2 * Handles the M-Systems DiskOnChip G3 chip
4 * Copyright (C) 2011 Robert Jarzmik
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/platform_device.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/bitmap.h>
33 #include <linux/bitrev.h>
34 #include <linux/bch.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
39 #define CREATE_TRACE_POINTS
43 * This driver handles the DiskOnChip G3 flash memory.
45 * As no specification is available from M-Systems/Sandisk, this drivers lacks
46 * several functions available on the chip, as :
49 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
50 * the driver assumes a 16bits data bus.
52 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
53 * - a 1 byte Hamming code stored in the OOB for each page
54 * - a 7 bytes BCH code stored in the OOB for each page
56 * - BCH is in GF(2^14)
57 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
59 * - BCH can correct up to 4 bits (t = 4)
60 * - BCH syndroms are calculated in hardware, and checked in hardware as well
64 static unsigned int reliable_mode
;
65 module_param(reliable_mode
, uint
, 0);
66 MODULE_PARM_DESC(reliable_mode
, "Set the docg3 mode (0=normal MLC, 1=fast, "
67 "2=reliable) : MLC normal operations are in normal mode");
70 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
71 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
72 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
73 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
74 * @oobavail: 8 available bytes remaining after ECC toll
76 static struct nand_ecclayout docg3_oobinfo
= {
78 .eccpos
= {7, 8, 9, 10, 11, 12, 13, 14},
79 .oobfree
= {{0, 7}, {15, 1} },
83 static inline u8
doc_readb(struct docg3
*docg3
, u16 reg
)
85 u8 val
= readb(docg3
->cascade
->base
+ reg
);
87 trace_docg3_io(0, 8, reg
, (int)val
);
91 static inline u16
doc_readw(struct docg3
*docg3
, u16 reg
)
93 u16 val
= readw(docg3
->cascade
->base
+ reg
);
95 trace_docg3_io(0, 16, reg
, (int)val
);
99 static inline void doc_writeb(struct docg3
*docg3
, u8 val
, u16 reg
)
101 writeb(val
, docg3
->cascade
->base
+ reg
);
102 trace_docg3_io(1, 8, reg
, val
);
105 static inline void doc_writew(struct docg3
*docg3
, u16 val
, u16 reg
)
107 writew(val
, docg3
->cascade
->base
+ reg
);
108 trace_docg3_io(1, 16, reg
, val
);
111 static inline void doc_flash_command(struct docg3
*docg3
, u8 cmd
)
113 doc_writeb(docg3
, cmd
, DOC_FLASHCOMMAND
);
116 static inline void doc_flash_sequence(struct docg3
*docg3
, u8 seq
)
118 doc_writeb(docg3
, seq
, DOC_FLASHSEQUENCE
);
121 static inline void doc_flash_address(struct docg3
*docg3
, u8 addr
)
123 doc_writeb(docg3
, addr
, DOC_FLASHADDRESS
);
126 static char const *part_probes
[] = { "cmdlinepart", "saftlpart", NULL
};
128 static int doc_register_readb(struct docg3
*docg3
, int reg
)
132 doc_writew(docg3
, reg
, DOC_READADDRESS
);
133 val
= doc_readb(docg3
, reg
);
134 doc_vdbg("Read register %04x : %02x\n", reg
, val
);
138 static int doc_register_readw(struct docg3
*docg3
, int reg
)
142 doc_writew(docg3
, reg
, DOC_READADDRESS
);
143 val
= doc_readw(docg3
, reg
);
144 doc_vdbg("Read register %04x : %04x\n", reg
, val
);
149 * doc_delay - delay docg3 operations
151 * @nbNOPs: the number of NOPs to issue
153 * As no specification is available, the right timings between chip commands are
154 * unknown. The only available piece of information are the observed nops on a
155 * working docg3 chip.
156 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
157 * friendlier msleep() functions or blocking mdelay().
159 static void doc_delay(struct docg3
*docg3
, int nbNOPs
)
163 doc_vdbg("NOP x %d\n", nbNOPs
);
164 for (i
= 0; i
< nbNOPs
; i
++)
165 doc_writeb(docg3
, 0, DOC_NOP
);
168 static int is_prot_seq_error(struct docg3
*docg3
)
172 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
173 return ctrl
& (DOC_CTRL_PROTECTION_ERROR
| DOC_CTRL_SEQUENCE_ERROR
);
176 static int doc_is_ready(struct docg3
*docg3
)
180 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
181 return ctrl
& DOC_CTRL_FLASHREADY
;
184 static int doc_wait_ready(struct docg3
*docg3
)
186 int maxWaitCycles
= 100;
191 } while (!doc_is_ready(docg3
) && maxWaitCycles
--);
193 if (maxWaitCycles
> 0)
199 static int doc_reset_seq(struct docg3
*docg3
)
203 doc_writeb(docg3
, 0x10, DOC_FLASHCONTROL
);
204 doc_flash_sequence(docg3
, DOC_SEQ_RESET
);
205 doc_flash_command(docg3
, DOC_CMD_RESET
);
207 ret
= doc_wait_ready(docg3
);
209 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret
? "false" : "true");
214 * doc_read_data_area - Read data from data area
216 * @buf: the buffer to fill in (might be NULL is dummy reads)
217 * @len: the length to read
218 * @first: first time read, DOC_READADDRESS should be set
220 * Reads bytes from flash data. Handles the single byte / even bytes reads.
222 static void doc_read_data_area(struct docg3
*docg3
, void *buf
, int len
,
229 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf
, len
);
234 doc_writew(docg3
, DOC_IOSPACE_DATA
, DOC_READADDRESS
);
236 for (i
= 0; i
< len4
; i
+= 2) {
237 data16
= doc_readw(docg3
, DOC_IOSPACE_DATA
);
245 doc_writew(docg3
, DOC_IOSPACE_DATA
| DOC_READADDR_ONE_BYTE
,
249 for (i
= 0; i
< cdr
; i
++) {
250 data8
= doc_readb(docg3
, DOC_IOSPACE_DATA
);
260 * doc_write_data_area - Write data into data area
262 * @buf: the buffer to get input bytes from
263 * @len: the length to write
265 * Writes bytes into flash data. Handles the single byte / even bytes writes.
267 static void doc_write_data_area(struct docg3
*docg3
, const void *buf
, int len
)
273 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf
, len
);
277 doc_writew(docg3
, DOC_IOSPACE_DATA
, DOC_READADDRESS
);
279 for (i
= 0; i
< len4
; i
+= 2) {
280 doc_writew(docg3
, *src16
, DOC_IOSPACE_DATA
);
285 for (i
= 0; i
< cdr
; i
++) {
286 doc_writew(docg3
, DOC_IOSPACE_DATA
| DOC_READADDR_ONE_BYTE
,
288 doc_writeb(docg3
, *src8
, DOC_IOSPACE_DATA
);
294 * doc_set_data_mode - Sets the flash to normal or reliable data mode
297 * The reliable data mode is a bit slower than the fast mode, but less errors
298 * occur. Entering the reliable mode cannot be done without entering the fast
301 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
302 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
303 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
304 * result, which is a logical and between bytes from page 0 and page 1 (which is
305 * consistent with the fact that writing to a page is _clearing_ bits of that
308 static void doc_set_reliable_mode(struct docg3
*docg3
)
310 static char *strmode
[] = { "normal", "fast", "reliable", "invalid" };
312 doc_dbg("doc_set_reliable_mode(%s)\n", strmode
[docg3
->reliable
]);
313 switch (docg3
->reliable
) {
317 doc_flash_sequence(docg3
, DOC_SEQ_SET_FASTMODE
);
318 doc_flash_command(docg3
, DOC_CMD_FAST_MODE
);
321 doc_flash_sequence(docg3
, DOC_SEQ_SET_RELIABLEMODE
);
322 doc_flash_command(docg3
, DOC_CMD_FAST_MODE
);
323 doc_flash_command(docg3
, DOC_CMD_RELIABLE_MODE
);
326 doc_err("doc_set_reliable_mode(): invalid mode\n");
333 * doc_set_asic_mode - Set the ASIC mode
337 * The ASIC can work in 3 modes :
338 * - RESET: all registers are zeroed
339 * - NORMAL: receives and handles commands
340 * - POWERDOWN: minimal poweruse, flash parts shut off
342 static void doc_set_asic_mode(struct docg3
*docg3
, u8 mode
)
346 for (i
= 0; i
< 12; i
++)
347 doc_readb(docg3
, DOC_IOSPACE_IPL
);
349 mode
|= DOC_ASICMODE_MDWREN
;
350 doc_dbg("doc_set_asic_mode(%02x)\n", mode
);
351 doc_writeb(docg3
, mode
, DOC_ASICMODE
);
352 doc_writeb(docg3
, ~mode
, DOC_ASICMODECONFIRM
);
357 * doc_set_device_id - Sets the devices id for cascaded G3 chips
359 * @id: the chip to select (amongst 0, 1, 2, 3)
361 * There can be 4 cascaded G3 chips. This function selects the one which will
362 * should be the active one.
364 static void doc_set_device_id(struct docg3
*docg3
, int id
)
368 doc_dbg("doc_set_device_id(%d)\n", id
);
369 doc_writeb(docg3
, id
, DOC_DEVICESELECT
);
370 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
372 ctrl
&= ~DOC_CTRL_VIOLATION
;
374 doc_writeb(docg3
, ctrl
, DOC_FLASHCONTROL
);
378 * doc_set_extra_page_mode - Change flash page layout
381 * Normally, the flash page is split into the data (512 bytes) and the out of
382 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
383 * leveling counters are stored. To access this last area of 4 bytes, a special
384 * mode must be input to the flash ASIC.
386 * Returns 0 if no error occured, -EIO else.
388 static int doc_set_extra_page_mode(struct docg3
*docg3
)
392 doc_dbg("doc_set_extra_page_mode()\n");
393 doc_flash_sequence(docg3
, DOC_SEQ_PAGE_SIZE_532
);
394 doc_flash_command(docg3
, DOC_CMD_PAGE_SIZE_532
);
397 fctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
398 if (fctrl
& (DOC_CTRL_PROTECTION_ERROR
| DOC_CTRL_SEQUENCE_ERROR
))
405 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
407 * @sector: the sector
409 static void doc_setup_addr_sector(struct docg3
*docg3
, int sector
)
412 doc_flash_address(docg3
, sector
& 0xff);
413 doc_flash_address(docg3
, (sector
>> 8) & 0xff);
414 doc_flash_address(docg3
, (sector
>> 16) & 0xff);
419 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
421 * @sector: the sector
422 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
424 static void doc_setup_writeaddr_sector(struct docg3
*docg3
, int sector
, int ofs
)
428 doc_flash_address(docg3
, ofs
& 0xff);
429 doc_flash_address(docg3
, sector
& 0xff);
430 doc_flash_address(docg3
, (sector
>> 8) & 0xff);
431 doc_flash_address(docg3
, (sector
>> 16) & 0xff);
436 * doc_seek - Set both flash planes to the specified block, page for reading
438 * @block0: the first plane block index
439 * @block1: the second plane block index
440 * @page: the page index within the block
441 * @wear: if true, read will occur on the 4 extra bytes of the wear area
442 * @ofs: offset in page to read
444 * Programs the flash even and odd planes to the specific block and page.
445 * Alternatively, programs the flash to the wear area of the specified page.
447 static int doc_read_seek(struct docg3
*docg3
, int block0
, int block1
, int page
,
452 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
453 block0
, block1
, page
, ofs
, wear
);
455 if (!wear
&& (ofs
< 2 * DOC_LAYOUT_PAGE_SIZE
)) {
456 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE1
);
457 doc_flash_command(docg3
, DOC_CMD_READ_PLANE1
);
460 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE2
);
461 doc_flash_command(docg3
, DOC_CMD_READ_PLANE2
);
465 doc_set_reliable_mode(docg3
);
467 ret
= doc_set_extra_page_mode(docg3
);
471 doc_flash_sequence(docg3
, DOC_SEQ_READ
);
472 sector
= (block0
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
473 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
474 doc_setup_addr_sector(docg3
, sector
);
476 sector
= (block1
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
477 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
478 doc_setup_addr_sector(docg3
, sector
);
486 * doc_write_seek - Set both flash planes to the specified block, page for writing
488 * @block0: the first plane block index
489 * @block1: the second plane block index
490 * @page: the page index within the block
491 * @ofs: offset in page to write
493 * Programs the flash even and odd planes to the specific block and page.
494 * Alternatively, programs the flash to the wear area of the specified page.
496 static int doc_write_seek(struct docg3
*docg3
, int block0
, int block1
, int page
,
501 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
502 block0
, block1
, page
, ofs
);
504 doc_set_reliable_mode(docg3
);
506 if (ofs
< 2 * DOC_LAYOUT_PAGE_SIZE
) {
507 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE1
);
508 doc_flash_command(docg3
, DOC_CMD_READ_PLANE1
);
511 doc_flash_sequence(docg3
, DOC_SEQ_SET_PLANE2
);
512 doc_flash_command(docg3
, DOC_CMD_READ_PLANE2
);
516 doc_flash_sequence(docg3
, DOC_SEQ_PAGE_SETUP
);
517 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE1
);
519 sector
= (block0
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
520 doc_setup_writeaddr_sector(docg3
, sector
, ofs
);
522 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE3
);
524 ret
= doc_wait_ready(docg3
);
528 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE1
);
529 sector
= (block1
<< DOC_ADDR_BLOCK_SHIFT
) + (page
& DOC_ADDR_PAGE_MASK
);
530 doc_setup_writeaddr_sector(docg3
, sector
, ofs
);
539 * doc_read_page_ecc_init - Initialize hardware ECC engine
541 * @len: the number of bytes covered by the ECC (BCH covered)
543 * The function does initialize the hardware ECC engine to compute the Hamming
544 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
546 * Return 0 if succeeded, -EIO on error
548 static int doc_read_page_ecc_init(struct docg3
*docg3
, int len
)
550 doc_writew(docg3
, DOC_ECCCONF0_READ_MODE
551 | DOC_ECCCONF0_BCH_ENABLE
| DOC_ECCCONF0_HAMMING_ENABLE
552 | (len
& DOC_ECCCONF0_DATA_BYTES_MASK
),
555 doc_register_readb(docg3
, DOC_FLASHCONTROL
);
556 return doc_wait_ready(docg3
);
560 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
562 * @len: the number of bytes covered by the ECC (BCH covered)
564 * The function does initialize the hardware ECC engine to compute the Hamming
565 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
567 * Return 0 if succeeded, -EIO on error
569 static int doc_write_page_ecc_init(struct docg3
*docg3
, int len
)
571 doc_writew(docg3
, DOC_ECCCONF0_WRITE_MODE
572 | DOC_ECCCONF0_BCH_ENABLE
| DOC_ECCCONF0_HAMMING_ENABLE
573 | (len
& DOC_ECCCONF0_DATA_BYTES_MASK
),
576 doc_register_readb(docg3
, DOC_FLASHCONTROL
);
577 return doc_wait_ready(docg3
);
581 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
584 * Disables the hardware ECC generator and checker, for unchecked reads (as when
585 * reading OOB only or write status byte).
587 static void doc_ecc_disable(struct docg3
*docg3
)
589 doc_writew(docg3
, DOC_ECCCONF0_READ_MODE
, DOC_ECCCONF0
);
594 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
596 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
598 * This function programs the ECC hardware to compute the hamming code on the
599 * last provided N bytes to the hardware generator.
601 static void doc_hamming_ecc_init(struct docg3
*docg3
, int nb_bytes
)
605 ecc_conf1
= doc_register_readb(docg3
, DOC_ECCCONF1
);
606 ecc_conf1
&= ~DOC_ECCCONF1_HAMMING_BITS_MASK
;
607 ecc_conf1
|= (nb_bytes
& DOC_ECCCONF1_HAMMING_BITS_MASK
);
608 doc_writeb(docg3
, ecc_conf1
, DOC_ECCCONF1
);
612 * doc_ecc_bch_fix_data - Fix if need be read data from flash
614 * @buf: the buffer of read data (512 + 7 + 1 bytes)
615 * @hwecc: the hardware calculated ECC.
616 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
617 * area data, and calc_ecc the ECC calculated by the hardware generator.
619 * Checks if the received data matches the ECC, and if an error is detected,
620 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
621 * understands the (data, ecc, syndroms) in an inverted order in comparison to
622 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
623 * bit6 and bit 1, ...) for all ECC data.
625 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
626 * algorithm is used to decode this. However the hw operates on page
627 * data in a bit order that is the reverse of that of the bch alg,
628 * requiring that the bits be reversed on the result. Thanks to Ivan
629 * Djelic for his analysis.
631 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
632 * errors were detected and cannot be fixed.
634 static int doc_ecc_bch_fix_data(struct docg3
*docg3
, void *buf
, u8
*hwecc
)
636 u8 ecc
[DOC_ECC_BCH_SIZE
];
637 int errorpos
[DOC_ECC_BCH_T
], i
, numerrs
;
639 for (i
= 0; i
< DOC_ECC_BCH_SIZE
; i
++)
640 ecc
[i
] = bitrev8(hwecc
[i
]);
641 numerrs
= decode_bch(docg3
->cascade
->bch
, NULL
,
642 DOC_ECC_BCH_COVERED_BYTES
,
643 NULL
, ecc
, NULL
, errorpos
);
644 BUG_ON(numerrs
== -EINVAL
);
648 for (i
= 0; i
< numerrs
; i
++)
649 errorpos
[i
] = (errorpos
[i
] & ~7) | (7 - (errorpos
[i
] & 7));
650 for (i
= 0; i
< numerrs
; i
++)
651 if (errorpos
[i
] < DOC_ECC_BCH_COVERED_BYTES
*8)
652 /* error is located in data, correct it */
653 change_bit(errorpos
[i
], buf
);
655 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs
);
661 * doc_read_page_prepare - Prepares reading data from a flash page
663 * @block0: the first plane block index on flash memory
664 * @block1: the second plane block index on flash memory
665 * @page: the page index in the block
666 * @offset: the offset in the page (must be a multiple of 4)
668 * Prepares the page to be read in the flash memory :
669 * - tell ASIC to map the flash pages
670 * - tell ASIC to be in read mode
672 * After a call to this method, a call to doc_read_page_finish is mandatory,
673 * to end the read cycle of the flash.
675 * Read data from a flash page. The length to be read must be between 0 and
676 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
677 * the extra bytes reading is not implemented).
679 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
681 * - one read of 512 bytes at offset 0
682 * - one read of 512 bytes at offset 512 + 16
684 * Returns 0 if successful, -EIO if a read error occured.
686 static int doc_read_page_prepare(struct docg3
*docg3
, int block0
, int block1
,
687 int page
, int offset
)
689 int wear_area
= 0, ret
= 0;
691 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
692 block0
, block1
, page
, offset
);
693 if (offset
>= DOC_LAYOUT_WEAR_OFFSET
)
695 if (!wear_area
&& offset
> (DOC_LAYOUT_PAGE_OOB_SIZE
* 2))
698 doc_set_device_id(docg3
, docg3
->device_id
);
699 ret
= doc_reset_seq(docg3
);
703 /* Program the flash address block and page */
704 ret
= doc_read_seek(docg3
, block0
, block1
, page
, wear_area
, offset
);
708 doc_flash_command(docg3
, DOC_CMD_READ_ALL_PLANES
);
710 doc_wait_ready(docg3
);
712 doc_flash_command(docg3
, DOC_CMD_SET_ADDR_READ
);
714 if (offset
>= DOC_LAYOUT_PAGE_SIZE
* 2)
715 offset
-= 2 * DOC_LAYOUT_PAGE_SIZE
;
716 doc_flash_address(docg3
, offset
>> 2);
718 doc_wait_ready(docg3
);
720 doc_flash_command(docg3
, DOC_CMD_READ_FLASH
);
724 doc_writeb(docg3
, 0, DOC_DATAEND
);
730 * doc_read_page_getbytes - Reads bytes from a prepared page
732 * @len: the number of bytes to be read (must be a multiple of 4)
733 * @buf: the buffer to be filled in (or NULL is forget bytes)
734 * @first: 1 if first time read, DOC_READADDRESS should be set
737 static int doc_read_page_getbytes(struct docg3
*docg3
, int len
, u_char
*buf
,
740 doc_read_data_area(docg3
, buf
, len
, first
);
746 * doc_write_page_putbytes - Writes bytes into a prepared page
748 * @len: the number of bytes to be written
749 * @buf: the buffer of input bytes
752 static void doc_write_page_putbytes(struct docg3
*docg3
, int len
,
755 doc_write_data_area(docg3
, buf
, len
);
760 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
762 * @hwecc: the array of 7 integers where the hardware ecc will be stored
764 static void doc_get_bch_hw_ecc(struct docg3
*docg3
, u8
*hwecc
)
768 for (i
= 0; i
< DOC_ECC_BCH_SIZE
; i
++)
769 hwecc
[i
] = doc_register_readb(docg3
, DOC_BCH_HW_ECC(i
));
773 * doc_page_finish - Ends reading/writing of a flash page
776 static void doc_page_finish(struct docg3
*docg3
)
778 doc_writeb(docg3
, 0, DOC_DATAEND
);
783 * doc_read_page_finish - Ends reading of a flash page
786 * As a side effect, resets the chip selector to 0. This ensures that after each
787 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
788 * reboot will boot on floor 0, where the IPL is.
790 static void doc_read_page_finish(struct docg3
*docg3
)
792 doc_page_finish(docg3
);
793 doc_set_device_id(docg3
, 0);
797 * calc_block_sector - Calculate blocks, pages and ofs.
799 * @from: offset in flash
800 * @block0: first plane block index calculated
801 * @block1: second plane block index calculated
802 * @page: page calculated
803 * @ofs: offset in page
804 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
807 * The calculation is based on the reliable/normal mode. In normal mode, the 64
808 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
809 * clones, only 32 pages per block are available.
811 static void calc_block_sector(loff_t from
, int *block0
, int *block1
, int *page
,
812 int *ofs
, int reliable
)
814 uint sector
, pages_biblock
;
816 pages_biblock
= DOC_LAYOUT_PAGES_PER_BLOCK
* DOC_LAYOUT_NBPLANES
;
817 if (reliable
== 1 || reliable
== 2)
820 sector
= from
/ DOC_LAYOUT_PAGE_SIZE
;
821 *block0
= sector
/ pages_biblock
* DOC_LAYOUT_NBPLANES
;
822 *block1
= *block0
+ 1;
823 *page
= sector
% pages_biblock
;
824 *page
/= DOC_LAYOUT_NBPLANES
;
825 if (reliable
== 1 || reliable
== 2)
828 *ofs
= DOC_LAYOUT_PAGE_OOB_SIZE
;
834 * doc_read_oob - Read out of band bytes from flash
836 * @from: the offset from first block and first page, in bytes, aligned on page
838 * @ops: the mtd oob structure
840 * Reads flash memory OOB area of pages.
842 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
844 static int doc_read_oob(struct mtd_info
*mtd
, loff_t from
,
845 struct mtd_oob_ops
*ops
)
847 struct docg3
*docg3
= mtd
->priv
;
848 int block0
, block1
, page
, ret
, skip
, ofs
= 0;
849 u8
*oobbuf
= ops
->oobbuf
;
850 u8
*buf
= ops
->datbuf
;
851 size_t len
, ooblen
, nbdata
, nboob
;
852 u8 hwecc
[DOC_ECC_BCH_SIZE
], eccconf1
;
859 ooblen
= ops
->ooblen
;
863 if (oobbuf
&& ops
->mode
== MTD_OPS_PLACE_OOB
)
864 oobbuf
+= ops
->ooboffs
;
866 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
867 from
, ops
->mode
, buf
, len
, oobbuf
, ooblen
);
868 if (ooblen
% DOC_LAYOUT_OOB_SIZE
)
871 if (from
+ len
> mtd
->size
)
877 skip
= from
% DOC_LAYOUT_PAGE_SIZE
;
878 mutex_lock(&docg3
->cascade
->lock
);
879 while (!ret
&& (len
> 0 || ooblen
> 0)) {
880 calc_block_sector(from
- skip
, &block0
, &block1
, &page
, &ofs
,
882 nbdata
= min_t(size_t, len
, DOC_LAYOUT_PAGE_SIZE
- skip
);
883 nboob
= min_t(size_t, ooblen
, (size_t)DOC_LAYOUT_OOB_SIZE
);
884 ret
= doc_read_page_prepare(docg3
, block0
, block1
, page
, ofs
);
887 ret
= doc_read_page_ecc_init(docg3
, DOC_ECC_BCH_TOTAL_BYTES
);
890 ret
= doc_read_page_getbytes(docg3
, skip
, NULL
, 1);
893 ret
= doc_read_page_getbytes(docg3
, nbdata
, buf
, 0);
896 doc_read_page_getbytes(docg3
,
897 DOC_LAYOUT_PAGE_SIZE
- nbdata
- skip
,
899 ret
= doc_read_page_getbytes(docg3
, nboob
, oobbuf
, 0);
902 doc_read_page_getbytes(docg3
, DOC_LAYOUT_OOB_SIZE
- nboob
,
905 doc_get_bch_hw_ecc(docg3
, hwecc
);
906 eccconf1
= doc_register_readb(docg3
, DOC_ECCCONF1
);
908 if (nboob
>= DOC_LAYOUT_OOB_SIZE
) {
909 doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
910 oobbuf
[0], oobbuf
[1], oobbuf
[2], oobbuf
[3],
911 oobbuf
[4], oobbuf
[5], oobbuf
[6]);
912 doc_dbg("OOB - HAMMING: %02x\n", oobbuf
[7]);
913 doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
914 oobbuf
[8], oobbuf
[9], oobbuf
[10], oobbuf
[11],
915 oobbuf
[12], oobbuf
[13], oobbuf
[14]);
916 doc_dbg("OOB - UNUSED: %02x\n", oobbuf
[15]);
918 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1
);
919 doc_dbg("ECC HW_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
920 hwecc
[0], hwecc
[1], hwecc
[2], hwecc
[3], hwecc
[4],
924 if (is_prot_seq_error(docg3
))
927 if ((block0
>= DOC_LAYOUT_BLOCK_FIRST_DATA
) &&
928 (eccconf1
& DOC_ECCCONF1_BCH_SYNDROM_ERR
) &&
929 (eccconf1
& DOC_ECCCONF1_PAGE_IS_WRITTEN
) &&
930 (ops
->mode
!= MTD_OPS_RAW
) &&
931 (nbdata
== DOC_LAYOUT_PAGE_SIZE
)) {
932 ret
= doc_ecc_bch_fix_data(docg3
, buf
, hwecc
);
934 mtd
->ecc_stats
.failed
++;
938 mtd
->ecc_stats
.corrected
+= ret
;
943 doc_read_page_finish(docg3
);
944 ops
->retlen
+= nbdata
;
945 ops
->oobretlen
+= nboob
;
950 from
+= DOC_LAYOUT_PAGE_SIZE
;
955 mutex_unlock(&docg3
->cascade
->lock
);
958 doc_read_page_finish(docg3
);
963 * doc_read - Read bytes from flash
965 * @from: the offset from first block and first page, in bytes, aligned on page
967 * @len: the number of bytes to read (must be a multiple of 4)
968 * @retlen: the number of bytes actually read
969 * @buf: the filled in buffer
971 * Reads flash memory pages. This function does not read the OOB chunk, but only
974 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
976 static int doc_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
977 size_t *retlen
, u_char
*buf
)
979 struct mtd_oob_ops ops
;
982 memset(&ops
, 0, sizeof(ops
));
985 ops
.mode
= MTD_OPS_AUTO_OOB
;
987 ret
= doc_read_oob(mtd
, from
, &ops
);
988 *retlen
= ops
.retlen
;
992 static int doc_reload_bbt(struct docg3
*docg3
)
994 int block
= DOC_LAYOUT_BLOCK_BBT
;
995 int ret
= 0, nbpages
, page
;
996 u_char
*buf
= docg3
->bbt
;
998 nbpages
= DIV_ROUND_UP(docg3
->max_block
+ 1, 8 * DOC_LAYOUT_PAGE_SIZE
);
999 for (page
= 0; !ret
&& (page
< nbpages
); page
++) {
1000 ret
= doc_read_page_prepare(docg3
, block
, block
+ 1,
1001 page
+ DOC_LAYOUT_PAGE_BBT
, 0);
1003 ret
= doc_read_page_ecc_init(docg3
,
1004 DOC_LAYOUT_PAGE_SIZE
);
1006 doc_read_page_getbytes(docg3
, DOC_LAYOUT_PAGE_SIZE
,
1008 buf
+= DOC_LAYOUT_PAGE_SIZE
;
1010 doc_read_page_finish(docg3
);
1015 * doc_block_isbad - Checks whether a block is good or not
1017 * @from: the offset to find the correct block
1019 * Returns 1 if block is bad, 0 if block is good
1021 static int doc_block_isbad(struct mtd_info
*mtd
, loff_t from
)
1023 struct docg3
*docg3
= mtd
->priv
;
1024 int block0
, block1
, page
, ofs
, is_good
;
1026 calc_block_sector(from
, &block0
, &block1
, &page
, &ofs
,
1028 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1029 from
, block0
, block1
, page
, ofs
);
1031 if (block0
< DOC_LAYOUT_BLOCK_FIRST_DATA
)
1033 if (block1
> docg3
->max_block
)
1036 is_good
= docg3
->bbt
[block0
>> 3] & (1 << (block0
& 0x7));
1042 * doc_get_erase_count - Get block erase count
1043 * @docg3: the device
1044 * @from: the offset in which the block is.
1046 * Get the number of times a block was erased. The number is the maximum of
1047 * erase times between first and second plane (which should be equal normally).
1049 * Returns The number of erases, or -EINVAL or -EIO on error.
1051 static int doc_get_erase_count(struct docg3
*docg3
, loff_t from
)
1053 u8 buf
[DOC_LAYOUT_WEAR_SIZE
];
1054 int ret
, plane1_erase_count
, plane2_erase_count
;
1055 int block0
, block1
, page
, ofs
;
1057 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from
, buf
);
1058 if (from
% DOC_LAYOUT_PAGE_SIZE
)
1060 calc_block_sector(from
, &block0
, &block1
, &page
, &ofs
, docg3
->reliable
);
1061 if (block1
> docg3
->max_block
)
1064 ret
= doc_reset_seq(docg3
);
1066 ret
= doc_read_page_prepare(docg3
, block0
, block1
, page
,
1067 ofs
+ DOC_LAYOUT_WEAR_OFFSET
);
1069 ret
= doc_read_page_getbytes(docg3
, DOC_LAYOUT_WEAR_SIZE
,
1071 doc_read_page_finish(docg3
);
1073 if (ret
|| (buf
[0] != DOC_ERASE_MARK
) || (buf
[2] != DOC_ERASE_MARK
))
1075 plane1_erase_count
= (u8
)(~buf
[1]) | ((u8
)(~buf
[4]) << 8)
1076 | ((u8
)(~buf
[5]) << 16);
1077 plane2_erase_count
= (u8
)(~buf
[3]) | ((u8
)(~buf
[6]) << 8)
1078 | ((u8
)(~buf
[7]) << 16);
1080 return max(plane1_erase_count
, plane2_erase_count
);
1085 * doc_get_op_status - get erase/write operation status
1086 * @docg3: the device
1088 * Queries the status from the chip, and returns it
1090 * Returns the status (bits DOC_PLANES_STATUS_*)
1092 static int doc_get_op_status(struct docg3
*docg3
)
1096 doc_flash_sequence(docg3
, DOC_SEQ_PLANES_STATUS
);
1097 doc_flash_command(docg3
, DOC_CMD_PLANES_STATUS
);
1098 doc_delay(docg3
, 5);
1100 doc_ecc_disable(docg3
);
1101 doc_read_data_area(docg3
, &status
, 1, 1);
1106 * doc_write_erase_wait_status - wait for write or erase completion
1107 * @docg3: the device
1109 * Wait for the chip to be ready again after erase or write operation, and check
1110 * erase/write status.
1112 * Returns 0 if erase successfull, -EIO if erase/write issue, -ETIMEOUT if
1115 static int doc_write_erase_wait_status(struct docg3
*docg3
)
1117 int i
, status
, ret
= 0;
1119 for (i
= 0; !doc_is_ready(docg3
) && i
< 5; i
++)
1121 if (!doc_is_ready(docg3
)) {
1122 doc_dbg("Timeout reached and the chip is still not ready\n");
1127 status
= doc_get_op_status(docg3
);
1128 if (status
& DOC_PLANES_STATUS_FAIL
) {
1129 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1135 doc_page_finish(docg3
);
1140 * doc_erase_block - Erase a couple of blocks
1141 * @docg3: the device
1142 * @block0: the first block to erase (leftmost plane)
1143 * @block1: the second block to erase (rightmost plane)
1145 * Erase both blocks, and return operation status
1147 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1148 * ready for too long
1150 static int doc_erase_block(struct docg3
*docg3
, int block0
, int block1
)
1154 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0
, block1
);
1155 ret
= doc_reset_seq(docg3
);
1159 doc_set_reliable_mode(docg3
);
1160 doc_flash_sequence(docg3
, DOC_SEQ_ERASE
);
1162 sector
= block0
<< DOC_ADDR_BLOCK_SHIFT
;
1163 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
1164 doc_setup_addr_sector(docg3
, sector
);
1165 sector
= block1
<< DOC_ADDR_BLOCK_SHIFT
;
1166 doc_flash_command(docg3
, DOC_CMD_PROG_BLOCK_ADDR
);
1167 doc_setup_addr_sector(docg3
, sector
);
1168 doc_delay(docg3
, 1);
1170 doc_flash_command(docg3
, DOC_CMD_ERASECYCLE2
);
1171 doc_delay(docg3
, 2);
1173 if (is_prot_seq_error(docg3
)) {
1174 doc_err("Erase blocks %d,%d error\n", block0
, block1
);
1178 return doc_write_erase_wait_status(docg3
);
1182 * doc_erase - Erase a portion of the chip
1184 * @info: the erase info
1186 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1187 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1189 * Returns 0 if erase successful, -EINVAL if adressing error, -EIO if erase
1192 static int doc_erase(struct mtd_info
*mtd
, struct erase_info
*info
)
1194 struct docg3
*docg3
= mtd
->priv
;
1196 int block0
, block1
, page
, ret
, ofs
= 0;
1198 doc_dbg("doc_erase(from=%lld, len=%lld\n", info
->addr
, info
->len
);
1200 info
->state
= MTD_ERASE_PENDING
;
1201 calc_block_sector(info
->addr
+ info
->len
, &block0
, &block1
, &page
,
1202 &ofs
, docg3
->reliable
);
1204 if (info
->addr
+ info
->len
> mtd
->size
|| page
|| ofs
)
1208 calc_block_sector(info
->addr
, &block0
, &block1
, &page
, &ofs
,
1210 mutex_lock(&docg3
->cascade
->lock
);
1211 doc_set_device_id(docg3
, docg3
->device_id
);
1212 doc_set_reliable_mode(docg3
);
1213 for (len
= info
->len
; !ret
&& len
> 0; len
-= mtd
->erasesize
) {
1214 info
->state
= MTD_ERASING
;
1215 ret
= doc_erase_block(docg3
, block0
, block1
);
1219 mutex_unlock(&docg3
->cascade
->lock
);
1224 info
->state
= MTD_ERASE_DONE
;
1228 info
->state
= MTD_ERASE_FAILED
;
1233 * doc_write_page - Write a single page to the chip
1234 * @docg3: the device
1235 * @to: the offset from first block and first page, in bytes, aligned on page
1237 * @buf: buffer to get bytes from
1238 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1240 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1241 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1242 * remaining ones are filled with hardware Hamming and BCH
1243 * computations. Its value is not meaningfull is oob == NULL.
1245 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1246 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1247 * BCH generator if autoecc is not null.
1249 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1251 static int doc_write_page(struct docg3
*docg3
, loff_t to
, const u_char
*buf
,
1252 const u_char
*oob
, int autoecc
)
1254 int block0
, block1
, page
, ret
, ofs
= 0;
1255 u8 hwecc
[DOC_ECC_BCH_SIZE
], hamming
;
1257 doc_dbg("doc_write_page(to=%lld)\n", to
);
1258 calc_block_sector(to
, &block0
, &block1
, &page
, &ofs
, docg3
->reliable
);
1260 doc_set_device_id(docg3
, docg3
->device_id
);
1261 ret
= doc_reset_seq(docg3
);
1265 /* Program the flash address block and page */
1266 ret
= doc_write_seek(docg3
, block0
, block1
, page
, ofs
);
1270 doc_write_page_ecc_init(docg3
, DOC_ECC_BCH_TOTAL_BYTES
);
1271 doc_delay(docg3
, 2);
1272 doc_write_page_putbytes(docg3
, DOC_LAYOUT_PAGE_SIZE
, buf
);
1274 if (oob
&& autoecc
) {
1275 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_PAGEINFO_SZ
, oob
);
1276 doc_delay(docg3
, 2);
1277 oob
+= DOC_LAYOUT_OOB_UNUSED_OFS
;
1279 hamming
= doc_register_readb(docg3
, DOC_HAMMINGPARITY
);
1280 doc_delay(docg3
, 2);
1281 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_HAMMING_SZ
,
1283 doc_delay(docg3
, 2);
1285 doc_get_bch_hw_ecc(docg3
, hwecc
);
1286 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_BCH_SZ
, hwecc
);
1287 doc_delay(docg3
, 2);
1289 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_UNUSED_SZ
, oob
);
1291 if (oob
&& !autoecc
)
1292 doc_write_page_putbytes(docg3
, DOC_LAYOUT_OOB_SIZE
, oob
);
1294 doc_delay(docg3
, 2);
1295 doc_page_finish(docg3
);
1296 doc_delay(docg3
, 2);
1297 doc_flash_command(docg3
, DOC_CMD_PROG_CYCLE2
);
1298 doc_delay(docg3
, 2);
1301 * The wait status will perform another doc_page_finish() call, but that
1302 * seems to please the docg3, so leave it.
1304 ret
= doc_write_erase_wait_status(docg3
);
1307 doc_read_page_finish(docg3
);
1312 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1313 * @ops: the oob operations
1315 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1317 static int doc_guess_autoecc(struct mtd_oob_ops
*ops
)
1321 switch (ops
->mode
) {
1322 case MTD_OPS_PLACE_OOB
:
1323 case MTD_OPS_AUTO_OOB
:
1336 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1337 * @dst: the target 16 bytes OOB buffer
1338 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1341 static void doc_fill_autooob(u8
*dst
, u8
*oobsrc
)
1343 memcpy(dst
, oobsrc
, DOC_LAYOUT_OOB_PAGEINFO_SZ
);
1344 dst
[DOC_LAYOUT_OOB_UNUSED_OFS
] = oobsrc
[DOC_LAYOUT_OOB_PAGEINFO_SZ
];
1348 * doc_backup_oob - Backup OOB into docg3 structure
1349 * @docg3: the device
1350 * @to: the page offset in the chip
1351 * @ops: the OOB size and buffer
1353 * As the docg3 should write a page with its OOB in one pass, and some userland
1354 * applications do write_oob() to setup the OOB and then write(), store the OOB
1355 * into a temporary storage. This is very dangerous, as 2 concurrent
1356 * applications could store an OOB, and then write their pages (which will
1357 * result into one having its OOB corrupted).
1359 * The only reliable way would be for userland to call doc_write_oob() with both
1360 * the page data _and_ the OOB area.
1362 * Returns 0 if success, -EINVAL if ops content invalid
1364 static int doc_backup_oob(struct docg3
*docg3
, loff_t to
,
1365 struct mtd_oob_ops
*ops
)
1367 int ooblen
= ops
->ooblen
, autoecc
;
1369 if (ooblen
!= DOC_LAYOUT_OOB_SIZE
)
1371 autoecc
= doc_guess_autoecc(ops
);
1375 docg3
->oob_write_ofs
= to
;
1376 docg3
->oob_autoecc
= autoecc
;
1377 if (ops
->mode
== MTD_OPS_AUTO_OOB
) {
1378 doc_fill_autooob(docg3
->oob_write_buf
, ops
->oobbuf
);
1381 memcpy(docg3
->oob_write_buf
, ops
->oobbuf
, DOC_LAYOUT_OOB_SIZE
);
1382 ops
->oobretlen
= DOC_LAYOUT_OOB_SIZE
;
1388 * doc_write_oob - Write out of band bytes to flash
1390 * @ofs: the offset from first block and first page, in bytes, aligned on page
1392 * @ops: the mtd oob structure
1394 * Either write OOB data into a temporary buffer, for the subsequent write
1395 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1396 * as well, issue the page write.
1397 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1398 * still be filled in if asked for).
1400 * Returns 0 is successfull, EINVAL if length is not 14 bytes
1402 static int doc_write_oob(struct mtd_info
*mtd
, loff_t ofs
,
1403 struct mtd_oob_ops
*ops
)
1405 struct docg3
*docg3
= mtd
->priv
;
1406 int ret
, autoecc
, oobdelta
;
1407 u8
*oobbuf
= ops
->oobbuf
;
1408 u8
*buf
= ops
->datbuf
;
1410 u8 oob
[DOC_LAYOUT_OOB_SIZE
];
1417 ooblen
= ops
->ooblen
;
1421 if (oobbuf
&& ops
->mode
== MTD_OPS_PLACE_OOB
)
1422 oobbuf
+= ops
->ooboffs
;
1424 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1425 ofs
, ops
->mode
, buf
, len
, oobbuf
, ooblen
);
1426 switch (ops
->mode
) {
1427 case MTD_OPS_PLACE_OOB
:
1429 oobdelta
= mtd
->oobsize
;
1431 case MTD_OPS_AUTO_OOB
:
1432 oobdelta
= mtd
->ecclayout
->oobavail
;
1437 if ((len
% DOC_LAYOUT_PAGE_SIZE
) || (ooblen
% oobdelta
) ||
1438 (ofs
% DOC_LAYOUT_PAGE_SIZE
))
1440 if (len
&& ooblen
&&
1441 (len
/ DOC_LAYOUT_PAGE_SIZE
) != (ooblen
/ oobdelta
))
1443 if (ofs
+ len
> mtd
->size
)
1449 if (len
== 0 && ooblen
== 0)
1451 if (len
== 0 && ooblen
> 0)
1452 return doc_backup_oob(docg3
, ofs
, ops
);
1454 autoecc
= doc_guess_autoecc(ops
);
1458 mutex_lock(&docg3
->cascade
->lock
);
1459 while (!ret
&& len
> 0) {
1460 memset(oob
, 0, sizeof(oob
));
1461 if (ofs
== docg3
->oob_write_ofs
)
1462 memcpy(oob
, docg3
->oob_write_buf
, DOC_LAYOUT_OOB_SIZE
);
1463 else if (ooblen
> 0 && ops
->mode
== MTD_OPS_AUTO_OOB
)
1464 doc_fill_autooob(oob
, oobbuf
);
1465 else if (ooblen
> 0)
1466 memcpy(oob
, oobbuf
, DOC_LAYOUT_OOB_SIZE
);
1467 ret
= doc_write_page(docg3
, ofs
, buf
, oob
, autoecc
);
1469 ofs
+= DOC_LAYOUT_PAGE_SIZE
;
1470 len
-= DOC_LAYOUT_PAGE_SIZE
;
1471 buf
+= DOC_LAYOUT_PAGE_SIZE
;
1475 ops
->oobretlen
+= oobdelta
;
1477 ops
->retlen
+= DOC_LAYOUT_PAGE_SIZE
;
1480 doc_set_device_id(docg3
, 0);
1481 mutex_unlock(&docg3
->cascade
->lock
);
1486 * doc_write - Write a buffer to the chip
1488 * @to: the offset from first block and first page, in bytes, aligned on page
1490 * @len: the number of bytes to write (must be a full page size, ie. 512)
1491 * @retlen: the number of bytes actually written (0 or 512)
1492 * @buf: the buffer to get bytes from
1494 * Writes data to the chip.
1496 * Returns 0 if write successful, -EIO if write error
1498 static int doc_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1499 size_t *retlen
, const u_char
*buf
)
1501 struct docg3
*docg3
= mtd
->priv
;
1503 struct mtd_oob_ops ops
;
1505 doc_dbg("doc_write(to=%lld, len=%zu)\n", to
, len
);
1506 ops
.datbuf
= (char *)buf
;
1508 ops
.mode
= MTD_OPS_PLACE_OOB
;
1513 ret
= doc_write_oob(mtd
, to
, &ops
);
1514 *retlen
= ops
.retlen
;
1518 static struct docg3
*sysfs_dev2docg3(struct device
*dev
,
1519 struct device_attribute
*attr
)
1522 struct platform_device
*pdev
= to_platform_device(dev
);
1523 struct mtd_info
**docg3_floors
= platform_get_drvdata(pdev
);
1525 floor
= attr
->attr
.name
[1] - '0';
1526 if (floor
< 0 || floor
>= DOC_MAX_NBFLOORS
)
1529 return docg3_floors
[floor
]->priv
;
1532 static ssize_t
dps0_is_key_locked(struct device
*dev
,
1533 struct device_attribute
*attr
, char *buf
)
1535 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1538 mutex_lock(&docg3
->cascade
->lock
);
1539 doc_set_device_id(docg3
, docg3
->device_id
);
1540 dps0
= doc_register_readb(docg3
, DOC_DPS0_STATUS
);
1541 doc_set_device_id(docg3
, 0);
1542 mutex_unlock(&docg3
->cascade
->lock
);
1544 return sprintf(buf
, "%d\n", !(dps0
& DOC_DPS_KEY_OK
));
1547 static ssize_t
dps1_is_key_locked(struct device
*dev
,
1548 struct device_attribute
*attr
, char *buf
)
1550 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1553 mutex_lock(&docg3
->cascade
->lock
);
1554 doc_set_device_id(docg3
, docg3
->device_id
);
1555 dps1
= doc_register_readb(docg3
, DOC_DPS1_STATUS
);
1556 doc_set_device_id(docg3
, 0);
1557 mutex_unlock(&docg3
->cascade
->lock
);
1559 return sprintf(buf
, "%d\n", !(dps1
& DOC_DPS_KEY_OK
));
1562 static ssize_t
dps0_insert_key(struct device
*dev
,
1563 struct device_attribute
*attr
,
1564 const char *buf
, size_t count
)
1566 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1569 if (count
!= DOC_LAYOUT_DPS_KEY_LENGTH
)
1572 mutex_lock(&docg3
->cascade
->lock
);
1573 doc_set_device_id(docg3
, docg3
->device_id
);
1574 for (i
= 0; i
< DOC_LAYOUT_DPS_KEY_LENGTH
; i
++)
1575 doc_writeb(docg3
, buf
[i
], DOC_DPS0_KEY
);
1576 doc_set_device_id(docg3
, 0);
1577 mutex_unlock(&docg3
->cascade
->lock
);
1581 static ssize_t
dps1_insert_key(struct device
*dev
,
1582 struct device_attribute
*attr
,
1583 const char *buf
, size_t count
)
1585 struct docg3
*docg3
= sysfs_dev2docg3(dev
, attr
);
1588 if (count
!= DOC_LAYOUT_DPS_KEY_LENGTH
)
1591 mutex_lock(&docg3
->cascade
->lock
);
1592 doc_set_device_id(docg3
, docg3
->device_id
);
1593 for (i
= 0; i
< DOC_LAYOUT_DPS_KEY_LENGTH
; i
++)
1594 doc_writeb(docg3
, buf
[i
], DOC_DPS1_KEY
);
1595 doc_set_device_id(docg3
, 0);
1596 mutex_unlock(&docg3
->cascade
->lock
);
1600 #define FLOOR_SYSFS(id) { \
1601 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1602 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1603 __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \
1604 __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \
1607 static struct device_attribute doc_sys_attrs
[DOC_MAX_NBFLOORS
][4] = {
1608 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1611 static int doc_register_sysfs(struct platform_device
*pdev
,
1612 struct docg3_cascade
*cascade
)
1614 int ret
= 0, floor
, i
= 0;
1615 struct device
*dev
= &pdev
->dev
;
1617 for (floor
= 0; !ret
&& floor
< DOC_MAX_NBFLOORS
&&
1618 cascade
->floors
[floor
]; floor
++)
1619 for (i
= 0; !ret
&& i
< 4; i
++)
1620 ret
= device_create_file(dev
, &doc_sys_attrs
[floor
][i
]);
1625 device_remove_file(dev
, &doc_sys_attrs
[floor
][i
]);
1627 } while (--floor
>= 0);
1631 static void doc_unregister_sysfs(struct platform_device
*pdev
,
1632 struct docg3_cascade
*cascade
)
1634 struct device
*dev
= &pdev
->dev
;
1637 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
&& cascade
->floors
[floor
];
1639 for (i
= 0; i
< 4; i
++)
1640 device_remove_file(dev
, &doc_sys_attrs
[floor
][i
]);
1644 * Debug sysfs entries
1646 static int dbg_flashctrl_show(struct seq_file
*s
, void *p
)
1648 struct docg3
*docg3
= (struct docg3
*)s
->private;
1653 mutex_lock(&docg3
->cascade
->lock
);
1654 fctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
1655 mutex_unlock(&docg3
->cascade
->lock
);
1657 pos
+= seq_printf(s
,
1658 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1660 fctrl
& DOC_CTRL_VIOLATION
? "protocol violation" : "-",
1661 fctrl
& DOC_CTRL_CE
? "active" : "inactive",
1662 fctrl
& DOC_CTRL_PROTECTION_ERROR
? "protection error" : "-",
1663 fctrl
& DOC_CTRL_SEQUENCE_ERROR
? "sequence error" : "-",
1664 fctrl
& DOC_CTRL_FLASHREADY
? "ready" : "not ready");
1667 DEBUGFS_RO_ATTR(flashcontrol
, dbg_flashctrl_show
);
1669 static int dbg_asicmode_show(struct seq_file
*s
, void *p
)
1671 struct docg3
*docg3
= (struct docg3
*)s
->private;
1673 int pos
= 0, pctrl
, mode
;
1675 mutex_lock(&docg3
->cascade
->lock
);
1676 pctrl
= doc_register_readb(docg3
, DOC_ASICMODE
);
1677 mode
= pctrl
& 0x03;
1678 mutex_unlock(&docg3
->cascade
->lock
);
1680 pos
+= seq_printf(s
,
1681 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1683 pctrl
& DOC_ASICMODE_RAM_WE
? 1 : 0,
1684 pctrl
& DOC_ASICMODE_RSTIN_RESET
? 1 : 0,
1685 pctrl
& DOC_ASICMODE_BDETCT_RESET
? 1 : 0,
1686 pctrl
& DOC_ASICMODE_MDWREN
? 1 : 0,
1687 pctrl
& DOC_ASICMODE_POWERDOWN
? 1 : 0,
1688 mode
>> 1, mode
& 0x1);
1691 case DOC_ASICMODE_RESET
:
1692 pos
+= seq_printf(s
, "reset");
1694 case DOC_ASICMODE_NORMAL
:
1695 pos
+= seq_printf(s
, "normal");
1697 case DOC_ASICMODE_POWERDOWN
:
1698 pos
+= seq_printf(s
, "powerdown");
1701 pos
+= seq_printf(s
, ")\n");
1704 DEBUGFS_RO_ATTR(asic_mode
, dbg_asicmode_show
);
1706 static int dbg_device_id_show(struct seq_file
*s
, void *p
)
1708 struct docg3
*docg3
= (struct docg3
*)s
->private;
1712 mutex_lock(&docg3
->cascade
->lock
);
1713 id
= doc_register_readb(docg3
, DOC_DEVICESELECT
);
1714 mutex_unlock(&docg3
->cascade
->lock
);
1716 pos
+= seq_printf(s
, "DeviceId = %d\n", id
);
1719 DEBUGFS_RO_ATTR(device_id
, dbg_device_id_show
);
1721 static int dbg_protection_show(struct seq_file
*s
, void *p
)
1723 struct docg3
*docg3
= (struct docg3
*)s
->private;
1725 int protect
, dps0
, dps0_low
, dps0_high
, dps1
, dps1_low
, dps1_high
;
1727 mutex_lock(&docg3
->cascade
->lock
);
1728 protect
= doc_register_readb(docg3
, DOC_PROTECTION
);
1729 dps0
= doc_register_readb(docg3
, DOC_DPS0_STATUS
);
1730 dps0_low
= doc_register_readw(docg3
, DOC_DPS0_ADDRLOW
);
1731 dps0_high
= doc_register_readw(docg3
, DOC_DPS0_ADDRHIGH
);
1732 dps1
= doc_register_readb(docg3
, DOC_DPS1_STATUS
);
1733 dps1_low
= doc_register_readw(docg3
, DOC_DPS1_ADDRLOW
);
1734 dps1_high
= doc_register_readw(docg3
, DOC_DPS1_ADDRHIGH
);
1735 mutex_unlock(&docg3
->cascade
->lock
);
1737 pos
+= seq_printf(s
, "Protection = 0x%02x (",
1739 if (protect
& DOC_PROTECT_FOUNDRY_OTP_LOCK
)
1740 pos
+= seq_printf(s
, "FOUNDRY_OTP_LOCK,");
1741 if (protect
& DOC_PROTECT_CUSTOMER_OTP_LOCK
)
1742 pos
+= seq_printf(s
, "CUSTOMER_OTP_LOCK,");
1743 if (protect
& DOC_PROTECT_LOCK_INPUT
)
1744 pos
+= seq_printf(s
, "LOCK_INPUT,");
1745 if (protect
& DOC_PROTECT_STICKY_LOCK
)
1746 pos
+= seq_printf(s
, "STICKY_LOCK,");
1747 if (protect
& DOC_PROTECT_PROTECTION_ENABLED
)
1748 pos
+= seq_printf(s
, "PROTECTION ON,");
1749 if (protect
& DOC_PROTECT_IPL_DOWNLOAD_LOCK
)
1750 pos
+= seq_printf(s
, "IPL_DOWNLOAD_LOCK,");
1751 if (protect
& DOC_PROTECT_PROTECTION_ERROR
)
1752 pos
+= seq_printf(s
, "PROTECT_ERR,");
1754 pos
+= seq_printf(s
, "NO_PROTECT_ERR");
1755 pos
+= seq_printf(s
, ")\n");
1757 pos
+= seq_printf(s
, "DPS0 = 0x%02x : "
1758 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1759 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1760 dps0
, dps0_low
, dps0_high
,
1761 !!(dps0
& DOC_DPS_OTP_PROTECTED
),
1762 !!(dps0
& DOC_DPS_READ_PROTECTED
),
1763 !!(dps0
& DOC_DPS_WRITE_PROTECTED
),
1764 !!(dps0
& DOC_DPS_HW_LOCK_ENABLED
),
1765 !!(dps0
& DOC_DPS_KEY_OK
));
1766 pos
+= seq_printf(s
, "DPS1 = 0x%02x : "
1767 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1768 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1769 dps1
, dps1_low
, dps1_high
,
1770 !!(dps1
& DOC_DPS_OTP_PROTECTED
),
1771 !!(dps1
& DOC_DPS_READ_PROTECTED
),
1772 !!(dps1
& DOC_DPS_WRITE_PROTECTED
),
1773 !!(dps1
& DOC_DPS_HW_LOCK_ENABLED
),
1774 !!(dps1
& DOC_DPS_KEY_OK
));
1777 DEBUGFS_RO_ATTR(protection
, dbg_protection_show
);
1779 static int __init
doc_dbg_register(struct docg3
*docg3
)
1781 struct dentry
*root
, *entry
;
1783 root
= debugfs_create_dir("docg3", NULL
);
1787 entry
= debugfs_create_file("flashcontrol", S_IRUSR
, root
, docg3
,
1788 &flashcontrol_fops
);
1790 entry
= debugfs_create_file("asic_mode", S_IRUSR
, root
,
1791 docg3
, &asic_mode_fops
);
1793 entry
= debugfs_create_file("device_id", S_IRUSR
, root
,
1794 docg3
, &device_id_fops
);
1796 entry
= debugfs_create_file("protection", S_IRUSR
, root
,
1797 docg3
, &protection_fops
);
1799 docg3
->debugfs_root
= root
;
1802 debugfs_remove_recursive(root
);
1807 static void __exit
doc_dbg_unregister(struct docg3
*docg3
)
1809 debugfs_remove_recursive(docg3
->debugfs_root
);
1813 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1814 * @chip_id: The chip ID of the supported chip
1815 * @mtd: The structure to fill
1817 static void __init
doc_set_driver_info(int chip_id
, struct mtd_info
*mtd
)
1819 struct docg3
*docg3
= mtd
->priv
;
1822 cfg
= doc_register_readb(docg3
, DOC_CONFIGURATION
);
1823 docg3
->if_cfg
= (cfg
& DOC_CONF_IF_CFG
? 1 : 0);
1824 docg3
->reliable
= reliable_mode
;
1828 mtd
->name
= kasprintf(GFP_KERNEL
, "docg3.%d",
1830 docg3
->max_block
= 2047;
1833 mtd
->type
= MTD_NANDFLASH
;
1834 mtd
->flags
= MTD_CAP_NANDFLASH
;
1835 mtd
->size
= (docg3
->max_block
+ 1) * DOC_LAYOUT_BLOCK_SIZE
;
1836 if (docg3
->reliable
== 2)
1838 mtd
->erasesize
= DOC_LAYOUT_BLOCK_SIZE
* DOC_LAYOUT_NBPLANES
;
1839 if (docg3
->reliable
== 2)
1840 mtd
->erasesize
/= 2;
1841 mtd
->writebufsize
= mtd
->writesize
= DOC_LAYOUT_PAGE_SIZE
;
1842 mtd
->oobsize
= DOC_LAYOUT_OOB_SIZE
;
1843 mtd
->owner
= THIS_MODULE
;
1844 mtd
->_erase
= doc_erase
;
1845 mtd
->_read
= doc_read
;
1846 mtd
->_write
= doc_write
;
1847 mtd
->_read_oob
= doc_read_oob
;
1848 mtd
->_write_oob
= doc_write_oob
;
1849 mtd
->_block_isbad
= doc_block_isbad
;
1850 mtd
->ecclayout
= &docg3_oobinfo
;
1851 mtd
->ecc_strength
= DOC_ECC_BCH_T
;
1855 * doc_probe_device - Check if a device is available
1856 * @base: the io space where the device is probed
1857 * @floor: the floor of the probed device
1859 * @cascade: the cascade of chips this devices will belong to
1861 * Checks whether a device at the specified IO range, and floor is available.
1863 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1864 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1867 static struct mtd_info
* __init
1868 doc_probe_device(struct docg3_cascade
*cascade
, int floor
, struct device
*dev
)
1870 int ret
, bbt_nbpages
;
1871 u16 chip_id
, chip_id_inv
;
1872 struct docg3
*docg3
;
1873 struct mtd_info
*mtd
;
1876 docg3
= kzalloc(sizeof(struct docg3
), GFP_KERNEL
);
1879 mtd
= kzalloc(sizeof(struct mtd_info
), GFP_KERNEL
);
1883 bbt_nbpages
= DIV_ROUND_UP(docg3
->max_block
+ 1,
1884 8 * DOC_LAYOUT_PAGE_SIZE
);
1885 docg3
->bbt
= kzalloc(bbt_nbpages
* DOC_LAYOUT_PAGE_SIZE
, GFP_KERNEL
);
1890 docg3
->device_id
= floor
;
1891 docg3
->cascade
= cascade
;
1892 doc_set_device_id(docg3
, docg3
->device_id
);
1894 doc_set_asic_mode(docg3
, DOC_ASICMODE_RESET
);
1895 doc_set_asic_mode(docg3
, DOC_ASICMODE_NORMAL
);
1897 chip_id
= doc_register_readw(docg3
, DOC_CHIPID
);
1898 chip_id_inv
= doc_register_readw(docg3
, DOC_CHIPID_INV
);
1901 if (chip_id
!= (u16
)(~chip_id_inv
)) {
1907 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1908 docg3
->cascade
->base
, floor
);
1911 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id
);
1915 doc_set_driver_info(chip_id
, mtd
);
1917 doc_hamming_ecc_init(docg3
, DOC_LAYOUT_OOB_PAGEINFO_SZ
);
1918 doc_reload_bbt(docg3
);
1926 return ERR_PTR(ret
);
1930 * doc_release_device - Release a docg3 floor
1933 static void doc_release_device(struct mtd_info
*mtd
)
1935 struct docg3
*docg3
= mtd
->priv
;
1937 mtd_device_unregister(mtd
);
1945 * docg3_resume - Awakens docg3 floor
1946 * @pdev: platfrom device
1948 * Returns 0 (always successfull)
1950 static int docg3_resume(struct platform_device
*pdev
)
1953 struct docg3_cascade
*cascade
;
1954 struct mtd_info
**docg3_floors
, *mtd
;
1955 struct docg3
*docg3
;
1957 cascade
= platform_get_drvdata(pdev
);
1958 docg3_floors
= cascade
->floors
;
1959 mtd
= docg3_floors
[0];
1962 doc_dbg("docg3_resume()\n");
1963 for (i
= 0; i
< 12; i
++)
1964 doc_readb(docg3
, DOC_IOSPACE_IPL
);
1969 * docg3_suspend - Put in low power mode the docg3 floor
1970 * @pdev: platform device
1971 * @state: power state
1973 * Shuts off most of docg3 circuitery to lower power consumption.
1975 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1977 static int docg3_suspend(struct platform_device
*pdev
, pm_message_t state
)
1980 struct docg3_cascade
*cascade
;
1981 struct mtd_info
**docg3_floors
, *mtd
;
1982 struct docg3
*docg3
;
1985 cascade
= platform_get_drvdata(pdev
);
1986 docg3_floors
= cascade
->floors
;
1987 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++) {
1988 mtd
= docg3_floors
[floor
];
1993 doc_writeb(docg3
, floor
, DOC_DEVICESELECT
);
1994 ctrl
= doc_register_readb(docg3
, DOC_FLASHCONTROL
);
1995 ctrl
&= ~DOC_CTRL_VIOLATION
& ~DOC_CTRL_CE
;
1996 doc_writeb(docg3
, ctrl
, DOC_FLASHCONTROL
);
1998 for (i
= 0; i
< 10; i
++) {
1999 usleep_range(3000, 4000);
2000 pwr_down
= doc_register_readb(docg3
, DOC_POWERMODE
);
2001 if (pwr_down
& DOC_POWERDOWN_READY
)
2004 if (pwr_down
& DOC_POWERDOWN_READY
) {
2005 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2008 doc_err("docg3_suspend(): floor %d powerdown failed\n",
2014 mtd
= docg3_floors
[0];
2016 doc_set_asic_mode(docg3
, DOC_ASICMODE_POWERDOWN
);
2021 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2022 * @pdev: platform device
2024 * Probes for a G3 chip at the specified IO space in the platform data
2025 * ressources. The floor 0 must be available.
2027 * Returns 0 on success, -ENOMEM, -ENXIO on error
2029 static int __init
docg3_probe(struct platform_device
*pdev
)
2031 struct device
*dev
= &pdev
->dev
;
2032 struct mtd_info
*mtd
;
2033 struct resource
*ress
;
2035 int ret
, floor
, found
= 0;
2036 struct docg3_cascade
*cascade
;
2039 ress
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2041 dev_err(dev
, "No I/O memory resource defined\n");
2044 base
= ioremap(ress
->start
, DOC_IOSPACE_SIZE
);
2047 cascade
= kzalloc(sizeof(*cascade
) * DOC_MAX_NBFLOORS
,
2051 cascade
->base
= base
;
2052 mutex_init(&cascade
->lock
);
2053 cascade
->bch
= init_bch(DOC_ECC_BCH_M
, DOC_ECC_BCH_T
,
2054 DOC_ECC_BCH_PRIMPOLY
);
2058 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++) {
2059 mtd
= doc_probe_device(cascade
, floor
, dev
);
2070 cascade
->floors
[floor
] = mtd
;
2071 ret
= mtd_device_parse_register(mtd
, part_probes
, NULL
, NULL
,
2078 ret
= doc_register_sysfs(pdev
, cascade
);
2084 platform_set_drvdata(pdev
, cascade
);
2085 doc_dbg_register(cascade
->floors
[0]->priv
);
2090 dev_info(dev
, "No supported DiskOnChip found\n");
2092 kfree(cascade
->bch
);
2093 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++)
2094 if (cascade
->floors
[floor
])
2095 doc_release_device(cascade
->floors
[floor
]);
2105 * docg3_release - Release the driver
2106 * @pdev: the platform device
2110 static int __exit
docg3_release(struct platform_device
*pdev
)
2112 struct docg3_cascade
*cascade
= platform_get_drvdata(pdev
);
2113 struct docg3
*docg3
= cascade
->floors
[0]->priv
;
2114 void __iomem
*base
= cascade
->base
;
2117 doc_unregister_sysfs(pdev
, cascade
);
2118 doc_dbg_unregister(docg3
);
2119 for (floor
= 0; floor
< DOC_MAX_NBFLOORS
; floor
++)
2120 if (cascade
->floors
[floor
])
2121 doc_release_device(cascade
->floors
[floor
]);
2123 free_bch(docg3
->cascade
->bch
);
2129 static struct platform_driver g3_driver
= {
2132 .owner
= THIS_MODULE
,
2134 .suspend
= docg3_suspend
,
2135 .resume
= docg3_resume
,
2136 .remove
= __exit_p(docg3_release
),
2139 static int __init
docg3_init(void)
2141 return platform_driver_probe(&g3_driver
, docg3_probe
);
2143 module_init(docg3_init
);
2146 static void __exit
docg3_exit(void)
2148 platform_driver_unregister(&g3_driver
);
2150 module_exit(docg3_exit
);
2152 MODULE_LICENSE("GPL");
2153 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2154 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");