USB: usb-storage: unusual_devs update for Super TOP SATA bridge
[linux/fpc-iii.git] / drivers / md / raid5.c
blob0240576564dc39e592aaf320a8708ae4f911a031
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
62 * Stripe cache
65 #define NR_STRIPES 256
66 #define STRIPE_SIZE PAGE_SIZE
67 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD 1
70 #define BYPASS_THRESHOLD 1
71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK (NR_HASH - 1)
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
86 * This function is used to determine the 'next' bio in the list, given the sector
87 * of the current stripe+device
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 static inline int raid5_bi_phys_segments(struct bio *bio)
104 return bio->bi_phys_segments & 0xffff;
107 static inline int raid5_bi_hw_segments(struct bio *bio)
109 return (bio->bi_phys_segments >> 16) & 0xffff;
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
120 unsigned short val = raid5_bi_hw_segments(bio);
122 --val;
123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 return val;
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
144 static inline int raid6_next_disk(int disk, int raid_disks)
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
158 int slot = *count;
160 if (sh->ddf_layout)
161 (*count)++;
162 if (idx == sh->pd_idx)
163 return syndrome_disks;
164 if (idx == sh->qd_idx)
165 return syndrome_disks + 1;
166 if (!sh->ddf_layout)
167 (*count)++;
168 return slot;
171 static void return_io(struct bio *return_bi)
173 struct bio *bi = return_bi;
174 while (bi) {
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
179 bio_endio(bi, 0);
180 bi = return_bi;
184 static void print_raid5_conf (struct r5conf *conf);
186 static int stripe_operations_active(struct stripe_head *sh)
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
195 if (atomic_dec_and_test(&sh->count)) {
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 if (test_bit(STRIPE_DELAYED, &sh->state) &&
200 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
201 list_add_tail(&sh->lru, &conf->delayed_list);
202 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
203 sh->bm_seq - conf->seq_write > 0)
204 list_add_tail(&sh->lru, &conf->bitmap_list);
205 else {
206 clear_bit(STRIPE_DELAYED, &sh->state);
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
214 if (atomic_dec_return(&conf->preread_active_stripes)
215 < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 atomic_dec(&conf->active_stripes);
218 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
219 list_add_tail(&sh->lru, &conf->inactive_list);
220 wake_up(&conf->wait_for_stripe);
221 if (conf->retry_read_aligned)
222 md_wakeup_thread(conf->mddev->thread);
228 static void release_stripe(struct stripe_head *sh)
230 struct r5conf *conf = sh->raid_conf;
231 unsigned long flags;
233 spin_lock_irqsave(&conf->device_lock, flags);
234 __release_stripe(conf, sh);
235 spin_unlock_irqrestore(&conf->device_lock, flags);
238 static inline void remove_hash(struct stripe_head *sh)
240 pr_debug("remove_hash(), stripe %llu\n",
241 (unsigned long long)sh->sector);
243 hlist_del_init(&sh->hash);
246 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
248 struct hlist_head *hp = stripe_hash(conf, sh->sector);
250 pr_debug("insert_hash(), stripe %llu\n",
251 (unsigned long long)sh->sector);
253 hlist_add_head(&sh->hash, hp);
257 /* find an idle stripe, make sure it is unhashed, and return it. */
258 static struct stripe_head *get_free_stripe(struct r5conf *conf)
260 struct stripe_head *sh = NULL;
261 struct list_head *first;
263 if (list_empty(&conf->inactive_list))
264 goto out;
265 first = conf->inactive_list.next;
266 sh = list_entry(first, struct stripe_head, lru);
267 list_del_init(first);
268 remove_hash(sh);
269 atomic_inc(&conf->active_stripes);
270 out:
271 return sh;
274 static void shrink_buffers(struct stripe_head *sh)
276 struct page *p;
277 int i;
278 int num = sh->raid_conf->pool_size;
280 for (i = 0; i < num ; i++) {
281 p = sh->dev[i].page;
282 if (!p)
283 continue;
284 sh->dev[i].page = NULL;
285 put_page(p);
289 static int grow_buffers(struct stripe_head *sh)
291 int i;
292 int num = sh->raid_conf->pool_size;
294 for (i = 0; i < num; i++) {
295 struct page *page;
297 if (!(page = alloc_page(GFP_KERNEL))) {
298 return 1;
300 sh->dev[i].page = page;
302 return 0;
305 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
306 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
307 struct stripe_head *sh);
309 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
311 struct r5conf *conf = sh->raid_conf;
312 int i;
314 BUG_ON(atomic_read(&sh->count) != 0);
315 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
316 BUG_ON(stripe_operations_active(sh));
318 pr_debug("init_stripe called, stripe %llu\n",
319 (unsigned long long)sh->sector);
321 remove_hash(sh);
323 sh->generation = conf->generation - previous;
324 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
325 sh->sector = sector;
326 stripe_set_idx(sector, conf, previous, sh);
327 sh->state = 0;
330 for (i = sh->disks; i--; ) {
331 struct r5dev *dev = &sh->dev[i];
333 if (dev->toread || dev->read || dev->towrite || dev->written ||
334 test_bit(R5_LOCKED, &dev->flags)) {
335 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
336 (unsigned long long)sh->sector, i, dev->toread,
337 dev->read, dev->towrite, dev->written,
338 test_bit(R5_LOCKED, &dev->flags));
339 WARN_ON(1);
341 dev->flags = 0;
342 raid5_build_block(sh, i, previous);
344 insert_hash(conf, sh);
347 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
348 short generation)
350 struct stripe_head *sh;
351 struct hlist_node *hn;
353 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355 if (sh->sector == sector && sh->generation == generation)
356 return sh;
357 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
358 return NULL;
362 * Need to check if array has failed when deciding whether to:
363 * - start an array
364 * - remove non-faulty devices
365 * - add a spare
366 * - allow a reshape
367 * This determination is simple when no reshape is happening.
368 * However if there is a reshape, we need to carefully check
369 * both the before and after sections.
370 * This is because some failed devices may only affect one
371 * of the two sections, and some non-in_sync devices may
372 * be insync in the section most affected by failed devices.
374 static int calc_degraded(struct r5conf *conf)
376 int degraded, degraded2;
377 int i;
379 rcu_read_lock();
380 degraded = 0;
381 for (i = 0; i < conf->previous_raid_disks; i++) {
382 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
383 if (rdev && test_bit(Faulty, &rdev->flags))
384 rdev = rcu_dereference(conf->disks[i].replacement);
385 if (!rdev || test_bit(Faulty, &rdev->flags))
386 degraded++;
387 else if (test_bit(In_sync, &rdev->flags))
389 else
390 /* not in-sync or faulty.
391 * If the reshape increases the number of devices,
392 * this is being recovered by the reshape, so
393 * this 'previous' section is not in_sync.
394 * If the number of devices is being reduced however,
395 * the device can only be part of the array if
396 * we are reverting a reshape, so this section will
397 * be in-sync.
399 if (conf->raid_disks >= conf->previous_raid_disks)
400 degraded++;
402 rcu_read_unlock();
403 if (conf->raid_disks == conf->previous_raid_disks)
404 return degraded;
405 rcu_read_lock();
406 degraded2 = 0;
407 for (i = 0; i < conf->raid_disks; i++) {
408 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
409 if (rdev && test_bit(Faulty, &rdev->flags))
410 rdev = rcu_dereference(conf->disks[i].replacement);
411 if (!rdev || test_bit(Faulty, &rdev->flags))
412 degraded2++;
413 else if (test_bit(In_sync, &rdev->flags))
415 else
416 /* not in-sync or faulty.
417 * If reshape increases the number of devices, this
418 * section has already been recovered, else it
419 * almost certainly hasn't.
421 if (conf->raid_disks <= conf->previous_raid_disks)
422 degraded2++;
424 rcu_read_unlock();
425 if (degraded2 > degraded)
426 return degraded2;
427 return degraded;
430 static int has_failed(struct r5conf *conf)
432 int degraded;
434 if (conf->mddev->reshape_position == MaxSector)
435 return conf->mddev->degraded > conf->max_degraded;
437 degraded = calc_degraded(conf);
438 if (degraded > conf->max_degraded)
439 return 1;
440 return 0;
443 static struct stripe_head *
444 get_active_stripe(struct r5conf *conf, sector_t sector,
445 int previous, int noblock, int noquiesce)
447 struct stripe_head *sh;
449 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
451 spin_lock_irq(&conf->device_lock);
453 do {
454 wait_event_lock_irq(conf->wait_for_stripe,
455 conf->quiesce == 0 || noquiesce,
456 conf->device_lock, /* nothing */);
457 sh = __find_stripe(conf, sector, conf->generation - previous);
458 if (!sh) {
459 if (!conf->inactive_blocked)
460 sh = get_free_stripe(conf);
461 if (noblock && sh == NULL)
462 break;
463 if (!sh) {
464 conf->inactive_blocked = 1;
465 wait_event_lock_irq(conf->wait_for_stripe,
466 !list_empty(&conf->inactive_list) &&
467 (atomic_read(&conf->active_stripes)
468 < (conf->max_nr_stripes *3/4)
469 || !conf->inactive_blocked),
470 conf->device_lock,
472 conf->inactive_blocked = 0;
473 } else
474 init_stripe(sh, sector, previous);
475 } else {
476 if (atomic_read(&sh->count)) {
477 BUG_ON(!list_empty(&sh->lru)
478 && !test_bit(STRIPE_EXPANDING, &sh->state));
479 } else {
480 if (!test_bit(STRIPE_HANDLE, &sh->state))
481 atomic_inc(&conf->active_stripes);
482 if (list_empty(&sh->lru) &&
483 !test_bit(STRIPE_EXPANDING, &sh->state))
484 BUG();
485 list_del_init(&sh->lru);
488 } while (sh == NULL);
490 if (sh)
491 atomic_inc(&sh->count);
493 spin_unlock_irq(&conf->device_lock);
494 return sh;
497 static void
498 raid5_end_read_request(struct bio *bi, int error);
499 static void
500 raid5_end_write_request(struct bio *bi, int error);
502 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
504 struct r5conf *conf = sh->raid_conf;
505 int i, disks = sh->disks;
507 might_sleep();
509 for (i = disks; i--; ) {
510 int rw;
511 int replace_only = 0;
512 struct bio *bi, *rbi;
513 struct md_rdev *rdev, *rrdev = NULL;
514 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
515 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
516 rw = WRITE_FUA;
517 else
518 rw = WRITE;
519 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
520 rw = READ;
521 else if (test_and_clear_bit(R5_WantReplace,
522 &sh->dev[i].flags)) {
523 rw = WRITE;
524 replace_only = 1;
525 } else
526 continue;
528 bi = &sh->dev[i].req;
529 rbi = &sh->dev[i].rreq; /* For writing to replacement */
531 bi->bi_rw = rw;
532 rbi->bi_rw = rw;
533 if (rw & WRITE) {
534 bi->bi_end_io = raid5_end_write_request;
535 rbi->bi_end_io = raid5_end_write_request;
536 } else
537 bi->bi_end_io = raid5_end_read_request;
539 rcu_read_lock();
540 rrdev = rcu_dereference(conf->disks[i].replacement);
541 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
542 rdev = rcu_dereference(conf->disks[i].rdev);
543 if (!rdev) {
544 rdev = rrdev;
545 rrdev = NULL;
547 if (rw & WRITE) {
548 if (replace_only)
549 rdev = NULL;
550 if (rdev == rrdev)
551 /* We raced and saw duplicates */
552 rrdev = NULL;
553 } else {
554 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
555 rdev = rrdev;
556 rrdev = NULL;
559 if (rdev && test_bit(Faulty, &rdev->flags))
560 rdev = NULL;
561 if (rdev)
562 atomic_inc(&rdev->nr_pending);
563 if (rrdev && test_bit(Faulty, &rrdev->flags))
564 rrdev = NULL;
565 if (rrdev)
566 atomic_inc(&rrdev->nr_pending);
567 rcu_read_unlock();
569 /* We have already checked bad blocks for reads. Now
570 * need to check for writes. We never accept write errors
571 * on the replacement, so we don't to check rrdev.
573 while ((rw & WRITE) && rdev &&
574 test_bit(WriteErrorSeen, &rdev->flags)) {
575 sector_t first_bad;
576 int bad_sectors;
577 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
578 &first_bad, &bad_sectors);
579 if (!bad)
580 break;
582 if (bad < 0) {
583 set_bit(BlockedBadBlocks, &rdev->flags);
584 if (!conf->mddev->external &&
585 conf->mddev->flags) {
586 /* It is very unlikely, but we might
587 * still need to write out the
588 * bad block log - better give it
589 * a chance*/
590 md_check_recovery(conf->mddev);
593 * Because md_wait_for_blocked_rdev
594 * will dec nr_pending, we must
595 * increment it first.
597 atomic_inc(&rdev->nr_pending);
598 md_wait_for_blocked_rdev(rdev, conf->mddev);
599 } else {
600 /* Acknowledged bad block - skip the write */
601 rdev_dec_pending(rdev, conf->mddev);
602 rdev = NULL;
606 if (rdev) {
607 if (s->syncing || s->expanding || s->expanded
608 || s->replacing)
609 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
611 set_bit(STRIPE_IO_STARTED, &sh->state);
613 bi->bi_bdev = rdev->bdev;
614 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
615 __func__, (unsigned long long)sh->sector,
616 bi->bi_rw, i);
617 atomic_inc(&sh->count);
618 bi->bi_sector = sh->sector + rdev->data_offset;
619 bi->bi_flags = 1 << BIO_UPTODATE;
620 bi->bi_idx = 0;
621 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
622 bi->bi_io_vec[0].bv_offset = 0;
623 bi->bi_size = STRIPE_SIZE;
624 bi->bi_next = NULL;
625 if (rrdev)
626 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
627 generic_make_request(bi);
629 if (rrdev) {
630 if (s->syncing || s->expanding || s->expanded
631 || s->replacing)
632 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
634 set_bit(STRIPE_IO_STARTED, &sh->state);
636 rbi->bi_bdev = rrdev->bdev;
637 pr_debug("%s: for %llu schedule op %ld on "
638 "replacement disc %d\n",
639 __func__, (unsigned long long)sh->sector,
640 rbi->bi_rw, i);
641 atomic_inc(&sh->count);
642 rbi->bi_sector = sh->sector + rrdev->data_offset;
643 rbi->bi_flags = 1 << BIO_UPTODATE;
644 rbi->bi_idx = 0;
645 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
646 rbi->bi_io_vec[0].bv_offset = 0;
647 rbi->bi_size = STRIPE_SIZE;
648 rbi->bi_next = NULL;
649 generic_make_request(rbi);
651 if (!rdev && !rrdev) {
652 if (rw & WRITE)
653 set_bit(STRIPE_DEGRADED, &sh->state);
654 pr_debug("skip op %ld on disc %d for sector %llu\n",
655 bi->bi_rw, i, (unsigned long long)sh->sector);
656 clear_bit(R5_LOCKED, &sh->dev[i].flags);
657 set_bit(STRIPE_HANDLE, &sh->state);
662 static struct dma_async_tx_descriptor *
663 async_copy_data(int frombio, struct bio *bio, struct page *page,
664 sector_t sector, struct dma_async_tx_descriptor *tx)
666 struct bio_vec *bvl;
667 struct page *bio_page;
668 int i;
669 int page_offset;
670 struct async_submit_ctl submit;
671 enum async_tx_flags flags = 0;
673 if (bio->bi_sector >= sector)
674 page_offset = (signed)(bio->bi_sector - sector) * 512;
675 else
676 page_offset = (signed)(sector - bio->bi_sector) * -512;
678 if (frombio)
679 flags |= ASYNC_TX_FENCE;
680 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
682 bio_for_each_segment(bvl, bio, i) {
683 int len = bvl->bv_len;
684 int clen;
685 int b_offset = 0;
687 if (page_offset < 0) {
688 b_offset = -page_offset;
689 page_offset += b_offset;
690 len -= b_offset;
693 if (len > 0 && page_offset + len > STRIPE_SIZE)
694 clen = STRIPE_SIZE - page_offset;
695 else
696 clen = len;
698 if (clen > 0) {
699 b_offset += bvl->bv_offset;
700 bio_page = bvl->bv_page;
701 if (frombio)
702 tx = async_memcpy(page, bio_page, page_offset,
703 b_offset, clen, &submit);
704 else
705 tx = async_memcpy(bio_page, page, b_offset,
706 page_offset, clen, &submit);
708 /* chain the operations */
709 submit.depend_tx = tx;
711 if (clen < len) /* hit end of page */
712 break;
713 page_offset += len;
716 return tx;
719 static void ops_complete_biofill(void *stripe_head_ref)
721 struct stripe_head *sh = stripe_head_ref;
722 struct bio *return_bi = NULL;
723 struct r5conf *conf = sh->raid_conf;
724 int i;
726 pr_debug("%s: stripe %llu\n", __func__,
727 (unsigned long long)sh->sector);
729 /* clear completed biofills */
730 spin_lock_irq(&conf->device_lock);
731 for (i = sh->disks; i--; ) {
732 struct r5dev *dev = &sh->dev[i];
734 /* acknowledge completion of a biofill operation */
735 /* and check if we need to reply to a read request,
736 * new R5_Wantfill requests are held off until
737 * !STRIPE_BIOFILL_RUN
739 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
740 struct bio *rbi, *rbi2;
742 BUG_ON(!dev->read);
743 rbi = dev->read;
744 dev->read = NULL;
745 while (rbi && rbi->bi_sector <
746 dev->sector + STRIPE_SECTORS) {
747 rbi2 = r5_next_bio(rbi, dev->sector);
748 if (!raid5_dec_bi_phys_segments(rbi)) {
749 rbi->bi_next = return_bi;
750 return_bi = rbi;
752 rbi = rbi2;
756 spin_unlock_irq(&conf->device_lock);
757 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
759 return_io(return_bi);
761 set_bit(STRIPE_HANDLE, &sh->state);
762 release_stripe(sh);
765 static void ops_run_biofill(struct stripe_head *sh)
767 struct dma_async_tx_descriptor *tx = NULL;
768 struct r5conf *conf = sh->raid_conf;
769 struct async_submit_ctl submit;
770 int i;
772 pr_debug("%s: stripe %llu\n", __func__,
773 (unsigned long long)sh->sector);
775 for (i = sh->disks; i--; ) {
776 struct r5dev *dev = &sh->dev[i];
777 if (test_bit(R5_Wantfill, &dev->flags)) {
778 struct bio *rbi;
779 spin_lock_irq(&conf->device_lock);
780 dev->read = rbi = dev->toread;
781 dev->toread = NULL;
782 spin_unlock_irq(&conf->device_lock);
783 while (rbi && rbi->bi_sector <
784 dev->sector + STRIPE_SECTORS) {
785 tx = async_copy_data(0, rbi, dev->page,
786 dev->sector, tx);
787 rbi = r5_next_bio(rbi, dev->sector);
792 atomic_inc(&sh->count);
793 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
794 async_trigger_callback(&submit);
797 static void mark_target_uptodate(struct stripe_head *sh, int target)
799 struct r5dev *tgt;
801 if (target < 0)
802 return;
804 tgt = &sh->dev[target];
805 set_bit(R5_UPTODATE, &tgt->flags);
806 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
807 clear_bit(R5_Wantcompute, &tgt->flags);
810 static void ops_complete_compute(void *stripe_head_ref)
812 struct stripe_head *sh = stripe_head_ref;
814 pr_debug("%s: stripe %llu\n", __func__,
815 (unsigned long long)sh->sector);
817 /* mark the computed target(s) as uptodate */
818 mark_target_uptodate(sh, sh->ops.target);
819 mark_target_uptodate(sh, sh->ops.target2);
821 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
822 if (sh->check_state == check_state_compute_run)
823 sh->check_state = check_state_compute_result;
824 set_bit(STRIPE_HANDLE, &sh->state);
825 release_stripe(sh);
828 /* return a pointer to the address conversion region of the scribble buffer */
829 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
830 struct raid5_percpu *percpu)
832 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
835 static struct dma_async_tx_descriptor *
836 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
838 int disks = sh->disks;
839 struct page **xor_srcs = percpu->scribble;
840 int target = sh->ops.target;
841 struct r5dev *tgt = &sh->dev[target];
842 struct page *xor_dest = tgt->page;
843 int count = 0;
844 struct dma_async_tx_descriptor *tx;
845 struct async_submit_ctl submit;
846 int i;
848 pr_debug("%s: stripe %llu block: %d\n",
849 __func__, (unsigned long long)sh->sector, target);
850 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
852 for (i = disks; i--; )
853 if (i != target)
854 xor_srcs[count++] = sh->dev[i].page;
856 atomic_inc(&sh->count);
858 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
859 ops_complete_compute, sh, to_addr_conv(sh, percpu));
860 if (unlikely(count == 1))
861 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
862 else
863 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
865 return tx;
868 /* set_syndrome_sources - populate source buffers for gen_syndrome
869 * @srcs - (struct page *) array of size sh->disks
870 * @sh - stripe_head to parse
872 * Populates srcs in proper layout order for the stripe and returns the
873 * 'count' of sources to be used in a call to async_gen_syndrome. The P
874 * destination buffer is recorded in srcs[count] and the Q destination
875 * is recorded in srcs[count+1]].
877 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
879 int disks = sh->disks;
880 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
881 int d0_idx = raid6_d0(sh);
882 int count;
883 int i;
885 for (i = 0; i < disks; i++)
886 srcs[i] = NULL;
888 count = 0;
889 i = d0_idx;
890 do {
891 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
893 srcs[slot] = sh->dev[i].page;
894 i = raid6_next_disk(i, disks);
895 } while (i != d0_idx);
897 return syndrome_disks;
900 static struct dma_async_tx_descriptor *
901 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
903 int disks = sh->disks;
904 struct page **blocks = percpu->scribble;
905 int target;
906 int qd_idx = sh->qd_idx;
907 struct dma_async_tx_descriptor *tx;
908 struct async_submit_ctl submit;
909 struct r5dev *tgt;
910 struct page *dest;
911 int i;
912 int count;
914 if (sh->ops.target < 0)
915 target = sh->ops.target2;
916 else if (sh->ops.target2 < 0)
917 target = sh->ops.target;
918 else
919 /* we should only have one valid target */
920 BUG();
921 BUG_ON(target < 0);
922 pr_debug("%s: stripe %llu block: %d\n",
923 __func__, (unsigned long long)sh->sector, target);
925 tgt = &sh->dev[target];
926 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
927 dest = tgt->page;
929 atomic_inc(&sh->count);
931 if (target == qd_idx) {
932 count = set_syndrome_sources(blocks, sh);
933 blocks[count] = NULL; /* regenerating p is not necessary */
934 BUG_ON(blocks[count+1] != dest); /* q should already be set */
935 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
936 ops_complete_compute, sh,
937 to_addr_conv(sh, percpu));
938 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
939 } else {
940 /* Compute any data- or p-drive using XOR */
941 count = 0;
942 for (i = disks; i-- ; ) {
943 if (i == target || i == qd_idx)
944 continue;
945 blocks[count++] = sh->dev[i].page;
948 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
949 NULL, ops_complete_compute, sh,
950 to_addr_conv(sh, percpu));
951 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
954 return tx;
957 static struct dma_async_tx_descriptor *
958 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
960 int i, count, disks = sh->disks;
961 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
962 int d0_idx = raid6_d0(sh);
963 int faila = -1, failb = -1;
964 int target = sh->ops.target;
965 int target2 = sh->ops.target2;
966 struct r5dev *tgt = &sh->dev[target];
967 struct r5dev *tgt2 = &sh->dev[target2];
968 struct dma_async_tx_descriptor *tx;
969 struct page **blocks = percpu->scribble;
970 struct async_submit_ctl submit;
972 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
973 __func__, (unsigned long long)sh->sector, target, target2);
974 BUG_ON(target < 0 || target2 < 0);
975 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
976 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
978 /* we need to open-code set_syndrome_sources to handle the
979 * slot number conversion for 'faila' and 'failb'
981 for (i = 0; i < disks ; i++)
982 blocks[i] = NULL;
983 count = 0;
984 i = d0_idx;
985 do {
986 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
988 blocks[slot] = sh->dev[i].page;
990 if (i == target)
991 faila = slot;
992 if (i == target2)
993 failb = slot;
994 i = raid6_next_disk(i, disks);
995 } while (i != d0_idx);
997 BUG_ON(faila == failb);
998 if (failb < faila)
999 swap(faila, failb);
1000 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1001 __func__, (unsigned long long)sh->sector, faila, failb);
1003 atomic_inc(&sh->count);
1005 if (failb == syndrome_disks+1) {
1006 /* Q disk is one of the missing disks */
1007 if (faila == syndrome_disks) {
1008 /* Missing P+Q, just recompute */
1009 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1010 ops_complete_compute, sh,
1011 to_addr_conv(sh, percpu));
1012 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1013 STRIPE_SIZE, &submit);
1014 } else {
1015 struct page *dest;
1016 int data_target;
1017 int qd_idx = sh->qd_idx;
1019 /* Missing D+Q: recompute D from P, then recompute Q */
1020 if (target == qd_idx)
1021 data_target = target2;
1022 else
1023 data_target = target;
1025 count = 0;
1026 for (i = disks; i-- ; ) {
1027 if (i == data_target || i == qd_idx)
1028 continue;
1029 blocks[count++] = sh->dev[i].page;
1031 dest = sh->dev[data_target].page;
1032 init_async_submit(&submit,
1033 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1034 NULL, NULL, NULL,
1035 to_addr_conv(sh, percpu));
1036 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1037 &submit);
1039 count = set_syndrome_sources(blocks, sh);
1040 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1041 ops_complete_compute, sh,
1042 to_addr_conv(sh, percpu));
1043 return async_gen_syndrome(blocks, 0, count+2,
1044 STRIPE_SIZE, &submit);
1046 } else {
1047 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1048 ops_complete_compute, sh,
1049 to_addr_conv(sh, percpu));
1050 if (failb == syndrome_disks) {
1051 /* We're missing D+P. */
1052 return async_raid6_datap_recov(syndrome_disks+2,
1053 STRIPE_SIZE, faila,
1054 blocks, &submit);
1055 } else {
1056 /* We're missing D+D. */
1057 return async_raid6_2data_recov(syndrome_disks+2,
1058 STRIPE_SIZE, faila, failb,
1059 blocks, &submit);
1065 static void ops_complete_prexor(void *stripe_head_ref)
1067 struct stripe_head *sh = stripe_head_ref;
1069 pr_debug("%s: stripe %llu\n", __func__,
1070 (unsigned long long)sh->sector);
1073 static struct dma_async_tx_descriptor *
1074 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1075 struct dma_async_tx_descriptor *tx)
1077 int disks = sh->disks;
1078 struct page **xor_srcs = percpu->scribble;
1079 int count = 0, pd_idx = sh->pd_idx, i;
1080 struct async_submit_ctl submit;
1082 /* existing parity data subtracted */
1083 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1085 pr_debug("%s: stripe %llu\n", __func__,
1086 (unsigned long long)sh->sector);
1088 for (i = disks; i--; ) {
1089 struct r5dev *dev = &sh->dev[i];
1090 /* Only process blocks that are known to be uptodate */
1091 if (test_bit(R5_Wantdrain, &dev->flags))
1092 xor_srcs[count++] = dev->page;
1095 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1096 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1097 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1099 return tx;
1102 static struct dma_async_tx_descriptor *
1103 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1105 int disks = sh->disks;
1106 int i;
1108 pr_debug("%s: stripe %llu\n", __func__,
1109 (unsigned long long)sh->sector);
1111 for (i = disks; i--; ) {
1112 struct r5dev *dev = &sh->dev[i];
1113 struct bio *chosen;
1115 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1116 struct bio *wbi;
1118 spin_lock_irq(&sh->raid_conf->device_lock);
1119 chosen = dev->towrite;
1120 dev->towrite = NULL;
1121 BUG_ON(dev->written);
1122 wbi = dev->written = chosen;
1123 spin_unlock_irq(&sh->raid_conf->device_lock);
1125 while (wbi && wbi->bi_sector <
1126 dev->sector + STRIPE_SECTORS) {
1127 if (wbi->bi_rw & REQ_FUA)
1128 set_bit(R5_WantFUA, &dev->flags);
1129 tx = async_copy_data(1, wbi, dev->page,
1130 dev->sector, tx);
1131 wbi = r5_next_bio(wbi, dev->sector);
1136 return tx;
1139 static void ops_complete_reconstruct(void *stripe_head_ref)
1141 struct stripe_head *sh = stripe_head_ref;
1142 int disks = sh->disks;
1143 int pd_idx = sh->pd_idx;
1144 int qd_idx = sh->qd_idx;
1145 int i;
1146 bool fua = false;
1148 pr_debug("%s: stripe %llu\n", __func__,
1149 (unsigned long long)sh->sector);
1151 for (i = disks; i--; )
1152 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1154 for (i = disks; i--; ) {
1155 struct r5dev *dev = &sh->dev[i];
1157 if (dev->written || i == pd_idx || i == qd_idx) {
1158 set_bit(R5_UPTODATE, &dev->flags);
1159 if (fua)
1160 set_bit(R5_WantFUA, &dev->flags);
1164 if (sh->reconstruct_state == reconstruct_state_drain_run)
1165 sh->reconstruct_state = reconstruct_state_drain_result;
1166 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1167 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1168 else {
1169 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1170 sh->reconstruct_state = reconstruct_state_result;
1173 set_bit(STRIPE_HANDLE, &sh->state);
1174 release_stripe(sh);
1177 static void
1178 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1179 struct dma_async_tx_descriptor *tx)
1181 int disks = sh->disks;
1182 struct page **xor_srcs = percpu->scribble;
1183 struct async_submit_ctl submit;
1184 int count = 0, pd_idx = sh->pd_idx, i;
1185 struct page *xor_dest;
1186 int prexor = 0;
1187 unsigned long flags;
1189 pr_debug("%s: stripe %llu\n", __func__,
1190 (unsigned long long)sh->sector);
1192 /* check if prexor is active which means only process blocks
1193 * that are part of a read-modify-write (written)
1195 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1196 prexor = 1;
1197 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1198 for (i = disks; i--; ) {
1199 struct r5dev *dev = &sh->dev[i];
1200 if (dev->written)
1201 xor_srcs[count++] = dev->page;
1203 } else {
1204 xor_dest = sh->dev[pd_idx].page;
1205 for (i = disks; i--; ) {
1206 struct r5dev *dev = &sh->dev[i];
1207 if (i != pd_idx)
1208 xor_srcs[count++] = dev->page;
1212 /* 1/ if we prexor'd then the dest is reused as a source
1213 * 2/ if we did not prexor then we are redoing the parity
1214 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1215 * for the synchronous xor case
1217 flags = ASYNC_TX_ACK |
1218 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1220 atomic_inc(&sh->count);
1222 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1223 to_addr_conv(sh, percpu));
1224 if (unlikely(count == 1))
1225 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1226 else
1227 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1230 static void
1231 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1232 struct dma_async_tx_descriptor *tx)
1234 struct async_submit_ctl submit;
1235 struct page **blocks = percpu->scribble;
1236 int count;
1238 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1240 count = set_syndrome_sources(blocks, sh);
1242 atomic_inc(&sh->count);
1244 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1245 sh, to_addr_conv(sh, percpu));
1246 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1249 static void ops_complete_check(void *stripe_head_ref)
1251 struct stripe_head *sh = stripe_head_ref;
1253 pr_debug("%s: stripe %llu\n", __func__,
1254 (unsigned long long)sh->sector);
1256 sh->check_state = check_state_check_result;
1257 set_bit(STRIPE_HANDLE, &sh->state);
1258 release_stripe(sh);
1261 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1263 int disks = sh->disks;
1264 int pd_idx = sh->pd_idx;
1265 int qd_idx = sh->qd_idx;
1266 struct page *xor_dest;
1267 struct page **xor_srcs = percpu->scribble;
1268 struct dma_async_tx_descriptor *tx;
1269 struct async_submit_ctl submit;
1270 int count;
1271 int i;
1273 pr_debug("%s: stripe %llu\n", __func__,
1274 (unsigned long long)sh->sector);
1276 count = 0;
1277 xor_dest = sh->dev[pd_idx].page;
1278 xor_srcs[count++] = xor_dest;
1279 for (i = disks; i--; ) {
1280 if (i == pd_idx || i == qd_idx)
1281 continue;
1282 xor_srcs[count++] = sh->dev[i].page;
1285 init_async_submit(&submit, 0, NULL, NULL, NULL,
1286 to_addr_conv(sh, percpu));
1287 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1288 &sh->ops.zero_sum_result, &submit);
1290 atomic_inc(&sh->count);
1291 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1292 tx = async_trigger_callback(&submit);
1295 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1297 struct page **srcs = percpu->scribble;
1298 struct async_submit_ctl submit;
1299 int count;
1301 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1302 (unsigned long long)sh->sector, checkp);
1304 count = set_syndrome_sources(srcs, sh);
1305 if (!checkp)
1306 srcs[count] = NULL;
1308 atomic_inc(&sh->count);
1309 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1310 sh, to_addr_conv(sh, percpu));
1311 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1312 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1315 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1317 int overlap_clear = 0, i, disks = sh->disks;
1318 struct dma_async_tx_descriptor *tx = NULL;
1319 struct r5conf *conf = sh->raid_conf;
1320 int level = conf->level;
1321 struct raid5_percpu *percpu;
1322 unsigned long cpu;
1324 cpu = get_cpu();
1325 percpu = per_cpu_ptr(conf->percpu, cpu);
1326 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1327 ops_run_biofill(sh);
1328 overlap_clear++;
1331 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1332 if (level < 6)
1333 tx = ops_run_compute5(sh, percpu);
1334 else {
1335 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1336 tx = ops_run_compute6_1(sh, percpu);
1337 else
1338 tx = ops_run_compute6_2(sh, percpu);
1340 /* terminate the chain if reconstruct is not set to be run */
1341 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1342 async_tx_ack(tx);
1345 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1346 tx = ops_run_prexor(sh, percpu, tx);
1348 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1349 tx = ops_run_biodrain(sh, tx);
1350 overlap_clear++;
1353 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1354 if (level < 6)
1355 ops_run_reconstruct5(sh, percpu, tx);
1356 else
1357 ops_run_reconstruct6(sh, percpu, tx);
1360 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1361 if (sh->check_state == check_state_run)
1362 ops_run_check_p(sh, percpu);
1363 else if (sh->check_state == check_state_run_q)
1364 ops_run_check_pq(sh, percpu, 0);
1365 else if (sh->check_state == check_state_run_pq)
1366 ops_run_check_pq(sh, percpu, 1);
1367 else
1368 BUG();
1371 if (overlap_clear)
1372 for (i = disks; i--; ) {
1373 struct r5dev *dev = &sh->dev[i];
1374 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1375 wake_up(&sh->raid_conf->wait_for_overlap);
1377 put_cpu();
1380 #ifdef CONFIG_MULTICORE_RAID456
1381 static void async_run_ops(void *param, async_cookie_t cookie)
1383 struct stripe_head *sh = param;
1384 unsigned long ops_request = sh->ops.request;
1386 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1387 wake_up(&sh->ops.wait_for_ops);
1389 __raid_run_ops(sh, ops_request);
1390 release_stripe(sh);
1393 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1395 /* since handle_stripe can be called outside of raid5d context
1396 * we need to ensure sh->ops.request is de-staged before another
1397 * request arrives
1399 wait_event(sh->ops.wait_for_ops,
1400 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1401 sh->ops.request = ops_request;
1403 atomic_inc(&sh->count);
1404 async_schedule(async_run_ops, sh);
1406 #else
1407 #define raid_run_ops __raid_run_ops
1408 #endif
1410 static int grow_one_stripe(struct r5conf *conf)
1412 struct stripe_head *sh;
1413 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1414 if (!sh)
1415 return 0;
1417 sh->raid_conf = conf;
1418 #ifdef CONFIG_MULTICORE_RAID456
1419 init_waitqueue_head(&sh->ops.wait_for_ops);
1420 #endif
1422 if (grow_buffers(sh)) {
1423 shrink_buffers(sh);
1424 kmem_cache_free(conf->slab_cache, sh);
1425 return 0;
1427 /* we just created an active stripe so... */
1428 atomic_set(&sh->count, 1);
1429 atomic_inc(&conf->active_stripes);
1430 INIT_LIST_HEAD(&sh->lru);
1431 release_stripe(sh);
1432 return 1;
1435 static int grow_stripes(struct r5conf *conf, int num)
1437 struct kmem_cache *sc;
1438 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1440 if (conf->mddev->gendisk)
1441 sprintf(conf->cache_name[0],
1442 "raid%d-%s", conf->level, mdname(conf->mddev));
1443 else
1444 sprintf(conf->cache_name[0],
1445 "raid%d-%p", conf->level, conf->mddev);
1446 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1448 conf->active_name = 0;
1449 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1450 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1451 0, 0, NULL);
1452 if (!sc)
1453 return 1;
1454 conf->slab_cache = sc;
1455 conf->pool_size = devs;
1456 while (num--)
1457 if (!grow_one_stripe(conf))
1458 return 1;
1459 return 0;
1463 * scribble_len - return the required size of the scribble region
1464 * @num - total number of disks in the array
1466 * The size must be enough to contain:
1467 * 1/ a struct page pointer for each device in the array +2
1468 * 2/ room to convert each entry in (1) to its corresponding dma
1469 * (dma_map_page()) or page (page_address()) address.
1471 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1472 * calculate over all devices (not just the data blocks), using zeros in place
1473 * of the P and Q blocks.
1475 static size_t scribble_len(int num)
1477 size_t len;
1479 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1481 return len;
1484 static int resize_stripes(struct r5conf *conf, int newsize)
1486 /* Make all the stripes able to hold 'newsize' devices.
1487 * New slots in each stripe get 'page' set to a new page.
1489 * This happens in stages:
1490 * 1/ create a new kmem_cache and allocate the required number of
1491 * stripe_heads.
1492 * 2/ gather all the old stripe_heads and tranfer the pages across
1493 * to the new stripe_heads. This will have the side effect of
1494 * freezing the array as once all stripe_heads have been collected,
1495 * no IO will be possible. Old stripe heads are freed once their
1496 * pages have been transferred over, and the old kmem_cache is
1497 * freed when all stripes are done.
1498 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1499 * we simple return a failre status - no need to clean anything up.
1500 * 4/ allocate new pages for the new slots in the new stripe_heads.
1501 * If this fails, we don't bother trying the shrink the
1502 * stripe_heads down again, we just leave them as they are.
1503 * As each stripe_head is processed the new one is released into
1504 * active service.
1506 * Once step2 is started, we cannot afford to wait for a write,
1507 * so we use GFP_NOIO allocations.
1509 struct stripe_head *osh, *nsh;
1510 LIST_HEAD(newstripes);
1511 struct disk_info *ndisks;
1512 unsigned long cpu;
1513 int err;
1514 struct kmem_cache *sc;
1515 int i;
1517 if (newsize <= conf->pool_size)
1518 return 0; /* never bother to shrink */
1520 err = md_allow_write(conf->mddev);
1521 if (err)
1522 return err;
1524 /* Step 1 */
1525 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1526 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1527 0, 0, NULL);
1528 if (!sc)
1529 return -ENOMEM;
1531 for (i = conf->max_nr_stripes; i; i--) {
1532 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1533 if (!nsh)
1534 break;
1536 nsh->raid_conf = conf;
1537 #ifdef CONFIG_MULTICORE_RAID456
1538 init_waitqueue_head(&nsh->ops.wait_for_ops);
1539 #endif
1541 list_add(&nsh->lru, &newstripes);
1543 if (i) {
1544 /* didn't get enough, give up */
1545 while (!list_empty(&newstripes)) {
1546 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1547 list_del(&nsh->lru);
1548 kmem_cache_free(sc, nsh);
1550 kmem_cache_destroy(sc);
1551 return -ENOMEM;
1553 /* Step 2 - Must use GFP_NOIO now.
1554 * OK, we have enough stripes, start collecting inactive
1555 * stripes and copying them over
1557 list_for_each_entry(nsh, &newstripes, lru) {
1558 spin_lock_irq(&conf->device_lock);
1559 wait_event_lock_irq(conf->wait_for_stripe,
1560 !list_empty(&conf->inactive_list),
1561 conf->device_lock,
1563 osh = get_free_stripe(conf);
1564 spin_unlock_irq(&conf->device_lock);
1565 atomic_set(&nsh->count, 1);
1566 for(i=0; i<conf->pool_size; i++)
1567 nsh->dev[i].page = osh->dev[i].page;
1568 for( ; i<newsize; i++)
1569 nsh->dev[i].page = NULL;
1570 kmem_cache_free(conf->slab_cache, osh);
1572 kmem_cache_destroy(conf->slab_cache);
1574 /* Step 3.
1575 * At this point, we are holding all the stripes so the array
1576 * is completely stalled, so now is a good time to resize
1577 * conf->disks and the scribble region
1579 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1580 if (ndisks) {
1581 for (i=0; i<conf->raid_disks; i++)
1582 ndisks[i] = conf->disks[i];
1583 kfree(conf->disks);
1584 conf->disks = ndisks;
1585 } else
1586 err = -ENOMEM;
1588 get_online_cpus();
1589 conf->scribble_len = scribble_len(newsize);
1590 for_each_present_cpu(cpu) {
1591 struct raid5_percpu *percpu;
1592 void *scribble;
1594 percpu = per_cpu_ptr(conf->percpu, cpu);
1595 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1597 if (scribble) {
1598 kfree(percpu->scribble);
1599 percpu->scribble = scribble;
1600 } else {
1601 err = -ENOMEM;
1602 break;
1605 put_online_cpus();
1607 /* Step 4, return new stripes to service */
1608 while(!list_empty(&newstripes)) {
1609 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1610 list_del_init(&nsh->lru);
1612 for (i=conf->raid_disks; i < newsize; i++)
1613 if (nsh->dev[i].page == NULL) {
1614 struct page *p = alloc_page(GFP_NOIO);
1615 nsh->dev[i].page = p;
1616 if (!p)
1617 err = -ENOMEM;
1619 release_stripe(nsh);
1621 /* critical section pass, GFP_NOIO no longer needed */
1623 conf->slab_cache = sc;
1624 conf->active_name = 1-conf->active_name;
1625 conf->pool_size = newsize;
1626 return err;
1629 static int drop_one_stripe(struct r5conf *conf)
1631 struct stripe_head *sh;
1633 spin_lock_irq(&conf->device_lock);
1634 sh = get_free_stripe(conf);
1635 spin_unlock_irq(&conf->device_lock);
1636 if (!sh)
1637 return 0;
1638 BUG_ON(atomic_read(&sh->count));
1639 shrink_buffers(sh);
1640 kmem_cache_free(conf->slab_cache, sh);
1641 atomic_dec(&conf->active_stripes);
1642 return 1;
1645 static void shrink_stripes(struct r5conf *conf)
1647 while (drop_one_stripe(conf))
1650 if (conf->slab_cache)
1651 kmem_cache_destroy(conf->slab_cache);
1652 conf->slab_cache = NULL;
1655 static void raid5_end_read_request(struct bio * bi, int error)
1657 struct stripe_head *sh = bi->bi_private;
1658 struct r5conf *conf = sh->raid_conf;
1659 int disks = sh->disks, i;
1660 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1661 char b[BDEVNAME_SIZE];
1662 struct md_rdev *rdev = NULL;
1665 for (i=0 ; i<disks; i++)
1666 if (bi == &sh->dev[i].req)
1667 break;
1669 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1670 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1671 uptodate);
1672 if (i == disks) {
1673 BUG();
1674 return;
1676 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1677 /* If replacement finished while this request was outstanding,
1678 * 'replacement' might be NULL already.
1679 * In that case it moved down to 'rdev'.
1680 * rdev is not removed until all requests are finished.
1682 rdev = conf->disks[i].replacement;
1683 if (!rdev)
1684 rdev = conf->disks[i].rdev;
1686 if (uptodate) {
1687 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1688 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1689 /* Note that this cannot happen on a
1690 * replacement device. We just fail those on
1691 * any error
1693 printk_ratelimited(
1694 KERN_INFO
1695 "md/raid:%s: read error corrected"
1696 " (%lu sectors at %llu on %s)\n",
1697 mdname(conf->mddev), STRIPE_SECTORS,
1698 (unsigned long long)(sh->sector
1699 + rdev->data_offset),
1700 bdevname(rdev->bdev, b));
1701 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1702 clear_bit(R5_ReadError, &sh->dev[i].flags);
1703 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1705 if (atomic_read(&rdev->read_errors))
1706 atomic_set(&rdev->read_errors, 0);
1707 } else {
1708 const char *bdn = bdevname(rdev->bdev, b);
1709 int retry = 0;
1711 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1712 atomic_inc(&rdev->read_errors);
1713 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1714 printk_ratelimited(
1715 KERN_WARNING
1716 "md/raid:%s: read error on replacement device "
1717 "(sector %llu on %s).\n",
1718 mdname(conf->mddev),
1719 (unsigned long long)(sh->sector
1720 + rdev->data_offset),
1721 bdn);
1722 else if (conf->mddev->degraded >= conf->max_degraded)
1723 printk_ratelimited(
1724 KERN_WARNING
1725 "md/raid:%s: read error not correctable "
1726 "(sector %llu on %s).\n",
1727 mdname(conf->mddev),
1728 (unsigned long long)(sh->sector
1729 + rdev->data_offset),
1730 bdn);
1731 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1732 /* Oh, no!!! */
1733 printk_ratelimited(
1734 KERN_WARNING
1735 "md/raid:%s: read error NOT corrected!! "
1736 "(sector %llu on %s).\n",
1737 mdname(conf->mddev),
1738 (unsigned long long)(sh->sector
1739 + rdev->data_offset),
1740 bdn);
1741 else if (atomic_read(&rdev->read_errors)
1742 > conf->max_nr_stripes)
1743 printk(KERN_WARNING
1744 "md/raid:%s: Too many read errors, failing device %s.\n",
1745 mdname(conf->mddev), bdn);
1746 else
1747 retry = 1;
1748 if (retry)
1749 set_bit(R5_ReadError, &sh->dev[i].flags);
1750 else {
1751 clear_bit(R5_ReadError, &sh->dev[i].flags);
1752 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1753 md_error(conf->mddev, rdev);
1756 rdev_dec_pending(rdev, conf->mddev);
1757 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1758 set_bit(STRIPE_HANDLE, &sh->state);
1759 release_stripe(sh);
1762 static void raid5_end_write_request(struct bio *bi, int error)
1764 struct stripe_head *sh = bi->bi_private;
1765 struct r5conf *conf = sh->raid_conf;
1766 int disks = sh->disks, i;
1767 struct md_rdev *uninitialized_var(rdev);
1768 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1769 sector_t first_bad;
1770 int bad_sectors;
1771 int replacement = 0;
1773 for (i = 0 ; i < disks; i++) {
1774 if (bi == &sh->dev[i].req) {
1775 rdev = conf->disks[i].rdev;
1776 break;
1778 if (bi == &sh->dev[i].rreq) {
1779 rdev = conf->disks[i].replacement;
1780 if (rdev)
1781 replacement = 1;
1782 else
1783 /* rdev was removed and 'replacement'
1784 * replaced it. rdev is not removed
1785 * until all requests are finished.
1787 rdev = conf->disks[i].rdev;
1788 break;
1791 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1792 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1793 uptodate);
1794 if (i == disks) {
1795 BUG();
1796 return;
1799 if (replacement) {
1800 if (!uptodate)
1801 md_error(conf->mddev, rdev);
1802 else if (is_badblock(rdev, sh->sector,
1803 STRIPE_SECTORS,
1804 &first_bad, &bad_sectors))
1805 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1806 } else {
1807 if (!uptodate) {
1808 set_bit(WriteErrorSeen, &rdev->flags);
1809 set_bit(R5_WriteError, &sh->dev[i].flags);
1810 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1811 set_bit(MD_RECOVERY_NEEDED,
1812 &rdev->mddev->recovery);
1813 } else if (is_badblock(rdev, sh->sector,
1814 STRIPE_SECTORS,
1815 &first_bad, &bad_sectors))
1816 set_bit(R5_MadeGood, &sh->dev[i].flags);
1818 rdev_dec_pending(rdev, conf->mddev);
1820 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1821 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1822 set_bit(STRIPE_HANDLE, &sh->state);
1823 release_stripe(sh);
1826 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1828 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1830 struct r5dev *dev = &sh->dev[i];
1832 bio_init(&dev->req);
1833 dev->req.bi_io_vec = &dev->vec;
1834 dev->req.bi_vcnt++;
1835 dev->req.bi_max_vecs++;
1836 dev->req.bi_private = sh;
1837 dev->vec.bv_page = dev->page;
1839 bio_init(&dev->rreq);
1840 dev->rreq.bi_io_vec = &dev->rvec;
1841 dev->rreq.bi_vcnt++;
1842 dev->rreq.bi_max_vecs++;
1843 dev->rreq.bi_private = sh;
1844 dev->rvec.bv_page = dev->page;
1846 dev->flags = 0;
1847 dev->sector = compute_blocknr(sh, i, previous);
1850 static void error(struct mddev *mddev, struct md_rdev *rdev)
1852 char b[BDEVNAME_SIZE];
1853 struct r5conf *conf = mddev->private;
1854 unsigned long flags;
1855 pr_debug("raid456: error called\n");
1857 spin_lock_irqsave(&conf->device_lock, flags);
1858 clear_bit(In_sync, &rdev->flags);
1859 mddev->degraded = calc_degraded(conf);
1860 spin_unlock_irqrestore(&conf->device_lock, flags);
1861 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1863 set_bit(Blocked, &rdev->flags);
1864 set_bit(Faulty, &rdev->flags);
1865 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1866 printk(KERN_ALERT
1867 "md/raid:%s: Disk failure on %s, disabling device.\n"
1868 "md/raid:%s: Operation continuing on %d devices.\n",
1869 mdname(mddev),
1870 bdevname(rdev->bdev, b),
1871 mdname(mddev),
1872 conf->raid_disks - mddev->degraded);
1876 * Input: a 'big' sector number,
1877 * Output: index of the data and parity disk, and the sector # in them.
1879 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1880 int previous, int *dd_idx,
1881 struct stripe_head *sh)
1883 sector_t stripe, stripe2;
1884 sector_t chunk_number;
1885 unsigned int chunk_offset;
1886 int pd_idx, qd_idx;
1887 int ddf_layout = 0;
1888 sector_t new_sector;
1889 int algorithm = previous ? conf->prev_algo
1890 : conf->algorithm;
1891 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1892 : conf->chunk_sectors;
1893 int raid_disks = previous ? conf->previous_raid_disks
1894 : conf->raid_disks;
1895 int data_disks = raid_disks - conf->max_degraded;
1897 /* First compute the information on this sector */
1900 * Compute the chunk number and the sector offset inside the chunk
1902 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1903 chunk_number = r_sector;
1906 * Compute the stripe number
1908 stripe = chunk_number;
1909 *dd_idx = sector_div(stripe, data_disks);
1910 stripe2 = stripe;
1912 * Select the parity disk based on the user selected algorithm.
1914 pd_idx = qd_idx = -1;
1915 switch(conf->level) {
1916 case 4:
1917 pd_idx = data_disks;
1918 break;
1919 case 5:
1920 switch (algorithm) {
1921 case ALGORITHM_LEFT_ASYMMETRIC:
1922 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1923 if (*dd_idx >= pd_idx)
1924 (*dd_idx)++;
1925 break;
1926 case ALGORITHM_RIGHT_ASYMMETRIC:
1927 pd_idx = sector_div(stripe2, raid_disks);
1928 if (*dd_idx >= pd_idx)
1929 (*dd_idx)++;
1930 break;
1931 case ALGORITHM_LEFT_SYMMETRIC:
1932 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1933 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1934 break;
1935 case ALGORITHM_RIGHT_SYMMETRIC:
1936 pd_idx = sector_div(stripe2, raid_disks);
1937 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1938 break;
1939 case ALGORITHM_PARITY_0:
1940 pd_idx = 0;
1941 (*dd_idx)++;
1942 break;
1943 case ALGORITHM_PARITY_N:
1944 pd_idx = data_disks;
1945 break;
1946 default:
1947 BUG();
1949 break;
1950 case 6:
1952 switch (algorithm) {
1953 case ALGORITHM_LEFT_ASYMMETRIC:
1954 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1955 qd_idx = pd_idx + 1;
1956 if (pd_idx == raid_disks-1) {
1957 (*dd_idx)++; /* Q D D D P */
1958 qd_idx = 0;
1959 } else if (*dd_idx >= pd_idx)
1960 (*dd_idx) += 2; /* D D P Q D */
1961 break;
1962 case ALGORITHM_RIGHT_ASYMMETRIC:
1963 pd_idx = sector_div(stripe2, raid_disks);
1964 qd_idx = pd_idx + 1;
1965 if (pd_idx == raid_disks-1) {
1966 (*dd_idx)++; /* Q D D D P */
1967 qd_idx = 0;
1968 } else if (*dd_idx >= pd_idx)
1969 (*dd_idx) += 2; /* D D P Q D */
1970 break;
1971 case ALGORITHM_LEFT_SYMMETRIC:
1972 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1973 qd_idx = (pd_idx + 1) % raid_disks;
1974 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1975 break;
1976 case ALGORITHM_RIGHT_SYMMETRIC:
1977 pd_idx = sector_div(stripe2, raid_disks);
1978 qd_idx = (pd_idx + 1) % raid_disks;
1979 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1980 break;
1982 case ALGORITHM_PARITY_0:
1983 pd_idx = 0;
1984 qd_idx = 1;
1985 (*dd_idx) += 2;
1986 break;
1987 case ALGORITHM_PARITY_N:
1988 pd_idx = data_disks;
1989 qd_idx = data_disks + 1;
1990 break;
1992 case ALGORITHM_ROTATING_ZERO_RESTART:
1993 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1994 * of blocks for computing Q is different.
1996 pd_idx = sector_div(stripe2, raid_disks);
1997 qd_idx = pd_idx + 1;
1998 if (pd_idx == raid_disks-1) {
1999 (*dd_idx)++; /* Q D D D P */
2000 qd_idx = 0;
2001 } else if (*dd_idx >= pd_idx)
2002 (*dd_idx) += 2; /* D D P Q D */
2003 ddf_layout = 1;
2004 break;
2006 case ALGORITHM_ROTATING_N_RESTART:
2007 /* Same a left_asymmetric, by first stripe is
2008 * D D D P Q rather than
2009 * Q D D D P
2011 stripe2 += 1;
2012 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2013 qd_idx = pd_idx + 1;
2014 if (pd_idx == raid_disks-1) {
2015 (*dd_idx)++; /* Q D D D P */
2016 qd_idx = 0;
2017 } else if (*dd_idx >= pd_idx)
2018 (*dd_idx) += 2; /* D D P Q D */
2019 ddf_layout = 1;
2020 break;
2022 case ALGORITHM_ROTATING_N_CONTINUE:
2023 /* Same as left_symmetric but Q is before P */
2024 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2025 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2026 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2027 ddf_layout = 1;
2028 break;
2030 case ALGORITHM_LEFT_ASYMMETRIC_6:
2031 /* RAID5 left_asymmetric, with Q on last device */
2032 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2033 if (*dd_idx >= pd_idx)
2034 (*dd_idx)++;
2035 qd_idx = raid_disks - 1;
2036 break;
2038 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2039 pd_idx = sector_div(stripe2, raid_disks-1);
2040 if (*dd_idx >= pd_idx)
2041 (*dd_idx)++;
2042 qd_idx = raid_disks - 1;
2043 break;
2045 case ALGORITHM_LEFT_SYMMETRIC_6:
2046 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2047 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2048 qd_idx = raid_disks - 1;
2049 break;
2051 case ALGORITHM_RIGHT_SYMMETRIC_6:
2052 pd_idx = sector_div(stripe2, raid_disks-1);
2053 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2054 qd_idx = raid_disks - 1;
2055 break;
2057 case ALGORITHM_PARITY_0_6:
2058 pd_idx = 0;
2059 (*dd_idx)++;
2060 qd_idx = raid_disks - 1;
2061 break;
2063 default:
2064 BUG();
2066 break;
2069 if (sh) {
2070 sh->pd_idx = pd_idx;
2071 sh->qd_idx = qd_idx;
2072 sh->ddf_layout = ddf_layout;
2075 * Finally, compute the new sector number
2077 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2078 return new_sector;
2082 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2084 struct r5conf *conf = sh->raid_conf;
2085 int raid_disks = sh->disks;
2086 int data_disks = raid_disks - conf->max_degraded;
2087 sector_t new_sector = sh->sector, check;
2088 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2089 : conf->chunk_sectors;
2090 int algorithm = previous ? conf->prev_algo
2091 : conf->algorithm;
2092 sector_t stripe;
2093 int chunk_offset;
2094 sector_t chunk_number;
2095 int dummy1, dd_idx = i;
2096 sector_t r_sector;
2097 struct stripe_head sh2;
2100 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2101 stripe = new_sector;
2103 if (i == sh->pd_idx)
2104 return 0;
2105 switch(conf->level) {
2106 case 4: break;
2107 case 5:
2108 switch (algorithm) {
2109 case ALGORITHM_LEFT_ASYMMETRIC:
2110 case ALGORITHM_RIGHT_ASYMMETRIC:
2111 if (i > sh->pd_idx)
2112 i--;
2113 break;
2114 case ALGORITHM_LEFT_SYMMETRIC:
2115 case ALGORITHM_RIGHT_SYMMETRIC:
2116 if (i < sh->pd_idx)
2117 i += raid_disks;
2118 i -= (sh->pd_idx + 1);
2119 break;
2120 case ALGORITHM_PARITY_0:
2121 i -= 1;
2122 break;
2123 case ALGORITHM_PARITY_N:
2124 break;
2125 default:
2126 BUG();
2128 break;
2129 case 6:
2130 if (i == sh->qd_idx)
2131 return 0; /* It is the Q disk */
2132 switch (algorithm) {
2133 case ALGORITHM_LEFT_ASYMMETRIC:
2134 case ALGORITHM_RIGHT_ASYMMETRIC:
2135 case ALGORITHM_ROTATING_ZERO_RESTART:
2136 case ALGORITHM_ROTATING_N_RESTART:
2137 if (sh->pd_idx == raid_disks-1)
2138 i--; /* Q D D D P */
2139 else if (i > sh->pd_idx)
2140 i -= 2; /* D D P Q D */
2141 break;
2142 case ALGORITHM_LEFT_SYMMETRIC:
2143 case ALGORITHM_RIGHT_SYMMETRIC:
2144 if (sh->pd_idx == raid_disks-1)
2145 i--; /* Q D D D P */
2146 else {
2147 /* D D P Q D */
2148 if (i < sh->pd_idx)
2149 i += raid_disks;
2150 i -= (sh->pd_idx + 2);
2152 break;
2153 case ALGORITHM_PARITY_0:
2154 i -= 2;
2155 break;
2156 case ALGORITHM_PARITY_N:
2157 break;
2158 case ALGORITHM_ROTATING_N_CONTINUE:
2159 /* Like left_symmetric, but P is before Q */
2160 if (sh->pd_idx == 0)
2161 i--; /* P D D D Q */
2162 else {
2163 /* D D Q P D */
2164 if (i < sh->pd_idx)
2165 i += raid_disks;
2166 i -= (sh->pd_idx + 1);
2168 break;
2169 case ALGORITHM_LEFT_ASYMMETRIC_6:
2170 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2171 if (i > sh->pd_idx)
2172 i--;
2173 break;
2174 case ALGORITHM_LEFT_SYMMETRIC_6:
2175 case ALGORITHM_RIGHT_SYMMETRIC_6:
2176 if (i < sh->pd_idx)
2177 i += data_disks + 1;
2178 i -= (sh->pd_idx + 1);
2179 break;
2180 case ALGORITHM_PARITY_0_6:
2181 i -= 1;
2182 break;
2183 default:
2184 BUG();
2186 break;
2189 chunk_number = stripe * data_disks + i;
2190 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2192 check = raid5_compute_sector(conf, r_sector,
2193 previous, &dummy1, &sh2);
2194 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2195 || sh2.qd_idx != sh->qd_idx) {
2196 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2197 mdname(conf->mddev));
2198 return 0;
2200 return r_sector;
2204 static void
2205 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2206 int rcw, int expand)
2208 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2209 struct r5conf *conf = sh->raid_conf;
2210 int level = conf->level;
2212 if (rcw) {
2213 /* if we are not expanding this is a proper write request, and
2214 * there will be bios with new data to be drained into the
2215 * stripe cache
2217 if (!expand) {
2218 sh->reconstruct_state = reconstruct_state_drain_run;
2219 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2220 } else
2221 sh->reconstruct_state = reconstruct_state_run;
2223 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2225 for (i = disks; i--; ) {
2226 struct r5dev *dev = &sh->dev[i];
2228 if (dev->towrite) {
2229 set_bit(R5_LOCKED, &dev->flags);
2230 set_bit(R5_Wantdrain, &dev->flags);
2231 if (!expand)
2232 clear_bit(R5_UPTODATE, &dev->flags);
2233 s->locked++;
2236 if (s->locked + conf->max_degraded == disks)
2237 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2238 atomic_inc(&conf->pending_full_writes);
2239 } else {
2240 BUG_ON(level == 6);
2241 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2242 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2244 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2245 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2246 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2247 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2249 for (i = disks; i--; ) {
2250 struct r5dev *dev = &sh->dev[i];
2251 if (i == pd_idx)
2252 continue;
2254 if (dev->towrite &&
2255 (test_bit(R5_UPTODATE, &dev->flags) ||
2256 test_bit(R5_Wantcompute, &dev->flags))) {
2257 set_bit(R5_Wantdrain, &dev->flags);
2258 set_bit(R5_LOCKED, &dev->flags);
2259 clear_bit(R5_UPTODATE, &dev->flags);
2260 s->locked++;
2265 /* keep the parity disk(s) locked while asynchronous operations
2266 * are in flight
2268 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2269 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2270 s->locked++;
2272 if (level == 6) {
2273 int qd_idx = sh->qd_idx;
2274 struct r5dev *dev = &sh->dev[qd_idx];
2276 set_bit(R5_LOCKED, &dev->flags);
2277 clear_bit(R5_UPTODATE, &dev->flags);
2278 s->locked++;
2281 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2282 __func__, (unsigned long long)sh->sector,
2283 s->locked, s->ops_request);
2287 * Each stripe/dev can have one or more bion attached.
2288 * toread/towrite point to the first in a chain.
2289 * The bi_next chain must be in order.
2291 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2293 struct bio **bip;
2294 struct r5conf *conf = sh->raid_conf;
2295 int firstwrite=0;
2297 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2298 (unsigned long long)bi->bi_sector,
2299 (unsigned long long)sh->sector);
2302 spin_lock_irq(&conf->device_lock);
2303 if (forwrite) {
2304 bip = &sh->dev[dd_idx].towrite;
2305 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2306 firstwrite = 1;
2307 } else
2308 bip = &sh->dev[dd_idx].toread;
2309 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2310 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2311 goto overlap;
2312 bip = & (*bip)->bi_next;
2314 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2315 goto overlap;
2317 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2318 if (*bip)
2319 bi->bi_next = *bip;
2320 *bip = bi;
2321 bi->bi_phys_segments++;
2323 if (forwrite) {
2324 /* check if page is covered */
2325 sector_t sector = sh->dev[dd_idx].sector;
2326 for (bi=sh->dev[dd_idx].towrite;
2327 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2328 bi && bi->bi_sector <= sector;
2329 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2330 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2331 sector = bi->bi_sector + (bi->bi_size>>9);
2333 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2334 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2336 spin_unlock_irq(&conf->device_lock);
2338 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2339 (unsigned long long)(*bip)->bi_sector,
2340 (unsigned long long)sh->sector, dd_idx);
2342 if (conf->mddev->bitmap && firstwrite) {
2343 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2344 STRIPE_SECTORS, 0);
2345 sh->bm_seq = conf->seq_flush+1;
2346 set_bit(STRIPE_BIT_DELAY, &sh->state);
2348 return 1;
2350 overlap:
2351 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2352 spin_unlock_irq(&conf->device_lock);
2353 return 0;
2356 static void end_reshape(struct r5conf *conf);
2358 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2359 struct stripe_head *sh)
2361 int sectors_per_chunk =
2362 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2363 int dd_idx;
2364 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2365 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2367 raid5_compute_sector(conf,
2368 stripe * (disks - conf->max_degraded)
2369 *sectors_per_chunk + chunk_offset,
2370 previous,
2371 &dd_idx, sh);
2374 static void
2375 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2376 struct stripe_head_state *s, int disks,
2377 struct bio **return_bi)
2379 int i;
2380 for (i = disks; i--; ) {
2381 struct bio *bi;
2382 int bitmap_end = 0;
2384 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2385 struct md_rdev *rdev;
2386 rcu_read_lock();
2387 rdev = rcu_dereference(conf->disks[i].rdev);
2388 if (rdev && test_bit(In_sync, &rdev->flags))
2389 atomic_inc(&rdev->nr_pending);
2390 else
2391 rdev = NULL;
2392 rcu_read_unlock();
2393 if (rdev) {
2394 if (!rdev_set_badblocks(
2395 rdev,
2396 sh->sector,
2397 STRIPE_SECTORS, 0))
2398 md_error(conf->mddev, rdev);
2399 rdev_dec_pending(rdev, conf->mddev);
2402 spin_lock_irq(&conf->device_lock);
2403 /* fail all writes first */
2404 bi = sh->dev[i].towrite;
2405 sh->dev[i].towrite = NULL;
2406 if (bi) {
2407 s->to_write--;
2408 bitmap_end = 1;
2411 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2412 wake_up(&conf->wait_for_overlap);
2414 while (bi && bi->bi_sector <
2415 sh->dev[i].sector + STRIPE_SECTORS) {
2416 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2417 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2418 if (!raid5_dec_bi_phys_segments(bi)) {
2419 md_write_end(conf->mddev);
2420 bi->bi_next = *return_bi;
2421 *return_bi = bi;
2423 bi = nextbi;
2425 /* and fail all 'written' */
2426 bi = sh->dev[i].written;
2427 sh->dev[i].written = NULL;
2428 if (bi) bitmap_end = 1;
2429 while (bi && bi->bi_sector <
2430 sh->dev[i].sector + STRIPE_SECTORS) {
2431 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2432 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2433 if (!raid5_dec_bi_phys_segments(bi)) {
2434 md_write_end(conf->mddev);
2435 bi->bi_next = *return_bi;
2436 *return_bi = bi;
2438 bi = bi2;
2441 /* fail any reads if this device is non-operational and
2442 * the data has not reached the cache yet.
2444 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2445 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2446 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2447 bi = sh->dev[i].toread;
2448 sh->dev[i].toread = NULL;
2449 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2450 wake_up(&conf->wait_for_overlap);
2451 if (bi) s->to_read--;
2452 while (bi && bi->bi_sector <
2453 sh->dev[i].sector + STRIPE_SECTORS) {
2454 struct bio *nextbi =
2455 r5_next_bio(bi, sh->dev[i].sector);
2456 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2457 if (!raid5_dec_bi_phys_segments(bi)) {
2458 bi->bi_next = *return_bi;
2459 *return_bi = bi;
2461 bi = nextbi;
2464 spin_unlock_irq(&conf->device_lock);
2465 if (bitmap_end)
2466 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2467 STRIPE_SECTORS, 0, 0);
2468 /* If we were in the middle of a write the parity block might
2469 * still be locked - so just clear all R5_LOCKED flags
2471 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2474 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2475 if (atomic_dec_and_test(&conf->pending_full_writes))
2476 md_wakeup_thread(conf->mddev->thread);
2479 static void
2480 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2481 struct stripe_head_state *s)
2483 int abort = 0;
2484 int i;
2486 clear_bit(STRIPE_SYNCING, &sh->state);
2487 s->syncing = 0;
2488 s->replacing = 0;
2489 /* There is nothing more to do for sync/check/repair.
2490 * Don't even need to abort as that is handled elsewhere
2491 * if needed, and not always wanted e.g. if there is a known
2492 * bad block here.
2493 * For recover/replace we need to record a bad block on all
2494 * non-sync devices, or abort the recovery
2496 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2497 /* During recovery devices cannot be removed, so
2498 * locking and refcounting of rdevs is not needed
2500 for (i = 0; i < conf->raid_disks; i++) {
2501 struct md_rdev *rdev = conf->disks[i].rdev;
2502 if (rdev
2503 && !test_bit(Faulty, &rdev->flags)
2504 && !test_bit(In_sync, &rdev->flags)
2505 && !rdev_set_badblocks(rdev, sh->sector,
2506 STRIPE_SECTORS, 0))
2507 abort = 1;
2508 rdev = conf->disks[i].replacement;
2509 if (rdev
2510 && !test_bit(Faulty, &rdev->flags)
2511 && !test_bit(In_sync, &rdev->flags)
2512 && !rdev_set_badblocks(rdev, sh->sector,
2513 STRIPE_SECTORS, 0))
2514 abort = 1;
2516 if (abort)
2517 conf->recovery_disabled =
2518 conf->mddev->recovery_disabled;
2520 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2523 static int want_replace(struct stripe_head *sh, int disk_idx)
2525 struct md_rdev *rdev;
2526 int rv = 0;
2527 /* Doing recovery so rcu locking not required */
2528 rdev = sh->raid_conf->disks[disk_idx].replacement;
2529 if (rdev
2530 && !test_bit(Faulty, &rdev->flags)
2531 && !test_bit(In_sync, &rdev->flags)
2532 && (rdev->recovery_offset <= sh->sector
2533 || rdev->mddev->recovery_cp <= sh->sector))
2534 rv = 1;
2536 return rv;
2539 /* fetch_block - checks the given member device to see if its data needs
2540 * to be read or computed to satisfy a request.
2542 * Returns 1 when no more member devices need to be checked, otherwise returns
2543 * 0 to tell the loop in handle_stripe_fill to continue
2545 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2546 int disk_idx, int disks)
2548 struct r5dev *dev = &sh->dev[disk_idx];
2549 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2550 &sh->dev[s->failed_num[1]] };
2552 /* is the data in this block needed, and can we get it? */
2553 if (!test_bit(R5_LOCKED, &dev->flags) &&
2554 !test_bit(R5_UPTODATE, &dev->flags) &&
2555 (dev->toread ||
2556 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2557 s->syncing || s->expanding ||
2558 (s->replacing && want_replace(sh, disk_idx)) ||
2559 (s->failed >= 1 && fdev[0]->toread) ||
2560 (s->failed >= 2 && fdev[1]->toread) ||
2561 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2562 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2563 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2564 /* we would like to get this block, possibly by computing it,
2565 * otherwise read it if the backing disk is insync
2567 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2568 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2569 if ((s->uptodate == disks - 1) &&
2570 (s->failed && (disk_idx == s->failed_num[0] ||
2571 disk_idx == s->failed_num[1]))) {
2572 /* have disk failed, and we're requested to fetch it;
2573 * do compute it
2575 pr_debug("Computing stripe %llu block %d\n",
2576 (unsigned long long)sh->sector, disk_idx);
2577 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2578 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2579 set_bit(R5_Wantcompute, &dev->flags);
2580 sh->ops.target = disk_idx;
2581 sh->ops.target2 = -1; /* no 2nd target */
2582 s->req_compute = 1;
2583 /* Careful: from this point on 'uptodate' is in the eye
2584 * of raid_run_ops which services 'compute' operations
2585 * before writes. R5_Wantcompute flags a block that will
2586 * be R5_UPTODATE by the time it is needed for a
2587 * subsequent operation.
2589 s->uptodate++;
2590 return 1;
2591 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2592 /* Computing 2-failure is *very* expensive; only
2593 * do it if failed >= 2
2595 int other;
2596 for (other = disks; other--; ) {
2597 if (other == disk_idx)
2598 continue;
2599 if (!test_bit(R5_UPTODATE,
2600 &sh->dev[other].flags))
2601 break;
2603 BUG_ON(other < 0);
2604 pr_debug("Computing stripe %llu blocks %d,%d\n",
2605 (unsigned long long)sh->sector,
2606 disk_idx, other);
2607 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2608 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2609 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2610 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2611 sh->ops.target = disk_idx;
2612 sh->ops.target2 = other;
2613 s->uptodate += 2;
2614 s->req_compute = 1;
2615 return 1;
2616 } else if (test_bit(R5_Insync, &dev->flags)) {
2617 set_bit(R5_LOCKED, &dev->flags);
2618 set_bit(R5_Wantread, &dev->flags);
2619 s->locked++;
2620 pr_debug("Reading block %d (sync=%d)\n",
2621 disk_idx, s->syncing);
2625 return 0;
2629 * handle_stripe_fill - read or compute data to satisfy pending requests.
2631 static void handle_stripe_fill(struct stripe_head *sh,
2632 struct stripe_head_state *s,
2633 int disks)
2635 int i;
2637 /* look for blocks to read/compute, skip this if a compute
2638 * is already in flight, or if the stripe contents are in the
2639 * midst of changing due to a write
2641 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2642 !sh->reconstruct_state)
2643 for (i = disks; i--; )
2644 if (fetch_block(sh, s, i, disks))
2645 break;
2646 set_bit(STRIPE_HANDLE, &sh->state);
2650 /* handle_stripe_clean_event
2651 * any written block on an uptodate or failed drive can be returned.
2652 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2653 * never LOCKED, so we don't need to test 'failed' directly.
2655 static void handle_stripe_clean_event(struct r5conf *conf,
2656 struct stripe_head *sh, int disks, struct bio **return_bi)
2658 int i;
2659 struct r5dev *dev;
2661 for (i = disks; i--; )
2662 if (sh->dev[i].written) {
2663 dev = &sh->dev[i];
2664 if (!test_bit(R5_LOCKED, &dev->flags) &&
2665 test_bit(R5_UPTODATE, &dev->flags)) {
2666 /* We can return any write requests */
2667 struct bio *wbi, *wbi2;
2668 int bitmap_end = 0;
2669 pr_debug("Return write for disc %d\n", i);
2670 spin_lock_irq(&conf->device_lock);
2671 wbi = dev->written;
2672 dev->written = NULL;
2673 while (wbi && wbi->bi_sector <
2674 dev->sector + STRIPE_SECTORS) {
2675 wbi2 = r5_next_bio(wbi, dev->sector);
2676 if (!raid5_dec_bi_phys_segments(wbi)) {
2677 md_write_end(conf->mddev);
2678 wbi->bi_next = *return_bi;
2679 *return_bi = wbi;
2681 wbi = wbi2;
2683 if (dev->towrite == NULL)
2684 bitmap_end = 1;
2685 spin_unlock_irq(&conf->device_lock);
2686 if (bitmap_end)
2687 bitmap_endwrite(conf->mddev->bitmap,
2688 sh->sector,
2689 STRIPE_SECTORS,
2690 !test_bit(STRIPE_DEGRADED, &sh->state),
2695 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2696 if (atomic_dec_and_test(&conf->pending_full_writes))
2697 md_wakeup_thread(conf->mddev->thread);
2700 static void handle_stripe_dirtying(struct r5conf *conf,
2701 struct stripe_head *sh,
2702 struct stripe_head_state *s,
2703 int disks)
2705 int rmw = 0, rcw = 0, i;
2706 if (conf->max_degraded == 2) {
2707 /* RAID6 requires 'rcw' in current implementation
2708 * Calculate the real rcw later - for now fake it
2709 * look like rcw is cheaper
2711 rcw = 1; rmw = 2;
2712 } else for (i = disks; i--; ) {
2713 /* would I have to read this buffer for read_modify_write */
2714 struct r5dev *dev = &sh->dev[i];
2715 if ((dev->towrite || i == sh->pd_idx) &&
2716 !test_bit(R5_LOCKED, &dev->flags) &&
2717 !(test_bit(R5_UPTODATE, &dev->flags) ||
2718 test_bit(R5_Wantcompute, &dev->flags))) {
2719 if (test_bit(R5_Insync, &dev->flags))
2720 rmw++;
2721 else
2722 rmw += 2*disks; /* cannot read it */
2724 /* Would I have to read this buffer for reconstruct_write */
2725 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2726 !test_bit(R5_LOCKED, &dev->flags) &&
2727 !(test_bit(R5_UPTODATE, &dev->flags) ||
2728 test_bit(R5_Wantcompute, &dev->flags))) {
2729 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2730 else
2731 rcw += 2*disks;
2734 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2735 (unsigned long long)sh->sector, rmw, rcw);
2736 set_bit(STRIPE_HANDLE, &sh->state);
2737 if (rmw < rcw && rmw > 0)
2738 /* prefer read-modify-write, but need to get some data */
2739 for (i = disks; i--; ) {
2740 struct r5dev *dev = &sh->dev[i];
2741 if ((dev->towrite || i == sh->pd_idx) &&
2742 !test_bit(R5_LOCKED, &dev->flags) &&
2743 !(test_bit(R5_UPTODATE, &dev->flags) ||
2744 test_bit(R5_Wantcompute, &dev->flags)) &&
2745 test_bit(R5_Insync, &dev->flags)) {
2746 if (
2747 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2748 pr_debug("Read_old block "
2749 "%d for r-m-w\n", i);
2750 set_bit(R5_LOCKED, &dev->flags);
2751 set_bit(R5_Wantread, &dev->flags);
2752 s->locked++;
2753 } else {
2754 set_bit(STRIPE_DELAYED, &sh->state);
2755 set_bit(STRIPE_HANDLE, &sh->state);
2759 if (rcw <= rmw && rcw > 0) {
2760 /* want reconstruct write, but need to get some data */
2761 rcw = 0;
2762 for (i = disks; i--; ) {
2763 struct r5dev *dev = &sh->dev[i];
2764 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2765 i != sh->pd_idx && i != sh->qd_idx &&
2766 !test_bit(R5_LOCKED, &dev->flags) &&
2767 !(test_bit(R5_UPTODATE, &dev->flags) ||
2768 test_bit(R5_Wantcompute, &dev->flags))) {
2769 rcw++;
2770 if (!test_bit(R5_Insync, &dev->flags))
2771 continue; /* it's a failed drive */
2772 if (
2773 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2774 pr_debug("Read_old block "
2775 "%d for Reconstruct\n", i);
2776 set_bit(R5_LOCKED, &dev->flags);
2777 set_bit(R5_Wantread, &dev->flags);
2778 s->locked++;
2779 } else {
2780 set_bit(STRIPE_DELAYED, &sh->state);
2781 set_bit(STRIPE_HANDLE, &sh->state);
2786 /* now if nothing is locked, and if we have enough data,
2787 * we can start a write request
2789 /* since handle_stripe can be called at any time we need to handle the
2790 * case where a compute block operation has been submitted and then a
2791 * subsequent call wants to start a write request. raid_run_ops only
2792 * handles the case where compute block and reconstruct are requested
2793 * simultaneously. If this is not the case then new writes need to be
2794 * held off until the compute completes.
2796 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2797 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2798 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2799 schedule_reconstruction(sh, s, rcw == 0, 0);
2802 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2803 struct stripe_head_state *s, int disks)
2805 struct r5dev *dev = NULL;
2807 set_bit(STRIPE_HANDLE, &sh->state);
2809 switch (sh->check_state) {
2810 case check_state_idle:
2811 /* start a new check operation if there are no failures */
2812 if (s->failed == 0) {
2813 BUG_ON(s->uptodate != disks);
2814 sh->check_state = check_state_run;
2815 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2816 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2817 s->uptodate--;
2818 break;
2820 dev = &sh->dev[s->failed_num[0]];
2821 /* fall through */
2822 case check_state_compute_result:
2823 sh->check_state = check_state_idle;
2824 if (!dev)
2825 dev = &sh->dev[sh->pd_idx];
2827 /* check that a write has not made the stripe insync */
2828 if (test_bit(STRIPE_INSYNC, &sh->state))
2829 break;
2831 /* either failed parity check, or recovery is happening */
2832 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2833 BUG_ON(s->uptodate != disks);
2835 set_bit(R5_LOCKED, &dev->flags);
2836 s->locked++;
2837 set_bit(R5_Wantwrite, &dev->flags);
2839 clear_bit(STRIPE_DEGRADED, &sh->state);
2840 set_bit(STRIPE_INSYNC, &sh->state);
2841 break;
2842 case check_state_run:
2843 break; /* we will be called again upon completion */
2844 case check_state_check_result:
2845 sh->check_state = check_state_idle;
2847 /* if a failure occurred during the check operation, leave
2848 * STRIPE_INSYNC not set and let the stripe be handled again
2850 if (s->failed)
2851 break;
2853 /* handle a successful check operation, if parity is correct
2854 * we are done. Otherwise update the mismatch count and repair
2855 * parity if !MD_RECOVERY_CHECK
2857 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2858 /* parity is correct (on disc,
2859 * not in buffer any more)
2861 set_bit(STRIPE_INSYNC, &sh->state);
2862 else {
2863 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2864 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2865 /* don't try to repair!! */
2866 set_bit(STRIPE_INSYNC, &sh->state);
2867 else {
2868 sh->check_state = check_state_compute_run;
2869 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2870 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2871 set_bit(R5_Wantcompute,
2872 &sh->dev[sh->pd_idx].flags);
2873 sh->ops.target = sh->pd_idx;
2874 sh->ops.target2 = -1;
2875 s->uptodate++;
2878 break;
2879 case check_state_compute_run:
2880 break;
2881 default:
2882 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2883 __func__, sh->check_state,
2884 (unsigned long long) sh->sector);
2885 BUG();
2890 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2891 struct stripe_head_state *s,
2892 int disks)
2894 int pd_idx = sh->pd_idx;
2895 int qd_idx = sh->qd_idx;
2896 struct r5dev *dev;
2898 set_bit(STRIPE_HANDLE, &sh->state);
2900 BUG_ON(s->failed > 2);
2902 /* Want to check and possibly repair P and Q.
2903 * However there could be one 'failed' device, in which
2904 * case we can only check one of them, possibly using the
2905 * other to generate missing data
2908 switch (sh->check_state) {
2909 case check_state_idle:
2910 /* start a new check operation if there are < 2 failures */
2911 if (s->failed == s->q_failed) {
2912 /* The only possible failed device holds Q, so it
2913 * makes sense to check P (If anything else were failed,
2914 * we would have used P to recreate it).
2916 sh->check_state = check_state_run;
2918 if (!s->q_failed && s->failed < 2) {
2919 /* Q is not failed, and we didn't use it to generate
2920 * anything, so it makes sense to check it
2922 if (sh->check_state == check_state_run)
2923 sh->check_state = check_state_run_pq;
2924 else
2925 sh->check_state = check_state_run_q;
2928 /* discard potentially stale zero_sum_result */
2929 sh->ops.zero_sum_result = 0;
2931 if (sh->check_state == check_state_run) {
2932 /* async_xor_zero_sum destroys the contents of P */
2933 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2934 s->uptodate--;
2936 if (sh->check_state >= check_state_run &&
2937 sh->check_state <= check_state_run_pq) {
2938 /* async_syndrome_zero_sum preserves P and Q, so
2939 * no need to mark them !uptodate here
2941 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2942 break;
2945 /* we have 2-disk failure */
2946 BUG_ON(s->failed != 2);
2947 /* fall through */
2948 case check_state_compute_result:
2949 sh->check_state = check_state_idle;
2951 /* check that a write has not made the stripe insync */
2952 if (test_bit(STRIPE_INSYNC, &sh->state))
2953 break;
2955 /* now write out any block on a failed drive,
2956 * or P or Q if they were recomputed
2958 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2959 if (s->failed == 2) {
2960 dev = &sh->dev[s->failed_num[1]];
2961 s->locked++;
2962 set_bit(R5_LOCKED, &dev->flags);
2963 set_bit(R5_Wantwrite, &dev->flags);
2965 if (s->failed >= 1) {
2966 dev = &sh->dev[s->failed_num[0]];
2967 s->locked++;
2968 set_bit(R5_LOCKED, &dev->flags);
2969 set_bit(R5_Wantwrite, &dev->flags);
2971 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2972 dev = &sh->dev[pd_idx];
2973 s->locked++;
2974 set_bit(R5_LOCKED, &dev->flags);
2975 set_bit(R5_Wantwrite, &dev->flags);
2977 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2978 dev = &sh->dev[qd_idx];
2979 s->locked++;
2980 set_bit(R5_LOCKED, &dev->flags);
2981 set_bit(R5_Wantwrite, &dev->flags);
2983 clear_bit(STRIPE_DEGRADED, &sh->state);
2985 set_bit(STRIPE_INSYNC, &sh->state);
2986 break;
2987 case check_state_run:
2988 case check_state_run_q:
2989 case check_state_run_pq:
2990 break; /* we will be called again upon completion */
2991 case check_state_check_result:
2992 sh->check_state = check_state_idle;
2994 /* handle a successful check operation, if parity is correct
2995 * we are done. Otherwise update the mismatch count and repair
2996 * parity if !MD_RECOVERY_CHECK
2998 if (sh->ops.zero_sum_result == 0) {
2999 /* both parities are correct */
3000 if (!s->failed)
3001 set_bit(STRIPE_INSYNC, &sh->state);
3002 else {
3003 /* in contrast to the raid5 case we can validate
3004 * parity, but still have a failure to write
3005 * back
3007 sh->check_state = check_state_compute_result;
3008 /* Returning at this point means that we may go
3009 * off and bring p and/or q uptodate again so
3010 * we make sure to check zero_sum_result again
3011 * to verify if p or q need writeback
3014 } else {
3015 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3016 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3017 /* don't try to repair!! */
3018 set_bit(STRIPE_INSYNC, &sh->state);
3019 else {
3020 int *target = &sh->ops.target;
3022 sh->ops.target = -1;
3023 sh->ops.target2 = -1;
3024 sh->check_state = check_state_compute_run;
3025 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3026 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3027 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3028 set_bit(R5_Wantcompute,
3029 &sh->dev[pd_idx].flags);
3030 *target = pd_idx;
3031 target = &sh->ops.target2;
3032 s->uptodate++;
3034 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3035 set_bit(R5_Wantcompute,
3036 &sh->dev[qd_idx].flags);
3037 *target = qd_idx;
3038 s->uptodate++;
3042 break;
3043 case check_state_compute_run:
3044 break;
3045 default:
3046 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3047 __func__, sh->check_state,
3048 (unsigned long long) sh->sector);
3049 BUG();
3053 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3055 int i;
3057 /* We have read all the blocks in this stripe and now we need to
3058 * copy some of them into a target stripe for expand.
3060 struct dma_async_tx_descriptor *tx = NULL;
3061 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3062 for (i = 0; i < sh->disks; i++)
3063 if (i != sh->pd_idx && i != sh->qd_idx) {
3064 int dd_idx, j;
3065 struct stripe_head *sh2;
3066 struct async_submit_ctl submit;
3068 sector_t bn = compute_blocknr(sh, i, 1);
3069 sector_t s = raid5_compute_sector(conf, bn, 0,
3070 &dd_idx, NULL);
3071 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3072 if (sh2 == NULL)
3073 /* so far only the early blocks of this stripe
3074 * have been requested. When later blocks
3075 * get requested, we will try again
3077 continue;
3078 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3079 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3080 /* must have already done this block */
3081 release_stripe(sh2);
3082 continue;
3085 /* place all the copies on one channel */
3086 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3087 tx = async_memcpy(sh2->dev[dd_idx].page,
3088 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3089 &submit);
3091 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3092 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3093 for (j = 0; j < conf->raid_disks; j++)
3094 if (j != sh2->pd_idx &&
3095 j != sh2->qd_idx &&
3096 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3097 break;
3098 if (j == conf->raid_disks) {
3099 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3100 set_bit(STRIPE_HANDLE, &sh2->state);
3102 release_stripe(sh2);
3105 /* done submitting copies, wait for them to complete */
3106 if (tx) {
3107 async_tx_ack(tx);
3108 dma_wait_for_async_tx(tx);
3113 * handle_stripe - do things to a stripe.
3115 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3116 * state of various bits to see what needs to be done.
3117 * Possible results:
3118 * return some read requests which now have data
3119 * return some write requests which are safely on storage
3120 * schedule a read on some buffers
3121 * schedule a write of some buffers
3122 * return confirmation of parity correctness
3126 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3128 struct r5conf *conf = sh->raid_conf;
3129 int disks = sh->disks;
3130 struct r5dev *dev;
3131 int i;
3132 int do_recovery = 0;
3134 memset(s, 0, sizeof(*s));
3136 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3137 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3138 s->failed_num[0] = -1;
3139 s->failed_num[1] = -1;
3141 /* Now to look around and see what can be done */
3142 rcu_read_lock();
3143 spin_lock_irq(&conf->device_lock);
3144 for (i=disks; i--; ) {
3145 struct md_rdev *rdev;
3146 sector_t first_bad;
3147 int bad_sectors;
3148 int is_bad = 0;
3150 dev = &sh->dev[i];
3152 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3153 i, dev->flags,
3154 dev->toread, dev->towrite, dev->written);
3155 /* maybe we can reply to a read
3157 * new wantfill requests are only permitted while
3158 * ops_complete_biofill is guaranteed to be inactive
3160 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3161 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3162 set_bit(R5_Wantfill, &dev->flags);
3164 /* now count some things */
3165 if (test_bit(R5_LOCKED, &dev->flags))
3166 s->locked++;
3167 if (test_bit(R5_UPTODATE, &dev->flags))
3168 s->uptodate++;
3169 if (test_bit(R5_Wantcompute, &dev->flags)) {
3170 s->compute++;
3171 BUG_ON(s->compute > 2);
3174 if (test_bit(R5_Wantfill, &dev->flags))
3175 s->to_fill++;
3176 else if (dev->toread)
3177 s->to_read++;
3178 if (dev->towrite) {
3179 s->to_write++;
3180 if (!test_bit(R5_OVERWRITE, &dev->flags))
3181 s->non_overwrite++;
3183 if (dev->written)
3184 s->written++;
3185 /* Prefer to use the replacement for reads, but only
3186 * if it is recovered enough and has no bad blocks.
3188 rdev = rcu_dereference(conf->disks[i].replacement);
3189 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3190 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3191 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3192 &first_bad, &bad_sectors))
3193 set_bit(R5_ReadRepl, &dev->flags);
3194 else {
3195 if (rdev)
3196 set_bit(R5_NeedReplace, &dev->flags);
3197 rdev = rcu_dereference(conf->disks[i].rdev);
3198 clear_bit(R5_ReadRepl, &dev->flags);
3200 if (rdev && test_bit(Faulty, &rdev->flags))
3201 rdev = NULL;
3202 if (rdev) {
3203 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3204 &first_bad, &bad_sectors);
3205 if (s->blocked_rdev == NULL
3206 && (test_bit(Blocked, &rdev->flags)
3207 || is_bad < 0)) {
3208 if (is_bad < 0)
3209 set_bit(BlockedBadBlocks,
3210 &rdev->flags);
3211 s->blocked_rdev = rdev;
3212 atomic_inc(&rdev->nr_pending);
3215 clear_bit(R5_Insync, &dev->flags);
3216 if (!rdev)
3217 /* Not in-sync */;
3218 else if (is_bad) {
3219 /* also not in-sync */
3220 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3221 test_bit(R5_UPTODATE, &dev->flags)) {
3222 /* treat as in-sync, but with a read error
3223 * which we can now try to correct
3225 set_bit(R5_Insync, &dev->flags);
3226 set_bit(R5_ReadError, &dev->flags);
3228 } else if (test_bit(In_sync, &rdev->flags))
3229 set_bit(R5_Insync, &dev->flags);
3230 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3231 /* in sync if before recovery_offset */
3232 set_bit(R5_Insync, &dev->flags);
3233 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3234 test_bit(R5_Expanded, &dev->flags))
3235 /* If we've reshaped into here, we assume it is Insync.
3236 * We will shortly update recovery_offset to make
3237 * it official.
3239 set_bit(R5_Insync, &dev->flags);
3241 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3242 /* This flag does not apply to '.replacement'
3243 * only to .rdev, so make sure to check that*/
3244 struct md_rdev *rdev2 = rcu_dereference(
3245 conf->disks[i].rdev);
3246 if (rdev2 == rdev)
3247 clear_bit(R5_Insync, &dev->flags);
3248 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3249 s->handle_bad_blocks = 1;
3250 atomic_inc(&rdev2->nr_pending);
3251 } else
3252 clear_bit(R5_WriteError, &dev->flags);
3254 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3255 /* This flag does not apply to '.replacement'
3256 * only to .rdev, so make sure to check that*/
3257 struct md_rdev *rdev2 = rcu_dereference(
3258 conf->disks[i].rdev);
3259 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3260 s->handle_bad_blocks = 1;
3261 atomic_inc(&rdev2->nr_pending);
3262 } else
3263 clear_bit(R5_MadeGood, &dev->flags);
3265 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3266 struct md_rdev *rdev2 = rcu_dereference(
3267 conf->disks[i].replacement);
3268 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3269 s->handle_bad_blocks = 1;
3270 atomic_inc(&rdev2->nr_pending);
3271 } else
3272 clear_bit(R5_MadeGoodRepl, &dev->flags);
3274 if (!test_bit(R5_Insync, &dev->flags)) {
3275 /* The ReadError flag will just be confusing now */
3276 clear_bit(R5_ReadError, &dev->flags);
3277 clear_bit(R5_ReWrite, &dev->flags);
3279 if (test_bit(R5_ReadError, &dev->flags))
3280 clear_bit(R5_Insync, &dev->flags);
3281 if (!test_bit(R5_Insync, &dev->flags)) {
3282 if (s->failed < 2)
3283 s->failed_num[s->failed] = i;
3284 s->failed++;
3285 if (rdev && !test_bit(Faulty, &rdev->flags))
3286 do_recovery = 1;
3289 spin_unlock_irq(&conf->device_lock);
3290 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3291 /* If there is a failed device being replaced,
3292 * we must be recovering.
3293 * else if we are after recovery_cp, we must be syncing
3294 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3295 * else we can only be replacing
3296 * sync and recovery both need to read all devices, and so
3297 * use the same flag.
3299 if (do_recovery ||
3300 sh->sector >= conf->mddev->recovery_cp ||
3301 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3302 s->syncing = 1;
3303 else
3304 s->replacing = 1;
3306 rcu_read_unlock();
3309 static void handle_stripe(struct stripe_head *sh)
3311 struct stripe_head_state s;
3312 struct r5conf *conf = sh->raid_conf;
3313 int i;
3314 int prexor;
3315 int disks = sh->disks;
3316 struct r5dev *pdev, *qdev;
3318 clear_bit(STRIPE_HANDLE, &sh->state);
3319 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3320 /* already being handled, ensure it gets handled
3321 * again when current action finishes */
3322 set_bit(STRIPE_HANDLE, &sh->state);
3323 return;
3326 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3327 set_bit(STRIPE_SYNCING, &sh->state);
3328 clear_bit(STRIPE_INSYNC, &sh->state);
3330 clear_bit(STRIPE_DELAYED, &sh->state);
3332 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3333 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3334 (unsigned long long)sh->sector, sh->state,
3335 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3336 sh->check_state, sh->reconstruct_state);
3338 analyse_stripe(sh, &s);
3340 if (s.handle_bad_blocks) {
3341 set_bit(STRIPE_HANDLE, &sh->state);
3342 goto finish;
3345 if (unlikely(s.blocked_rdev)) {
3346 if (s.syncing || s.expanding || s.expanded ||
3347 s.replacing || s.to_write || s.written) {
3348 set_bit(STRIPE_HANDLE, &sh->state);
3349 goto finish;
3351 /* There is nothing for the blocked_rdev to block */
3352 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3353 s.blocked_rdev = NULL;
3356 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3357 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3358 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3361 pr_debug("locked=%d uptodate=%d to_read=%d"
3362 " to_write=%d failed=%d failed_num=%d,%d\n",
3363 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3364 s.failed_num[0], s.failed_num[1]);
3365 /* check if the array has lost more than max_degraded devices and,
3366 * if so, some requests might need to be failed.
3368 if (s.failed > conf->max_degraded) {
3369 sh->check_state = 0;
3370 sh->reconstruct_state = 0;
3371 if (s.to_read+s.to_write+s.written)
3372 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3373 if (s.syncing + s.replacing)
3374 handle_failed_sync(conf, sh, &s);
3378 * might be able to return some write requests if the parity blocks
3379 * are safe, or on a failed drive
3381 pdev = &sh->dev[sh->pd_idx];
3382 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3383 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3384 qdev = &sh->dev[sh->qd_idx];
3385 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3386 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3387 || conf->level < 6;
3389 if (s.written &&
3390 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3391 && !test_bit(R5_LOCKED, &pdev->flags)
3392 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3393 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3394 && !test_bit(R5_LOCKED, &qdev->flags)
3395 && test_bit(R5_UPTODATE, &qdev->flags)))))
3396 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3398 /* Now we might consider reading some blocks, either to check/generate
3399 * parity, or to satisfy requests
3400 * or to load a block that is being partially written.
3402 if (s.to_read || s.non_overwrite
3403 || (conf->level == 6 && s.to_write && s.failed)
3404 || (s.syncing && (s.uptodate + s.compute < disks))
3405 || s.replacing
3406 || s.expanding)
3407 handle_stripe_fill(sh, &s, disks);
3409 /* Now we check to see if any write operations have recently
3410 * completed
3412 prexor = 0;
3413 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3414 prexor = 1;
3415 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3416 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3417 sh->reconstruct_state = reconstruct_state_idle;
3419 /* All the 'written' buffers and the parity block are ready to
3420 * be written back to disk
3422 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3423 BUG_ON(sh->qd_idx >= 0 &&
3424 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3425 for (i = disks; i--; ) {
3426 struct r5dev *dev = &sh->dev[i];
3427 if (test_bit(R5_LOCKED, &dev->flags) &&
3428 (i == sh->pd_idx || i == sh->qd_idx ||
3429 dev->written)) {
3430 pr_debug("Writing block %d\n", i);
3431 set_bit(R5_Wantwrite, &dev->flags);
3432 if (prexor)
3433 continue;
3434 if (!test_bit(R5_Insync, &dev->flags) ||
3435 ((i == sh->pd_idx || i == sh->qd_idx) &&
3436 s.failed == 0))
3437 set_bit(STRIPE_INSYNC, &sh->state);
3440 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3441 s.dec_preread_active = 1;
3444 /* Now to consider new write requests and what else, if anything
3445 * should be read. We do not handle new writes when:
3446 * 1/ A 'write' operation (copy+xor) is already in flight.
3447 * 2/ A 'check' operation is in flight, as it may clobber the parity
3448 * block.
3450 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3451 handle_stripe_dirtying(conf, sh, &s, disks);
3453 /* maybe we need to check and possibly fix the parity for this stripe
3454 * Any reads will already have been scheduled, so we just see if enough
3455 * data is available. The parity check is held off while parity
3456 * dependent operations are in flight.
3458 if (sh->check_state ||
3459 (s.syncing && s.locked == 0 &&
3460 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3461 !test_bit(STRIPE_INSYNC, &sh->state))) {
3462 if (conf->level == 6)
3463 handle_parity_checks6(conf, sh, &s, disks);
3464 else
3465 handle_parity_checks5(conf, sh, &s, disks);
3468 if (s.replacing && s.locked == 0
3469 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3470 /* Write out to replacement devices where possible */
3471 for (i = 0; i < conf->raid_disks; i++)
3472 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3473 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3474 set_bit(R5_WantReplace, &sh->dev[i].flags);
3475 set_bit(R5_LOCKED, &sh->dev[i].flags);
3476 s.locked++;
3478 set_bit(STRIPE_INSYNC, &sh->state);
3480 if ((s.syncing || s.replacing) && s.locked == 0 &&
3481 test_bit(STRIPE_INSYNC, &sh->state)) {
3482 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3483 clear_bit(STRIPE_SYNCING, &sh->state);
3486 /* If the failed drives are just a ReadError, then we might need
3487 * to progress the repair/check process
3489 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3490 for (i = 0; i < s.failed; i++) {
3491 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3492 if (test_bit(R5_ReadError, &dev->flags)
3493 && !test_bit(R5_LOCKED, &dev->flags)
3494 && test_bit(R5_UPTODATE, &dev->flags)
3496 if (!test_bit(R5_ReWrite, &dev->flags)) {
3497 set_bit(R5_Wantwrite, &dev->flags);
3498 set_bit(R5_ReWrite, &dev->flags);
3499 set_bit(R5_LOCKED, &dev->flags);
3500 s.locked++;
3501 } else {
3502 /* let's read it back */
3503 set_bit(R5_Wantread, &dev->flags);
3504 set_bit(R5_LOCKED, &dev->flags);
3505 s.locked++;
3511 /* Finish reconstruct operations initiated by the expansion process */
3512 if (sh->reconstruct_state == reconstruct_state_result) {
3513 struct stripe_head *sh_src
3514 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3515 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3516 /* sh cannot be written until sh_src has been read.
3517 * so arrange for sh to be delayed a little
3519 set_bit(STRIPE_DELAYED, &sh->state);
3520 set_bit(STRIPE_HANDLE, &sh->state);
3521 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3522 &sh_src->state))
3523 atomic_inc(&conf->preread_active_stripes);
3524 release_stripe(sh_src);
3525 goto finish;
3527 if (sh_src)
3528 release_stripe(sh_src);
3530 sh->reconstruct_state = reconstruct_state_idle;
3531 clear_bit(STRIPE_EXPANDING, &sh->state);
3532 for (i = conf->raid_disks; i--; ) {
3533 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3534 set_bit(R5_LOCKED, &sh->dev[i].flags);
3535 s.locked++;
3539 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3540 !sh->reconstruct_state) {
3541 /* Need to write out all blocks after computing parity */
3542 sh->disks = conf->raid_disks;
3543 stripe_set_idx(sh->sector, conf, 0, sh);
3544 schedule_reconstruction(sh, &s, 1, 1);
3545 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3546 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3547 atomic_dec(&conf->reshape_stripes);
3548 wake_up(&conf->wait_for_overlap);
3549 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3552 if (s.expanding && s.locked == 0 &&
3553 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3554 handle_stripe_expansion(conf, sh);
3556 finish:
3557 /* wait for this device to become unblocked */
3558 if (conf->mddev->external && unlikely(s.blocked_rdev))
3559 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3561 if (s.handle_bad_blocks)
3562 for (i = disks; i--; ) {
3563 struct md_rdev *rdev;
3564 struct r5dev *dev = &sh->dev[i];
3565 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3566 /* We own a safe reference to the rdev */
3567 rdev = conf->disks[i].rdev;
3568 if (!rdev_set_badblocks(rdev, sh->sector,
3569 STRIPE_SECTORS, 0))
3570 md_error(conf->mddev, rdev);
3571 rdev_dec_pending(rdev, conf->mddev);
3573 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3574 rdev = conf->disks[i].rdev;
3575 rdev_clear_badblocks(rdev, sh->sector,
3576 STRIPE_SECTORS);
3577 rdev_dec_pending(rdev, conf->mddev);
3579 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3580 rdev = conf->disks[i].replacement;
3581 if (!rdev)
3582 /* rdev have been moved down */
3583 rdev = conf->disks[i].rdev;
3584 rdev_clear_badblocks(rdev, sh->sector,
3585 STRIPE_SECTORS);
3586 rdev_dec_pending(rdev, conf->mddev);
3590 if (s.ops_request)
3591 raid_run_ops(sh, s.ops_request);
3593 ops_run_io(sh, &s);
3595 if (s.dec_preread_active) {
3596 /* We delay this until after ops_run_io so that if make_request
3597 * is waiting on a flush, it won't continue until the writes
3598 * have actually been submitted.
3600 atomic_dec(&conf->preread_active_stripes);
3601 if (atomic_read(&conf->preread_active_stripes) <
3602 IO_THRESHOLD)
3603 md_wakeup_thread(conf->mddev->thread);
3606 return_io(s.return_bi);
3608 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3611 static void raid5_activate_delayed(struct r5conf *conf)
3613 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3614 while (!list_empty(&conf->delayed_list)) {
3615 struct list_head *l = conf->delayed_list.next;
3616 struct stripe_head *sh;
3617 sh = list_entry(l, struct stripe_head, lru);
3618 list_del_init(l);
3619 clear_bit(STRIPE_DELAYED, &sh->state);
3620 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3621 atomic_inc(&conf->preread_active_stripes);
3622 list_add_tail(&sh->lru, &conf->hold_list);
3627 static void activate_bit_delay(struct r5conf *conf)
3629 /* device_lock is held */
3630 struct list_head head;
3631 list_add(&head, &conf->bitmap_list);
3632 list_del_init(&conf->bitmap_list);
3633 while (!list_empty(&head)) {
3634 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3635 list_del_init(&sh->lru);
3636 atomic_inc(&sh->count);
3637 __release_stripe(conf, sh);
3641 int md_raid5_congested(struct mddev *mddev, int bits)
3643 struct r5conf *conf = mddev->private;
3645 /* No difference between reads and writes. Just check
3646 * how busy the stripe_cache is
3649 if (conf->inactive_blocked)
3650 return 1;
3651 if (conf->quiesce)
3652 return 1;
3653 if (list_empty_careful(&conf->inactive_list))
3654 return 1;
3656 return 0;
3658 EXPORT_SYMBOL_GPL(md_raid5_congested);
3660 static int raid5_congested(void *data, int bits)
3662 struct mddev *mddev = data;
3664 return mddev_congested(mddev, bits) ||
3665 md_raid5_congested(mddev, bits);
3668 /* We want read requests to align with chunks where possible,
3669 * but write requests don't need to.
3671 static int raid5_mergeable_bvec(struct request_queue *q,
3672 struct bvec_merge_data *bvm,
3673 struct bio_vec *biovec)
3675 struct mddev *mddev = q->queuedata;
3676 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3677 int max;
3678 unsigned int chunk_sectors = mddev->chunk_sectors;
3679 unsigned int bio_sectors = bvm->bi_size >> 9;
3681 if ((bvm->bi_rw & 1) == WRITE)
3682 return biovec->bv_len; /* always allow writes to be mergeable */
3684 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3685 chunk_sectors = mddev->new_chunk_sectors;
3686 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3687 if (max < 0) max = 0;
3688 if (max <= biovec->bv_len && bio_sectors == 0)
3689 return biovec->bv_len;
3690 else
3691 return max;
3695 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3697 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3698 unsigned int chunk_sectors = mddev->chunk_sectors;
3699 unsigned int bio_sectors = bio->bi_size >> 9;
3701 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3702 chunk_sectors = mddev->new_chunk_sectors;
3703 return chunk_sectors >=
3704 ((sector & (chunk_sectors - 1)) + bio_sectors);
3708 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3709 * later sampled by raid5d.
3711 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3713 unsigned long flags;
3715 spin_lock_irqsave(&conf->device_lock, flags);
3717 bi->bi_next = conf->retry_read_aligned_list;
3718 conf->retry_read_aligned_list = bi;
3720 spin_unlock_irqrestore(&conf->device_lock, flags);
3721 md_wakeup_thread(conf->mddev->thread);
3725 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3727 struct bio *bi;
3729 bi = conf->retry_read_aligned;
3730 if (bi) {
3731 conf->retry_read_aligned = NULL;
3732 return bi;
3734 bi = conf->retry_read_aligned_list;
3735 if(bi) {
3736 conf->retry_read_aligned_list = bi->bi_next;
3737 bi->bi_next = NULL;
3739 * this sets the active strip count to 1 and the processed
3740 * strip count to zero (upper 8 bits)
3742 bi->bi_phys_segments = 1; /* biased count of active stripes */
3745 return bi;
3750 * The "raid5_align_endio" should check if the read succeeded and if it
3751 * did, call bio_endio on the original bio (having bio_put the new bio
3752 * first).
3753 * If the read failed..
3755 static void raid5_align_endio(struct bio *bi, int error)
3757 struct bio* raid_bi = bi->bi_private;
3758 struct mddev *mddev;
3759 struct r5conf *conf;
3760 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3761 struct md_rdev *rdev;
3763 bio_put(bi);
3765 rdev = (void*)raid_bi->bi_next;
3766 raid_bi->bi_next = NULL;
3767 mddev = rdev->mddev;
3768 conf = mddev->private;
3770 rdev_dec_pending(rdev, conf->mddev);
3772 if (!error && uptodate) {
3773 bio_endio(raid_bi, 0);
3774 if (atomic_dec_and_test(&conf->active_aligned_reads))
3775 wake_up(&conf->wait_for_stripe);
3776 return;
3780 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3782 add_bio_to_retry(raid_bi, conf);
3785 static int bio_fits_rdev(struct bio *bi)
3787 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3789 if ((bi->bi_size>>9) > queue_max_sectors(q))
3790 return 0;
3791 blk_recount_segments(q, bi);
3792 if (bi->bi_phys_segments > queue_max_segments(q))
3793 return 0;
3795 if (q->merge_bvec_fn)
3796 /* it's too hard to apply the merge_bvec_fn at this stage,
3797 * just just give up
3799 return 0;
3801 return 1;
3805 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3807 struct r5conf *conf = mddev->private;
3808 int dd_idx;
3809 struct bio* align_bi;
3810 struct md_rdev *rdev;
3811 sector_t end_sector;
3813 if (!in_chunk_boundary(mddev, raid_bio)) {
3814 pr_debug("chunk_aligned_read : non aligned\n");
3815 return 0;
3818 * use bio_clone_mddev to make a copy of the bio
3820 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3821 if (!align_bi)
3822 return 0;
3824 * set bi_end_io to a new function, and set bi_private to the
3825 * original bio.
3827 align_bi->bi_end_io = raid5_align_endio;
3828 align_bi->bi_private = raid_bio;
3830 * compute position
3832 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3834 &dd_idx, NULL);
3836 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3837 rcu_read_lock();
3838 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3839 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3840 rdev->recovery_offset < end_sector) {
3841 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3842 if (rdev &&
3843 (test_bit(Faulty, &rdev->flags) ||
3844 !(test_bit(In_sync, &rdev->flags) ||
3845 rdev->recovery_offset >= end_sector)))
3846 rdev = NULL;
3848 if (rdev) {
3849 sector_t first_bad;
3850 int bad_sectors;
3852 atomic_inc(&rdev->nr_pending);
3853 rcu_read_unlock();
3854 raid_bio->bi_next = (void*)rdev;
3855 align_bi->bi_bdev = rdev->bdev;
3856 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3858 if (!bio_fits_rdev(align_bi) ||
3859 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3860 &first_bad, &bad_sectors)) {
3861 /* too big in some way, or has a known bad block */
3862 bio_put(align_bi);
3863 rdev_dec_pending(rdev, mddev);
3864 return 0;
3867 /* No reshape active, so we can trust rdev->data_offset */
3868 align_bi->bi_sector += rdev->data_offset;
3870 spin_lock_irq(&conf->device_lock);
3871 wait_event_lock_irq(conf->wait_for_stripe,
3872 conf->quiesce == 0,
3873 conf->device_lock, /* nothing */);
3874 atomic_inc(&conf->active_aligned_reads);
3875 spin_unlock_irq(&conf->device_lock);
3877 generic_make_request(align_bi);
3878 return 1;
3879 } else {
3880 rcu_read_unlock();
3881 bio_put(align_bi);
3882 return 0;
3886 /* __get_priority_stripe - get the next stripe to process
3888 * Full stripe writes are allowed to pass preread active stripes up until
3889 * the bypass_threshold is exceeded. In general the bypass_count
3890 * increments when the handle_list is handled before the hold_list; however, it
3891 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3892 * stripe with in flight i/o. The bypass_count will be reset when the
3893 * head of the hold_list has changed, i.e. the head was promoted to the
3894 * handle_list.
3896 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3898 struct stripe_head *sh;
3900 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3901 __func__,
3902 list_empty(&conf->handle_list) ? "empty" : "busy",
3903 list_empty(&conf->hold_list) ? "empty" : "busy",
3904 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3906 if (!list_empty(&conf->handle_list)) {
3907 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3909 if (list_empty(&conf->hold_list))
3910 conf->bypass_count = 0;
3911 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3912 if (conf->hold_list.next == conf->last_hold)
3913 conf->bypass_count++;
3914 else {
3915 conf->last_hold = conf->hold_list.next;
3916 conf->bypass_count -= conf->bypass_threshold;
3917 if (conf->bypass_count < 0)
3918 conf->bypass_count = 0;
3921 } else if (!list_empty(&conf->hold_list) &&
3922 ((conf->bypass_threshold &&
3923 conf->bypass_count > conf->bypass_threshold) ||
3924 atomic_read(&conf->pending_full_writes) == 0)) {
3925 sh = list_entry(conf->hold_list.next,
3926 typeof(*sh), lru);
3927 conf->bypass_count -= conf->bypass_threshold;
3928 if (conf->bypass_count < 0)
3929 conf->bypass_count = 0;
3930 } else
3931 return NULL;
3933 list_del_init(&sh->lru);
3934 atomic_inc(&sh->count);
3935 BUG_ON(atomic_read(&sh->count) != 1);
3936 return sh;
3939 static void make_request(struct mddev *mddev, struct bio * bi)
3941 struct r5conf *conf = mddev->private;
3942 int dd_idx;
3943 sector_t new_sector;
3944 sector_t logical_sector, last_sector;
3945 struct stripe_head *sh;
3946 const int rw = bio_data_dir(bi);
3947 int remaining;
3948 int plugged;
3950 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3951 md_flush_request(mddev, bi);
3952 return;
3955 md_write_start(mddev, bi);
3957 if (rw == READ &&
3958 mddev->reshape_position == MaxSector &&
3959 chunk_aligned_read(mddev,bi))
3960 return;
3962 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3963 last_sector = bi->bi_sector + (bi->bi_size>>9);
3964 bi->bi_next = NULL;
3965 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3967 plugged = mddev_check_plugged(mddev);
3968 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3969 DEFINE_WAIT(w);
3970 int disks, data_disks;
3971 int previous;
3973 retry:
3974 previous = 0;
3975 disks = conf->raid_disks;
3976 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3977 if (unlikely(conf->reshape_progress != MaxSector)) {
3978 /* spinlock is needed as reshape_progress may be
3979 * 64bit on a 32bit platform, and so it might be
3980 * possible to see a half-updated value
3981 * Of course reshape_progress could change after
3982 * the lock is dropped, so once we get a reference
3983 * to the stripe that we think it is, we will have
3984 * to check again.
3986 spin_lock_irq(&conf->device_lock);
3987 if (mddev->delta_disks < 0
3988 ? logical_sector < conf->reshape_progress
3989 : logical_sector >= conf->reshape_progress) {
3990 disks = conf->previous_raid_disks;
3991 previous = 1;
3992 } else {
3993 if (mddev->delta_disks < 0
3994 ? logical_sector < conf->reshape_safe
3995 : logical_sector >= conf->reshape_safe) {
3996 spin_unlock_irq(&conf->device_lock);
3997 schedule();
3998 goto retry;
4001 spin_unlock_irq(&conf->device_lock);
4003 data_disks = disks - conf->max_degraded;
4005 new_sector = raid5_compute_sector(conf, logical_sector,
4006 previous,
4007 &dd_idx, NULL);
4008 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4009 (unsigned long long)new_sector,
4010 (unsigned long long)logical_sector);
4012 sh = get_active_stripe(conf, new_sector, previous,
4013 (bi->bi_rw&RWA_MASK), 0);
4014 if (sh) {
4015 if (unlikely(previous)) {
4016 /* expansion might have moved on while waiting for a
4017 * stripe, so we must do the range check again.
4018 * Expansion could still move past after this
4019 * test, but as we are holding a reference to
4020 * 'sh', we know that if that happens,
4021 * STRIPE_EXPANDING will get set and the expansion
4022 * won't proceed until we finish with the stripe.
4024 int must_retry = 0;
4025 spin_lock_irq(&conf->device_lock);
4026 if (mddev->delta_disks < 0
4027 ? logical_sector >= conf->reshape_progress
4028 : logical_sector < conf->reshape_progress)
4029 /* mismatch, need to try again */
4030 must_retry = 1;
4031 spin_unlock_irq(&conf->device_lock);
4032 if (must_retry) {
4033 release_stripe(sh);
4034 schedule();
4035 goto retry;
4039 if (rw == WRITE &&
4040 logical_sector >= mddev->suspend_lo &&
4041 logical_sector < mddev->suspend_hi) {
4042 release_stripe(sh);
4043 /* As the suspend_* range is controlled by
4044 * userspace, we want an interruptible
4045 * wait.
4047 flush_signals(current);
4048 prepare_to_wait(&conf->wait_for_overlap,
4049 &w, TASK_INTERRUPTIBLE);
4050 if (logical_sector >= mddev->suspend_lo &&
4051 logical_sector < mddev->suspend_hi)
4052 schedule();
4053 goto retry;
4056 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4057 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4058 /* Stripe is busy expanding or
4059 * add failed due to overlap. Flush everything
4060 * and wait a while
4062 md_wakeup_thread(mddev->thread);
4063 release_stripe(sh);
4064 schedule();
4065 goto retry;
4067 finish_wait(&conf->wait_for_overlap, &w);
4068 set_bit(STRIPE_HANDLE, &sh->state);
4069 clear_bit(STRIPE_DELAYED, &sh->state);
4070 if ((bi->bi_rw & REQ_SYNC) &&
4071 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4072 atomic_inc(&conf->preread_active_stripes);
4073 release_stripe(sh);
4074 } else {
4075 /* cannot get stripe for read-ahead, just give-up */
4076 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4077 finish_wait(&conf->wait_for_overlap, &w);
4078 break;
4082 if (!plugged)
4083 md_wakeup_thread(mddev->thread);
4085 spin_lock_irq(&conf->device_lock);
4086 remaining = raid5_dec_bi_phys_segments(bi);
4087 spin_unlock_irq(&conf->device_lock);
4088 if (remaining == 0) {
4090 if ( rw == WRITE )
4091 md_write_end(mddev);
4093 bio_endio(bi, 0);
4097 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4099 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4101 /* reshaping is quite different to recovery/resync so it is
4102 * handled quite separately ... here.
4104 * On each call to sync_request, we gather one chunk worth of
4105 * destination stripes and flag them as expanding.
4106 * Then we find all the source stripes and request reads.
4107 * As the reads complete, handle_stripe will copy the data
4108 * into the destination stripe and release that stripe.
4110 struct r5conf *conf = mddev->private;
4111 struct stripe_head *sh;
4112 sector_t first_sector, last_sector;
4113 int raid_disks = conf->previous_raid_disks;
4114 int data_disks = raid_disks - conf->max_degraded;
4115 int new_data_disks = conf->raid_disks - conf->max_degraded;
4116 int i;
4117 int dd_idx;
4118 sector_t writepos, readpos, safepos;
4119 sector_t stripe_addr;
4120 int reshape_sectors;
4121 struct list_head stripes;
4123 if (sector_nr == 0) {
4124 /* If restarting in the middle, skip the initial sectors */
4125 if (mddev->delta_disks < 0 &&
4126 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4127 sector_nr = raid5_size(mddev, 0, 0)
4128 - conf->reshape_progress;
4129 } else if (mddev->delta_disks >= 0 &&
4130 conf->reshape_progress > 0)
4131 sector_nr = conf->reshape_progress;
4132 sector_div(sector_nr, new_data_disks);
4133 if (sector_nr) {
4134 mddev->curr_resync_completed = sector_nr;
4135 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4136 *skipped = 1;
4137 return sector_nr;
4141 /* We need to process a full chunk at a time.
4142 * If old and new chunk sizes differ, we need to process the
4143 * largest of these
4145 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4146 reshape_sectors = mddev->new_chunk_sectors;
4147 else
4148 reshape_sectors = mddev->chunk_sectors;
4150 /* we update the metadata when there is more than 3Meg
4151 * in the block range (that is rather arbitrary, should
4152 * probably be time based) or when the data about to be
4153 * copied would over-write the source of the data at
4154 * the front of the range.
4155 * i.e. one new_stripe along from reshape_progress new_maps
4156 * to after where reshape_safe old_maps to
4158 writepos = conf->reshape_progress;
4159 sector_div(writepos, new_data_disks);
4160 readpos = conf->reshape_progress;
4161 sector_div(readpos, data_disks);
4162 safepos = conf->reshape_safe;
4163 sector_div(safepos, data_disks);
4164 if (mddev->delta_disks < 0) {
4165 writepos -= min_t(sector_t, reshape_sectors, writepos);
4166 readpos += reshape_sectors;
4167 safepos += reshape_sectors;
4168 } else {
4169 writepos += reshape_sectors;
4170 readpos -= min_t(sector_t, reshape_sectors, readpos);
4171 safepos -= min_t(sector_t, reshape_sectors, safepos);
4174 /* 'writepos' is the most advanced device address we might write.
4175 * 'readpos' is the least advanced device address we might read.
4176 * 'safepos' is the least address recorded in the metadata as having
4177 * been reshaped.
4178 * If 'readpos' is behind 'writepos', then there is no way that we can
4179 * ensure safety in the face of a crash - that must be done by userspace
4180 * making a backup of the data. So in that case there is no particular
4181 * rush to update metadata.
4182 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4183 * update the metadata to advance 'safepos' to match 'readpos' so that
4184 * we can be safe in the event of a crash.
4185 * So we insist on updating metadata if safepos is behind writepos and
4186 * readpos is beyond writepos.
4187 * In any case, update the metadata every 10 seconds.
4188 * Maybe that number should be configurable, but I'm not sure it is
4189 * worth it.... maybe it could be a multiple of safemode_delay???
4191 if ((mddev->delta_disks < 0
4192 ? (safepos > writepos && readpos < writepos)
4193 : (safepos < writepos && readpos > writepos)) ||
4194 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4195 /* Cannot proceed until we've updated the superblock... */
4196 wait_event(conf->wait_for_overlap,
4197 atomic_read(&conf->reshape_stripes)==0);
4198 mddev->reshape_position = conf->reshape_progress;
4199 mddev->curr_resync_completed = sector_nr;
4200 conf->reshape_checkpoint = jiffies;
4201 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4202 md_wakeup_thread(mddev->thread);
4203 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4204 kthread_should_stop());
4205 spin_lock_irq(&conf->device_lock);
4206 conf->reshape_safe = mddev->reshape_position;
4207 spin_unlock_irq(&conf->device_lock);
4208 wake_up(&conf->wait_for_overlap);
4209 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4212 if (mddev->delta_disks < 0) {
4213 BUG_ON(conf->reshape_progress == 0);
4214 stripe_addr = writepos;
4215 BUG_ON((mddev->dev_sectors &
4216 ~((sector_t)reshape_sectors - 1))
4217 - reshape_sectors - stripe_addr
4218 != sector_nr);
4219 } else {
4220 BUG_ON(writepos != sector_nr + reshape_sectors);
4221 stripe_addr = sector_nr;
4223 INIT_LIST_HEAD(&stripes);
4224 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4225 int j;
4226 int skipped_disk = 0;
4227 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4228 set_bit(STRIPE_EXPANDING, &sh->state);
4229 atomic_inc(&conf->reshape_stripes);
4230 /* If any of this stripe is beyond the end of the old
4231 * array, then we need to zero those blocks
4233 for (j=sh->disks; j--;) {
4234 sector_t s;
4235 if (j == sh->pd_idx)
4236 continue;
4237 if (conf->level == 6 &&
4238 j == sh->qd_idx)
4239 continue;
4240 s = compute_blocknr(sh, j, 0);
4241 if (s < raid5_size(mddev, 0, 0)) {
4242 skipped_disk = 1;
4243 continue;
4245 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4246 set_bit(R5_Expanded, &sh->dev[j].flags);
4247 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4249 if (!skipped_disk) {
4250 set_bit(STRIPE_EXPAND_READY, &sh->state);
4251 set_bit(STRIPE_HANDLE, &sh->state);
4253 list_add(&sh->lru, &stripes);
4255 spin_lock_irq(&conf->device_lock);
4256 if (mddev->delta_disks < 0)
4257 conf->reshape_progress -= reshape_sectors * new_data_disks;
4258 else
4259 conf->reshape_progress += reshape_sectors * new_data_disks;
4260 spin_unlock_irq(&conf->device_lock);
4261 /* Ok, those stripe are ready. We can start scheduling
4262 * reads on the source stripes.
4263 * The source stripes are determined by mapping the first and last
4264 * block on the destination stripes.
4266 first_sector =
4267 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4268 1, &dd_idx, NULL);
4269 last_sector =
4270 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4271 * new_data_disks - 1),
4272 1, &dd_idx, NULL);
4273 if (last_sector >= mddev->dev_sectors)
4274 last_sector = mddev->dev_sectors - 1;
4275 while (first_sector <= last_sector) {
4276 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4277 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4278 set_bit(STRIPE_HANDLE, &sh->state);
4279 release_stripe(sh);
4280 first_sector += STRIPE_SECTORS;
4282 /* Now that the sources are clearly marked, we can release
4283 * the destination stripes
4285 while (!list_empty(&stripes)) {
4286 sh = list_entry(stripes.next, struct stripe_head, lru);
4287 list_del_init(&sh->lru);
4288 release_stripe(sh);
4290 /* If this takes us to the resync_max point where we have to pause,
4291 * then we need to write out the superblock.
4293 sector_nr += reshape_sectors;
4294 if ((sector_nr - mddev->curr_resync_completed) * 2
4295 >= mddev->resync_max - mddev->curr_resync_completed) {
4296 /* Cannot proceed until we've updated the superblock... */
4297 wait_event(conf->wait_for_overlap,
4298 atomic_read(&conf->reshape_stripes) == 0);
4299 mddev->reshape_position = conf->reshape_progress;
4300 mddev->curr_resync_completed = sector_nr;
4301 conf->reshape_checkpoint = jiffies;
4302 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4303 md_wakeup_thread(mddev->thread);
4304 wait_event(mddev->sb_wait,
4305 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4306 || kthread_should_stop());
4307 spin_lock_irq(&conf->device_lock);
4308 conf->reshape_safe = mddev->reshape_position;
4309 spin_unlock_irq(&conf->device_lock);
4310 wake_up(&conf->wait_for_overlap);
4311 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4313 return reshape_sectors;
4316 /* FIXME go_faster isn't used */
4317 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4319 struct r5conf *conf = mddev->private;
4320 struct stripe_head *sh;
4321 sector_t max_sector = mddev->dev_sectors;
4322 sector_t sync_blocks;
4323 int still_degraded = 0;
4324 int i;
4326 if (sector_nr >= max_sector) {
4327 /* just being told to finish up .. nothing much to do */
4329 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4330 end_reshape(conf);
4331 return 0;
4334 if (mddev->curr_resync < max_sector) /* aborted */
4335 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4336 &sync_blocks, 1);
4337 else /* completed sync */
4338 conf->fullsync = 0;
4339 bitmap_close_sync(mddev->bitmap);
4341 return 0;
4344 /* Allow raid5_quiesce to complete */
4345 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4347 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4348 return reshape_request(mddev, sector_nr, skipped);
4350 /* No need to check resync_max as we never do more than one
4351 * stripe, and as resync_max will always be on a chunk boundary,
4352 * if the check in md_do_sync didn't fire, there is no chance
4353 * of overstepping resync_max here
4356 /* if there is too many failed drives and we are trying
4357 * to resync, then assert that we are finished, because there is
4358 * nothing we can do.
4360 if (mddev->degraded >= conf->max_degraded &&
4361 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4362 sector_t rv = mddev->dev_sectors - sector_nr;
4363 *skipped = 1;
4364 return rv;
4366 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4367 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4368 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4369 /* we can skip this block, and probably more */
4370 sync_blocks /= STRIPE_SECTORS;
4371 *skipped = 1;
4372 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4375 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4377 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4378 if (sh == NULL) {
4379 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4380 /* make sure we don't swamp the stripe cache if someone else
4381 * is trying to get access
4383 schedule_timeout_uninterruptible(1);
4385 /* Need to check if array will still be degraded after recovery/resync
4386 * We don't need to check the 'failed' flag as when that gets set,
4387 * recovery aborts.
4389 for (i = 0; i < conf->raid_disks; i++)
4390 if (conf->disks[i].rdev == NULL)
4391 still_degraded = 1;
4393 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4395 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4397 handle_stripe(sh);
4398 release_stripe(sh);
4400 return STRIPE_SECTORS;
4403 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4405 /* We may not be able to submit a whole bio at once as there
4406 * may not be enough stripe_heads available.
4407 * We cannot pre-allocate enough stripe_heads as we may need
4408 * more than exist in the cache (if we allow ever large chunks).
4409 * So we do one stripe head at a time and record in
4410 * ->bi_hw_segments how many have been done.
4412 * We *know* that this entire raid_bio is in one chunk, so
4413 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4415 struct stripe_head *sh;
4416 int dd_idx;
4417 sector_t sector, logical_sector, last_sector;
4418 int scnt = 0;
4419 int remaining;
4420 int handled = 0;
4422 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4423 sector = raid5_compute_sector(conf, logical_sector,
4424 0, &dd_idx, NULL);
4425 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4427 for (; logical_sector < last_sector;
4428 logical_sector += STRIPE_SECTORS,
4429 sector += STRIPE_SECTORS,
4430 scnt++) {
4432 if (scnt < raid5_bi_hw_segments(raid_bio))
4433 /* already done this stripe */
4434 continue;
4436 sh = get_active_stripe(conf, sector, 0, 1, 0);
4438 if (!sh) {
4439 /* failed to get a stripe - must wait */
4440 raid5_set_bi_hw_segments(raid_bio, scnt);
4441 conf->retry_read_aligned = raid_bio;
4442 return handled;
4445 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4446 release_stripe(sh);
4447 raid5_set_bi_hw_segments(raid_bio, scnt);
4448 conf->retry_read_aligned = raid_bio;
4449 return handled;
4452 handle_stripe(sh);
4453 release_stripe(sh);
4454 handled++;
4456 spin_lock_irq(&conf->device_lock);
4457 remaining = raid5_dec_bi_phys_segments(raid_bio);
4458 spin_unlock_irq(&conf->device_lock);
4459 if (remaining == 0)
4460 bio_endio(raid_bio, 0);
4461 if (atomic_dec_and_test(&conf->active_aligned_reads))
4462 wake_up(&conf->wait_for_stripe);
4463 return handled;
4468 * This is our raid5 kernel thread.
4470 * We scan the hash table for stripes which can be handled now.
4471 * During the scan, completed stripes are saved for us by the interrupt
4472 * handler, so that they will not have to wait for our next wakeup.
4474 static void raid5d(struct mddev *mddev)
4476 struct stripe_head *sh;
4477 struct r5conf *conf = mddev->private;
4478 int handled;
4479 struct blk_plug plug;
4481 pr_debug("+++ raid5d active\n");
4483 md_check_recovery(mddev);
4485 blk_start_plug(&plug);
4486 handled = 0;
4487 spin_lock_irq(&conf->device_lock);
4488 while (1) {
4489 struct bio *bio;
4491 if (atomic_read(&mddev->plug_cnt) == 0 &&
4492 !list_empty(&conf->bitmap_list)) {
4493 /* Now is a good time to flush some bitmap updates */
4494 conf->seq_flush++;
4495 spin_unlock_irq(&conf->device_lock);
4496 bitmap_unplug(mddev->bitmap);
4497 spin_lock_irq(&conf->device_lock);
4498 conf->seq_write = conf->seq_flush;
4499 activate_bit_delay(conf);
4501 if (atomic_read(&mddev->plug_cnt) == 0)
4502 raid5_activate_delayed(conf);
4504 while ((bio = remove_bio_from_retry(conf))) {
4505 int ok;
4506 spin_unlock_irq(&conf->device_lock);
4507 ok = retry_aligned_read(conf, bio);
4508 spin_lock_irq(&conf->device_lock);
4509 if (!ok)
4510 break;
4511 handled++;
4514 sh = __get_priority_stripe(conf);
4516 if (!sh)
4517 break;
4518 spin_unlock_irq(&conf->device_lock);
4520 handled++;
4521 handle_stripe(sh);
4522 release_stripe(sh);
4523 cond_resched();
4525 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4526 md_check_recovery(mddev);
4528 spin_lock_irq(&conf->device_lock);
4530 pr_debug("%d stripes handled\n", handled);
4532 spin_unlock_irq(&conf->device_lock);
4534 async_tx_issue_pending_all();
4535 blk_finish_plug(&plug);
4537 pr_debug("--- raid5d inactive\n");
4540 static ssize_t
4541 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4543 struct r5conf *conf = mddev->private;
4544 if (conf)
4545 return sprintf(page, "%d\n", conf->max_nr_stripes);
4546 else
4547 return 0;
4551 raid5_set_cache_size(struct mddev *mddev, int size)
4553 struct r5conf *conf = mddev->private;
4554 int err;
4556 if (size <= 16 || size > 32768)
4557 return -EINVAL;
4558 while (size < conf->max_nr_stripes) {
4559 if (drop_one_stripe(conf))
4560 conf->max_nr_stripes--;
4561 else
4562 break;
4564 err = md_allow_write(mddev);
4565 if (err)
4566 return err;
4567 while (size > conf->max_nr_stripes) {
4568 if (grow_one_stripe(conf))
4569 conf->max_nr_stripes++;
4570 else break;
4572 return 0;
4574 EXPORT_SYMBOL(raid5_set_cache_size);
4576 static ssize_t
4577 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4579 struct r5conf *conf = mddev->private;
4580 unsigned long new;
4581 int err;
4583 if (len >= PAGE_SIZE)
4584 return -EINVAL;
4585 if (!conf)
4586 return -ENODEV;
4588 if (strict_strtoul(page, 10, &new))
4589 return -EINVAL;
4590 err = raid5_set_cache_size(mddev, new);
4591 if (err)
4592 return err;
4593 return len;
4596 static struct md_sysfs_entry
4597 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4598 raid5_show_stripe_cache_size,
4599 raid5_store_stripe_cache_size);
4601 static ssize_t
4602 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4604 struct r5conf *conf = mddev->private;
4605 if (conf)
4606 return sprintf(page, "%d\n", conf->bypass_threshold);
4607 else
4608 return 0;
4611 static ssize_t
4612 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4614 struct r5conf *conf = mddev->private;
4615 unsigned long new;
4616 if (len >= PAGE_SIZE)
4617 return -EINVAL;
4618 if (!conf)
4619 return -ENODEV;
4621 if (strict_strtoul(page, 10, &new))
4622 return -EINVAL;
4623 if (new > conf->max_nr_stripes)
4624 return -EINVAL;
4625 conf->bypass_threshold = new;
4626 return len;
4629 static struct md_sysfs_entry
4630 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4631 S_IRUGO | S_IWUSR,
4632 raid5_show_preread_threshold,
4633 raid5_store_preread_threshold);
4635 static ssize_t
4636 stripe_cache_active_show(struct mddev *mddev, char *page)
4638 struct r5conf *conf = mddev->private;
4639 if (conf)
4640 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4641 else
4642 return 0;
4645 static struct md_sysfs_entry
4646 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4648 static struct attribute *raid5_attrs[] = {
4649 &raid5_stripecache_size.attr,
4650 &raid5_stripecache_active.attr,
4651 &raid5_preread_bypass_threshold.attr,
4652 NULL,
4654 static struct attribute_group raid5_attrs_group = {
4655 .name = NULL,
4656 .attrs = raid5_attrs,
4659 static sector_t
4660 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4662 struct r5conf *conf = mddev->private;
4664 if (!sectors)
4665 sectors = mddev->dev_sectors;
4666 if (!raid_disks)
4667 /* size is defined by the smallest of previous and new size */
4668 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4670 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4671 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4672 return sectors * (raid_disks - conf->max_degraded);
4675 static void raid5_free_percpu(struct r5conf *conf)
4677 struct raid5_percpu *percpu;
4678 unsigned long cpu;
4680 if (!conf->percpu)
4681 return;
4683 get_online_cpus();
4684 for_each_possible_cpu(cpu) {
4685 percpu = per_cpu_ptr(conf->percpu, cpu);
4686 safe_put_page(percpu->spare_page);
4687 kfree(percpu->scribble);
4689 #ifdef CONFIG_HOTPLUG_CPU
4690 unregister_cpu_notifier(&conf->cpu_notify);
4691 #endif
4692 put_online_cpus();
4694 free_percpu(conf->percpu);
4697 static void free_conf(struct r5conf *conf)
4699 shrink_stripes(conf);
4700 raid5_free_percpu(conf);
4701 kfree(conf->disks);
4702 kfree(conf->stripe_hashtbl);
4703 kfree(conf);
4706 #ifdef CONFIG_HOTPLUG_CPU
4707 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4708 void *hcpu)
4710 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4711 long cpu = (long)hcpu;
4712 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4714 switch (action) {
4715 case CPU_UP_PREPARE:
4716 case CPU_UP_PREPARE_FROZEN:
4717 if (conf->level == 6 && !percpu->spare_page)
4718 percpu->spare_page = alloc_page(GFP_KERNEL);
4719 if (!percpu->scribble)
4720 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4722 if (!percpu->scribble ||
4723 (conf->level == 6 && !percpu->spare_page)) {
4724 safe_put_page(percpu->spare_page);
4725 kfree(percpu->scribble);
4726 pr_err("%s: failed memory allocation for cpu%ld\n",
4727 __func__, cpu);
4728 return notifier_from_errno(-ENOMEM);
4730 break;
4731 case CPU_DEAD:
4732 case CPU_DEAD_FROZEN:
4733 safe_put_page(percpu->spare_page);
4734 kfree(percpu->scribble);
4735 percpu->spare_page = NULL;
4736 percpu->scribble = NULL;
4737 break;
4738 default:
4739 break;
4741 return NOTIFY_OK;
4743 #endif
4745 static int raid5_alloc_percpu(struct r5conf *conf)
4747 unsigned long cpu;
4748 struct page *spare_page;
4749 struct raid5_percpu __percpu *allcpus;
4750 void *scribble;
4751 int err;
4753 allcpus = alloc_percpu(struct raid5_percpu);
4754 if (!allcpus)
4755 return -ENOMEM;
4756 conf->percpu = allcpus;
4758 get_online_cpus();
4759 err = 0;
4760 for_each_present_cpu(cpu) {
4761 if (conf->level == 6) {
4762 spare_page = alloc_page(GFP_KERNEL);
4763 if (!spare_page) {
4764 err = -ENOMEM;
4765 break;
4767 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4769 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4770 if (!scribble) {
4771 err = -ENOMEM;
4772 break;
4774 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4776 #ifdef CONFIG_HOTPLUG_CPU
4777 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4778 conf->cpu_notify.priority = 0;
4779 if (err == 0)
4780 err = register_cpu_notifier(&conf->cpu_notify);
4781 #endif
4782 put_online_cpus();
4784 return err;
4787 static struct r5conf *setup_conf(struct mddev *mddev)
4789 struct r5conf *conf;
4790 int raid_disk, memory, max_disks;
4791 struct md_rdev *rdev;
4792 struct disk_info *disk;
4794 if (mddev->new_level != 5
4795 && mddev->new_level != 4
4796 && mddev->new_level != 6) {
4797 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4798 mdname(mddev), mddev->new_level);
4799 return ERR_PTR(-EIO);
4801 if ((mddev->new_level == 5
4802 && !algorithm_valid_raid5(mddev->new_layout)) ||
4803 (mddev->new_level == 6
4804 && !algorithm_valid_raid6(mddev->new_layout))) {
4805 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4806 mdname(mddev), mddev->new_layout);
4807 return ERR_PTR(-EIO);
4809 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4810 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4811 mdname(mddev), mddev->raid_disks);
4812 return ERR_PTR(-EINVAL);
4815 if (!mddev->new_chunk_sectors ||
4816 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4817 !is_power_of_2(mddev->new_chunk_sectors)) {
4818 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4819 mdname(mddev), mddev->new_chunk_sectors << 9);
4820 return ERR_PTR(-EINVAL);
4823 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4824 if (conf == NULL)
4825 goto abort;
4826 spin_lock_init(&conf->device_lock);
4827 init_waitqueue_head(&conf->wait_for_stripe);
4828 init_waitqueue_head(&conf->wait_for_overlap);
4829 INIT_LIST_HEAD(&conf->handle_list);
4830 INIT_LIST_HEAD(&conf->hold_list);
4831 INIT_LIST_HEAD(&conf->delayed_list);
4832 INIT_LIST_HEAD(&conf->bitmap_list);
4833 INIT_LIST_HEAD(&conf->inactive_list);
4834 atomic_set(&conf->active_stripes, 0);
4835 atomic_set(&conf->preread_active_stripes, 0);
4836 atomic_set(&conf->active_aligned_reads, 0);
4837 conf->bypass_threshold = BYPASS_THRESHOLD;
4838 conf->recovery_disabled = mddev->recovery_disabled - 1;
4840 conf->raid_disks = mddev->raid_disks;
4841 if (mddev->reshape_position == MaxSector)
4842 conf->previous_raid_disks = mddev->raid_disks;
4843 else
4844 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4845 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4846 conf->scribble_len = scribble_len(max_disks);
4848 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4849 GFP_KERNEL);
4850 if (!conf->disks)
4851 goto abort;
4853 conf->mddev = mddev;
4855 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4856 goto abort;
4858 conf->level = mddev->new_level;
4859 if (raid5_alloc_percpu(conf) != 0)
4860 goto abort;
4862 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4864 rdev_for_each(rdev, mddev) {
4865 raid_disk = rdev->raid_disk;
4866 if (raid_disk >= max_disks
4867 || raid_disk < 0)
4868 continue;
4869 disk = conf->disks + raid_disk;
4871 if (test_bit(Replacement, &rdev->flags)) {
4872 if (disk->replacement)
4873 goto abort;
4874 disk->replacement = rdev;
4875 } else {
4876 if (disk->rdev)
4877 goto abort;
4878 disk->rdev = rdev;
4881 if (test_bit(In_sync, &rdev->flags)) {
4882 char b[BDEVNAME_SIZE];
4883 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4884 " disk %d\n",
4885 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4886 } else if (rdev->saved_raid_disk != raid_disk)
4887 /* Cannot rely on bitmap to complete recovery */
4888 conf->fullsync = 1;
4891 conf->chunk_sectors = mddev->new_chunk_sectors;
4892 conf->level = mddev->new_level;
4893 if (conf->level == 6)
4894 conf->max_degraded = 2;
4895 else
4896 conf->max_degraded = 1;
4897 conf->algorithm = mddev->new_layout;
4898 conf->max_nr_stripes = NR_STRIPES;
4899 conf->reshape_progress = mddev->reshape_position;
4900 if (conf->reshape_progress != MaxSector) {
4901 conf->prev_chunk_sectors = mddev->chunk_sectors;
4902 conf->prev_algo = mddev->layout;
4905 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4906 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4907 if (grow_stripes(conf, conf->max_nr_stripes)) {
4908 printk(KERN_ERR
4909 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4910 mdname(mddev), memory);
4911 goto abort;
4912 } else
4913 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4914 mdname(mddev), memory);
4916 conf->thread = md_register_thread(raid5d, mddev, NULL);
4917 if (!conf->thread) {
4918 printk(KERN_ERR
4919 "md/raid:%s: couldn't allocate thread.\n",
4920 mdname(mddev));
4921 goto abort;
4924 return conf;
4926 abort:
4927 if (conf) {
4928 free_conf(conf);
4929 return ERR_PTR(-EIO);
4930 } else
4931 return ERR_PTR(-ENOMEM);
4935 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4937 switch (algo) {
4938 case ALGORITHM_PARITY_0:
4939 if (raid_disk < max_degraded)
4940 return 1;
4941 break;
4942 case ALGORITHM_PARITY_N:
4943 if (raid_disk >= raid_disks - max_degraded)
4944 return 1;
4945 break;
4946 case ALGORITHM_PARITY_0_6:
4947 if (raid_disk == 0 ||
4948 raid_disk == raid_disks - 1)
4949 return 1;
4950 break;
4951 case ALGORITHM_LEFT_ASYMMETRIC_6:
4952 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4953 case ALGORITHM_LEFT_SYMMETRIC_6:
4954 case ALGORITHM_RIGHT_SYMMETRIC_6:
4955 if (raid_disk == raid_disks - 1)
4956 return 1;
4958 return 0;
4961 static int run(struct mddev *mddev)
4963 struct r5conf *conf;
4964 int working_disks = 0;
4965 int dirty_parity_disks = 0;
4966 struct md_rdev *rdev;
4967 sector_t reshape_offset = 0;
4968 int i;
4970 if (mddev->recovery_cp != MaxSector)
4971 printk(KERN_NOTICE "md/raid:%s: not clean"
4972 " -- starting background reconstruction\n",
4973 mdname(mddev));
4974 if (mddev->reshape_position != MaxSector) {
4975 /* Check that we can continue the reshape.
4976 * Currently only disks can change, it must
4977 * increase, and we must be past the point where
4978 * a stripe over-writes itself
4980 sector_t here_new, here_old;
4981 int old_disks;
4982 int max_degraded = (mddev->level == 6 ? 2 : 1);
4984 if (mddev->new_level != mddev->level) {
4985 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4986 "required - aborting.\n",
4987 mdname(mddev));
4988 return -EINVAL;
4990 old_disks = mddev->raid_disks - mddev->delta_disks;
4991 /* reshape_position must be on a new-stripe boundary, and one
4992 * further up in new geometry must map after here in old
4993 * geometry.
4995 here_new = mddev->reshape_position;
4996 if (sector_div(here_new, mddev->new_chunk_sectors *
4997 (mddev->raid_disks - max_degraded))) {
4998 printk(KERN_ERR "md/raid:%s: reshape_position not "
4999 "on a stripe boundary\n", mdname(mddev));
5000 return -EINVAL;
5002 reshape_offset = here_new * mddev->new_chunk_sectors;
5003 /* here_new is the stripe we will write to */
5004 here_old = mddev->reshape_position;
5005 sector_div(here_old, mddev->chunk_sectors *
5006 (old_disks-max_degraded));
5007 /* here_old is the first stripe that we might need to read
5008 * from */
5009 if (mddev->delta_disks == 0) {
5010 /* We cannot be sure it is safe to start an in-place
5011 * reshape. It is only safe if user-space if monitoring
5012 * and taking constant backups.
5013 * mdadm always starts a situation like this in
5014 * readonly mode so it can take control before
5015 * allowing any writes. So just check for that.
5017 if ((here_new * mddev->new_chunk_sectors !=
5018 here_old * mddev->chunk_sectors) ||
5019 mddev->ro == 0) {
5020 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5021 " in read-only mode - aborting\n",
5022 mdname(mddev));
5023 return -EINVAL;
5025 } else if (mddev->delta_disks < 0
5026 ? (here_new * mddev->new_chunk_sectors <=
5027 here_old * mddev->chunk_sectors)
5028 : (here_new * mddev->new_chunk_sectors >=
5029 here_old * mddev->chunk_sectors)) {
5030 /* Reading from the same stripe as writing to - bad */
5031 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5032 "auto-recovery - aborting.\n",
5033 mdname(mddev));
5034 return -EINVAL;
5036 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5037 mdname(mddev));
5038 /* OK, we should be able to continue; */
5039 } else {
5040 BUG_ON(mddev->level != mddev->new_level);
5041 BUG_ON(mddev->layout != mddev->new_layout);
5042 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5043 BUG_ON(mddev->delta_disks != 0);
5046 if (mddev->private == NULL)
5047 conf = setup_conf(mddev);
5048 else
5049 conf = mddev->private;
5051 if (IS_ERR(conf))
5052 return PTR_ERR(conf);
5054 mddev->thread = conf->thread;
5055 conf->thread = NULL;
5056 mddev->private = conf;
5058 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5059 i++) {
5060 rdev = conf->disks[i].rdev;
5061 if (!rdev && conf->disks[i].replacement) {
5062 /* The replacement is all we have yet */
5063 rdev = conf->disks[i].replacement;
5064 conf->disks[i].replacement = NULL;
5065 clear_bit(Replacement, &rdev->flags);
5066 conf->disks[i].rdev = rdev;
5068 if (!rdev)
5069 continue;
5070 if (conf->disks[i].replacement &&
5071 conf->reshape_progress != MaxSector) {
5072 /* replacements and reshape simply do not mix. */
5073 printk(KERN_ERR "md: cannot handle concurrent "
5074 "replacement and reshape.\n");
5075 goto abort;
5077 if (test_bit(In_sync, &rdev->flags)) {
5078 working_disks++;
5079 continue;
5081 /* This disc is not fully in-sync. However if it
5082 * just stored parity (beyond the recovery_offset),
5083 * when we don't need to be concerned about the
5084 * array being dirty.
5085 * When reshape goes 'backwards', we never have
5086 * partially completed devices, so we only need
5087 * to worry about reshape going forwards.
5089 /* Hack because v0.91 doesn't store recovery_offset properly. */
5090 if (mddev->major_version == 0 &&
5091 mddev->minor_version > 90)
5092 rdev->recovery_offset = reshape_offset;
5094 if (rdev->recovery_offset < reshape_offset) {
5095 /* We need to check old and new layout */
5096 if (!only_parity(rdev->raid_disk,
5097 conf->algorithm,
5098 conf->raid_disks,
5099 conf->max_degraded))
5100 continue;
5102 if (!only_parity(rdev->raid_disk,
5103 conf->prev_algo,
5104 conf->previous_raid_disks,
5105 conf->max_degraded))
5106 continue;
5107 dirty_parity_disks++;
5111 * 0 for a fully functional array, 1 or 2 for a degraded array.
5113 mddev->degraded = calc_degraded(conf);
5115 if (has_failed(conf)) {
5116 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5117 " (%d/%d failed)\n",
5118 mdname(mddev), mddev->degraded, conf->raid_disks);
5119 goto abort;
5122 /* device size must be a multiple of chunk size */
5123 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5124 mddev->resync_max_sectors = mddev->dev_sectors;
5126 if (mddev->degraded > dirty_parity_disks &&
5127 mddev->recovery_cp != MaxSector) {
5128 if (mddev->ok_start_degraded)
5129 printk(KERN_WARNING
5130 "md/raid:%s: starting dirty degraded array"
5131 " - data corruption possible.\n",
5132 mdname(mddev));
5133 else {
5134 printk(KERN_ERR
5135 "md/raid:%s: cannot start dirty degraded array.\n",
5136 mdname(mddev));
5137 goto abort;
5141 if (mddev->degraded == 0)
5142 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5143 " devices, algorithm %d\n", mdname(mddev), conf->level,
5144 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5145 mddev->new_layout);
5146 else
5147 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5148 " out of %d devices, algorithm %d\n",
5149 mdname(mddev), conf->level,
5150 mddev->raid_disks - mddev->degraded,
5151 mddev->raid_disks, mddev->new_layout);
5153 print_raid5_conf(conf);
5155 if (conf->reshape_progress != MaxSector) {
5156 conf->reshape_safe = conf->reshape_progress;
5157 atomic_set(&conf->reshape_stripes, 0);
5158 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5159 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5160 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5161 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5162 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5163 "reshape");
5167 /* Ok, everything is just fine now */
5168 if (mddev->to_remove == &raid5_attrs_group)
5169 mddev->to_remove = NULL;
5170 else if (mddev->kobj.sd &&
5171 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5172 printk(KERN_WARNING
5173 "raid5: failed to create sysfs attributes for %s\n",
5174 mdname(mddev));
5175 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5177 if (mddev->queue) {
5178 int chunk_size;
5179 /* read-ahead size must cover two whole stripes, which
5180 * is 2 * (datadisks) * chunksize where 'n' is the
5181 * number of raid devices
5183 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5184 int stripe = data_disks *
5185 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5186 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5187 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5189 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5191 mddev->queue->backing_dev_info.congested_data = mddev;
5192 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5194 chunk_size = mddev->chunk_sectors << 9;
5195 blk_queue_io_min(mddev->queue, chunk_size);
5196 blk_queue_io_opt(mddev->queue, chunk_size *
5197 (conf->raid_disks - conf->max_degraded));
5199 rdev_for_each(rdev, mddev)
5200 disk_stack_limits(mddev->gendisk, rdev->bdev,
5201 rdev->data_offset << 9);
5204 return 0;
5205 abort:
5206 md_unregister_thread(&mddev->thread);
5207 print_raid5_conf(conf);
5208 free_conf(conf);
5209 mddev->private = NULL;
5210 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5211 return -EIO;
5214 static int stop(struct mddev *mddev)
5216 struct r5conf *conf = mddev->private;
5218 md_unregister_thread(&mddev->thread);
5219 if (mddev->queue)
5220 mddev->queue->backing_dev_info.congested_fn = NULL;
5221 free_conf(conf);
5222 mddev->private = NULL;
5223 mddev->to_remove = &raid5_attrs_group;
5224 return 0;
5227 static void status(struct seq_file *seq, struct mddev *mddev)
5229 struct r5conf *conf = mddev->private;
5230 int i;
5232 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5233 mddev->chunk_sectors / 2, mddev->layout);
5234 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5235 for (i = 0; i < conf->raid_disks; i++)
5236 seq_printf (seq, "%s",
5237 conf->disks[i].rdev &&
5238 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5239 seq_printf (seq, "]");
5242 static void print_raid5_conf (struct r5conf *conf)
5244 int i;
5245 struct disk_info *tmp;
5247 printk(KERN_DEBUG "RAID conf printout:\n");
5248 if (!conf) {
5249 printk("(conf==NULL)\n");
5250 return;
5252 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5253 conf->raid_disks,
5254 conf->raid_disks - conf->mddev->degraded);
5256 for (i = 0; i < conf->raid_disks; i++) {
5257 char b[BDEVNAME_SIZE];
5258 tmp = conf->disks + i;
5259 if (tmp->rdev)
5260 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5261 i, !test_bit(Faulty, &tmp->rdev->flags),
5262 bdevname(tmp->rdev->bdev, b));
5266 static int raid5_spare_active(struct mddev *mddev)
5268 int i;
5269 struct r5conf *conf = mddev->private;
5270 struct disk_info *tmp;
5271 int count = 0;
5272 unsigned long flags;
5274 for (i = 0; i < conf->raid_disks; i++) {
5275 tmp = conf->disks + i;
5276 if (tmp->replacement
5277 && tmp->replacement->recovery_offset == MaxSector
5278 && !test_bit(Faulty, &tmp->replacement->flags)
5279 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5280 /* Replacement has just become active. */
5281 if (!tmp->rdev
5282 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5283 count++;
5284 if (tmp->rdev) {
5285 /* Replaced device not technically faulty,
5286 * but we need to be sure it gets removed
5287 * and never re-added.
5289 set_bit(Faulty, &tmp->rdev->flags);
5290 sysfs_notify_dirent_safe(
5291 tmp->rdev->sysfs_state);
5293 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5294 } else if (tmp->rdev
5295 && tmp->rdev->recovery_offset == MaxSector
5296 && !test_bit(Faulty, &tmp->rdev->flags)
5297 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5298 count++;
5299 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5302 spin_lock_irqsave(&conf->device_lock, flags);
5303 mddev->degraded = calc_degraded(conf);
5304 spin_unlock_irqrestore(&conf->device_lock, flags);
5305 print_raid5_conf(conf);
5306 return count;
5309 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5311 struct r5conf *conf = mddev->private;
5312 int err = 0;
5313 int number = rdev->raid_disk;
5314 struct md_rdev **rdevp;
5315 struct disk_info *p = conf->disks + number;
5317 print_raid5_conf(conf);
5318 if (rdev == p->rdev)
5319 rdevp = &p->rdev;
5320 else if (rdev == p->replacement)
5321 rdevp = &p->replacement;
5322 else
5323 return 0;
5325 if (number >= conf->raid_disks &&
5326 conf->reshape_progress == MaxSector)
5327 clear_bit(In_sync, &rdev->flags);
5329 if (test_bit(In_sync, &rdev->flags) ||
5330 atomic_read(&rdev->nr_pending)) {
5331 err = -EBUSY;
5332 goto abort;
5334 /* Only remove non-faulty devices if recovery
5335 * isn't possible.
5337 if (!test_bit(Faulty, &rdev->flags) &&
5338 mddev->recovery_disabled != conf->recovery_disabled &&
5339 !has_failed(conf) &&
5340 (!p->replacement || p->replacement == rdev) &&
5341 number < conf->raid_disks) {
5342 err = -EBUSY;
5343 goto abort;
5345 *rdevp = NULL;
5346 synchronize_rcu();
5347 if (atomic_read(&rdev->nr_pending)) {
5348 /* lost the race, try later */
5349 err = -EBUSY;
5350 *rdevp = rdev;
5351 } else if (p->replacement) {
5352 /* We must have just cleared 'rdev' */
5353 p->rdev = p->replacement;
5354 clear_bit(Replacement, &p->replacement->flags);
5355 smp_mb(); /* Make sure other CPUs may see both as identical
5356 * but will never see neither - if they are careful
5358 p->replacement = NULL;
5359 clear_bit(WantReplacement, &rdev->flags);
5360 } else
5361 /* We might have just removed the Replacement as faulty-
5362 * clear the bit just in case
5364 clear_bit(WantReplacement, &rdev->flags);
5365 abort:
5367 print_raid5_conf(conf);
5368 return err;
5371 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5373 struct r5conf *conf = mddev->private;
5374 int err = -EEXIST;
5375 int disk;
5376 struct disk_info *p;
5377 int first = 0;
5378 int last = conf->raid_disks - 1;
5380 if (mddev->recovery_disabled == conf->recovery_disabled)
5381 return -EBUSY;
5383 if (rdev->saved_raid_disk < 0 && has_failed(conf))
5384 /* no point adding a device */
5385 return -EINVAL;
5387 if (rdev->raid_disk >= 0)
5388 first = last = rdev->raid_disk;
5391 * find the disk ... but prefer rdev->saved_raid_disk
5392 * if possible.
5394 if (rdev->saved_raid_disk >= 0 &&
5395 rdev->saved_raid_disk >= first &&
5396 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5397 disk = rdev->saved_raid_disk;
5398 else
5399 disk = first;
5400 for ( ; disk <= last ; disk++) {
5401 p = conf->disks + disk;
5402 if (p->rdev == NULL) {
5403 clear_bit(In_sync, &rdev->flags);
5404 rdev->raid_disk = disk;
5405 err = 0;
5406 if (rdev->saved_raid_disk != disk)
5407 conf->fullsync = 1;
5408 rcu_assign_pointer(p->rdev, rdev);
5409 break;
5411 if (test_bit(WantReplacement, &p->rdev->flags) &&
5412 p->replacement == NULL) {
5413 clear_bit(In_sync, &rdev->flags);
5414 set_bit(Replacement, &rdev->flags);
5415 rdev->raid_disk = disk;
5416 err = 0;
5417 conf->fullsync = 1;
5418 rcu_assign_pointer(p->replacement, rdev);
5419 break;
5422 print_raid5_conf(conf);
5423 return err;
5426 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5428 /* no resync is happening, and there is enough space
5429 * on all devices, so we can resize.
5430 * We need to make sure resync covers any new space.
5431 * If the array is shrinking we should possibly wait until
5432 * any io in the removed space completes, but it hardly seems
5433 * worth it.
5435 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5436 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5437 mddev->raid_disks));
5438 if (mddev->array_sectors >
5439 raid5_size(mddev, sectors, mddev->raid_disks))
5440 return -EINVAL;
5441 set_capacity(mddev->gendisk, mddev->array_sectors);
5442 revalidate_disk(mddev->gendisk);
5443 if (sectors > mddev->dev_sectors &&
5444 mddev->recovery_cp > mddev->dev_sectors) {
5445 mddev->recovery_cp = mddev->dev_sectors;
5446 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5448 mddev->dev_sectors = sectors;
5449 mddev->resync_max_sectors = sectors;
5450 return 0;
5453 static int check_stripe_cache(struct mddev *mddev)
5455 /* Can only proceed if there are plenty of stripe_heads.
5456 * We need a minimum of one full stripe,, and for sensible progress
5457 * it is best to have about 4 times that.
5458 * If we require 4 times, then the default 256 4K stripe_heads will
5459 * allow for chunk sizes up to 256K, which is probably OK.
5460 * If the chunk size is greater, user-space should request more
5461 * stripe_heads first.
5463 struct r5conf *conf = mddev->private;
5464 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5465 > conf->max_nr_stripes ||
5466 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5467 > conf->max_nr_stripes) {
5468 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5469 mdname(mddev),
5470 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5471 / STRIPE_SIZE)*4);
5472 return 0;
5474 return 1;
5477 static int check_reshape(struct mddev *mddev)
5479 struct r5conf *conf = mddev->private;
5481 if (mddev->delta_disks == 0 &&
5482 mddev->new_layout == mddev->layout &&
5483 mddev->new_chunk_sectors == mddev->chunk_sectors)
5484 return 0; /* nothing to do */
5485 if (mddev->bitmap)
5486 /* Cannot grow a bitmap yet */
5487 return -EBUSY;
5488 if (has_failed(conf))
5489 return -EINVAL;
5490 if (mddev->delta_disks < 0) {
5491 /* We might be able to shrink, but the devices must
5492 * be made bigger first.
5493 * For raid6, 4 is the minimum size.
5494 * Otherwise 2 is the minimum
5496 int min = 2;
5497 if (mddev->level == 6)
5498 min = 4;
5499 if (mddev->raid_disks + mddev->delta_disks < min)
5500 return -EINVAL;
5503 if (!check_stripe_cache(mddev))
5504 return -ENOSPC;
5506 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5509 static int raid5_start_reshape(struct mddev *mddev)
5511 struct r5conf *conf = mddev->private;
5512 struct md_rdev *rdev;
5513 int spares = 0;
5514 unsigned long flags;
5516 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5517 return -EBUSY;
5519 if (!check_stripe_cache(mddev))
5520 return -ENOSPC;
5522 rdev_for_each(rdev, mddev)
5523 if (!test_bit(In_sync, &rdev->flags)
5524 && !test_bit(Faulty, &rdev->flags))
5525 spares++;
5527 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5528 /* Not enough devices even to make a degraded array
5529 * of that size
5531 return -EINVAL;
5533 /* Refuse to reduce size of the array. Any reductions in
5534 * array size must be through explicit setting of array_size
5535 * attribute.
5537 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5538 < mddev->array_sectors) {
5539 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5540 "before number of disks\n", mdname(mddev));
5541 return -EINVAL;
5544 atomic_set(&conf->reshape_stripes, 0);
5545 spin_lock_irq(&conf->device_lock);
5546 conf->previous_raid_disks = conf->raid_disks;
5547 conf->raid_disks += mddev->delta_disks;
5548 conf->prev_chunk_sectors = conf->chunk_sectors;
5549 conf->chunk_sectors = mddev->new_chunk_sectors;
5550 conf->prev_algo = conf->algorithm;
5551 conf->algorithm = mddev->new_layout;
5552 if (mddev->delta_disks < 0)
5553 conf->reshape_progress = raid5_size(mddev, 0, 0);
5554 else
5555 conf->reshape_progress = 0;
5556 conf->reshape_safe = conf->reshape_progress;
5557 conf->generation++;
5558 spin_unlock_irq(&conf->device_lock);
5560 /* Add some new drives, as many as will fit.
5561 * We know there are enough to make the newly sized array work.
5562 * Don't add devices if we are reducing the number of
5563 * devices in the array. This is because it is not possible
5564 * to correctly record the "partially reconstructed" state of
5565 * such devices during the reshape and confusion could result.
5567 if (mddev->delta_disks >= 0) {
5568 rdev_for_each(rdev, mddev)
5569 if (rdev->raid_disk < 0 &&
5570 !test_bit(Faulty, &rdev->flags)) {
5571 if (raid5_add_disk(mddev, rdev) == 0) {
5572 if (rdev->raid_disk
5573 >= conf->previous_raid_disks)
5574 set_bit(In_sync, &rdev->flags);
5575 else
5576 rdev->recovery_offset = 0;
5578 if (sysfs_link_rdev(mddev, rdev))
5579 /* Failure here is OK */;
5581 } else if (rdev->raid_disk >= conf->previous_raid_disks
5582 && !test_bit(Faulty, &rdev->flags)) {
5583 /* This is a spare that was manually added */
5584 set_bit(In_sync, &rdev->flags);
5587 /* When a reshape changes the number of devices,
5588 * ->degraded is measured against the larger of the
5589 * pre and post number of devices.
5591 spin_lock_irqsave(&conf->device_lock, flags);
5592 mddev->degraded = calc_degraded(conf);
5593 spin_unlock_irqrestore(&conf->device_lock, flags);
5595 mddev->raid_disks = conf->raid_disks;
5596 mddev->reshape_position = conf->reshape_progress;
5597 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5599 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5600 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5601 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5602 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5603 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5604 "reshape");
5605 if (!mddev->sync_thread) {
5606 mddev->recovery = 0;
5607 spin_lock_irq(&conf->device_lock);
5608 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5609 conf->reshape_progress = MaxSector;
5610 mddev->reshape_position = MaxSector;
5611 spin_unlock_irq(&conf->device_lock);
5612 return -EAGAIN;
5614 conf->reshape_checkpoint = jiffies;
5615 md_wakeup_thread(mddev->sync_thread);
5616 md_new_event(mddev);
5617 return 0;
5620 /* This is called from the reshape thread and should make any
5621 * changes needed in 'conf'
5623 static void end_reshape(struct r5conf *conf)
5626 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5628 spin_lock_irq(&conf->device_lock);
5629 conf->previous_raid_disks = conf->raid_disks;
5630 conf->reshape_progress = MaxSector;
5631 spin_unlock_irq(&conf->device_lock);
5632 wake_up(&conf->wait_for_overlap);
5634 /* read-ahead size must cover two whole stripes, which is
5635 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5637 if (conf->mddev->queue) {
5638 int data_disks = conf->raid_disks - conf->max_degraded;
5639 int stripe = data_disks * ((conf->chunk_sectors << 9)
5640 / PAGE_SIZE);
5641 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5642 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5647 /* This is called from the raid5d thread with mddev_lock held.
5648 * It makes config changes to the device.
5650 static void raid5_finish_reshape(struct mddev *mddev)
5652 struct r5conf *conf = mddev->private;
5654 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5656 if (mddev->delta_disks > 0) {
5657 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5658 set_capacity(mddev->gendisk, mddev->array_sectors);
5659 revalidate_disk(mddev->gendisk);
5660 } else {
5661 int d;
5662 spin_lock_irq(&conf->device_lock);
5663 mddev->degraded = calc_degraded(conf);
5664 spin_unlock_irq(&conf->device_lock);
5665 for (d = conf->raid_disks ;
5666 d < conf->raid_disks - mddev->delta_disks;
5667 d++) {
5668 struct md_rdev *rdev = conf->disks[d].rdev;
5669 if (rdev &&
5670 raid5_remove_disk(mddev, rdev) == 0) {
5671 sysfs_unlink_rdev(mddev, rdev);
5672 rdev->raid_disk = -1;
5676 mddev->layout = conf->algorithm;
5677 mddev->chunk_sectors = conf->chunk_sectors;
5678 mddev->reshape_position = MaxSector;
5679 mddev->delta_disks = 0;
5683 static void raid5_quiesce(struct mddev *mddev, int state)
5685 struct r5conf *conf = mddev->private;
5687 switch(state) {
5688 case 2: /* resume for a suspend */
5689 wake_up(&conf->wait_for_overlap);
5690 break;
5692 case 1: /* stop all writes */
5693 spin_lock_irq(&conf->device_lock);
5694 /* '2' tells resync/reshape to pause so that all
5695 * active stripes can drain
5697 conf->quiesce = 2;
5698 wait_event_lock_irq(conf->wait_for_stripe,
5699 atomic_read(&conf->active_stripes) == 0 &&
5700 atomic_read(&conf->active_aligned_reads) == 0,
5701 conf->device_lock, /* nothing */);
5702 conf->quiesce = 1;
5703 spin_unlock_irq(&conf->device_lock);
5704 /* allow reshape to continue */
5705 wake_up(&conf->wait_for_overlap);
5706 break;
5708 case 0: /* re-enable writes */
5709 spin_lock_irq(&conf->device_lock);
5710 conf->quiesce = 0;
5711 wake_up(&conf->wait_for_stripe);
5712 wake_up(&conf->wait_for_overlap);
5713 spin_unlock_irq(&conf->device_lock);
5714 break;
5719 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5721 struct r0conf *raid0_conf = mddev->private;
5722 sector_t sectors;
5724 /* for raid0 takeover only one zone is supported */
5725 if (raid0_conf->nr_strip_zones > 1) {
5726 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5727 mdname(mddev));
5728 return ERR_PTR(-EINVAL);
5731 sectors = raid0_conf->strip_zone[0].zone_end;
5732 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5733 mddev->dev_sectors = sectors;
5734 mddev->new_level = level;
5735 mddev->new_layout = ALGORITHM_PARITY_N;
5736 mddev->new_chunk_sectors = mddev->chunk_sectors;
5737 mddev->raid_disks += 1;
5738 mddev->delta_disks = 1;
5739 /* make sure it will be not marked as dirty */
5740 mddev->recovery_cp = MaxSector;
5742 return setup_conf(mddev);
5746 static void *raid5_takeover_raid1(struct mddev *mddev)
5748 int chunksect;
5750 if (mddev->raid_disks != 2 ||
5751 mddev->degraded > 1)
5752 return ERR_PTR(-EINVAL);
5754 /* Should check if there are write-behind devices? */
5756 chunksect = 64*2; /* 64K by default */
5758 /* The array must be an exact multiple of chunksize */
5759 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5760 chunksect >>= 1;
5762 if ((chunksect<<9) < STRIPE_SIZE)
5763 /* array size does not allow a suitable chunk size */
5764 return ERR_PTR(-EINVAL);
5766 mddev->new_level = 5;
5767 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5768 mddev->new_chunk_sectors = chunksect;
5770 return setup_conf(mddev);
5773 static void *raid5_takeover_raid6(struct mddev *mddev)
5775 int new_layout;
5777 switch (mddev->layout) {
5778 case ALGORITHM_LEFT_ASYMMETRIC_6:
5779 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5780 break;
5781 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5782 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5783 break;
5784 case ALGORITHM_LEFT_SYMMETRIC_6:
5785 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5786 break;
5787 case ALGORITHM_RIGHT_SYMMETRIC_6:
5788 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5789 break;
5790 case ALGORITHM_PARITY_0_6:
5791 new_layout = ALGORITHM_PARITY_0;
5792 break;
5793 case ALGORITHM_PARITY_N:
5794 new_layout = ALGORITHM_PARITY_N;
5795 break;
5796 default:
5797 return ERR_PTR(-EINVAL);
5799 mddev->new_level = 5;
5800 mddev->new_layout = new_layout;
5801 mddev->delta_disks = -1;
5802 mddev->raid_disks -= 1;
5803 return setup_conf(mddev);
5807 static int raid5_check_reshape(struct mddev *mddev)
5809 /* For a 2-drive array, the layout and chunk size can be changed
5810 * immediately as not restriping is needed.
5811 * For larger arrays we record the new value - after validation
5812 * to be used by a reshape pass.
5814 struct r5conf *conf = mddev->private;
5815 int new_chunk = mddev->new_chunk_sectors;
5817 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5818 return -EINVAL;
5819 if (new_chunk > 0) {
5820 if (!is_power_of_2(new_chunk))
5821 return -EINVAL;
5822 if (new_chunk < (PAGE_SIZE>>9))
5823 return -EINVAL;
5824 if (mddev->array_sectors & (new_chunk-1))
5825 /* not factor of array size */
5826 return -EINVAL;
5829 /* They look valid */
5831 if (mddev->raid_disks == 2) {
5832 /* can make the change immediately */
5833 if (mddev->new_layout >= 0) {
5834 conf->algorithm = mddev->new_layout;
5835 mddev->layout = mddev->new_layout;
5837 if (new_chunk > 0) {
5838 conf->chunk_sectors = new_chunk ;
5839 mddev->chunk_sectors = new_chunk;
5841 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5842 md_wakeup_thread(mddev->thread);
5844 return check_reshape(mddev);
5847 static int raid6_check_reshape(struct mddev *mddev)
5849 int new_chunk = mddev->new_chunk_sectors;
5851 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5852 return -EINVAL;
5853 if (new_chunk > 0) {
5854 if (!is_power_of_2(new_chunk))
5855 return -EINVAL;
5856 if (new_chunk < (PAGE_SIZE >> 9))
5857 return -EINVAL;
5858 if (mddev->array_sectors & (new_chunk-1))
5859 /* not factor of array size */
5860 return -EINVAL;
5863 /* They look valid */
5864 return check_reshape(mddev);
5867 static void *raid5_takeover(struct mddev *mddev)
5869 /* raid5 can take over:
5870 * raid0 - if there is only one strip zone - make it a raid4 layout
5871 * raid1 - if there are two drives. We need to know the chunk size
5872 * raid4 - trivial - just use a raid4 layout.
5873 * raid6 - Providing it is a *_6 layout
5875 if (mddev->level == 0)
5876 return raid45_takeover_raid0(mddev, 5);
5877 if (mddev->level == 1)
5878 return raid5_takeover_raid1(mddev);
5879 if (mddev->level == 4) {
5880 mddev->new_layout = ALGORITHM_PARITY_N;
5881 mddev->new_level = 5;
5882 return setup_conf(mddev);
5884 if (mddev->level == 6)
5885 return raid5_takeover_raid6(mddev);
5887 return ERR_PTR(-EINVAL);
5890 static void *raid4_takeover(struct mddev *mddev)
5892 /* raid4 can take over:
5893 * raid0 - if there is only one strip zone
5894 * raid5 - if layout is right
5896 if (mddev->level == 0)
5897 return raid45_takeover_raid0(mddev, 4);
5898 if (mddev->level == 5 &&
5899 mddev->layout == ALGORITHM_PARITY_N) {
5900 mddev->new_layout = 0;
5901 mddev->new_level = 4;
5902 return setup_conf(mddev);
5904 return ERR_PTR(-EINVAL);
5907 static struct md_personality raid5_personality;
5909 static void *raid6_takeover(struct mddev *mddev)
5911 /* Currently can only take over a raid5. We map the
5912 * personality to an equivalent raid6 personality
5913 * with the Q block at the end.
5915 int new_layout;
5917 if (mddev->pers != &raid5_personality)
5918 return ERR_PTR(-EINVAL);
5919 if (mddev->degraded > 1)
5920 return ERR_PTR(-EINVAL);
5921 if (mddev->raid_disks > 253)
5922 return ERR_PTR(-EINVAL);
5923 if (mddev->raid_disks < 3)
5924 return ERR_PTR(-EINVAL);
5926 switch (mddev->layout) {
5927 case ALGORITHM_LEFT_ASYMMETRIC:
5928 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5929 break;
5930 case ALGORITHM_RIGHT_ASYMMETRIC:
5931 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5932 break;
5933 case ALGORITHM_LEFT_SYMMETRIC:
5934 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5935 break;
5936 case ALGORITHM_RIGHT_SYMMETRIC:
5937 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5938 break;
5939 case ALGORITHM_PARITY_0:
5940 new_layout = ALGORITHM_PARITY_0_6;
5941 break;
5942 case ALGORITHM_PARITY_N:
5943 new_layout = ALGORITHM_PARITY_N;
5944 break;
5945 default:
5946 return ERR_PTR(-EINVAL);
5948 mddev->new_level = 6;
5949 mddev->new_layout = new_layout;
5950 mddev->delta_disks = 1;
5951 mddev->raid_disks += 1;
5952 return setup_conf(mddev);
5956 static struct md_personality raid6_personality =
5958 .name = "raid6",
5959 .level = 6,
5960 .owner = THIS_MODULE,
5961 .make_request = make_request,
5962 .run = run,
5963 .stop = stop,
5964 .status = status,
5965 .error_handler = error,
5966 .hot_add_disk = raid5_add_disk,
5967 .hot_remove_disk= raid5_remove_disk,
5968 .spare_active = raid5_spare_active,
5969 .sync_request = sync_request,
5970 .resize = raid5_resize,
5971 .size = raid5_size,
5972 .check_reshape = raid6_check_reshape,
5973 .start_reshape = raid5_start_reshape,
5974 .finish_reshape = raid5_finish_reshape,
5975 .quiesce = raid5_quiesce,
5976 .takeover = raid6_takeover,
5978 static struct md_personality raid5_personality =
5980 .name = "raid5",
5981 .level = 5,
5982 .owner = THIS_MODULE,
5983 .make_request = make_request,
5984 .run = run,
5985 .stop = stop,
5986 .status = status,
5987 .error_handler = error,
5988 .hot_add_disk = raid5_add_disk,
5989 .hot_remove_disk= raid5_remove_disk,
5990 .spare_active = raid5_spare_active,
5991 .sync_request = sync_request,
5992 .resize = raid5_resize,
5993 .size = raid5_size,
5994 .check_reshape = raid5_check_reshape,
5995 .start_reshape = raid5_start_reshape,
5996 .finish_reshape = raid5_finish_reshape,
5997 .quiesce = raid5_quiesce,
5998 .takeover = raid5_takeover,
6001 static struct md_personality raid4_personality =
6003 .name = "raid4",
6004 .level = 4,
6005 .owner = THIS_MODULE,
6006 .make_request = make_request,
6007 .run = run,
6008 .stop = stop,
6009 .status = status,
6010 .error_handler = error,
6011 .hot_add_disk = raid5_add_disk,
6012 .hot_remove_disk= raid5_remove_disk,
6013 .spare_active = raid5_spare_active,
6014 .sync_request = sync_request,
6015 .resize = raid5_resize,
6016 .size = raid5_size,
6017 .check_reshape = raid5_check_reshape,
6018 .start_reshape = raid5_start_reshape,
6019 .finish_reshape = raid5_finish_reshape,
6020 .quiesce = raid5_quiesce,
6021 .takeover = raid4_takeover,
6024 static int __init raid5_init(void)
6026 register_md_personality(&raid6_personality);
6027 register_md_personality(&raid5_personality);
6028 register_md_personality(&raid4_personality);
6029 return 0;
6032 static void raid5_exit(void)
6034 unregister_md_personality(&raid6_personality);
6035 unregister_md_personality(&raid5_personality);
6036 unregister_md_personality(&raid4_personality);
6039 module_init(raid5_init);
6040 module_exit(raid5_exit);
6041 MODULE_LICENSE("GPL");
6042 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6043 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6044 MODULE_ALIAS("md-raid5");
6045 MODULE_ALIAS("md-raid4");
6046 MODULE_ALIAS("md-level-5");
6047 MODULE_ALIAS("md-level-4");
6048 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6049 MODULE_ALIAS("md-raid6");
6050 MODULE_ALIAS("md-level-6");
6052 /* This used to be two separate modules, they were: */
6053 MODULE_ALIAS("raid5");
6054 MODULE_ALIAS("raid6");