2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/of_platform.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/flash.h>
39 #define OPCODE_WREN 0x06 /* Write enable */
40 #define OPCODE_RDSR 0x05 /* Read status register */
41 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
42 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
43 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
44 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
45 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
46 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
47 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
48 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
49 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
51 /* Used for SST flashes only. */
52 #define OPCODE_BP 0x02 /* Byte program */
53 #define OPCODE_WRDI 0x04 /* Write disable */
54 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
56 /* Used for Macronix flashes only. */
57 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
58 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
60 /* Used for Spansion flashes only. */
61 #define OPCODE_BRWR 0x17 /* Bank register write */
63 /* Status Register bits. */
64 #define SR_WIP 1 /* Write in progress */
65 #define SR_WEL 2 /* Write enable latch */
66 /* meaning of other SR_* bits may differ between vendors */
67 #define SR_BP0 4 /* Block protect 0 */
68 #define SR_BP1 8 /* Block protect 1 */
69 #define SR_BP2 0x10 /* Block protect 2 */
70 #define SR_SRWD 0x80 /* SR write protect */
72 /* Define max times to check status register before we give up. */
73 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
74 #define MAX_CMD_SIZE 5
76 #ifdef CONFIG_M25PXX_USE_FAST_READ
77 #define OPCODE_READ OPCODE_FAST_READ
78 #define FAST_READ_DUMMY_BYTE 1
80 #define OPCODE_READ OPCODE_NORM_READ
81 #define FAST_READ_DUMMY_BYTE 0
84 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
86 /****************************************************************************/
89 struct spi_device
*spi
;
98 static inline struct m25p
*mtd_to_m25p(struct mtd_info
*mtd
)
100 return container_of(mtd
, struct m25p
, mtd
);
103 /****************************************************************************/
106 * Internal helper functions
110 * Read the status register, returning its value in the location
111 * Return the status register value.
112 * Returns negative if error occurred.
114 static int read_sr(struct m25p
*flash
)
117 u8 code
= OPCODE_RDSR
;
120 retval
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
123 dev_err(&flash
->spi
->dev
, "error %d reading SR\n",
132 * Write status register 1 byte
133 * Returns negative if error occurred.
135 static int write_sr(struct m25p
*flash
, u8 val
)
137 flash
->command
[0] = OPCODE_WRSR
;
138 flash
->command
[1] = val
;
140 return spi_write(flash
->spi
, flash
->command
, 2);
144 * Set write enable latch with Write Enable command.
145 * Returns negative if error occurred.
147 static inline int write_enable(struct m25p
*flash
)
149 u8 code
= OPCODE_WREN
;
151 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
155 * Send write disble instruction to the chip.
157 static inline int write_disable(struct m25p
*flash
)
159 u8 code
= OPCODE_WRDI
;
161 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
165 * Enable/disable 4-byte addressing mode.
167 static inline int set_4byte(struct m25p
*flash
, u32 jedec_id
, int enable
)
169 switch (JEDEC_MFR(jedec_id
)) {
170 case CFI_MFR_MACRONIX
:
171 flash
->command
[0] = enable
? OPCODE_EN4B
: OPCODE_EX4B
;
172 return spi_write(flash
->spi
, flash
->command
, 1);
175 flash
->command
[0] = OPCODE_BRWR
;
176 flash
->command
[1] = enable
<< 7;
177 return spi_write(flash
->spi
, flash
->command
, 2);
182 * Service routine to read status register until ready, or timeout occurs.
183 * Returns non-zero if error.
185 static int wait_till_ready(struct m25p
*flash
)
187 unsigned long deadline
;
190 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
193 if ((sr
= read_sr(flash
)) < 0)
195 else if (!(sr
& SR_WIP
))
200 } while (!time_after_eq(jiffies
, deadline
));
206 * Erase the whole flash memory
208 * Returns 0 if successful, non-zero otherwise.
210 static int erase_chip(struct m25p
*flash
)
212 pr_debug("%s: %s %lldKiB\n", dev_name(&flash
->spi
->dev
), __func__
,
213 (long long)(flash
->mtd
.size
>> 10));
215 /* Wait until finished previous write command. */
216 if (wait_till_ready(flash
))
219 /* Send write enable, then erase commands. */
222 /* Set up command buffer. */
223 flash
->command
[0] = OPCODE_CHIP_ERASE
;
225 spi_write(flash
->spi
, flash
->command
, 1);
230 static void m25p_addr2cmd(struct m25p
*flash
, unsigned int addr
, u8
*cmd
)
232 /* opcode is in cmd[0] */
233 cmd
[1] = addr
>> (flash
->addr_width
* 8 - 8);
234 cmd
[2] = addr
>> (flash
->addr_width
* 8 - 16);
235 cmd
[3] = addr
>> (flash
->addr_width
* 8 - 24);
236 cmd
[4] = addr
>> (flash
->addr_width
* 8 - 32);
239 static int m25p_cmdsz(struct m25p
*flash
)
241 return 1 + flash
->addr_width
;
245 * Erase one sector of flash memory at offset ``offset'' which is any
246 * address within the sector which should be erased.
248 * Returns 0 if successful, non-zero otherwise.
250 static int erase_sector(struct m25p
*flash
, u32 offset
)
252 pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash
->spi
->dev
),
253 __func__
, flash
->mtd
.erasesize
/ 1024, offset
);
255 /* Wait until finished previous write command. */
256 if (wait_till_ready(flash
))
259 /* Send write enable, then erase commands. */
262 /* Set up command buffer. */
263 flash
->command
[0] = flash
->erase_opcode
;
264 m25p_addr2cmd(flash
, offset
, flash
->command
);
266 spi_write(flash
->spi
, flash
->command
, m25p_cmdsz(flash
));
271 /****************************************************************************/
278 * Erase an address range on the flash chip. The address range may extend
279 * one or more erase sectors. Return an error is there is a problem erasing.
281 static int m25p80_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
283 struct m25p
*flash
= mtd_to_m25p(mtd
);
287 pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash
->spi
->dev
),
288 __func__
, (long long)instr
->addr
,
289 (long long)instr
->len
);
291 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
298 mutex_lock(&flash
->lock
);
300 /* whole-chip erase? */
301 if (len
== flash
->mtd
.size
) {
302 if (erase_chip(flash
)) {
303 instr
->state
= MTD_ERASE_FAILED
;
304 mutex_unlock(&flash
->lock
);
308 /* REVISIT in some cases we could speed up erasing large regions
309 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
310 * to use "small sector erase", but that's not always optimal.
313 /* "sector"-at-a-time erase */
316 if (erase_sector(flash
, addr
)) {
317 instr
->state
= MTD_ERASE_FAILED
;
318 mutex_unlock(&flash
->lock
);
322 addr
+= mtd
->erasesize
;
323 len
-= mtd
->erasesize
;
327 mutex_unlock(&flash
->lock
);
329 instr
->state
= MTD_ERASE_DONE
;
330 mtd_erase_callback(instr
);
336 * Read an address range from the flash chip. The address range
337 * may be any size provided it is within the physical boundaries.
339 static int m25p80_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
340 size_t *retlen
, u_char
*buf
)
342 struct m25p
*flash
= mtd_to_m25p(mtd
);
343 struct spi_transfer t
[2];
344 struct spi_message m
;
346 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
347 __func__
, (u32
)from
, len
);
349 spi_message_init(&m
);
350 memset(t
, 0, (sizeof t
));
353 * OPCODE_FAST_READ (if available) is faster.
354 * Should add 1 byte DUMMY_BYTE.
356 t
[0].tx_buf
= flash
->command
;
357 t
[0].len
= m25p_cmdsz(flash
) + FAST_READ_DUMMY_BYTE
;
358 spi_message_add_tail(&t
[0], &m
);
362 spi_message_add_tail(&t
[1], &m
);
364 mutex_lock(&flash
->lock
);
366 /* Wait till previous write/erase is done. */
367 if (wait_till_ready(flash
)) {
368 /* REVISIT status return?? */
369 mutex_unlock(&flash
->lock
);
373 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
374 * clocks; and at this writing, every chip this driver handles
375 * supports that opcode.
378 /* Set up the write data buffer. */
379 flash
->command
[0] = OPCODE_READ
;
380 m25p_addr2cmd(flash
, from
, flash
->command
);
382 spi_sync(flash
->spi
, &m
);
384 *retlen
= m
.actual_length
- m25p_cmdsz(flash
) - FAST_READ_DUMMY_BYTE
;
386 mutex_unlock(&flash
->lock
);
392 * Write an address range to the flash chip. Data must be written in
393 * FLASH_PAGESIZE chunks. The address range may be any size provided
394 * it is within the physical boundaries.
396 static int m25p80_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
397 size_t *retlen
, const u_char
*buf
)
399 struct m25p
*flash
= mtd_to_m25p(mtd
);
400 u32 page_offset
, page_size
;
401 struct spi_transfer t
[2];
402 struct spi_message m
;
404 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
405 __func__
, (u32
)to
, len
);
407 spi_message_init(&m
);
408 memset(t
, 0, (sizeof t
));
410 t
[0].tx_buf
= flash
->command
;
411 t
[0].len
= m25p_cmdsz(flash
);
412 spi_message_add_tail(&t
[0], &m
);
415 spi_message_add_tail(&t
[1], &m
);
417 mutex_lock(&flash
->lock
);
419 /* Wait until finished previous write command. */
420 if (wait_till_ready(flash
)) {
421 mutex_unlock(&flash
->lock
);
427 /* Set up the opcode in the write buffer. */
428 flash
->command
[0] = OPCODE_PP
;
429 m25p_addr2cmd(flash
, to
, flash
->command
);
431 page_offset
= to
& (flash
->page_size
- 1);
433 /* do all the bytes fit onto one page? */
434 if (page_offset
+ len
<= flash
->page_size
) {
437 spi_sync(flash
->spi
, &m
);
439 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
443 /* the size of data remaining on the first page */
444 page_size
= flash
->page_size
- page_offset
;
446 t
[1].len
= page_size
;
447 spi_sync(flash
->spi
, &m
);
449 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
451 /* write everything in flash->page_size chunks */
452 for (i
= page_size
; i
< len
; i
+= page_size
) {
454 if (page_size
> flash
->page_size
)
455 page_size
= flash
->page_size
;
457 /* write the next page to flash */
458 m25p_addr2cmd(flash
, to
+ i
, flash
->command
);
460 t
[1].tx_buf
= buf
+ i
;
461 t
[1].len
= page_size
;
463 wait_till_ready(flash
);
467 spi_sync(flash
->spi
, &m
);
469 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
473 mutex_unlock(&flash
->lock
);
478 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
479 size_t *retlen
, const u_char
*buf
)
481 struct m25p
*flash
= mtd_to_m25p(mtd
);
482 struct spi_transfer t
[2];
483 struct spi_message m
;
487 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
488 __func__
, (u32
)to
, len
);
490 spi_message_init(&m
);
491 memset(t
, 0, (sizeof t
));
493 t
[0].tx_buf
= flash
->command
;
494 t
[0].len
= m25p_cmdsz(flash
);
495 spi_message_add_tail(&t
[0], &m
);
498 spi_message_add_tail(&t
[1], &m
);
500 mutex_lock(&flash
->lock
);
502 /* Wait until finished previous write command. */
503 ret
= wait_till_ready(flash
);
510 /* Start write from odd address. */
512 flash
->command
[0] = OPCODE_BP
;
513 m25p_addr2cmd(flash
, to
, flash
->command
);
515 /* write one byte. */
517 spi_sync(flash
->spi
, &m
);
518 ret
= wait_till_ready(flash
);
521 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
525 flash
->command
[0] = OPCODE_AAI_WP
;
526 m25p_addr2cmd(flash
, to
, flash
->command
);
528 /* Write out most of the data here. */
529 cmd_sz
= m25p_cmdsz(flash
);
530 for (; actual
< len
- 1; actual
+= 2) {
532 /* write two bytes. */
534 t
[1].tx_buf
= buf
+ actual
;
536 spi_sync(flash
->spi
, &m
);
537 ret
= wait_till_ready(flash
);
540 *retlen
+= m
.actual_length
- cmd_sz
;
544 write_disable(flash
);
545 ret
= wait_till_ready(flash
);
549 /* Write out trailing byte if it exists. */
552 flash
->command
[0] = OPCODE_BP
;
553 m25p_addr2cmd(flash
, to
, flash
->command
);
554 t
[0].len
= m25p_cmdsz(flash
);
556 t
[1].tx_buf
= buf
+ actual
;
558 spi_sync(flash
->spi
, &m
);
559 ret
= wait_till_ready(flash
);
562 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
563 write_disable(flash
);
567 mutex_unlock(&flash
->lock
);
571 /****************************************************************************/
574 * SPI device driver setup and teardown
578 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
579 * a high byte of zero plus three data bytes: the manufacturer id,
580 * then a two byte device id.
585 /* The size listed here is what works with OPCODE_SE, which isn't
586 * necessarily called a "sector" by the vendor.
588 unsigned sector_size
;
595 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
596 #define M25P_NO_ERASE 0x02 /* No erase command needed */
599 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
600 ((kernel_ulong_t)&(struct flash_info) { \
601 .jedec_id = (_jedec_id), \
602 .ext_id = (_ext_id), \
603 .sector_size = (_sector_size), \
604 .n_sectors = (_n_sectors), \
609 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
610 ((kernel_ulong_t)&(struct flash_info) { \
611 .sector_size = (_sector_size), \
612 .n_sectors = (_n_sectors), \
613 .page_size = (_page_size), \
614 .addr_width = (_addr_width), \
615 .flags = M25P_NO_ERASE, \
618 /* NOTE: double check command sets and memory organization when you add
619 * more flash chips. This current list focusses on newer chips, which
620 * have been converging on command sets which including JEDEC ID.
622 static const struct spi_device_id m25p_ids
[] = {
623 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
624 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
625 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
627 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
628 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K
) },
629 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
631 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
632 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
633 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
634 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
637 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
638 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
639 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
640 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
642 /* Intel/Numonyx -- xxxs33b */
643 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
644 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
645 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
648 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
649 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
650 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
651 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
652 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
653 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
654 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
655 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
656 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
658 /* Spansion -- single (large) sector size only, at least
659 * for the chips listed here (without boot sectors).
661 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
662 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
663 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
664 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
665 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K
) },
666 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
667 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
668 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
669 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
670 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
671 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
672 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
673 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
674 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
675 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
) },
676 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
678 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
679 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
) },
680 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
) },
681 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
) },
682 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
) },
683 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
) },
684 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
) },
685 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
) },
686 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
) },
688 /* ST Microelectronics -- newer production may have feature updates */
689 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
690 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
691 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
692 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
693 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
694 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
695 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
696 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
697 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
699 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
700 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
701 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
702 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
703 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
704 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
705 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
706 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
707 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
709 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
710 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
711 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
713 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
714 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
716 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
717 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
718 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
719 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
721 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
722 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
723 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
724 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
725 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
726 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
727 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
728 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
729 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
730 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
732 /* Catalyst / On Semiconductor -- non-JEDEC */
733 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
734 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
735 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
736 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
737 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
740 MODULE_DEVICE_TABLE(spi
, m25p_ids
);
742 static const struct spi_device_id
*__devinit
jedec_probe(struct spi_device
*spi
)
745 u8 code
= OPCODE_RDID
;
749 struct flash_info
*info
;
751 /* JEDEC also defines an optional "extended device information"
752 * string for after vendor-specific data, after the three bytes
753 * we use here. Supporting some chips might require using it.
755 tmp
= spi_write_then_read(spi
, &code
, 1, id
, 5);
757 pr_debug("%s: error %d reading JEDEC ID\n",
758 dev_name(&spi
->dev
), tmp
);
767 ext_jedec
= id
[3] << 8 | id
[4];
769 for (tmp
= 0; tmp
< ARRAY_SIZE(m25p_ids
) - 1; tmp
++) {
770 info
= (void *)m25p_ids
[tmp
].driver_data
;
771 if (info
->jedec_id
== jedec
) {
772 if (info
->ext_id
!= 0 && info
->ext_id
!= ext_jedec
)
774 return &m25p_ids
[tmp
];
777 dev_err(&spi
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
778 return ERR_PTR(-ENODEV
);
783 * board specific setup should have ensured the SPI clock used here
784 * matches what the READ command supports, at least until this driver
785 * understands FAST_READ (for clocks over 25 MHz).
787 static int __devinit
m25p_probe(struct spi_device
*spi
)
789 const struct spi_device_id
*id
= spi_get_device_id(spi
);
790 struct flash_platform_data
*data
;
792 struct flash_info
*info
;
794 struct mtd_part_parser_data ppdata
;
796 #ifdef CONFIG_MTD_OF_PARTS
797 if (!of_device_is_available(spi
->dev
.of_node
))
801 /* Platform data helps sort out which chip type we have, as
802 * well as how this board partitions it. If we don't have
803 * a chip ID, try the JEDEC id commands; they'll work for most
804 * newer chips, even if we don't recognize the particular chip.
806 data
= spi
->dev
.platform_data
;
807 if (data
&& data
->type
) {
808 const struct spi_device_id
*plat_id
;
810 for (i
= 0; i
< ARRAY_SIZE(m25p_ids
) - 1; i
++) {
811 plat_id
= &m25p_ids
[i
];
812 if (strcmp(data
->type
, plat_id
->name
))
817 if (i
< ARRAY_SIZE(m25p_ids
) - 1)
820 dev_warn(&spi
->dev
, "unrecognized id %s\n", data
->type
);
823 info
= (void *)id
->driver_data
;
825 if (info
->jedec_id
) {
826 const struct spi_device_id
*jid
;
828 jid
= jedec_probe(spi
);
831 } else if (jid
!= id
) {
833 * JEDEC knows better, so overwrite platform ID. We
834 * can't trust partitions any longer, but we'll let
835 * mtd apply them anyway, since some partitions may be
836 * marked read-only, and we don't want to lose that
837 * information, even if it's not 100% accurate.
839 dev_warn(&spi
->dev
, "found %s, expected %s\n",
840 jid
->name
, id
->name
);
842 info
= (void *)jid
->driver_data
;
846 flash
= kzalloc(sizeof *flash
, GFP_KERNEL
);
849 flash
->command
= kmalloc(MAX_CMD_SIZE
+ FAST_READ_DUMMY_BYTE
, GFP_KERNEL
);
850 if (!flash
->command
) {
856 mutex_init(&flash
->lock
);
857 dev_set_drvdata(&spi
->dev
, flash
);
860 * Atmel, SST and Intel/Numonyx serial flash tend to power
861 * up with the software protection bits set
864 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ATMEL
||
865 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_INTEL
||
866 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
) {
871 if (data
&& data
->name
)
872 flash
->mtd
.name
= data
->name
;
874 flash
->mtd
.name
= dev_name(&spi
->dev
);
876 flash
->mtd
.type
= MTD_NORFLASH
;
877 flash
->mtd
.writesize
= 1;
878 flash
->mtd
.flags
= MTD_CAP_NORFLASH
;
879 flash
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
880 flash
->mtd
._erase
= m25p80_erase
;
881 flash
->mtd
._read
= m25p80_read
;
883 /* sst flash chips use AAI word program */
884 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
)
885 flash
->mtd
._write
= sst_write
;
887 flash
->mtd
._write
= m25p80_write
;
889 /* prefer "small sector" erase if possible */
890 if (info
->flags
& SECT_4K
) {
891 flash
->erase_opcode
= OPCODE_BE_4K
;
892 flash
->mtd
.erasesize
= 4096;
894 flash
->erase_opcode
= OPCODE_SE
;
895 flash
->mtd
.erasesize
= info
->sector_size
;
898 if (info
->flags
& M25P_NO_ERASE
)
899 flash
->mtd
.flags
|= MTD_NO_ERASE
;
901 ppdata
.of_node
= spi
->dev
.of_node
;
902 flash
->mtd
.dev
.parent
= &spi
->dev
;
903 flash
->page_size
= info
->page_size
;
904 flash
->mtd
.writebufsize
= flash
->page_size
;
906 if (info
->addr_width
)
907 flash
->addr_width
= info
->addr_width
;
909 /* enable 4-byte addressing if the device exceeds 16MiB */
910 if (flash
->mtd
.size
> 0x1000000) {
911 flash
->addr_width
= 4;
912 set_4byte(flash
, info
->jedec_id
, 1);
914 flash
->addr_width
= 3;
917 dev_info(&spi
->dev
, "%s (%lld Kbytes)\n", id
->name
,
918 (long long)flash
->mtd
.size
>> 10);
920 pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
921 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
923 (long long)flash
->mtd
.size
, (long long)(flash
->mtd
.size
>> 20),
924 flash
->mtd
.erasesize
, flash
->mtd
.erasesize
/ 1024,
925 flash
->mtd
.numeraseregions
);
927 if (flash
->mtd
.numeraseregions
)
928 for (i
= 0; i
< flash
->mtd
.numeraseregions
; i
++)
929 pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
930 ".erasesize = 0x%.8x (%uKiB), "
931 ".numblocks = %d }\n",
932 i
, (long long)flash
->mtd
.eraseregions
[i
].offset
,
933 flash
->mtd
.eraseregions
[i
].erasesize
,
934 flash
->mtd
.eraseregions
[i
].erasesize
/ 1024,
935 flash
->mtd
.eraseregions
[i
].numblocks
);
938 /* partitions should match sector boundaries; and it may be good to
939 * use readonly partitions for writeprotected sectors (BP2..BP0).
941 return mtd_device_parse_register(&flash
->mtd
, NULL
, &ppdata
,
942 data
? data
->parts
: NULL
,
943 data
? data
->nr_parts
: 0);
947 static int __devexit
m25p_remove(struct spi_device
*spi
)
949 struct m25p
*flash
= dev_get_drvdata(&spi
->dev
);
952 /* Clean up MTD stuff. */
953 status
= mtd_device_unregister(&flash
->mtd
);
955 kfree(flash
->command
);
962 static struct spi_driver m25p80_driver
= {
965 .owner
= THIS_MODULE
,
967 .id_table
= m25p_ids
,
969 .remove
= __devexit_p(m25p_remove
),
971 /* REVISIT: many of these chips have deep power-down modes, which
972 * should clearly be entered on suspend() to minimize power use.
973 * And also when they're otherwise idle...
977 module_spi_driver(m25p80_driver
);
979 MODULE_LICENSE("GPL");
980 MODULE_AUTHOR("Mike Lavender");
981 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");