 disk
= r10_bio
->devs
[slot
].devnum
;
716 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
717 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
718 test_bit(Unmerged
, &rdev
->flags
) ||
719 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
720 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
722 test_bit(Faulty
, &rdev
->flags
) ||
723 test_bit(Unmerged
, &rdev
->flags
))
725 if (!test_bit(In_sync
, &rdev
->flags
) &&
726 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
729 dev_sector
= r10_bio
->devs
[slot
].addr
;
730 if (is_badblock(rdev
, dev_sector
, sectors
,
731 &first_bad
, &bad_sectors
)) {
732 if (best_dist
< MaxSector
)
733 /* Already have a better slot */
735 if (first_bad
<= dev_sector
) {
736 /* Cannot read here. If this is the
737 * 'primary' device, then we must not read
738 * beyond 'bad_sectors' from another device.
740 bad_sectors
-= (dev_sector
- first_bad
);
741 if (!do_balance
&& sectors
> bad_sectors
)
742 sectors
= bad_sectors
;
743 if (best_good_sectors
> sectors
)
744 best_good_sectors
= sectors
;
746 sector_t good_sectors
=
747 first_bad
- dev_sector
;
748 if (good_sectors
> best_good_sectors
) {
749 best_good_sectors
= good_sectors
;
754 /* Must read from here */
759 best_good_sectors
= sectors
;
764 /* This optimisation is debatable, and completely destroys
765 * sequential read speed for 'far copies' arrays. So only
766 * keep it for 'near' arrays, and review those later.
768 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
771 /* for far > 1 always use the lowest address */
772 if (conf
->far_copies
> 1)
773 new_distance
= r10_bio
->devs
[slot
].addr
;
775 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
776 conf
->mirrors
[disk
].head_position
);
777 if (new_distance
< best_dist
) {
778 best_dist
= new_distance
;
783 if (slot
>= conf
->copies
) {
789 atomic_inc(&rdev
->nr_pending
);
790 if (test_bit(Faulty
, &rdev
->flags
)) {
791 /* Cannot risk returning a device that failed
792 * before we inc'ed nr_pending
794 rdev_dec_pending(rdev
, conf
->mddev
);
797 r10_bio
->read_slot
= slot
;
801 *max_sectors
= best_good_sectors
;
806 static int raid10_congested(void *data
, int bits
)
808 struct mddev
*mddev
= data
;
809 struct r10conf
*conf
= mddev
->private;
812 if ((bits
& (1 << BDI_async_congested
)) &&
813 conf
->pending_count
>= max_queued_requests
)
816 if (mddev_congested(mddev
, bits
))
819 for (i
= 0; i
< conf
->raid_disks
&& ret
== 0; i
++) {
820 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
821 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
822 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
824 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
831 static void flush_pending_writes(struct r10conf
*conf
)
833 /* Any writes that have been queued but are awaiting
834 * bitmap updates get flushed here.
836 spin_lock_irq(&conf
->device_lock
);
838 if (conf
->pending_bio_list
.head
) {
840 bio
= bio_list_get(&conf
->pending_bio_list
);
841 conf
->pending_count
= 0;
842 spin_unlock_irq(&conf
->device_lock
);
843 /* flush any pending bitmap writes to disk
844 * before proceeding w/ I/O */
845 bitmap_unplug(conf
->mddev
->bitmap
);
846 wake_up(&conf
->wait_barrier
);
848 while (bio
) { /* submit pending writes */
849 struct bio
*next
= bio
->bi_next
;
851 generic_make_request(bio
);
855 spin_unlock_irq(&conf
->device_lock
);
859 * Sometimes we need to suspend IO while we do something else,
860 * either some resync/recovery, or reconfigure the array.
861 * To do this we raise a 'barrier'.
862 * The 'barrier' is a counter that can be raised multiple times
863 * to count how many activities are happening which preclude
865 * We can only raise the barrier if there is no pending IO.
866 * i.e. if nr_pending == 0.
867 * We choose only to raise the barrier if no-one is waiting for the
868 * barrier to go down. This means that as soon as an IO request
869 * is ready, no other operations which require a barrier will start
870 * until the IO request has had a chance.
872 * So: regular IO calls 'wait_barrier'. When that returns there
873 * is no backgroup IO happening, It must arrange to call
874 * allow_barrier when it has finished its IO.
875 * backgroup IO calls must call raise_barrier. Once that returns
876 * there is no normal IO happeing. It must arrange to call
877 * lower_barrier when the particular background IO completes.
880 static void raise_barrier(struct r10conf
*conf
, int force
)
882 BUG_ON(force
&& !conf
->barrier
);
883 spin_lock_irq(&conf
->resync_lock
);
885 /* Wait until no block IO is waiting (unless 'force') */
886 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
887 conf
->resync_lock
, );
889 /* block any new IO from starting */
892 /* Now wait for all pending IO to complete */
893 wait_event_lock_irq(conf
->wait_barrier
,
894 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
895 conf
->resync_lock
, );
897 spin_unlock_irq(&conf
->resync_lock
);
900 static void lower_barrier(struct r10conf
*conf
)
903 spin_lock_irqsave(&conf
->resync_lock
, flags
);
905 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
906 wake_up(&conf
->wait_barrier
);
909 static void wait_barrier(struct r10conf
*conf
)
911 spin_lock_irq(&conf
->resync_lock
);
914 /* Wait for the barrier to drop.
915 * However if there are already pending
916 * requests (preventing the barrier from
917 * rising completely), and the
918 * pre-process bio queue isn't empty,
919 * then don't wait, as we need to empty
920 * that queue to get the nr_pending
923 wait_event_lock_irq(conf
->wait_barrier
,
927 !bio_list_empty(current
->bio_list
)),
933 spin_unlock_irq(&conf
->resync_lock
);
936 static void allow_barrier(struct r10conf
*conf
)
939 spin_lock_irqsave(&conf
->resync_lock
, flags
);
941 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
942 wake_up(&conf
->wait_barrier
);
945 static void freeze_array(struct r10conf
*conf
)
947 /* stop syncio and normal IO and wait for everything to
949 * We increment barrier and nr_waiting, and then
950 * wait until nr_pending match nr_queued+1
951 * This is called in the context of one normal IO request
952 * that has failed. Thus any sync request that might be pending
953 * will be blocked by nr_pending, and we need to wait for
954 * pending IO requests to complete or be queued for re-try.
955 * Thus the number queued (nr_queued) plus this request (1)
956 * must match the number of pending IOs (nr_pending) before
959 spin_lock_irq(&conf
->resync_lock
);
962 wait_event_lock_irq(conf
->wait_barrier
,
963 conf
->nr_pending
== conf
->nr_queued
+1,
965 flush_pending_writes(conf
));
967 spin_unlock_irq(&conf
->resync_lock
);
970 static void unfreeze_array(struct r10conf
*conf
)
972 /* reverse the effect of the freeze */
973 spin_lock_irq(&conf
->resync_lock
);
976 wake_up(&conf
->wait_barrier
);
977 spin_unlock_irq(&conf
->resync_lock
);
980 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
982 struct r10conf
*conf
= mddev
->private;
983 struct r10bio
*r10_bio
;
984 struct bio
*read_bio
;
986 int chunk_sects
= conf
->chunk_mask
+ 1;
987 const int rw
= bio_data_dir(bio
);
988 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
989 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
991 struct md_rdev
*blocked_rdev
;
996 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
997 md_flush_request(mddev
, bio
);
1001 /* If this request crosses a chunk boundary, we need to
1002 * split it. This will only happen for 1 PAGE (or less) requests.
1004 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
1006 conf
->near_copies
< conf
->raid_disks
)) {
1007 struct bio_pair
*bp
;
1008 /* Sanity check -- queue functions should prevent this happening */
1009 if (bio
->bi_vcnt
!= 1 ||
1012 /* This is a one page bio that upper layers
1013 * refuse to split for us, so we need to split it.
1016 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
1018 /* Each of these 'make_request' calls will call 'wait_barrier'.
1019 * If the first succeeds but the second blocks due to the resync
1020 * thread raising the barrier, we will deadlock because the
1021 * IO to the underlying device will be queued in generic_make_request
1022 * and will never complete, so will never reduce nr_pending.
1023 * So increment nr_waiting here so no new raise_barriers will
1024 * succeed, and so the second wait_barrier cannot block.
1026 spin_lock_irq(&conf
->resync_lock
);
1028 spin_unlock_irq(&conf
->resync_lock
);
1030 make_request(mddev
, &bp
->bio1
);
1031 make_request(mddev
, &bp
->bio2
);
1033 spin_lock_irq(&conf
->resync_lock
);
1035 wake_up(&conf
->wait_barrier
);
1036 spin_unlock_irq(&conf
->resync_lock
);
1038 bio_pair_release(bp
);
1041 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1042 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
1043 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
1049 md_write_start(mddev
, bio
);
1052 * Register the new request and wait if the reconstruction
1053 * thread has put up a bar for new requests.
1054 * Continue immediately if no resync is active currently.
1058 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1060 r10_bio
->master_bio
= bio
;
1061 r10_bio
->sectors
= bio
->bi_size
>> 9;
1063 r10_bio
->mddev
= mddev
;
1064 r10_bio
->sector
= bio
->bi_sector
;
1067 /* We might need to issue multiple reads to different
1068 * devices if there are bad blocks around, so we keep
1069 * track of the number of reads in bio->bi_phys_segments.
1070 * If this is 0, there is only one r10_bio and no locking
1071 * will be needed when the request completes. If it is
1072 * non-zero, then it is the number of not-completed requests.
1074 bio
->bi_phys_segments
= 0;
1075 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1079 * read balancing logic:
1081 struct md_rdev
*rdev
;
1085 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1087 raid_end_bio_io(r10_bio
);
1090 slot
= r10_bio
->read_slot
;
1092 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1093 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
1096 r10_bio
->devs
[slot
].bio
= read_bio
;
1097 r10_bio
->devs
[slot
].rdev
= rdev
;
1099 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
1101 read_bio
->bi_bdev
= rdev
->bdev
;
1102 read_bio
->bi_end_io
= raid10_end_read_request
;
1103 read_bio
->bi_rw
= READ
| do_sync
;
1104 read_bio
->bi_private
= r10_bio
;
1106 if (max_sectors
< r10_bio
->sectors
) {
1107 /* Could not read all from this device, so we will
1108 * need another r10_bio.
1110 sectors_handled
= (r10_bio
->sectors
+ max_sectors
1112 r10_bio
->sectors
= max_sectors
;
1113 spin_lock_irq(&conf
->device_lock
);
1114 if (bio
->bi_phys_segments
== 0)
1115 bio
->bi_phys_segments
= 2;
1117 bio
->bi_phys_segments
++;
1118 spin_unlock(&conf
->device_lock
);
1119 /* Cannot call generic_make_request directly
1120 * as that will be queued in __generic_make_request
1121 * and subsequent mempool_alloc might block
1122 * waiting for it. so hand bio over to raid10d.
1124 reschedule_retry(r10_bio
);
1126 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1128 r10_bio
->master_bio
= bio
;
1129 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
1132 r10_bio
->mddev
= mddev
;
1133 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1136 generic_make_request(read_bio
);
1143 if (conf
->pending_count
>= max_queued_requests
) {
1144 md_wakeup_thread(mddev
->thread
);
1145 wait_event(conf
->wait_barrier
,
1146 conf
->pending_count
< max_queued_requests
);
1148 /* first select target devices under rcu_lock and
1149 * inc refcount on their rdev. Record them by setting
1151 * If there are known/acknowledged bad blocks on any device
1152 * on which we have seen a write error, we want to avoid
1153 * writing to those blocks. This potentially requires several
1154 * writes to write around the bad blocks. Each set of writes
1155 * gets its own r10_bio with a set of bios attached. The number
1156 * of r10_bios is recored in bio->bi_phys_segments just as with
1159 plugged
= mddev_check_plugged(mddev
);
1161 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1162 raid10_find_phys(conf
, r10_bio
);
1164 blocked_rdev
= NULL
;
1166 max_sectors
= r10_bio
->sectors
;
1168 for (i
= 0; i
< conf
->copies
; i
++) {
1169 int d
= r10_bio
->devs
[i
].devnum
;
1170 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1171 struct md_rdev
*rrdev
= rcu_dereference(
1172 conf
->mirrors
[d
].replacement
);
1175 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1176 atomic_inc(&rdev
->nr_pending
);
1177 blocked_rdev
= rdev
;
1180 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1181 atomic_inc(&rrdev
->nr_pending
);
1182 blocked_rdev
= rrdev
;
1185 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)
1186 || test_bit(Unmerged
, &rdev
->flags
)))
1188 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)
1189 || test_bit(Unmerged
, &rrdev
->flags
)))
1192 r10_bio
->devs
[i
].bio
= NULL
;
1193 r10_bio
->devs
[i
].repl_bio
= NULL
;
1195 if (!rdev
&& !rrdev
) {
1196 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1199 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1201 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1205 is_bad
= is_badblock(rdev
, dev_sector
,
1207 &first_bad
, &bad_sectors
);
1209 /* Mustn't write here until the bad block
1212 atomic_inc(&rdev
->nr_pending
);
1213 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1214 blocked_rdev
= rdev
;
1217 if (is_bad
&& first_bad
<= dev_sector
) {
1218 /* Cannot write here at all */
1219 bad_sectors
-= (dev_sector
- first_bad
);
1220 if (bad_sectors
< max_sectors
)
1221 /* Mustn't write more than bad_sectors
1222 * to other devices yet
1224 max_sectors
= bad_sectors
;
1225 /* We don't set R10BIO_Degraded as that
1226 * only applies if the disk is missing,
1227 * so it might be re-added, and we want to
1228 * know to recover this chunk.
1229 * In this case the device is here, and the
1230 * fact that this chunk is not in-sync is
1231 * recorded in the bad block log.
1236 int good_sectors
= first_bad
- dev_sector
;
1237 if (good_sectors
< max_sectors
)
1238 max_sectors
= good_sectors
;
1242 r10_bio
->devs
[i
].bio
= bio
;
1243 atomic_inc(&rdev
->nr_pending
);
1246 r10_bio
->devs
[i
].repl_bio
= bio
;
1247 atomic_inc(&rrdev
->nr_pending
);
1252 if (unlikely(blocked_rdev
)) {
1253 /* Have to wait for this device to get unblocked, then retry */
1257 for (j
= 0; j
< i
; j
++) {
1258 if (r10_bio
->devs
[j
].bio
) {
1259 d
= r10_bio
->devs
[j
].devnum
;
1260 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1262 if (r10_bio
->devs
[j
].repl_bio
) {
1263 struct md_rdev
*rdev
;
1264 d
= r10_bio
->devs
[j
].devnum
;
1265 rdev
= conf
->mirrors
[d
].replacement
;
1267 /* Race with remove_disk */
1269 rdev
= conf
->mirrors
[d
].rdev
;
1271 rdev_dec_pending(rdev
, mddev
);
1274 allow_barrier(conf
);
1275 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1280 if (max_sectors
< r10_bio
->sectors
) {
1281 /* We are splitting this into multiple parts, so
1282 * we need to prepare for allocating another r10_bio.
1284 r10_bio
->sectors
= max_sectors
;
1285 spin_lock_irq(&conf
->device_lock
);
1286 if (bio
->bi_phys_segments
== 0)
1287 bio
->bi_phys_segments
= 2;
1289 bio
->bi_phys_segments
++;
1290 spin_unlock_irq(&conf
->device_lock
);
1292 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1294 atomic_set(&r10_bio
->remaining
, 1);
1295 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1297 for (i
= 0; i
< conf
->copies
; i
++) {
1299 int d
= r10_bio
->devs
[i
].devnum
;
1300 if (r10_bio
->devs
[i
].bio
) {
1301 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
1302 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1303 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1305 r10_bio
->devs
[i
].bio
= mbio
;
1307 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1309 mbio
->bi_bdev
= rdev
->bdev
;
1310 mbio
->bi_end_io
= raid10_end_write_request
;
1311 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1312 mbio
->bi_private
= r10_bio
;
1314 atomic_inc(&r10_bio
->remaining
);
1315 spin_lock_irqsave(&conf
->device_lock
, flags
);
1316 bio_list_add(&conf
->pending_bio_list
, mbio
);
1317 conf
->pending_count
++;
1318 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1321 if (r10_bio
->devs
[i
].repl_bio
) {
1322 struct md_rdev
*rdev
= conf
->mirrors
[d
].replacement
;
1324 /* Replacement just got moved to main 'rdev' */
1326 rdev
= conf
->mirrors
[d
].rdev
;
1328 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1329 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1331 r10_bio
->devs
[i
].repl_bio
= mbio
;
1333 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1335 mbio
->bi_bdev
= rdev
->bdev
;
1336 mbio
->bi_end_io
= raid10_end_write_request
;
1337 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1338 mbio
->bi_private
= r10_bio
;
1340 atomic_inc(&r10_bio
->remaining
);
1341 spin_lock_irqsave(&conf
->device_lock
, flags
);
1342 bio_list_add(&conf
->pending_bio_list
, mbio
);
1343 conf
->pending_count
++;
1344 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1348 /* Don't remove the bias on 'remaining' (one_write_done) until
1349 * after checking if we need to go around again.
1352 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1353 one_write_done(r10_bio
);
1354 /* We need another r10_bio. It has already been counted
1355 * in bio->bi_phys_segments.
1357 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1359 r10_bio
->master_bio
= bio
;
1360 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1362 r10_bio
->mddev
= mddev
;
1363 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1367 one_write_done(r10_bio
);
1369 /* In case raid10d snuck in to freeze_array */
1370 wake_up(&conf
->wait_barrier
);
1372 if (do_sync
|| !mddev
->bitmap
|| !plugged
)
1373 md_wakeup_thread(mddev
->thread
);
1376 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1378 struct r10conf
*conf
= mddev
->private;
1381 if (conf
->near_copies
< conf
->raid_disks
)
1382 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1383 if (conf
->near_copies
> 1)
1384 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
1385 if (conf
->far_copies
> 1) {
1386 if (conf
->far_offset
)
1387 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
1389 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
1391 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1392 conf
->raid_disks
- mddev
->degraded
);
1393 for (i
= 0; i
< conf
->raid_disks
; i
++)
1394 seq_printf(seq
, "%s",
1395 conf
->mirrors
[i
].rdev
&&
1396 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1397 seq_printf(seq
, "]");
1400 /* check if there are enough drives for
1401 * every block to appear on atleast one.
1402 * Don't consider the device numbered 'ignore'
1403 * as we might be about to remove it.
1405 static int enough(struct r10conf
*conf
, int ignore
)
1410 int n
= conf
->copies
;
1413 if (conf
->mirrors
[first
].rdev
&&
1416 first
= (first
+1) % conf
->raid_disks
;
1420 } while (first
!= 0);
1424 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1426 char b
[BDEVNAME_SIZE
];
1427 struct r10conf
*conf
= mddev
->private;
1430 * If it is not operational, then we have already marked it as dead
1431 * else if it is the last working disks, ignore the error, let the
1432 * next level up know.
1433 * else mark the drive as failed
1435 if (test_bit(In_sync
, &rdev
->flags
)
1436 && !enough(conf
, rdev
->raid_disk
))
1438 * Don't fail the drive, just return an IO error.
1441 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1442 unsigned long flags
;
1443 spin_lock_irqsave(&conf
->device_lock
, flags
);
1445 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1447 * if recovery is running, make sure it aborts.
1449 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1451 set_bit(Blocked
, &rdev
->flags
);
1452 set_bit(Faulty
, &rdev
->flags
);
1453 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1455 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1456 "md/raid10:%s: Operation continuing on %d devices.\n",
1457 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1458 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1461 static void print_conf(struct r10conf
*conf
)
1464 struct mirror_info
*tmp
;
1466 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1468 printk(KERN_DEBUG
"(!conf)\n");
1471 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1474 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1475 char b
[BDEVNAME_SIZE
];
1476 tmp
= conf
->mirrors
+ i
;
1478 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1479 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1480 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1481 bdevname(tmp
->rdev
->bdev
,b
));
1485 static void close_sync(struct r10conf
*conf
)
1488 allow_barrier(conf
);
1490 mempool_destroy(conf
->r10buf_pool
);
1491 conf
->r10buf_pool
= NULL
;
1494 static int raid10_spare_active(struct mddev
*mddev
)
1497 struct r10conf
*conf
= mddev
->private;
1498 struct mirror_info
*tmp
;
1500 unsigned long flags
;
1503 * Find all non-in_sync disks within the RAID10 configuration
1504 * and mark them in_sync
1506 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1507 tmp
= conf
->mirrors
+ i
;
1508 if (tmp
->replacement
1509 && tmp
->replacement
->recovery_offset
== MaxSector
1510 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1511 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1512 /* Replacement has just become active */
1514 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1517 /* Replaced device not technically faulty,
1518 * but we need to be sure it gets removed
1519 * and never re-added.
1521 set_bit(Faulty
, &tmp
->rdev
->flags
);
1522 sysfs_notify_dirent_safe(
1523 tmp
->rdev
->sysfs_state
);
1525 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1526 } else if (tmp
->rdev
1527 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1528 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1530 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1533 spin_lock_irqsave(&conf
->device_lock
, flags
);
1534 mddev
->degraded
-= count
;
1535 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1542 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1544 struct r10conf
*conf
= mddev
->private;
1548 int last
= conf
->raid_disks
- 1;
1549 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1551 if (mddev
->recovery_cp
< MaxSector
)
1552 /* only hot-add to in-sync arrays, as recovery is
1553 * very different from resync
1556 if (rdev
->saved_raid_disk
< 0 && !enough(conf
, -1))
1559 if (rdev
->raid_disk
>= 0)
1560 first
= last
= rdev
->raid_disk
;
1562 if (q
->merge_bvec_fn
) {
1563 set_bit(Unmerged
, &rdev
->flags
);
1564 mddev
->merge_check_needed
= 1;
1567 if (rdev
->saved_raid_disk
>= first
&&
1568 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1569 mirror
= rdev
->saved_raid_disk
;
1572 for ( ; mirror
<= last
; mirror
++) {
1573 struct mirror_info
*p
= &conf
->mirrors
[mirror
];
1574 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1577 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1578 p
->replacement
!= NULL
)
1580 clear_bit(In_sync
, &rdev
->flags
);
1581 set_bit(Replacement
, &rdev
->flags
);
1582 rdev
->raid_disk
= mirror
;
1584 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1585 rdev
->data_offset
<< 9);
1587 rcu_assign_pointer(p
->replacement
, rdev
);
1591 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1592 rdev
->data_offset
<< 9);
1594 p
->head_position
= 0;
1595 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1596 rdev
->raid_disk
= mirror
;
1598 if (rdev
->saved_raid_disk
!= mirror
)
1600 rcu_assign_pointer(p
->rdev
, rdev
);
1603 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1604 /* Some requests might not have seen this new
1605 * merge_bvec_fn. We must wait for them to complete
1606 * before merging the device fully.
1607 * First we make sure any code which has tested
1608 * our function has submitted the request, then
1609 * we wait for all outstanding requests to complete.
1611 synchronize_sched();
1612 raise_barrier(conf
, 0);
1613 lower_barrier(conf
);
1614 clear_bit(Unmerged
, &rdev
->flags
);
1616 md_integrity_add_rdev(rdev
, mddev
);
1621 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1623 struct r10conf
*conf
= mddev
->private;
1625 int number
= rdev
->raid_disk
;
1626 struct md_rdev
**rdevp
;
1627 struct mirror_info
*p
= conf
->mirrors
+ number
;
1630 if (rdev
== p
->rdev
)
1632 else if (rdev
== p
->replacement
)
1633 rdevp
= &p
->replacement
;
1637 if (test_bit(In_sync
, &rdev
->flags
) ||
1638 atomic_read(&rdev
->nr_pending
)) {
1642 /* Only remove faulty devices if recovery
1645 if (!test_bit(Faulty
, &rdev
->flags
) &&
1646 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1647 (!p
->replacement
|| p
->replacement
== rdev
) &&
1654 if (atomic_read(&rdev
->nr_pending
)) {
1655 /* lost the race, try later */
1659 } else if (p
->replacement
) {
1660 /* We must have just cleared 'rdev' */
1661 p
->rdev
= p
->replacement
;
1662 clear_bit(Replacement
, &p
->replacement
->flags
);
1663 smp_mb(); /* Make sure other CPUs may see both as identical
1664 * but will never see neither -- if they are careful.
1666 p
->replacement
= NULL
;
1667 clear_bit(WantReplacement
, &rdev
->flags
);
1669 /* We might have just remove the Replacement as faulty
1670 * Clear the flag just in case
1672 clear_bit(WantReplacement
, &rdev
->flags
);
1674 err
= md_integrity_register(mddev
);
1683 static void end_sync_read(struct bio
*bio
, int error
)
1685 struct r10bio
*r10_bio
= bio
->bi_private
;
1686 struct r10conf
*conf
= r10_bio
->mddev
->private;
1689 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1691 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1692 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1694 /* The write handler will notice the lack of
1695 * R10BIO_Uptodate and record any errors etc
1697 atomic_add(r10_bio
->sectors
,
1698 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1700 /* for reconstruct, we always reschedule after a read.
1701 * for resync, only after all reads
1703 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1704 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1705 atomic_dec_and_test(&r10_bio
->remaining
)) {
1706 /* we have read all the blocks,
1707 * do the comparison in process context in raid10d
1709 reschedule_retry(r10_bio
);
1713 static void end_sync_request(struct r10bio
*r10_bio
)
1715 struct mddev
*mddev
= r10_bio
->mddev
;
1717 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1718 if (r10_bio
->master_bio
== NULL
) {
1719 /* the primary of several recovery bios */
1720 sector_t s
= r10_bio
->sectors
;
1721 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1722 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1723 reschedule_retry(r10_bio
);
1726 md_done_sync(mddev
, s
, 1);
1729 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1730 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1731 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1732 reschedule_retry(r10_bio
);
1740 static void end_sync_write(struct bio
*bio
, int error
)
1742 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1743 struct r10bio
*r10_bio
= bio
->bi_private
;
1744 struct mddev
*mddev
= r10_bio
->mddev
;
1745 struct r10conf
*conf
= mddev
->private;
1751 struct md_rdev
*rdev
= NULL
;
1753 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1755 rdev
= conf
->mirrors
[d
].replacement
;
1757 rdev
= conf
->mirrors
[d
].rdev
;
1761 md_error(mddev
, rdev
);
1763 set_bit(WriteErrorSeen
, &rdev
->flags
);
1764 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1765 set_bit(MD_RECOVERY_NEEDED
,
1766 &rdev
->mddev
->recovery
);
1767 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1769 } else if (is_badblock(rdev
,
1770 r10_bio
->devs
[slot
].addr
,
1772 &first_bad
, &bad_sectors
))
1773 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1775 rdev_dec_pending(rdev
, mddev
);
1777 end_sync_request(r10_bio
);
1781 * Note: sync and recover and handled very differently for raid10
1782 * This code is for resync.
1783 * For resync, we read through virtual addresses and read all blocks.
1784 * If there is any error, we schedule a write. The lowest numbered
1785 * drive is authoritative.
1786 * However requests come for physical address, so we need to map.
1787 * For every physical address there are raid_disks/copies virtual addresses,
1788 * which is always are least one, but is not necessarly an integer.
1789 * This means that a physical address can span multiple chunks, so we may
1790 * have to submit multiple io requests for a single sync request.
1793 * We check if all blocks are in-sync and only write to blocks that
1796 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1798 struct r10conf
*conf
= mddev
->private;
1800 struct bio
*tbio
, *fbio
;
1803 atomic_set(&r10_bio
->remaining
, 1);
1805 /* find the first device with a block */
1806 for (i
=0; i
<conf
->copies
; i
++)
1807 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1810 if (i
== conf
->copies
)
1814 fbio
= r10_bio
->devs
[i
].bio
;
1816 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
1817 /* now find blocks with errors */
1818 for (i
=0 ; i
< conf
->copies
; i
++) {
1821 tbio
= r10_bio
->devs
[i
].bio
;
1823 if (tbio
->bi_end_io
!= end_sync_read
)
1827 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1828 /* We know that the bi_io_vec layout is the same for
1829 * both 'first' and 'i', so we just compare them.
1830 * All vec entries are PAGE_SIZE;
1832 for (j
= 0; j
< vcnt
; j
++)
1833 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1834 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1835 fbio
->bi_io_vec
[j
].bv_len
))
1839 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1840 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1841 /* Don't fix anything. */
1844 /* Ok, we need to write this bio, either to correct an
1845 * inconsistency or to correct an unreadable block.
1846 * First we need to fixup bv_offset, bv_len and
1847 * bi_vecs, as the read request might have corrupted these
1849 tbio
->bi_vcnt
= vcnt
;
1850 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1852 tbio
->bi_phys_segments
= 0;
1853 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1854 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1855 tbio
->bi_next
= NULL
;
1856 tbio
->bi_rw
= WRITE
;
1857 tbio
->bi_private
= r10_bio
;
1858 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1860 for (j
=0; j
< vcnt
; j
++) {
1861 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1862 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1864 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1865 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1868 tbio
->bi_end_io
= end_sync_write
;
1870 d
= r10_bio
->devs
[i
].devnum
;
1871 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1872 atomic_inc(&r10_bio
->remaining
);
1873 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1875 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1876 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1877 generic_make_request(tbio
);
1880 /* Now write out to any replacement devices
1883 for (i
= 0; i
< conf
->copies
; i
++) {
1886 tbio
= r10_bio
->devs
[i
].repl_bio
;
1887 if (!tbio
|| !tbio
->bi_end_io
)
1889 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
1890 && r10_bio
->devs
[i
].bio
!= fbio
)
1891 for (j
= 0; j
< vcnt
; j
++)
1892 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1893 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1895 d
= r10_bio
->devs
[i
].devnum
;
1896 atomic_inc(&r10_bio
->remaining
);
1897 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
1898 tbio
->bi_size
>> 9);
1899 generic_make_request(tbio
);
1903 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1904 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1910 * Now for the recovery code.
1911 * Recovery happens across physical sectors.
1912 * We recover all non-is_sync drives by finding the virtual address of
1913 * each, and then choose a working drive that also has that virt address.
1914 * There is a separate r10_bio for each non-in_sync drive.
1915 * Only the first two slots are in use. The first for reading,
1916 * The second for writing.
1919 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
1921 /* We got a read error during recovery.
1922 * We repeat the read in smaller page-sized sections.
1923 * If a read succeeds, write it to the new device or record
1924 * a bad block if we cannot.
1925 * If a read fails, record a bad block on both old and
1928 struct mddev
*mddev
= r10_bio
->mddev
;
1929 struct r10conf
*conf
= mddev
->private;
1930 struct bio
*bio
= r10_bio
->devs
[0].bio
;
1932 int sectors
= r10_bio
->sectors
;
1934 int dr
= r10_bio
->devs
[0].devnum
;
1935 int dw
= r10_bio
->devs
[1].devnum
;
1939 struct md_rdev
*rdev
;
1943 if (s
> (PAGE_SIZE
>>9))
1946 rdev
= conf
->mirrors
[dr
].rdev
;
1947 addr
= r10_bio
->devs
[0].addr
+ sect
,
1948 ok
= sync_page_io(rdev
,
1951 bio
->bi_io_vec
[idx
].bv_page
,
1954 rdev
= conf
->mirrors
[dw
].rdev
;
1955 addr
= r10_bio
->devs
[1].addr
+ sect
;
1956 ok
= sync_page_io(rdev
,
1959 bio
->bi_io_vec
[idx
].bv_page
,
1962 set_bit(WriteErrorSeen
, &rdev
->flags
);
1963 if (!test_and_set_bit(WantReplacement
,
1965 set_bit(MD_RECOVERY_NEEDED
,
1966 &rdev
->mddev
->recovery
);
1970 /* We don't worry if we cannot set a bad block -
1971 * it really is bad so there is no loss in not
1974 rdev_set_badblocks(rdev
, addr
, s
, 0);
1976 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
1977 /* need bad block on destination too */
1978 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
1979 addr
= r10_bio
->devs
[1].addr
+ sect
;
1980 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
1982 /* just abort the recovery */
1984 "md/raid10:%s: recovery aborted"
1985 " due to read error\n",
1988 conf
->mirrors
[dw
].recovery_disabled
1989 = mddev
->recovery_disabled
;
1990 set_bit(MD_RECOVERY_INTR
,
2003 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2005 struct r10conf
*conf
= mddev
->private;
2007 struct bio
*wbio
, *wbio2
;
2009 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2010 fix_recovery_read_error(r10_bio
);
2011 end_sync_request(r10_bio
);
2016 * share the pages with the first bio
2017 * and submit the write request
2019 d
= r10_bio
->devs
[1].devnum
;
2020 wbio
= r10_bio
->devs
[1].bio
;
2021 wbio2
= r10_bio
->devs
[1].repl_bio
;
2022 if (wbio
->bi_end_io
) {
2023 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2024 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
2025 generic_make_request(wbio
);
2027 if (wbio2
&& wbio2
->bi_end_io
) {
2028 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2029 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2030 wbio2
->bi_size
>> 9);
2031 generic_make_request(wbio2
);
2037 * Used by fix_read_error() to decay the per rdev read_errors.
2038 * We halve the read error count for every hour that has elapsed
2039 * since the last recorded read error.
2042 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2044 struct timespec cur_time_mon
;
2045 unsigned long hours_since_last
;
2046 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2048 ktime_get_ts(&cur_time_mon
);
2050 if (rdev
->last_read_error
.tv_sec
== 0 &&
2051 rdev
->last_read_error
.tv_nsec
== 0) {
2052 /* first time we've seen a read error */
2053 rdev
->last_read_error
= cur_time_mon
;
2057 hours_since_last
= (cur_time_mon
.tv_sec
-
2058 rdev
->last_read_error
.tv_sec
) / 3600;
2060 rdev
->last_read_error
= cur_time_mon
;
2063 * if hours_since_last is > the number of bits in read_errors
2064 * just set read errors to 0. We do this to avoid
2065 * overflowing the shift of read_errors by hours_since_last.
2067 if (hours_since_last
>= 8 * sizeof(read_errors
))
2068 atomic_set(&rdev
->read_errors
, 0);
2070 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2073 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2074 int sectors
, struct page
*page
, int rw
)
2079 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2080 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2082 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2086 set_bit(WriteErrorSeen
, &rdev
->flags
);
2087 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2088 set_bit(MD_RECOVERY_NEEDED
,
2089 &rdev
->mddev
->recovery
);
2091 /* need to record an error - either for the block or the device */
2092 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2093 md_error(rdev
->mddev
, rdev
);
2098 * This is a kernel thread which:
2100 * 1. Retries failed read operations on working mirrors.
2101 * 2. Updates the raid superblock when problems encounter.
2102 * 3. Performs writes following reads for array synchronising.
2105 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2107 int sect
= 0; /* Offset from r10_bio->sector */
2108 int sectors
= r10_bio
->sectors
;
2109 struct md_rdev
*rdev
;
2110 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2111 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2113 /* still own a reference to this rdev, so it cannot
2114 * have been cleared recently.
2116 rdev
= conf
->mirrors
[d
].rdev
;
2118 if (test_bit(Faulty
, &rdev
->flags
))
2119 /* drive has already been failed, just ignore any
2120 more fix_read_error() attempts */
2123 check_decay_read_errors(mddev
, rdev
);
2124 atomic_inc(&rdev
->read_errors
);
2125 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2126 char b
[BDEVNAME_SIZE
];
2127 bdevname(rdev
->bdev
, b
);
2130 "md/raid10:%s: %s: Raid device exceeded "
2131 "read_error threshold [cur %d:max %d]\n",
2133 atomic_read(&rdev
->read_errors
), max_read_errors
);
2135 "md/raid10:%s: %s: Failing raid device\n",
2137 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2138 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2144 int sl
= r10_bio
->read_slot
;
2148 if (s
> (PAGE_SIZE
>>9))
2156 d
= r10_bio
->devs
[sl
].devnum
;
2157 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2159 !test_bit(Unmerged
, &rdev
->flags
) &&
2160 test_bit(In_sync
, &rdev
->flags
) &&
2161 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2162 &first_bad
, &bad_sectors
) == 0) {
2163 atomic_inc(&rdev
->nr_pending
);
2165 success
= sync_page_io(rdev
,
2166 r10_bio
->devs
[sl
].addr
+
2169 conf
->tmppage
, READ
, false);
2170 rdev_dec_pending(rdev
, mddev
);
2176 if (sl
== conf
->copies
)
2178 } while (!success
&& sl
!= r10_bio
->read_slot
);
2182 /* Cannot read from anywhere, just mark the block
2183 * as bad on the first device to discourage future
2186 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2187 rdev
= conf
->mirrors
[dn
].rdev
;
2189 if (!rdev_set_badblocks(
2191 r10_bio
->devs
[r10_bio
->read_slot
].addr
2194 md_error(mddev
, rdev
);
2195 r10_bio
->devs
[r10_bio
->read_slot
].bio
2202 /* write it back and re-read */
2204 while (sl
!= r10_bio
->read_slot
) {
2205 char b
[BDEVNAME_SIZE
];
2210 d
= r10_bio
->devs
[sl
].devnum
;
2211 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2213 test_bit(Unmerged
, &rdev
->flags
) ||
2214 !test_bit(In_sync
, &rdev
->flags
))
2217 atomic_inc(&rdev
->nr_pending
);
2219 if (r10_sync_page_io(rdev
,
2220 r10_bio
->devs
[sl
].addr
+
2222 s
, conf
->tmppage
, WRITE
)
2224 /* Well, this device is dead */
2226 "md/raid10:%s: read correction "
2228 " (%d sectors at %llu on %s)\n",
2230 (unsigned long long)(
2231 sect
+ rdev
->data_offset
),
2232 bdevname(rdev
->bdev
, b
));
2233 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2236 bdevname(rdev
->bdev
, b
));
2238 rdev_dec_pending(rdev
, mddev
);
2242 while (sl
!= r10_bio
->read_slot
) {
2243 char b
[BDEVNAME_SIZE
];
2248 d
= r10_bio
->devs
[sl
].devnum
;
2249 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2251 !test_bit(In_sync
, &rdev
->flags
))
2254 atomic_inc(&rdev
->nr_pending
);
2256 switch (r10_sync_page_io(rdev
,
2257 r10_bio
->devs
[sl
].addr
+
2262 /* Well, this device is dead */
2264 "md/raid10:%s: unable to read back "
2266 " (%d sectors at %llu on %s)\n",
2268 (unsigned long long)(
2269 sect
+ rdev
->data_offset
),
2270 bdevname(rdev
->bdev
, b
));
2271 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2274 bdevname(rdev
->bdev
, b
));
2278 "md/raid10:%s: read error corrected"
2279 " (%d sectors at %llu on %s)\n",
2281 (unsigned long long)(
2282 sect
+ rdev
->data_offset
),
2283 bdevname(rdev
->bdev
, b
));
2284 atomic_add(s
, &rdev
->corrected_errors
);
2287 rdev_dec_pending(rdev
, mddev
);
2297 static void bi_complete(struct bio
*bio
, int error
)
2299 complete((struct completion
*)bio
->bi_private
);
2302 static int submit_bio_wait(int rw
, struct bio
*bio
)
2304 struct completion event
;
2307 init_completion(&event
);
2308 bio
->bi_private
= &event
;
2309 bio
->bi_end_io
= bi_complete
;
2310 submit_bio(rw
, bio
);
2311 wait_for_completion(&event
);
2313 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2316 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2318 struct bio
*bio
= r10_bio
->master_bio
;
2319 struct mddev
*mddev
= r10_bio
->mddev
;
2320 struct r10conf
*conf
= mddev
->private;
2321 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2322 /* bio has the data to be written to slot 'i' where
2323 * we just recently had a write error.
2324 * We repeatedly clone the bio and trim down to one block,
2325 * then try the write. Where the write fails we record
2327 * It is conceivable that the bio doesn't exactly align with
2328 * blocks. We must handle this.
2330 * We currently own a reference to the rdev.
2336 int sect_to_write
= r10_bio
->sectors
;
2339 if (rdev
->badblocks
.shift
< 0)
2342 block_sectors
= 1 << rdev
->badblocks
.shift
;
2343 sector
= r10_bio
->sector
;
2344 sectors
= ((r10_bio
->sector
+ block_sectors
)
2345 & ~(sector_t
)(block_sectors
- 1))
2348 while (sect_to_write
) {
2350 if (sectors
> sect_to_write
)
2351 sectors
= sect_to_write
;
2352 /* Write at 'sector' for 'sectors' */
2353 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2354 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2355 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2357 (sector
- r10_bio
->sector
));
2358 wbio
->bi_bdev
= rdev
->bdev
;
2359 if (submit_bio_wait(WRITE
, wbio
) == 0)
2361 ok
= rdev_set_badblocks(rdev
, sector
,
2366 sect_to_write
-= sectors
;
2368 sectors
= block_sectors
;
2373 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2375 int slot
= r10_bio
->read_slot
;
2377 struct r10conf
*conf
= mddev
->private;
2378 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2379 char b
[BDEVNAME_SIZE
];
2380 unsigned long do_sync
;
2383 /* we got a read error. Maybe the drive is bad. Maybe just
2384 * the block and we can fix it.
2385 * We freeze all other IO, and try reading the block from
2386 * other devices. When we find one, we re-write
2387 * and check it that fixes the read error.
2388 * This is all done synchronously while the array is
2391 bio
= r10_bio
->devs
[slot
].bio
;
2392 bdevname(bio
->bi_bdev
, b
);
2394 r10_bio
->devs
[slot
].bio
= NULL
;
2396 if (mddev
->ro
== 0) {
2398 fix_read_error(conf
, mddev
, r10_bio
);
2399 unfreeze_array(conf
);
2401 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2403 rdev_dec_pending(rdev
, mddev
);
2406 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2408 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2409 " read error for block %llu\n",
2411 (unsigned long long)r10_bio
->sector
);
2412 raid_end_bio_io(r10_bio
);
2416 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2417 slot
= r10_bio
->read_slot
;
2420 "md/raid10:%s: %s: redirecting "
2421 "sector %llu to another mirror\n",
2423 bdevname(rdev
->bdev
, b
),
2424 (unsigned long long)r10_bio
->sector
);
2425 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2428 r10_bio
->sector
- bio
->bi_sector
,
2430 r10_bio
->devs
[slot
].bio
= bio
;
2431 r10_bio
->devs
[slot
].rdev
= rdev
;
2432 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2433 + rdev
->data_offset
;
2434 bio
->bi_bdev
= rdev
->bdev
;
2435 bio
->bi_rw
= READ
| do_sync
;
2436 bio
->bi_private
= r10_bio
;
2437 bio
->bi_end_io
= raid10_end_read_request
;
2438 if (max_sectors
< r10_bio
->sectors
) {
2439 /* Drat - have to split this up more */
2440 struct bio
*mbio
= r10_bio
->master_bio
;
2441 int sectors_handled
=
2442 r10_bio
->sector
+ max_sectors
2444 r10_bio
->sectors
= max_sectors
;
2445 spin_lock_irq(&conf
->device_lock
);
2446 if (mbio
->bi_phys_segments
== 0)
2447 mbio
->bi_phys_segments
= 2;
2449 mbio
->bi_phys_segments
++;
2450 spin_unlock_irq(&conf
->device_lock
);
2451 generic_make_request(bio
);
2453 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2455 r10_bio
->master_bio
= mbio
;
2456 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2459 set_bit(R10BIO_ReadError
,
2461 r10_bio
->mddev
= mddev
;
2462 r10_bio
->sector
= mbio
->bi_sector
2467 generic_make_request(bio
);
2470 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2472 /* Some sort of write request has finished and it
2473 * succeeded in writing where we thought there was a
2474 * bad block. So forget the bad block.
2475 * Or possibly if failed and we need to record
2479 struct md_rdev
*rdev
;
2481 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2482 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2483 for (m
= 0; m
< conf
->copies
; m
++) {
2484 int dev
= r10_bio
->devs
[m
].devnum
;
2485 rdev
= conf
->mirrors
[dev
].rdev
;
2486 if (r10_bio
->devs
[m
].bio
== NULL
)
2488 if (test_bit(BIO_UPTODATE
,
2489 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2490 rdev_clear_badblocks(
2492 r10_bio
->devs
[m
].addr
,
2495 if (!rdev_set_badblocks(
2497 r10_bio
->devs
[m
].addr
,
2498 r10_bio
->sectors
, 0))
2499 md_error(conf
->mddev
, rdev
);
2501 rdev
= conf
->mirrors
[dev
].replacement
;
2502 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2504 if (test_bit(BIO_UPTODATE
,
2505 &r10_bio
->devs
[m
].repl_bio
->bi_flags
)) {
2506 rdev_clear_badblocks(
2508 r10_bio
->devs
[m
].addr
,
2511 if (!rdev_set_badblocks(
2513 r10_bio
->devs
[m
].addr
,
2514 r10_bio
->sectors
, 0))
2515 md_error(conf
->mddev
, rdev
);
2520 for (m
= 0; m
< conf
->copies
; m
++) {
2521 int dev
= r10_bio
->devs
[m
].devnum
;
2522 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2523 rdev
= conf
->mirrors
[dev
].rdev
;
2524 if (bio
== IO_MADE_GOOD
) {
2525 rdev_clear_badblocks(
2527 r10_bio
->devs
[m
].addr
,
2529 rdev_dec_pending(rdev
, conf
->mddev
);
2530 } else if (bio
!= NULL
&&
2531 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2532 if (!narrow_write_error(r10_bio
, m
)) {
2533 md_error(conf
->mddev
, rdev
);
2534 set_bit(R10BIO_Degraded
,
2537 rdev_dec_pending(rdev
, conf
->mddev
);
2539 bio
= r10_bio
->devs
[m
].repl_bio
;
2540 rdev
= conf
->mirrors
[dev
].replacement
;
2541 if (rdev
&& bio
== IO_MADE_GOOD
) {
2542 rdev_clear_badblocks(
2544 r10_bio
->devs
[m
].addr
,
2546 rdev_dec_pending(rdev
, conf
->mddev
);
2549 if (test_bit(R10BIO_WriteError
,
2551 close_write(r10_bio
);
2552 raid_end_bio_io(r10_bio
);
2556 static void raid10d(struct mddev
*mddev
)
2558 struct r10bio
*r10_bio
;
2559 unsigned long flags
;
2560 struct r10conf
*conf
= mddev
->private;
2561 struct list_head
*head
= &conf
->retry_list
;
2562 struct blk_plug plug
;
2564 md_check_recovery(mddev
);
2566 blk_start_plug(&plug
);
2569 flush_pending_writes(conf
);
2571 spin_lock_irqsave(&conf
->device_lock
, flags
);
2572 if (list_empty(head
)) {
2573 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2576 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2577 list_del(head
->prev
);
2579 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2581 mddev
= r10_bio
->mddev
;
2582 conf
= mddev
->private;
2583 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2584 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2585 handle_write_completed(conf
, r10_bio
);
2586 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2587 sync_request_write(mddev
, r10_bio
);
2588 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2589 recovery_request_write(mddev
, r10_bio
);
2590 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2591 handle_read_error(mddev
, r10_bio
);
2593 /* just a partial read to be scheduled from a
2596 int slot
= r10_bio
->read_slot
;
2597 generic_make_request(r10_bio
->devs
[slot
].bio
);
2601 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2602 md_check_recovery(mddev
);
2604 blk_finish_plug(&plug
);
2608 static int init_resync(struct r10conf
*conf
)
2613 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2614 BUG_ON(conf
->r10buf_pool
);
2615 conf
->have_replacement
= 0;
2616 for (i
= 0; i
< conf
->raid_disks
; i
++)
2617 if (conf
->mirrors
[i
].replacement
)
2618 conf
->have_replacement
= 1;
2619 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2620 if (!conf
->r10buf_pool
)
2622 conf
->next_resync
= 0;
2627 * perform a "sync" on one "block"
2629 * We need to make sure that no normal I/O request - particularly write
2630 * requests - conflict with active sync requests.
2632 * This is achieved by tracking pending requests and a 'barrier' concept
2633 * that can be installed to exclude normal IO requests.
2635 * Resync and recovery are handled very differently.
2636 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2638 * For resync, we iterate over virtual addresses, read all copies,
2639 * and update if there are differences. If only one copy is live,
2641 * For recovery, we iterate over physical addresses, read a good
2642 * value for each non-in_sync drive, and over-write.
2644 * So, for recovery we may have several outstanding complex requests for a
2645 * given address, one for each out-of-sync device. We model this by allocating
2646 * a number of r10_bio structures, one for each out-of-sync device.
2647 * As we setup these structures, we collect all bio's together into a list
2648 * which we then process collectively to add pages, and then process again
2649 * to pass to generic_make_request.
2651 * The r10_bio structures are linked using a borrowed master_bio pointer.
2652 * This link is counted in ->remaining. When the r10_bio that points to NULL
2653 * has its remaining count decremented to 0, the whole complex operation
2658 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2659 int *skipped
, int go_faster
)
2661 struct r10conf
*conf
= mddev
->private;
2662 struct r10bio
*r10_bio
;
2663 struct bio
*biolist
= NULL
, *bio
;
2664 sector_t max_sector
, nr_sectors
;
2667 sector_t sync_blocks
;
2668 sector_t sectors_skipped
= 0;
2669 int chunks_skipped
= 0;
2671 if (!conf
->r10buf_pool
)
2672 if (init_resync(conf
))
2676 max_sector
= mddev
->dev_sectors
;
2677 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2678 max_sector
= mddev
->resync_max_sectors
;
2679 if (sector_nr
>= max_sector
) {
2680 /* If we aborted, we need to abort the
2681 * sync on the 'current' bitmap chucks (there can
2682 * be several when recovering multiple devices).
2683 * as we may have started syncing it but not finished.
2684 * We can find the current address in
2685 * mddev->curr_resync, but for recovery,
2686 * we need to convert that to several
2687 * virtual addresses.
2689 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2690 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2691 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2693 else for (i
=0; i
<conf
->raid_disks
; i
++) {
2695 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2696 bitmap_end_sync(mddev
->bitmap
, sect
,
2700 /* completed sync */
2701 if ((!mddev
->bitmap
|| conf
->fullsync
)
2702 && conf
->have_replacement
2703 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2704 /* Completed a full sync so the replacements
2705 * are now fully recovered.
2707 for (i
= 0; i
< conf
->raid_disks
; i
++)
2708 if (conf
->mirrors
[i
].replacement
)
2709 conf
->mirrors
[i
].replacement
2715 bitmap_close_sync(mddev
->bitmap
);
2718 return sectors_skipped
;
2720 if (chunks_skipped
>= conf
->raid_disks
) {
2721 /* if there has been nothing to do on any drive,
2722 * then there is nothing to do at all..
2725 return (max_sector
- sector_nr
) + sectors_skipped
;
2728 if (max_sector
> mddev
->resync_max
)
2729 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2731 /* make sure whole request will fit in a chunk - if chunks
2734 if (conf
->near_copies
< conf
->raid_disks
&&
2735 max_sector
> (sector_nr
| conf
->chunk_mask
))
2736 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
2738 * If there is non-resync activity waiting for us then
2739 * put in a delay to throttle resync.
2741 if (!go_faster
&& conf
->nr_waiting
)
2742 msleep_interruptible(1000);
2744 /* Again, very different code for resync and recovery.
2745 * Both must result in an r10bio with a list of bios that
2746 * have bi_end_io, bi_sector, bi_bdev set,
2747 * and bi_private set to the r10bio.
2748 * For recovery, we may actually create several r10bios
2749 * with 2 bios in each, that correspond to the bios in the main one.
2750 * In this case, the subordinate r10bios link back through a
2751 * borrowed master_bio pointer, and the counter in the master
2752 * includes a ref from each subordinate.
2754 /* First, we decide what to do and set ->bi_end_io
2755 * To end_sync_read if we want to read, and
2756 * end_sync_write if we will want to write.
2759 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2760 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2761 /* recovery... the complicated one */
2765 for (i
=0 ; i
<conf
->raid_disks
; i
++) {
2771 struct mirror_info
*mirror
= &conf
->mirrors
[i
];
2773 if ((mirror
->rdev
== NULL
||
2774 test_bit(In_sync
, &mirror
->rdev
->flags
))
2776 (mirror
->replacement
== NULL
||
2778 &mirror
->replacement
->flags
)))
2782 /* want to reconstruct this device */
2784 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2785 if (sect
>= mddev
->resync_max_sectors
) {
2786 /* last stripe is not complete - don't
2787 * try to recover this sector.
2791 /* Unless we are doing a full sync, or a replacement
2792 * we only need to recover the block if it is set in
2795 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2797 if (sync_blocks
< max_sync
)
2798 max_sync
= sync_blocks
;
2800 mirror
->replacement
== NULL
&&
2802 /* yep, skip the sync_blocks here, but don't assume
2803 * that there will never be anything to do here
2805 chunks_skipped
= -1;
2809 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2810 raise_barrier(conf
, rb2
!= NULL
);
2811 atomic_set(&r10_bio
->remaining
, 0);
2813 r10_bio
->master_bio
= (struct bio
*)rb2
;
2815 atomic_inc(&rb2
->remaining
);
2816 r10_bio
->mddev
= mddev
;
2817 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2818 r10_bio
->sector
= sect
;
2820 raid10_find_phys(conf
, r10_bio
);
2822 /* Need to check if the array will still be
2825 for (j
=0; j
<conf
->raid_disks
; j
++)
2826 if (conf
->mirrors
[j
].rdev
== NULL
||
2827 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
2832 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2833 &sync_blocks
, still_degraded
);
2836 for (j
=0; j
<conf
->copies
;j
++) {
2838 int d
= r10_bio
->devs
[j
].devnum
;
2839 sector_t from_addr
, to_addr
;
2840 struct md_rdev
*rdev
;
2841 sector_t sector
, first_bad
;
2843 if (!conf
->mirrors
[d
].rdev
||
2844 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
2846 /* This is where we read from */
2848 rdev
= conf
->mirrors
[d
].rdev
;
2849 sector
= r10_bio
->devs
[j
].addr
;
2851 if (is_badblock(rdev
, sector
, max_sync
,
2852 &first_bad
, &bad_sectors
)) {
2853 if (first_bad
> sector
)
2854 max_sync
= first_bad
- sector
;
2856 bad_sectors
-= (sector
2858 if (max_sync
> bad_sectors
)
2859 max_sync
= bad_sectors
;
2863 bio
= r10_bio
->devs
[0].bio
;
2864 bio
->bi_next
= biolist
;
2866 bio
->bi_private
= r10_bio
;
2867 bio
->bi_end_io
= end_sync_read
;
2869 from_addr
= r10_bio
->devs
[j
].addr
;
2870 bio
->bi_sector
= from_addr
+ rdev
->data_offset
;
2871 bio
->bi_bdev
= rdev
->bdev
;
2872 atomic_inc(&rdev
->nr_pending
);
2873 /* and we write to 'i' (if not in_sync) */
2875 for (k
=0; k
<conf
->copies
; k
++)
2876 if (r10_bio
->devs
[k
].devnum
== i
)
2878 BUG_ON(k
== conf
->copies
);
2879 to_addr
= r10_bio
->devs
[k
].addr
;
2880 r10_bio
->devs
[0].devnum
= d
;
2881 r10_bio
->devs
[0].addr
= from_addr
;
2882 r10_bio
->devs
[1].devnum
= i
;
2883 r10_bio
->devs
[1].addr
= to_addr
;
2885 rdev
= mirror
->rdev
;
2886 if (!test_bit(In_sync
, &rdev
->flags
)) {
2887 bio
= r10_bio
->devs
[1].bio
;
2888 bio
->bi_next
= biolist
;
2890 bio
->bi_private
= r10_bio
;
2891 bio
->bi_end_io
= end_sync_write
;
2893 bio
->bi_sector
= to_addr
2894 + rdev
->data_offset
;
2895 bio
->bi_bdev
= rdev
->bdev
;
2896 atomic_inc(&r10_bio
->remaining
);
2898 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
2900 /* and maybe write to replacement */
2901 bio
= r10_bio
->devs
[1].repl_bio
;
2903 bio
->bi_end_io
= NULL
;
2904 rdev
= mirror
->replacement
;
2905 /* Note: if rdev != NULL, then bio
2906 * cannot be NULL as r10buf_pool_alloc will
2907 * have allocated it.
2908 * So the second test here is pointless.
2909 * But it keeps semantic-checkers happy, and
2910 * this comment keeps human reviewers
2913 if (rdev
== NULL
|| bio
== NULL
||
2914 test_bit(Faulty
, &rdev
->flags
))
2916 bio
->bi_next
= biolist
;
2918 bio
->bi_private
= r10_bio
;
2919 bio
->bi_end_io
= end_sync_write
;
2921 bio
->bi_sector
= to_addr
+ rdev
->data_offset
;
2922 bio
->bi_bdev
= rdev
->bdev
;
2923 atomic_inc(&r10_bio
->remaining
);
2926 if (j
== conf
->copies
) {
2927 /* Cannot recover, so abort the recovery or
2928 * record a bad block */
2931 atomic_dec(&rb2
->remaining
);
2934 /* problem is that there are bad blocks
2935 * on other device(s)
2938 for (k
= 0; k
< conf
->copies
; k
++)
2939 if (r10_bio
->devs
[k
].devnum
== i
)
2941 if (!test_bit(In_sync
,
2942 &mirror
->rdev
->flags
)
2943 && !rdev_set_badblocks(
2945 r10_bio
->devs
[k
].addr
,
2948 if (mirror
->replacement
&&
2949 !rdev_set_badblocks(
2950 mirror
->replacement
,
2951 r10_bio
->devs
[k
].addr
,
2956 if (!test_and_set_bit(MD_RECOVERY_INTR
,
2958 printk(KERN_INFO
"md/raid10:%s: insufficient "
2959 "working devices for recovery.\n",
2961 mirror
->recovery_disabled
2962 = mddev
->recovery_disabled
;
2967 if (biolist
== NULL
) {
2969 struct r10bio
*rb2
= r10_bio
;
2970 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
2971 rb2
->master_bio
= NULL
;
2977 /* resync. Schedule a read for every block at this virt offset */
2980 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2982 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2983 &sync_blocks
, mddev
->degraded
) &&
2984 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
2985 &mddev
->recovery
)) {
2986 /* We can skip this block */
2988 return sync_blocks
+ sectors_skipped
;
2990 if (sync_blocks
< max_sync
)
2991 max_sync
= sync_blocks
;
2992 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2994 r10_bio
->mddev
= mddev
;
2995 atomic_set(&r10_bio
->remaining
, 0);
2996 raise_barrier(conf
, 0);
2997 conf
->next_resync
= sector_nr
;
2999 r10_bio
->master_bio
= NULL
;
3000 r10_bio
->sector
= sector_nr
;
3001 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3002 raid10_find_phys(conf
, r10_bio
);
3003 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
3005 for (i
=0; i
<conf
->copies
; i
++) {
3006 int d
= r10_bio
->devs
[i
].devnum
;
3007 sector_t first_bad
, sector
;
3010 if (r10_bio
->devs
[i
].repl_bio
)
3011 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3013 bio
= r10_bio
->devs
[i
].bio
;
3014 bio
->bi_end_io
= NULL
;
3015 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3016 if (conf
->mirrors
[d
].rdev
== NULL
||
3017 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
3019 sector
= r10_bio
->devs
[i
].addr
;
3020 if (is_badblock(conf
->mirrors
[d
].rdev
,
3022 &first_bad
, &bad_sectors
)) {
3023 if (first_bad
> sector
)
3024 max_sync
= first_bad
- sector
;
3026 bad_sectors
-= (sector
- first_bad
);
3027 if (max_sync
> bad_sectors
)
3028 max_sync
= bad_sectors
;
3032 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3033 atomic_inc(&r10_bio
->remaining
);
3034 bio
->bi_next
= biolist
;
3036 bio
->bi_private
= r10_bio
;
3037 bio
->bi_end_io
= end_sync_read
;
3039 bio
->bi_sector
= sector
+
3040 conf
->mirrors
[d
].rdev
->data_offset
;
3041 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
3044 if (conf
->mirrors
[d
].replacement
== NULL
||
3046 &conf
->mirrors
[d
].replacement
->flags
))
3049 /* Need to set up for writing to the replacement */
3050 bio
= r10_bio
->devs
[i
].repl_bio
;
3051 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3053 sector
= r10_bio
->devs
[i
].addr
;
3054 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3055 bio
->bi_next
= biolist
;
3057 bio
->bi_private
= r10_bio
;
3058 bio
->bi_end_io
= end_sync_write
;
3060 bio
->bi_sector
= sector
+
3061 conf
->mirrors
[d
].replacement
->data_offset
;
3062 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
3067 for (i
=0; i
<conf
->copies
; i
++) {
3068 int d
= r10_bio
->devs
[i
].devnum
;
3069 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3070 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3072 if (r10_bio
->devs
[i
].repl_bio
&&
3073 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3075 conf
->mirrors
[d
].replacement
,
3084 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3086 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
3088 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
3091 bio
->bi_phys_segments
= 0;
3096 if (sector_nr
+ max_sync
< max_sector
)
3097 max_sector
= sector_nr
+ max_sync
;
3100 int len
= PAGE_SIZE
;
3101 if (sector_nr
+ (len
>>9) > max_sector
)
3102 len
= (max_sector
- sector_nr
) << 9;
3105 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3107 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3108 if (bio_add_page(bio
, page
, len
, 0))
3112 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3113 for (bio2
= biolist
;
3114 bio2
&& bio2
!= bio
;
3115 bio2
= bio2
->bi_next
) {
3116 /* remove last page from this bio */
3118 bio2
->bi_size
-= len
;
3119 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
3123 nr_sectors
+= len
>>9;
3124 sector_nr
+= len
>>9;
3125 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3127 r10_bio
->sectors
= nr_sectors
;
3131 biolist
= biolist
->bi_next
;
3133 bio
->bi_next
= NULL
;
3134 r10_bio
= bio
->bi_private
;
3135 r10_bio
->sectors
= nr_sectors
;
3137 if (bio
->bi_end_io
== end_sync_read
) {
3138 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3139 generic_make_request(bio
);
3143 if (sectors_skipped
)
3144 /* pretend they weren't skipped, it makes
3145 * no important difference in this case
3147 md_done_sync(mddev
, sectors_skipped
, 1);
3149 return sectors_skipped
+ nr_sectors
;
3151 /* There is nowhere to write, so all non-sync
3152 * drives must be failed or in resync, all drives
3153 * have a bad block, so try the next chunk...
3155 if (sector_nr
+ max_sync
< max_sector
)
3156 max_sector
= sector_nr
+ max_sync
;
3158 sectors_skipped
+= (max_sector
- sector_nr
);
3160 sector_nr
= max_sector
;
3165 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3168 struct r10conf
*conf
= mddev
->private;
3171 raid_disks
= conf
->raid_disks
;
3173 sectors
= conf
->dev_sectors
;
3175 size
= sectors
>> conf
->chunk_shift
;
3176 sector_div(size
, conf
->far_copies
);
3177 size
= size
* raid_disks
;
3178 sector_div(size
, conf
->near_copies
);
3180 return size
<< conf
->chunk_shift
;
3183 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3185 /* Calculate the number of sectors-per-device that will
3186 * actually be used, and set conf->dev_sectors and
3190 size
= size
>> conf
->chunk_shift
;
3191 sector_div(size
, conf
->far_copies
);
3192 size
= size
* conf
->raid_disks
;
3193 sector_div(size
, conf
->near_copies
);
3194 /* 'size' is now the number of chunks in the array */
3195 /* calculate "used chunks per device" */
3196 size
= size
* conf
->copies
;
3198 /* We need to round up when dividing by raid_disks to
3199 * get the stride size.
3201 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->raid_disks
);
3203 conf
->dev_sectors
= size
<< conf
->chunk_shift
;
3205 if (conf
->far_offset
)
3206 conf
->stride
= 1 << conf
->chunk_shift
;
3208 sector_div(size
, conf
->far_copies
);
3209 conf
->stride
= size
<< conf
->chunk_shift
;
3213 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3215 struct r10conf
*conf
= NULL
;
3219 if (mddev
->new_chunk_sectors
< (PAGE_SIZE
>> 9) ||
3220 !is_power_of_2(mddev
->new_chunk_sectors
)) {
3221 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3222 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3223 mdname(mddev
), PAGE_SIZE
);
3227 nc
= mddev
->new_layout
& 255;
3228 fc
= (mddev
->new_layout
>> 8) & 255;
3229 fo
= mddev
->new_layout
& (1<<16);
3231 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
3232 (mddev
->new_layout
>> 17)) {
3233 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3234 mdname(mddev
), mddev
->new_layout
);
3239 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3243 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
3248 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3253 conf
->raid_disks
= mddev
->raid_disks
;
3254 conf
->near_copies
= nc
;
3255 conf
->far_copies
= fc
;
3256 conf
->copies
= nc
*fc
;
3257 conf
->far_offset
= fo
;
3258 conf
->chunk_mask
= mddev
->new_chunk_sectors
- 1;
3259 conf
->chunk_shift
= ffz(~mddev
->new_chunk_sectors
);
3261 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3262 r10bio_pool_free
, conf
);
3263 if (!conf
->r10bio_pool
)
3266 calc_sectors(conf
, mddev
->dev_sectors
);
3268 spin_lock_init(&conf
->device_lock
);
3269 INIT_LIST_HEAD(&conf
->retry_list
);
3271 spin_lock_init(&conf
->resync_lock
);
3272 init_waitqueue_head(&conf
->wait_barrier
);
3274 conf
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
3278 conf
->mddev
= mddev
;
3282 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3285 if (conf
->r10bio_pool
)
3286 mempool_destroy(conf
->r10bio_pool
);
3287 kfree(conf
->mirrors
);
3288 safe_put_page(conf
->tmppage
);
3291 return ERR_PTR(err
);
3294 static int run(struct mddev
*mddev
)
3296 struct r10conf
*conf
;
3297 int i
, disk_idx
, chunk_size
;
3298 struct mirror_info
*disk
;
3299 struct md_rdev
*rdev
;
3303 * copy the already verified devices into our private RAID10
3304 * bookkeeping area. [whatever we allocate in run(),
3305 * should be freed in stop()]
3308 if (mddev
->private == NULL
) {
3309 conf
= setup_conf(mddev
);
3311 return PTR_ERR(conf
);
3312 mddev
->private = conf
;
3314 conf
= mddev
->private;
3318 mddev
->thread
= conf
->thread
;
3319 conf
->thread
= NULL
;
3321 chunk_size
= mddev
->chunk_sectors
<< 9;
3322 blk_queue_io_min(mddev
->queue
, chunk_size
);
3323 if (conf
->raid_disks
% conf
->near_copies
)
3324 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
3326 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3327 (conf
->raid_disks
/ conf
->near_copies
));
3329 rdev_for_each(rdev
, mddev
) {
3330 struct request_queue
*q
;
3331 disk_idx
= rdev
->raid_disk
;
3332 if (disk_idx
>= conf
->raid_disks
3335 disk
= conf
->mirrors
+ disk_idx
;
3337 if (test_bit(Replacement
, &rdev
->flags
)) {
3338 if (disk
->replacement
)
3340 disk
->replacement
= rdev
;
3346 q
= bdev_get_queue(rdev
->bdev
);
3347 if (q
->merge_bvec_fn
)
3348 mddev
->merge_check_needed
= 1;
3350 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3351 rdev
->data_offset
<< 9);
3353 disk
->head_position
= 0;
3355 /* need to check that every block has at least one working mirror */
3356 if (!enough(conf
, -1)) {
3357 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3362 mddev
->degraded
= 0;
3363 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3365 disk
= conf
->mirrors
+ i
;
3367 if (!disk
->rdev
&& disk
->replacement
) {
3368 /* The replacement is all we have - use it */
3369 disk
->rdev
= disk
->replacement
;
3370 disk
->replacement
= NULL
;
3371 clear_bit(Replacement
, &disk
->rdev
->flags
);
3375 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3376 disk
->head_position
= 0;
3381 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3384 if (mddev
->recovery_cp
!= MaxSector
)
3385 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3386 " -- starting background reconstruction\n",
3389 "md/raid10:%s: active with %d out of %d devices\n",
3390 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
,
3393 * Ok, everything is just fine now
3395 mddev
->dev_sectors
= conf
->dev_sectors
;
3396 size
= raid10_size(mddev
, 0, 0);
3397 md_set_array_sectors(mddev
, size
);
3398 mddev
->resync_max_sectors
= size
;
3400 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
3401 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3403 /* Calculate max read-ahead size.
3404 * We need to readahead at least twice a whole stripe....
3408 int stripe
= conf
->raid_disks
*
3409 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3410 stripe
/= conf
->near_copies
;
3411 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
3412 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
3415 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
3417 if (md_integrity_register(mddev
))
3423 md_unregister_thread(&mddev
->thread
);
3424 if (conf
->r10bio_pool
)
3425 mempool_destroy(conf
->r10bio_pool
);
3426 safe_put_page(conf
->tmppage
);
3427 kfree(conf
->mirrors
);
3429 mddev
->private = NULL
;
3434 static int stop(struct mddev
*mddev
)
3436 struct r10conf
*conf
= mddev
->private;
3438 raise_barrier(conf
, 0);
3439 lower_barrier(conf
);
3441 md_unregister_thread(&mddev
->thread
);
3442 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
3443 if (conf
->r10bio_pool
)
3444 mempool_destroy(conf
->r10bio_pool
);
3445 kfree(conf
->mirrors
);
3447 mddev
->private = NULL
;
3451 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3453 struct r10conf
*conf
= mddev
->private;
3457 raise_barrier(conf
, 0);
3460 lower_barrier(conf
);
3465 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3467 /* Resize of 'far' arrays is not supported.
3468 * For 'near' and 'offset' arrays we can set the
3469 * number of sectors used to be an appropriate multiple
3470 * of the chunk size.
3471 * For 'offset', this is far_copies*chunksize.
3472 * For 'near' the multiplier is the LCM of
3473 * near_copies and raid_disks.
3474 * So if far_copies > 1 && !far_offset, fail.
3475 * Else find LCM(raid_disks, near_copy)*far_copies and
3476 * multiply by chunk_size. Then round to this number.
3477 * This is mostly done by raid10_size()
3479 struct r10conf
*conf
= mddev
->private;
3480 sector_t oldsize
, size
;
3482 if (conf
->far_copies
> 1 && !conf
->far_offset
)
3485 oldsize
= raid10_size(mddev
, 0, 0);
3486 size
= raid10_size(mddev
, sectors
, 0);
3487 md_set_array_sectors(mddev
, size
);
3488 if (mddev
->array_sectors
> size
)
3490 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3491 revalidate_disk(mddev
->gendisk
);
3492 if (sectors
> mddev
->dev_sectors
&&
3493 mddev
->recovery_cp
> oldsize
) {
3494 mddev
->recovery_cp
= oldsize
;
3495 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3497 calc_sectors(conf
, sectors
);
3498 mddev
->dev_sectors
= conf
->dev_sectors
;
3499 mddev
->resync_max_sectors
= size
;
3503 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3505 struct md_rdev
*rdev
;
3506 struct r10conf
*conf
;
3508 if (mddev
->degraded
> 0) {
3509 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3511 return ERR_PTR(-EINVAL
);
3514 /* Set new parameters */
3515 mddev
->new_level
= 10;
3516 /* new layout: far_copies = 1, near_copies = 2 */
3517 mddev
->new_layout
= (1<<8) + 2;
3518 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3519 mddev
->delta_disks
= mddev
->raid_disks
;
3520 mddev
->raid_disks
*= 2;
3521 /* make sure it will be not marked as dirty */
3522 mddev
->recovery_cp
= MaxSector
;
3524 conf
= setup_conf(mddev
);
3525 if (!IS_ERR(conf
)) {
3526 rdev_for_each(rdev
, mddev
)
3527 if (rdev
->raid_disk
>= 0)
3528 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3535 static void *raid10_takeover(struct mddev
*mddev
)
3537 struct r0conf
*raid0_conf
;
3539 /* raid10 can take over:
3540 * raid0 - providing it has only two drives
3542 if (mddev
->level
== 0) {
3543 /* for raid0 takeover only one zone is supported */
3544 raid0_conf
= mddev
->private;
3545 if (raid0_conf
->nr_strip_zones
> 1) {
3546 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3547 " with more than one zone.\n",
3549 return ERR_PTR(-EINVAL
);
3551 return raid10_takeover_raid0(mddev
);
3553 return ERR_PTR(-EINVAL
);
3556 static struct md_personality raid10_personality
=
3560 .owner
= THIS_MODULE
,
3561 .make_request
= make_request
,
3565 .error_handler
= error
,
3566 .hot_add_disk
= raid10_add_disk
,
3567 .hot_remove_disk
= raid10_remove_disk
,
3568 .spare_active
= raid10_spare_active
,
3569 .sync_request
= sync_request
,
3570 .quiesce
= raid10_quiesce
,
3571 .size
= raid10_size
,
3572 .resize
= raid10_resize
,
3573 .takeover
= raid10_takeover
,
3576 static int __init
raid_init(void)
3578 return register_md_personality(&raid10_personality
);
3581 static void raid_exit(void)
3583 unregister_md_personality(&raid10_personality
);
3586 module_init(raid_init
);
3587 module_exit(raid_exit
);
3588 MODULE_LICENSE("GPL");
3589 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3590 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3591 MODULE_ALIAS("md-raid10");
3592 MODULE_ALIAS("md-level-10");
3594 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);