2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
8 * - completely revamped method functions so they are aware and
9 * independent of the flash geometry (buswidth, interleave, etc.)
10 * - scalability vs code size is completely set at compile-time
11 * (see include/linux/mtd/cfi.h for selection)
12 * - optimized write buffer method
13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
15 * (command set 0x0020)
16 * - added a writev function
17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
18 * - Plugged memory leak in cfi_staa_writev().
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/init.h>
27 #include <asm/byteorder.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/mtd/map.h>
34 #include <linux/mtd/cfi.h>
35 #include <linux/mtd/mtd.h>
38 static int cfi_staa_read(struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
39 static int cfi_staa_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
40 static int cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
41 unsigned long count
, loff_t to
, size_t *retlen
);
42 static int cfi_staa_erase_varsize(struct mtd_info
*, struct erase_info
*);
43 static void cfi_staa_sync (struct mtd_info
*);
44 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
45 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
46 static int cfi_staa_suspend (struct mtd_info
*);
47 static void cfi_staa_resume (struct mtd_info
*);
49 static void cfi_staa_destroy(struct mtd_info
*);
51 struct mtd_info
*cfi_cmdset_0020(struct map_info
*, int);
53 static struct mtd_info
*cfi_staa_setup (struct map_info
*);
55 static struct mtd_chip_driver cfi_staa_chipdrv
= {
56 .probe
= NULL
, /* Not usable directly */
57 .destroy
= cfi_staa_destroy
,
58 .name
= "cfi_cmdset_0020",
62 /* #define DEBUG_LOCK_BITS */
63 //#define DEBUG_CFI_FEATURES
65 #ifdef DEBUG_CFI_FEATURES
66 static void cfi_tell_features(struct cfi_pri_intelext
*extp
)
69 printk(" Feature/Command Support: %4.4X\n", extp
->FeatureSupport
);
70 printk(" - Chip Erase: %s\n", extp
->FeatureSupport
&1?"supported":"unsupported");
71 printk(" - Suspend Erase: %s\n", extp
->FeatureSupport
&2?"supported":"unsupported");
72 printk(" - Suspend Program: %s\n", extp
->FeatureSupport
&4?"supported":"unsupported");
73 printk(" - Legacy Lock/Unlock: %s\n", extp
->FeatureSupport
&8?"supported":"unsupported");
74 printk(" - Queued Erase: %s\n", extp
->FeatureSupport
&16?"supported":"unsupported");
75 printk(" - Instant block lock: %s\n", extp
->FeatureSupport
&32?"supported":"unsupported");
76 printk(" - Protection Bits: %s\n", extp
->FeatureSupport
&64?"supported":"unsupported");
77 printk(" - Page-mode read: %s\n", extp
->FeatureSupport
&128?"supported":"unsupported");
78 printk(" - Synchronous read: %s\n", extp
->FeatureSupport
&256?"supported":"unsupported");
79 for (i
=9; i
<32; i
++) {
80 if (extp
->FeatureSupport
& (1<<i
))
81 printk(" - Unknown Bit %X: supported\n", i
);
84 printk(" Supported functions after Suspend: %2.2X\n", extp
->SuspendCmdSupport
);
85 printk(" - Program after Erase Suspend: %s\n", extp
->SuspendCmdSupport
&1?"supported":"unsupported");
87 if (extp
->SuspendCmdSupport
& (1<<i
))
88 printk(" - Unknown Bit %X: supported\n", i
);
91 printk(" Block Status Register Mask: %4.4X\n", extp
->BlkStatusRegMask
);
92 printk(" - Lock Bit Active: %s\n", extp
->BlkStatusRegMask
&1?"yes":"no");
93 printk(" - Valid Bit Active: %s\n", extp
->BlkStatusRegMask
&2?"yes":"no");
94 for (i
=2; i
<16; i
++) {
95 if (extp
->BlkStatusRegMask
& (1<<i
))
96 printk(" - Unknown Bit %X Active: yes\n",i
);
99 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
100 extp
->VccOptimal
>> 8, extp
->VccOptimal
& 0xf);
101 if (extp
->VppOptimal
)
102 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
103 extp
->VppOptimal
>> 8, extp
->VppOptimal
& 0xf);
107 /* This routine is made available to other mtd code via
108 * inter_module_register. It must only be accessed through
109 * inter_module_get which will bump the use count of this module. The
110 * addresses passed back in cfi are valid as long as the use count of
111 * this module is non-zero, i.e. between inter_module_get and
112 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
114 struct mtd_info
*cfi_cmdset_0020(struct map_info
*map
, int primary
)
116 struct cfi_private
*cfi
= map
->fldrv_priv
;
121 * It's a real CFI chip, not one for which the probe
122 * routine faked a CFI structure. So we read the feature
125 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
126 struct cfi_pri_intelext
*extp
;
128 extp
= (struct cfi_pri_intelext
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "ST Microelectronics");
132 if (extp
->MajorVersion
!= '1' ||
133 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '3')) {
134 printk(KERN_ERR
" Unknown ST Microelectronics"
135 " Extended Query version %c.%c.\n",
136 extp
->MajorVersion
, extp
->MinorVersion
);
141 /* Do some byteswapping if necessary */
142 extp
->FeatureSupport
= cfi32_to_cpu(map
, extp
->FeatureSupport
);
143 extp
->BlkStatusRegMask
= cfi32_to_cpu(map
,
144 extp
->BlkStatusRegMask
);
146 #ifdef DEBUG_CFI_FEATURES
147 /* Tell the user about it in lots of lovely detail */
148 cfi_tell_features(extp
);
151 /* Install our own private info structure */
152 cfi
->cmdset_priv
= extp
;
155 for (i
=0; i
< cfi
->numchips
; i
++) {
156 cfi
->chips
[i
].word_write_time
= 128;
157 cfi
->chips
[i
].buffer_write_time
= 128;
158 cfi
->chips
[i
].erase_time
= 1024;
159 cfi
->chips
[i
].ref_point_counter
= 0;
160 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
163 return cfi_staa_setup(map
);
165 EXPORT_SYMBOL_GPL(cfi_cmdset_0020
);
167 static struct mtd_info
*cfi_staa_setup(struct map_info
*map
)
169 struct cfi_private
*cfi
= map
->fldrv_priv
;
170 struct mtd_info
*mtd
;
171 unsigned long offset
= 0;
173 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
175 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
176 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
179 printk(KERN_ERR
"Failed to allocate memory for MTD device\n");
180 kfree(cfi
->cmdset_priv
);
185 mtd
->type
= MTD_NORFLASH
;
186 mtd
->size
= devsize
* cfi
->numchips
;
188 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
189 mtd
->eraseregions
= kmalloc(sizeof(struct mtd_erase_region_info
)
190 * mtd
->numeraseregions
, GFP_KERNEL
);
191 if (!mtd
->eraseregions
) {
192 printk(KERN_ERR
"Failed to allocate memory for MTD erase region info\n");
193 kfree(cfi
->cmdset_priv
);
198 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
199 unsigned long ernum
, ersize
;
200 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
201 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
203 if (mtd
->erasesize
< ersize
) {
204 mtd
->erasesize
= ersize
;
206 for (j
=0; j
<cfi
->numchips
; j
++) {
207 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
208 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
209 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
211 offset
+= (ersize
* ernum
);
214 if (offset
!= devsize
) {
216 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
217 kfree(mtd
->eraseregions
);
218 kfree(cfi
->cmdset_priv
);
223 for (i
=0; i
<mtd
->numeraseregions
;i
++){
224 printk(KERN_DEBUG
"%d: offset=0x%llx,size=0x%x,blocks=%d\n",
225 i
, (unsigned long long)mtd
->eraseregions
[i
].offset
,
226 mtd
->eraseregions
[i
].erasesize
,
227 mtd
->eraseregions
[i
].numblocks
);
230 /* Also select the correct geometry setup too */
231 mtd
->_erase
= cfi_staa_erase_varsize
;
232 mtd
->_read
= cfi_staa_read
;
233 mtd
->_write
= cfi_staa_write_buffers
;
234 mtd
->_writev
= cfi_staa_writev
;
235 mtd
->_sync
= cfi_staa_sync
;
236 mtd
->_lock
= cfi_staa_lock
;
237 mtd
->_unlock
= cfi_staa_unlock
;
238 mtd
->_suspend
= cfi_staa_suspend
;
239 mtd
->_resume
= cfi_staa_resume
;
240 mtd
->flags
= MTD_CAP_NORFLASH
& ~MTD_BIT_WRITEABLE
;
241 mtd
->writesize
= 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
242 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
243 map
->fldrv
= &cfi_staa_chipdrv
;
244 __module_get(THIS_MODULE
);
245 mtd
->name
= map
->name
;
250 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
252 map_word status
, status_OK
;
254 DECLARE_WAITQUEUE(wait
, current
);
256 unsigned long cmd_addr
;
257 struct cfi_private
*cfi
= map
->fldrv_priv
;
261 /* Ensure cmd read/writes are aligned. */
262 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
264 /* Let's determine this according to the interleave only once */
265 status_OK
= CMD(0x80);
267 timeo
= jiffies
+ HZ
;
269 mutex_lock(&chip
->mutex
);
271 /* Check that the chip's ready to talk to us.
272 * If it's in FL_ERASING state, suspend it and make it talk now.
274 switch (chip
->state
) {
276 if (!(((struct cfi_pri_intelext
*)cfi
->cmdset_priv
)->FeatureSupport
& 2))
277 goto sleep
; /* We don't support erase suspend */
279 map_write (map
, CMD(0xb0), cmd_addr
);
280 /* If the flash has finished erasing, then 'erase suspend'
281 * appears to make some (28F320) flash devices switch to
282 * 'read' mode. Make sure that we switch to 'read status'
283 * mode so we get the right data. --rmk
285 map_write(map
, CMD(0x70), cmd_addr
);
286 chip
->oldstate
= FL_ERASING
;
287 chip
->state
= FL_ERASE_SUSPENDING
;
288 // printk("Erase suspending at 0x%lx\n", cmd_addr);
290 status
= map_read(map
, cmd_addr
);
291 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
294 if (time_after(jiffies
, timeo
)) {
296 map_write(map
, CMD(0xd0), cmd_addr
);
297 /* make sure we're in 'read status' mode */
298 map_write(map
, CMD(0x70), cmd_addr
);
299 chip
->state
= FL_ERASING
;
301 mutex_unlock(&chip
->mutex
);
302 printk(KERN_ERR
"Chip not ready after erase "
303 "suspended: status = 0x%lx\n", status
.x
[0]);
307 mutex_unlock(&chip
->mutex
);
309 mutex_lock(&chip
->mutex
);
313 map_write(map
, CMD(0xff), cmd_addr
);
314 chip
->state
= FL_READY
;
327 map_write(map
, CMD(0x70), cmd_addr
);
328 chip
->state
= FL_STATUS
;
331 status
= map_read(map
, cmd_addr
);
332 if (map_word_andequal(map
, status
, status_OK
, status_OK
)) {
333 map_write(map
, CMD(0xff), cmd_addr
);
334 chip
->state
= FL_READY
;
338 /* Urgh. Chip not yet ready to talk to us. */
339 if (time_after(jiffies
, timeo
)) {
340 mutex_unlock(&chip
->mutex
);
341 printk(KERN_ERR
"waiting for chip to be ready timed out in read. WSM status = %lx\n", status
.x
[0]);
345 /* Latency issues. Drop the lock, wait a while and retry */
346 mutex_unlock(&chip
->mutex
);
352 /* Stick ourselves on a wait queue to be woken when
353 someone changes the status */
354 set_current_state(TASK_UNINTERRUPTIBLE
);
355 add_wait_queue(&chip
->wq
, &wait
);
356 mutex_unlock(&chip
->mutex
);
358 remove_wait_queue(&chip
->wq
, &wait
);
359 timeo
= jiffies
+ HZ
;
363 map_copy_from(map
, buf
, adr
, len
);
366 chip
->state
= chip
->oldstate
;
367 /* What if one interleaved chip has finished and the
368 other hasn't? The old code would leave the finished
369 one in READY mode. That's bad, and caused -EROFS
370 errors to be returned from do_erase_oneblock because
371 that's the only bit it checked for at the time.
372 As the state machine appears to explicitly allow
373 sending the 0x70 (Read Status) command to an erasing
374 chip and expecting it to be ignored, that's what we
376 map_write(map
, CMD(0xd0), cmd_addr
);
377 map_write(map
, CMD(0x70), cmd_addr
);
381 mutex_unlock(&chip
->mutex
);
385 static int cfi_staa_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
387 struct map_info
*map
= mtd
->priv
;
388 struct cfi_private
*cfi
= map
->fldrv_priv
;
393 /* ofs: offset within the first chip that the first read should start */
394 chipnum
= (from
>> cfi
->chipshift
);
395 ofs
= from
- (chipnum
<< cfi
->chipshift
);
398 unsigned long thislen
;
400 if (chipnum
>= cfi
->numchips
)
403 if ((len
+ ofs
-1) >> cfi
->chipshift
)
404 thislen
= (1<<cfi
->chipshift
) - ofs
;
408 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
422 static inline int do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
423 unsigned long adr
, const u_char
*buf
, int len
)
425 struct cfi_private
*cfi
= map
->fldrv_priv
;
426 map_word status
, status_OK
;
427 unsigned long cmd_adr
, timeo
;
428 DECLARE_WAITQUEUE(wait
, current
);
431 /* M58LW064A requires bus alignment for buffer wriets -- saw */
432 if (adr
& (map_bankwidth(map
)-1))
435 wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
437 cmd_adr
= adr
& ~(wbufsize
-1);
439 /* Let's determine this according to the interleave only once */
440 status_OK
= CMD(0x80);
442 timeo
= jiffies
+ HZ
;
445 #ifdef DEBUG_CFI_FEATURES
446 printk("%s: chip->state[%d]\n", __func__
, chip
->state
);
448 mutex_lock(&chip
->mutex
);
450 /* Check that the chip's ready to talk to us.
451 * Later, we can actually think about interrupting it
452 * if it's in FL_ERASING state.
453 * Not just yet, though.
455 switch (chip
->state
) {
461 map_write(map
, CMD(0x70), cmd_adr
);
462 chip
->state
= FL_STATUS
;
463 #ifdef DEBUG_CFI_FEATURES
464 printk("%s: 1 status[%x]\n", __func__
, map_read(map
, cmd_adr
));
468 status
= map_read(map
, cmd_adr
);
469 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
471 /* Urgh. Chip not yet ready to talk to us. */
472 if (time_after(jiffies
, timeo
)) {
473 mutex_unlock(&chip
->mutex
);
474 printk(KERN_ERR
"waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
475 status
.x
[0], map_read(map
, cmd_adr
).x
[0]);
479 /* Latency issues. Drop the lock, wait a while and retry */
480 mutex_unlock(&chip
->mutex
);
485 /* Stick ourselves on a wait queue to be woken when
486 someone changes the status */
487 set_current_state(TASK_UNINTERRUPTIBLE
);
488 add_wait_queue(&chip
->wq
, &wait
);
489 mutex_unlock(&chip
->mutex
);
491 remove_wait_queue(&chip
->wq
, &wait
);
492 timeo
= jiffies
+ HZ
;
497 map_write(map
, CMD(0xe8), cmd_adr
);
498 chip
->state
= FL_WRITING_TO_BUFFER
;
502 status
= map_read(map
, cmd_adr
);
503 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
506 mutex_unlock(&chip
->mutex
);
508 mutex_lock(&chip
->mutex
);
511 /* Argh. Not ready for write to buffer */
513 map_write(map
, CMD(0x70), cmd_adr
);
514 chip
->state
= FL_STATUS
;
515 mutex_unlock(&chip
->mutex
);
516 printk(KERN_ERR
"Chip not ready for buffer write. Xstatus = %lx\n", status
.x
[0]);
521 /* Write length of data to come */
522 map_write(map
, CMD(len
/map_bankwidth(map
)-1), cmd_adr
);
526 z
+= map_bankwidth(map
), buf
+= map_bankwidth(map
)) {
528 d
= map_word_load(map
, buf
);
529 map_write(map
, d
, adr
+z
);
532 map_write(map
, CMD(0xd0), cmd_adr
);
533 chip
->state
= FL_WRITING
;
535 mutex_unlock(&chip
->mutex
);
536 cfi_udelay(chip
->buffer_write_time
);
537 mutex_lock(&chip
->mutex
);
539 timeo
= jiffies
+ (HZ
/2);
542 if (chip
->state
!= FL_WRITING
) {
543 /* Someone's suspended the write. Sleep */
544 set_current_state(TASK_UNINTERRUPTIBLE
);
545 add_wait_queue(&chip
->wq
, &wait
);
546 mutex_unlock(&chip
->mutex
);
548 remove_wait_queue(&chip
->wq
, &wait
);
549 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
550 mutex_lock(&chip
->mutex
);
554 status
= map_read(map
, cmd_adr
);
555 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
558 /* OK Still waiting */
559 if (time_after(jiffies
, timeo
)) {
561 map_write(map
, CMD(0x50), cmd_adr
);
562 /* put back into read status register mode */
563 map_write(map
, CMD(0x70), adr
);
564 chip
->state
= FL_STATUS
;
566 mutex_unlock(&chip
->mutex
);
567 printk(KERN_ERR
"waiting for chip to be ready timed out in bufwrite\n");
571 /* Latency issues. Drop the lock, wait a while and retry */
572 mutex_unlock(&chip
->mutex
);
575 mutex_lock(&chip
->mutex
);
578 chip
->buffer_write_time
--;
579 if (!chip
->buffer_write_time
)
580 chip
->buffer_write_time
++;
583 chip
->buffer_write_time
++;
585 /* Done and happy. */
587 chip
->state
= FL_STATUS
;
589 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
590 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
591 #ifdef DEBUG_CFI_FEATURES
592 printk("%s: 2 status[%lx]\n", __func__
, status
.x
[0]);
595 map_write(map
, CMD(0x50), cmd_adr
);
596 /* put back into read status register mode */
597 map_write(map
, CMD(0x70), adr
);
599 mutex_unlock(&chip
->mutex
);
600 return map_word_bitsset(map
, status
, CMD(0x02)) ? -EROFS
: -EIO
;
603 mutex_unlock(&chip
->mutex
);
608 static int cfi_staa_write_buffers (struct mtd_info
*mtd
, loff_t to
,
609 size_t len
, size_t *retlen
, const u_char
*buf
)
611 struct map_info
*map
= mtd
->priv
;
612 struct cfi_private
*cfi
= map
->fldrv_priv
;
613 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
618 chipnum
= to
>> cfi
->chipshift
;
619 ofs
= to
- (chipnum
<< cfi
->chipshift
);
621 #ifdef DEBUG_CFI_FEATURES
622 printk("%s: map_bankwidth(map)[%x]\n", __func__
, map_bankwidth(map
));
623 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__
, chipnum
, wbufsize
);
624 printk("%s: ofs[%x] len[%x]\n", __func__
, ofs
, len
);
627 /* Write buffer is worth it only if more than one word to write... */
629 /* We must not cross write block boundaries */
630 int size
= wbufsize
- (ofs
& (wbufsize
-1));
635 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
645 if (ofs
>> cfi
->chipshift
) {
648 if (chipnum
== cfi
->numchips
)
657 * Writev for ECC-Flashes is a little more complicated. We need to maintain
658 * a small buffer for this.
659 * XXX: If the buffer size is not a multiple of 2, this will break
661 #define ECCBUF_SIZE (mtd->writesize)
662 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
663 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
665 cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
666 unsigned long count
, loff_t to
, size_t *retlen
)
669 size_t totlen
= 0, thislen
;
675 /* We should fall back to a general writev implementation.
676 * Until that is written, just break.
680 buffer
= kmalloc(ECCBUF_SIZE
, GFP_KERNEL
);
684 for (i
=0; i
<count
; i
++) {
685 size_t elem_len
= vecs
[i
].iov_len
;
686 void *elem_base
= vecs
[i
].iov_base
;
687 if (!elem_len
) /* FIXME: Might be unnecessary. Check that */
689 if (buflen
) { /* cut off head */
690 if (buflen
+ elem_len
< ECCBUF_SIZE
) { /* just accumulate */
691 memcpy(buffer
+buflen
, elem_base
, elem_len
);
695 memcpy(buffer
+buflen
, elem_base
, ECCBUF_SIZE
-buflen
);
696 ret
= mtd_write(mtd
, to
, ECCBUF_SIZE
, &thislen
,
699 if (ret
|| thislen
!= ECCBUF_SIZE
)
701 elem_len
-= thislen
-buflen
;
702 elem_base
+= thislen
-buflen
;
705 if (ECCBUF_DIV(elem_len
)) { /* write clean aligned data */
706 ret
= mtd_write(mtd
, to
, ECCBUF_DIV(elem_len
),
707 &thislen
, elem_base
);
709 if (ret
|| thislen
!= ECCBUF_DIV(elem_len
))
713 buflen
= ECCBUF_MOD(elem_len
); /* cut off tail */
715 memset(buffer
, 0xff, ECCBUF_SIZE
);
716 memcpy(buffer
, elem_base
+ thislen
, buflen
);
719 if (buflen
) { /* flush last page, even if not full */
720 /* This is sometimes intended behaviour, really */
721 ret
= mtd_write(mtd
, to
, buflen
, &thislen
, buffer
);
723 if (ret
|| thislen
!= ECCBUF_SIZE
)
734 static inline int do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
736 struct cfi_private
*cfi
= map
->fldrv_priv
;
737 map_word status
, status_OK
;
740 DECLARE_WAITQUEUE(wait
, current
);
745 /* Let's determine this according to the interleave only once */
746 status_OK
= CMD(0x80);
748 timeo
= jiffies
+ HZ
;
750 mutex_lock(&chip
->mutex
);
752 /* Check that the chip's ready to talk to us. */
753 switch (chip
->state
) {
757 map_write(map
, CMD(0x70), adr
);
758 chip
->state
= FL_STATUS
;
761 status
= map_read(map
, adr
);
762 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
765 /* Urgh. Chip not yet ready to talk to us. */
766 if (time_after(jiffies
, timeo
)) {
767 mutex_unlock(&chip
->mutex
);
768 printk(KERN_ERR
"waiting for chip to be ready timed out in erase\n");
772 /* Latency issues. Drop the lock, wait a while and retry */
773 mutex_unlock(&chip
->mutex
);
778 /* Stick ourselves on a wait queue to be woken when
779 someone changes the status */
780 set_current_state(TASK_UNINTERRUPTIBLE
);
781 add_wait_queue(&chip
->wq
, &wait
);
782 mutex_unlock(&chip
->mutex
);
784 remove_wait_queue(&chip
->wq
, &wait
);
785 timeo
= jiffies
+ HZ
;
790 /* Clear the status register first */
791 map_write(map
, CMD(0x50), adr
);
794 map_write(map
, CMD(0x20), adr
);
795 map_write(map
, CMD(0xD0), adr
);
796 chip
->state
= FL_ERASING
;
798 mutex_unlock(&chip
->mutex
);
800 mutex_lock(&chip
->mutex
);
802 /* FIXME. Use a timer to check this, and return immediately. */
803 /* Once the state machine's known to be working I'll do that */
805 timeo
= jiffies
+ (HZ
*20);
807 if (chip
->state
!= FL_ERASING
) {
808 /* Someone's suspended the erase. Sleep */
809 set_current_state(TASK_UNINTERRUPTIBLE
);
810 add_wait_queue(&chip
->wq
, &wait
);
811 mutex_unlock(&chip
->mutex
);
813 remove_wait_queue(&chip
->wq
, &wait
);
814 timeo
= jiffies
+ (HZ
*20); /* FIXME */
815 mutex_lock(&chip
->mutex
);
819 status
= map_read(map
, adr
);
820 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
823 /* OK Still waiting */
824 if (time_after(jiffies
, timeo
)) {
825 map_write(map
, CMD(0x70), adr
);
826 chip
->state
= FL_STATUS
;
827 printk(KERN_ERR
"waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
829 mutex_unlock(&chip
->mutex
);
833 /* Latency issues. Drop the lock, wait a while and retry */
834 mutex_unlock(&chip
->mutex
);
836 mutex_lock(&chip
->mutex
);
842 /* We've broken this before. It doesn't hurt to be safe */
843 map_write(map
, CMD(0x70), adr
);
844 chip
->state
= FL_STATUS
;
845 status
= map_read(map
, adr
);
847 /* check for lock bit */
848 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
849 unsigned char chipstatus
= status
.x
[0];
850 if (!map_word_equal(map
, status
, CMD(chipstatus
))) {
852 for (w
=0; w
<map_words(map
); w
++) {
853 for (i
= 0; i
<cfi_interleave(cfi
); i
++) {
854 chipstatus
|= status
.x
[w
] >> (cfi
->device_type
* 8);
857 printk(KERN_WARNING
"Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
858 status
.x
[0], chipstatus
);
860 /* Reset the error bits */
861 map_write(map
, CMD(0x50), adr
);
862 map_write(map
, CMD(0x70), adr
);
864 if ((chipstatus
& 0x30) == 0x30) {
865 printk(KERN_NOTICE
"Chip reports improper command sequence: status 0x%x\n", chipstatus
);
867 } else if (chipstatus
& 0x02) {
868 /* Protection bit set */
870 } else if (chipstatus
& 0x8) {
872 printk(KERN_WARNING
"Chip reports voltage low on erase: status 0x%x\n", chipstatus
);
874 } else if (chipstatus
& 0x20) {
876 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr
, chipstatus
);
877 timeo
= jiffies
+ HZ
;
878 chip
->state
= FL_STATUS
;
879 mutex_unlock(&chip
->mutex
);
882 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x\n", adr
, chipstatus
);
888 mutex_unlock(&chip
->mutex
);
892 static int cfi_staa_erase_varsize(struct mtd_info
*mtd
,
893 struct erase_info
*instr
)
894 { struct map_info
*map
= mtd
->priv
;
895 struct cfi_private
*cfi
= map
->fldrv_priv
;
896 unsigned long adr
, len
;
897 int chipnum
, ret
= 0;
899 struct mtd_erase_region_info
*regions
= mtd
->eraseregions
;
901 /* Check that both start and end of the requested erase are
902 * aligned with the erasesize at the appropriate addresses.
907 /* Skip all erase regions which are ended before the start of
908 the requested erase. Actually, to save on the calculations,
909 we skip to the first erase region which starts after the
910 start of the requested erase, and then go back one.
913 while (i
< mtd
->numeraseregions
&& instr
->addr
>= regions
[i
].offset
)
917 /* OK, now i is pointing at the erase region in which this
918 erase request starts. Check the start of the requested
919 erase range is aligned with the erase size which is in
923 if (instr
->addr
& (regions
[i
].erasesize
-1))
926 /* Remember the erase region we start on */
929 /* Next, check that the end of the requested erase is aligned
930 * with the erase region at that address.
933 while (i
<mtd
->numeraseregions
&& (instr
->addr
+ instr
->len
) >= regions
[i
].offset
)
936 /* As before, drop back one to point at the region in which
937 the address actually falls
941 if ((instr
->addr
+ instr
->len
) & (regions
[i
].erasesize
-1))
944 chipnum
= instr
->addr
>> cfi
->chipshift
;
945 adr
= instr
->addr
- (chipnum
<< cfi
->chipshift
);
951 ret
= do_erase_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
956 adr
+= regions
[i
].erasesize
;
957 len
-= regions
[i
].erasesize
;
959 if (adr
% (1<< cfi
->chipshift
) == (((unsigned long)regions
[i
].offset
+ (regions
[i
].erasesize
* regions
[i
].numblocks
)) %( 1<< cfi
->chipshift
)))
962 if (adr
>> cfi
->chipshift
) {
966 if (chipnum
>= cfi
->numchips
)
971 instr
->state
= MTD_ERASE_DONE
;
972 mtd_erase_callback(instr
);
977 static void cfi_staa_sync (struct mtd_info
*mtd
)
979 struct map_info
*map
= mtd
->priv
;
980 struct cfi_private
*cfi
= map
->fldrv_priv
;
984 DECLARE_WAITQUEUE(wait
, current
);
986 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
987 chip
= &cfi
->chips
[i
];
990 mutex_lock(&chip
->mutex
);
992 switch(chip
->state
) {
997 chip
->oldstate
= chip
->state
;
998 chip
->state
= FL_SYNCING
;
999 /* No need to wake_up() on this state change -
1000 * as the whole point is that nobody can do anything
1001 * with the chip now anyway.
1004 mutex_unlock(&chip
->mutex
);
1008 /* Not an idle state */
1009 set_current_state(TASK_UNINTERRUPTIBLE
);
1010 add_wait_queue(&chip
->wq
, &wait
);
1012 mutex_unlock(&chip
->mutex
);
1014 remove_wait_queue(&chip
->wq
, &wait
);
1020 /* Unlock the chips again */
1022 for (i
--; i
>=0; i
--) {
1023 chip
= &cfi
->chips
[i
];
1025 mutex_lock(&chip
->mutex
);
1027 if (chip
->state
== FL_SYNCING
) {
1028 chip
->state
= chip
->oldstate
;
1031 mutex_unlock(&chip
->mutex
);
1035 static inline int do_lock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1037 struct cfi_private
*cfi
= map
->fldrv_priv
;
1038 map_word status
, status_OK
;
1039 unsigned long timeo
= jiffies
+ HZ
;
1040 DECLARE_WAITQUEUE(wait
, current
);
1044 /* Let's determine this according to the interleave only once */
1045 status_OK
= CMD(0x80);
1047 timeo
= jiffies
+ HZ
;
1049 mutex_lock(&chip
->mutex
);
1051 /* Check that the chip's ready to talk to us. */
1052 switch (chip
->state
) {
1054 case FL_JEDEC_QUERY
:
1056 map_write(map
, CMD(0x70), adr
);
1057 chip
->state
= FL_STATUS
;
1060 status
= map_read(map
, adr
);
1061 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1064 /* Urgh. Chip not yet ready to talk to us. */
1065 if (time_after(jiffies
, timeo
)) {
1066 mutex_unlock(&chip
->mutex
);
1067 printk(KERN_ERR
"waiting for chip to be ready timed out in lock\n");
1071 /* Latency issues. Drop the lock, wait a while and retry */
1072 mutex_unlock(&chip
->mutex
);
1077 /* Stick ourselves on a wait queue to be woken when
1078 someone changes the status */
1079 set_current_state(TASK_UNINTERRUPTIBLE
);
1080 add_wait_queue(&chip
->wq
, &wait
);
1081 mutex_unlock(&chip
->mutex
);
1083 remove_wait_queue(&chip
->wq
, &wait
);
1084 timeo
= jiffies
+ HZ
;
1089 map_write(map
, CMD(0x60), adr
);
1090 map_write(map
, CMD(0x01), adr
);
1091 chip
->state
= FL_LOCKING
;
1093 mutex_unlock(&chip
->mutex
);
1095 mutex_lock(&chip
->mutex
);
1097 /* FIXME. Use a timer to check this, and return immediately. */
1098 /* Once the state machine's known to be working I'll do that */
1100 timeo
= jiffies
+ (HZ
*2);
1103 status
= map_read(map
, adr
);
1104 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1107 /* OK Still waiting */
1108 if (time_after(jiffies
, timeo
)) {
1109 map_write(map
, CMD(0x70), adr
);
1110 chip
->state
= FL_STATUS
;
1111 printk(KERN_ERR
"waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1113 mutex_unlock(&chip
->mutex
);
1117 /* Latency issues. Drop the lock, wait a while and retry */
1118 mutex_unlock(&chip
->mutex
);
1120 mutex_lock(&chip
->mutex
);
1123 /* Done and happy. */
1124 chip
->state
= FL_STATUS
;
1127 mutex_unlock(&chip
->mutex
);
1130 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1132 struct map_info
*map
= mtd
->priv
;
1133 struct cfi_private
*cfi
= map
->fldrv_priv
;
1135 int chipnum
, ret
= 0;
1136 #ifdef DEBUG_LOCK_BITS
1137 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1140 if (ofs
& (mtd
->erasesize
- 1))
1143 if (len
& (mtd
->erasesize
-1))
1146 chipnum
= ofs
>> cfi
->chipshift
;
1147 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1151 #ifdef DEBUG_LOCK_BITS
1152 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1153 printk("before lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1154 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1157 ret
= do_lock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1159 #ifdef DEBUG_LOCK_BITS
1160 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1161 printk("after lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1162 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1168 adr
+= mtd
->erasesize
;
1169 len
-= mtd
->erasesize
;
1171 if (adr
>> cfi
->chipshift
) {
1175 if (chipnum
>= cfi
->numchips
)
1181 static inline int do_unlock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1183 struct cfi_private
*cfi
= map
->fldrv_priv
;
1184 map_word status
, status_OK
;
1185 unsigned long timeo
= jiffies
+ HZ
;
1186 DECLARE_WAITQUEUE(wait
, current
);
1190 /* Let's determine this according to the interleave only once */
1191 status_OK
= CMD(0x80);
1193 timeo
= jiffies
+ HZ
;
1195 mutex_lock(&chip
->mutex
);
1197 /* Check that the chip's ready to talk to us. */
1198 switch (chip
->state
) {
1200 case FL_JEDEC_QUERY
:
1202 map_write(map
, CMD(0x70), adr
);
1203 chip
->state
= FL_STATUS
;
1206 status
= map_read(map
, adr
);
1207 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1210 /* Urgh. Chip not yet ready to talk to us. */
1211 if (time_after(jiffies
, timeo
)) {
1212 mutex_unlock(&chip
->mutex
);
1213 printk(KERN_ERR
"waiting for chip to be ready timed out in unlock\n");
1217 /* Latency issues. Drop the lock, wait a while and retry */
1218 mutex_unlock(&chip
->mutex
);
1223 /* Stick ourselves on a wait queue to be woken when
1224 someone changes the status */
1225 set_current_state(TASK_UNINTERRUPTIBLE
);
1226 add_wait_queue(&chip
->wq
, &wait
);
1227 mutex_unlock(&chip
->mutex
);
1229 remove_wait_queue(&chip
->wq
, &wait
);
1230 timeo
= jiffies
+ HZ
;
1235 map_write(map
, CMD(0x60), adr
);
1236 map_write(map
, CMD(0xD0), adr
);
1237 chip
->state
= FL_UNLOCKING
;
1239 mutex_unlock(&chip
->mutex
);
1241 mutex_lock(&chip
->mutex
);
1243 /* FIXME. Use a timer to check this, and return immediately. */
1244 /* Once the state machine's known to be working I'll do that */
1246 timeo
= jiffies
+ (HZ
*2);
1249 status
= map_read(map
, adr
);
1250 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1253 /* OK Still waiting */
1254 if (time_after(jiffies
, timeo
)) {
1255 map_write(map
, CMD(0x70), adr
);
1256 chip
->state
= FL_STATUS
;
1257 printk(KERN_ERR
"waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1259 mutex_unlock(&chip
->mutex
);
1263 /* Latency issues. Drop the unlock, wait a while and retry */
1264 mutex_unlock(&chip
->mutex
);
1266 mutex_lock(&chip
->mutex
);
1269 /* Done and happy. */
1270 chip
->state
= FL_STATUS
;
1273 mutex_unlock(&chip
->mutex
);
1276 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1278 struct map_info
*map
= mtd
->priv
;
1279 struct cfi_private
*cfi
= map
->fldrv_priv
;
1281 int chipnum
, ret
= 0;
1282 #ifdef DEBUG_LOCK_BITS
1283 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1286 chipnum
= ofs
>> cfi
->chipshift
;
1287 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1289 #ifdef DEBUG_LOCK_BITS
1291 unsigned long temp_adr
= adr
;
1292 unsigned long temp_len
= len
;
1294 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1296 printk("before unlock %x: block status register is %x\n",temp_adr
,cfi_read_query(map
, temp_adr
+(2*ofs_factor
)));
1297 temp_adr
+= mtd
->erasesize
;
1298 temp_len
-= mtd
->erasesize
;
1300 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1304 ret
= do_unlock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1306 #ifdef DEBUG_LOCK_BITS
1307 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1308 printk("after unlock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1309 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1315 static int cfi_staa_suspend(struct mtd_info
*mtd
)
1317 struct map_info
*map
= mtd
->priv
;
1318 struct cfi_private
*cfi
= map
->fldrv_priv
;
1320 struct flchip
*chip
;
1323 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1324 chip
= &cfi
->chips
[i
];
1326 mutex_lock(&chip
->mutex
);
1328 switch(chip
->state
) {
1332 case FL_JEDEC_QUERY
:
1333 chip
->oldstate
= chip
->state
;
1334 chip
->state
= FL_PM_SUSPENDED
;
1335 /* No need to wake_up() on this state change -
1336 * as the whole point is that nobody can do anything
1337 * with the chip now anyway.
1339 case FL_PM_SUSPENDED
:
1346 mutex_unlock(&chip
->mutex
);
1349 /* Unlock the chips again */
1352 for (i
--; i
>=0; i
--) {
1353 chip
= &cfi
->chips
[i
];
1355 mutex_lock(&chip
->mutex
);
1357 if (chip
->state
== FL_PM_SUSPENDED
) {
1358 /* No need to force it into a known state here,
1359 because we're returning failure, and it didn't
1361 chip
->state
= chip
->oldstate
;
1364 mutex_unlock(&chip
->mutex
);
1371 static void cfi_staa_resume(struct mtd_info
*mtd
)
1373 struct map_info
*map
= mtd
->priv
;
1374 struct cfi_private
*cfi
= map
->fldrv_priv
;
1376 struct flchip
*chip
;
1378 for (i
=0; i
<cfi
->numchips
; i
++) {
1380 chip
= &cfi
->chips
[i
];
1382 mutex_lock(&chip
->mutex
);
1384 /* Go to known state. Chip may have been power cycled */
1385 if (chip
->state
== FL_PM_SUSPENDED
) {
1386 map_write(map
, CMD(0xFF), 0);
1387 chip
->state
= FL_READY
;
1391 mutex_unlock(&chip
->mutex
);
1395 static void cfi_staa_destroy(struct mtd_info
*mtd
)
1397 struct map_info
*map
= mtd
->priv
;
1398 struct cfi_private
*cfi
= map
->fldrv_priv
;
1399 kfree(cfi
->cmdset_priv
);
1403 MODULE_LICENSE("GPL");