USB: usb-storage: unusual_devs update for Super TOP SATA bridge
[linux/fpc-iii.git] / drivers / mtd / devices / m25p80.c
blob1924d247c1cb924c478ebd644475b799dd044297
1 /*
2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/of_platform.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/flash.h>
38 /* Flash opcodes. */
39 #define OPCODE_WREN 0x06 /* Write enable */
40 #define OPCODE_RDSR 0x05 /* Read status register */
41 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
42 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
43 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
44 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
45 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
46 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
47 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
48 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
49 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
51 /* Used for SST flashes only. */
52 #define OPCODE_BP 0x02 /* Byte program */
53 #define OPCODE_WRDI 0x04 /* Write disable */
54 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
56 /* Used for Macronix flashes only. */
57 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
58 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
60 /* Used for Spansion flashes only. */
61 #define OPCODE_BRWR 0x17 /* Bank register write */
63 /* Status Register bits. */
64 #define SR_WIP 1 /* Write in progress */
65 #define SR_WEL 2 /* Write enable latch */
66 /* meaning of other SR_* bits may differ between vendors */
67 #define SR_BP0 4 /* Block protect 0 */
68 #define SR_BP1 8 /* Block protect 1 */
69 #define SR_BP2 0x10 /* Block protect 2 */
70 #define SR_SRWD 0x80 /* SR write protect */
72 /* Define max times to check status register before we give up. */
73 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
74 #define MAX_CMD_SIZE 5
76 #ifdef CONFIG_M25PXX_USE_FAST_READ
77 #define OPCODE_READ OPCODE_FAST_READ
78 #define FAST_READ_DUMMY_BYTE 1
79 #else
80 #define OPCODE_READ OPCODE_NORM_READ
81 #define FAST_READ_DUMMY_BYTE 0
82 #endif
84 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
86 /****************************************************************************/
88 struct m25p {
89 struct spi_device *spi;
90 struct mutex lock;
91 struct mtd_info mtd;
92 u16 page_size;
93 u16 addr_width;
94 u8 erase_opcode;
95 u8 *command;
98 static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
100 return container_of(mtd, struct m25p, mtd);
103 /****************************************************************************/
106 * Internal helper functions
110 * Read the status register, returning its value in the location
111 * Return the status register value.
112 * Returns negative if error occurred.
114 static int read_sr(struct m25p *flash)
116 ssize_t retval;
117 u8 code = OPCODE_RDSR;
118 u8 val;
120 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
122 if (retval < 0) {
123 dev_err(&flash->spi->dev, "error %d reading SR\n",
124 (int) retval);
125 return retval;
128 return val;
132 * Write status register 1 byte
133 * Returns negative if error occurred.
135 static int write_sr(struct m25p *flash, u8 val)
137 flash->command[0] = OPCODE_WRSR;
138 flash->command[1] = val;
140 return spi_write(flash->spi, flash->command, 2);
144 * Set write enable latch with Write Enable command.
145 * Returns negative if error occurred.
147 static inline int write_enable(struct m25p *flash)
149 u8 code = OPCODE_WREN;
151 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
155 * Send write disble instruction to the chip.
157 static inline int write_disable(struct m25p *flash)
159 u8 code = OPCODE_WRDI;
161 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
165 * Enable/disable 4-byte addressing mode.
167 static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
169 switch (JEDEC_MFR(jedec_id)) {
170 case CFI_MFR_MACRONIX:
171 flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
172 return spi_write(flash->spi, flash->command, 1);
173 default:
174 /* Spansion style */
175 flash->command[0] = OPCODE_BRWR;
176 flash->command[1] = enable << 7;
177 return spi_write(flash->spi, flash->command, 2);
182 * Service routine to read status register until ready, or timeout occurs.
183 * Returns non-zero if error.
185 static int wait_till_ready(struct m25p *flash)
187 unsigned long deadline;
188 int sr;
190 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
192 do {
193 if ((sr = read_sr(flash)) < 0)
194 break;
195 else if (!(sr & SR_WIP))
196 return 0;
198 cond_resched();
200 } while (!time_after_eq(jiffies, deadline));
202 return 1;
206 * Erase the whole flash memory
208 * Returns 0 if successful, non-zero otherwise.
210 static int erase_chip(struct m25p *flash)
212 pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
213 (long long)(flash->mtd.size >> 10));
215 /* Wait until finished previous write command. */
216 if (wait_till_ready(flash))
217 return 1;
219 /* Send write enable, then erase commands. */
220 write_enable(flash);
222 /* Set up command buffer. */
223 flash->command[0] = OPCODE_CHIP_ERASE;
225 spi_write(flash->spi, flash->command, 1);
227 return 0;
230 static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
232 /* opcode is in cmd[0] */
233 cmd[1] = addr >> (flash->addr_width * 8 - 8);
234 cmd[2] = addr >> (flash->addr_width * 8 - 16);
235 cmd[3] = addr >> (flash->addr_width * 8 - 24);
236 cmd[4] = addr >> (flash->addr_width * 8 - 32);
239 static int m25p_cmdsz(struct m25p *flash)
241 return 1 + flash->addr_width;
245 * Erase one sector of flash memory at offset ``offset'' which is any
246 * address within the sector which should be erased.
248 * Returns 0 if successful, non-zero otherwise.
250 static int erase_sector(struct m25p *flash, u32 offset)
252 pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
253 __func__, flash->mtd.erasesize / 1024, offset);
255 /* Wait until finished previous write command. */
256 if (wait_till_ready(flash))
257 return 1;
259 /* Send write enable, then erase commands. */
260 write_enable(flash);
262 /* Set up command buffer. */
263 flash->command[0] = flash->erase_opcode;
264 m25p_addr2cmd(flash, offset, flash->command);
266 spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
268 return 0;
271 /****************************************************************************/
274 * MTD implementation
278 * Erase an address range on the flash chip. The address range may extend
279 * one or more erase sectors. Return an error is there is a problem erasing.
281 static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
283 struct m25p *flash = mtd_to_m25p(mtd);
284 u32 addr,len;
285 uint32_t rem;
287 pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
288 __func__, (long long)instr->addr,
289 (long long)instr->len);
291 div_u64_rem(instr->len, mtd->erasesize, &rem);
292 if (rem)
293 return -EINVAL;
295 addr = instr->addr;
296 len = instr->len;
298 mutex_lock(&flash->lock);
300 /* whole-chip erase? */
301 if (len == flash->mtd.size) {
302 if (erase_chip(flash)) {
303 instr->state = MTD_ERASE_FAILED;
304 mutex_unlock(&flash->lock);
305 return -EIO;
308 /* REVISIT in some cases we could speed up erasing large regions
309 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
310 * to use "small sector erase", but that's not always optimal.
313 /* "sector"-at-a-time erase */
314 } else {
315 while (len) {
316 if (erase_sector(flash, addr)) {
317 instr->state = MTD_ERASE_FAILED;
318 mutex_unlock(&flash->lock);
319 return -EIO;
322 addr += mtd->erasesize;
323 len -= mtd->erasesize;
327 mutex_unlock(&flash->lock);
329 instr->state = MTD_ERASE_DONE;
330 mtd_erase_callback(instr);
332 return 0;
336 * Read an address range from the flash chip. The address range
337 * may be any size provided it is within the physical boundaries.
339 static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
340 size_t *retlen, u_char *buf)
342 struct m25p *flash = mtd_to_m25p(mtd);
343 struct spi_transfer t[2];
344 struct spi_message m;
346 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
347 __func__, (u32)from, len);
349 spi_message_init(&m);
350 memset(t, 0, (sizeof t));
352 /* NOTE:
353 * OPCODE_FAST_READ (if available) is faster.
354 * Should add 1 byte DUMMY_BYTE.
356 t[0].tx_buf = flash->command;
357 t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
358 spi_message_add_tail(&t[0], &m);
360 t[1].rx_buf = buf;
361 t[1].len = len;
362 spi_message_add_tail(&t[1], &m);
364 mutex_lock(&flash->lock);
366 /* Wait till previous write/erase is done. */
367 if (wait_till_ready(flash)) {
368 /* REVISIT status return?? */
369 mutex_unlock(&flash->lock);
370 return 1;
373 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
374 * clocks; and at this writing, every chip this driver handles
375 * supports that opcode.
378 /* Set up the write data buffer. */
379 flash->command[0] = OPCODE_READ;
380 m25p_addr2cmd(flash, from, flash->command);
382 spi_sync(flash->spi, &m);
384 *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
386 mutex_unlock(&flash->lock);
388 return 0;
392 * Write an address range to the flash chip. Data must be written in
393 * FLASH_PAGESIZE chunks. The address range may be any size provided
394 * it is within the physical boundaries.
396 static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
397 size_t *retlen, const u_char *buf)
399 struct m25p *flash = mtd_to_m25p(mtd);
400 u32 page_offset, page_size;
401 struct spi_transfer t[2];
402 struct spi_message m;
404 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
405 __func__, (u32)to, len);
407 spi_message_init(&m);
408 memset(t, 0, (sizeof t));
410 t[0].tx_buf = flash->command;
411 t[0].len = m25p_cmdsz(flash);
412 spi_message_add_tail(&t[0], &m);
414 t[1].tx_buf = buf;
415 spi_message_add_tail(&t[1], &m);
417 mutex_lock(&flash->lock);
419 /* Wait until finished previous write command. */
420 if (wait_till_ready(flash)) {
421 mutex_unlock(&flash->lock);
422 return 1;
425 write_enable(flash);
427 /* Set up the opcode in the write buffer. */
428 flash->command[0] = OPCODE_PP;
429 m25p_addr2cmd(flash, to, flash->command);
431 page_offset = to & (flash->page_size - 1);
433 /* do all the bytes fit onto one page? */
434 if (page_offset + len <= flash->page_size) {
435 t[1].len = len;
437 spi_sync(flash->spi, &m);
439 *retlen = m.actual_length - m25p_cmdsz(flash);
440 } else {
441 u32 i;
443 /* the size of data remaining on the first page */
444 page_size = flash->page_size - page_offset;
446 t[1].len = page_size;
447 spi_sync(flash->spi, &m);
449 *retlen = m.actual_length - m25p_cmdsz(flash);
451 /* write everything in flash->page_size chunks */
452 for (i = page_size; i < len; i += page_size) {
453 page_size = len - i;
454 if (page_size > flash->page_size)
455 page_size = flash->page_size;
457 /* write the next page to flash */
458 m25p_addr2cmd(flash, to + i, flash->command);
460 t[1].tx_buf = buf + i;
461 t[1].len = page_size;
463 wait_till_ready(flash);
465 write_enable(flash);
467 spi_sync(flash->spi, &m);
469 *retlen += m.actual_length - m25p_cmdsz(flash);
473 mutex_unlock(&flash->lock);
475 return 0;
478 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
479 size_t *retlen, const u_char *buf)
481 struct m25p *flash = mtd_to_m25p(mtd);
482 struct spi_transfer t[2];
483 struct spi_message m;
484 size_t actual;
485 int cmd_sz, ret;
487 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
488 __func__, (u32)to, len);
490 spi_message_init(&m);
491 memset(t, 0, (sizeof t));
493 t[0].tx_buf = flash->command;
494 t[0].len = m25p_cmdsz(flash);
495 spi_message_add_tail(&t[0], &m);
497 t[1].tx_buf = buf;
498 spi_message_add_tail(&t[1], &m);
500 mutex_lock(&flash->lock);
502 /* Wait until finished previous write command. */
503 ret = wait_till_ready(flash);
504 if (ret)
505 goto time_out;
507 write_enable(flash);
509 actual = to % 2;
510 /* Start write from odd address. */
511 if (actual) {
512 flash->command[0] = OPCODE_BP;
513 m25p_addr2cmd(flash, to, flash->command);
515 /* write one byte. */
516 t[1].len = 1;
517 spi_sync(flash->spi, &m);
518 ret = wait_till_ready(flash);
519 if (ret)
520 goto time_out;
521 *retlen += m.actual_length - m25p_cmdsz(flash);
523 to += actual;
525 flash->command[0] = OPCODE_AAI_WP;
526 m25p_addr2cmd(flash, to, flash->command);
528 /* Write out most of the data here. */
529 cmd_sz = m25p_cmdsz(flash);
530 for (; actual < len - 1; actual += 2) {
531 t[0].len = cmd_sz;
532 /* write two bytes. */
533 t[1].len = 2;
534 t[1].tx_buf = buf + actual;
536 spi_sync(flash->spi, &m);
537 ret = wait_till_ready(flash);
538 if (ret)
539 goto time_out;
540 *retlen += m.actual_length - cmd_sz;
541 cmd_sz = 1;
542 to += 2;
544 write_disable(flash);
545 ret = wait_till_ready(flash);
546 if (ret)
547 goto time_out;
549 /* Write out trailing byte if it exists. */
550 if (actual != len) {
551 write_enable(flash);
552 flash->command[0] = OPCODE_BP;
553 m25p_addr2cmd(flash, to, flash->command);
554 t[0].len = m25p_cmdsz(flash);
555 t[1].len = 1;
556 t[1].tx_buf = buf + actual;
558 spi_sync(flash->spi, &m);
559 ret = wait_till_ready(flash);
560 if (ret)
561 goto time_out;
562 *retlen += m.actual_length - m25p_cmdsz(flash);
563 write_disable(flash);
566 time_out:
567 mutex_unlock(&flash->lock);
568 return ret;
571 /****************************************************************************/
574 * SPI device driver setup and teardown
577 struct flash_info {
578 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
579 * a high byte of zero plus three data bytes: the manufacturer id,
580 * then a two byte device id.
582 u32 jedec_id;
583 u16 ext_id;
585 /* The size listed here is what works with OPCODE_SE, which isn't
586 * necessarily called a "sector" by the vendor.
588 unsigned sector_size;
589 u16 n_sectors;
591 u16 page_size;
592 u16 addr_width;
594 u16 flags;
595 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
596 #define M25P_NO_ERASE 0x02 /* No erase command needed */
599 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
600 ((kernel_ulong_t)&(struct flash_info) { \
601 .jedec_id = (_jedec_id), \
602 .ext_id = (_ext_id), \
603 .sector_size = (_sector_size), \
604 .n_sectors = (_n_sectors), \
605 .page_size = 256, \
606 .flags = (_flags), \
609 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
610 ((kernel_ulong_t)&(struct flash_info) { \
611 .sector_size = (_sector_size), \
612 .n_sectors = (_n_sectors), \
613 .page_size = (_page_size), \
614 .addr_width = (_addr_width), \
615 .flags = M25P_NO_ERASE, \
618 /* NOTE: double check command sets and memory organization when you add
619 * more flash chips. This current list focusses on newer chips, which
620 * have been converging on command sets which including JEDEC ID.
622 static const struct spi_device_id m25p_ids[] = {
623 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
624 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
625 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
627 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
628 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
629 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
631 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
632 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
633 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
634 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
636 /* EON -- en25xxx */
637 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
638 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
639 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
640 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
642 /* Intel/Numonyx -- xxxs33b */
643 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
644 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
645 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
647 /* Macronix */
648 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
649 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
650 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
651 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
652 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
653 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
654 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
655 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
656 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
658 /* Spansion -- single (large) sector size only, at least
659 * for the chips listed here (without boot sectors).
661 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
662 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
663 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
664 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
665 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) },
666 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
667 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
668 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
669 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
670 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
671 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
672 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
673 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
674 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
675 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
676 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
678 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
679 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
680 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
681 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
682 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
683 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
684 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
685 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
686 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
688 /* ST Microelectronics -- newer production may have feature updates */
689 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
690 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
691 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
692 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
693 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
694 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
695 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
696 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
697 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
699 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
700 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
701 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
702 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
703 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
704 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
705 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
706 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
707 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
709 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
710 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
711 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
713 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
714 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
716 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
717 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
718 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
719 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
721 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
722 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
723 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
724 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
725 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
726 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
727 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
728 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
729 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
730 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
732 /* Catalyst / On Semiconductor -- non-JEDEC */
733 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
734 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
735 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
736 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
737 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
738 { },
740 MODULE_DEVICE_TABLE(spi, m25p_ids);
742 static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
744 int tmp;
745 u8 code = OPCODE_RDID;
746 u8 id[5];
747 u32 jedec;
748 u16 ext_jedec;
749 struct flash_info *info;
751 /* JEDEC also defines an optional "extended device information"
752 * string for after vendor-specific data, after the three bytes
753 * we use here. Supporting some chips might require using it.
755 tmp = spi_write_then_read(spi, &code, 1, id, 5);
756 if (tmp < 0) {
757 pr_debug("%s: error %d reading JEDEC ID\n",
758 dev_name(&spi->dev), tmp);
759 return ERR_PTR(tmp);
761 jedec = id[0];
762 jedec = jedec << 8;
763 jedec |= id[1];
764 jedec = jedec << 8;
765 jedec |= id[2];
767 ext_jedec = id[3] << 8 | id[4];
769 for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
770 info = (void *)m25p_ids[tmp].driver_data;
771 if (info->jedec_id == jedec) {
772 if (info->ext_id != 0 && info->ext_id != ext_jedec)
773 continue;
774 return &m25p_ids[tmp];
777 dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
778 return ERR_PTR(-ENODEV);
783 * board specific setup should have ensured the SPI clock used here
784 * matches what the READ command supports, at least until this driver
785 * understands FAST_READ (for clocks over 25 MHz).
787 static int __devinit m25p_probe(struct spi_device *spi)
789 const struct spi_device_id *id = spi_get_device_id(spi);
790 struct flash_platform_data *data;
791 struct m25p *flash;
792 struct flash_info *info;
793 unsigned i;
794 struct mtd_part_parser_data ppdata;
796 #ifdef CONFIG_MTD_OF_PARTS
797 if (!of_device_is_available(spi->dev.of_node))
798 return -ENODEV;
799 #endif
801 /* Platform data helps sort out which chip type we have, as
802 * well as how this board partitions it. If we don't have
803 * a chip ID, try the JEDEC id commands; they'll work for most
804 * newer chips, even if we don't recognize the particular chip.
806 data = spi->dev.platform_data;
807 if (data && data->type) {
808 const struct spi_device_id *plat_id;
810 for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
811 plat_id = &m25p_ids[i];
812 if (strcmp(data->type, plat_id->name))
813 continue;
814 break;
817 if (i < ARRAY_SIZE(m25p_ids) - 1)
818 id = plat_id;
819 else
820 dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
823 info = (void *)id->driver_data;
825 if (info->jedec_id) {
826 const struct spi_device_id *jid;
828 jid = jedec_probe(spi);
829 if (IS_ERR(jid)) {
830 return PTR_ERR(jid);
831 } else if (jid != id) {
833 * JEDEC knows better, so overwrite platform ID. We
834 * can't trust partitions any longer, but we'll let
835 * mtd apply them anyway, since some partitions may be
836 * marked read-only, and we don't want to lose that
837 * information, even if it's not 100% accurate.
839 dev_warn(&spi->dev, "found %s, expected %s\n",
840 jid->name, id->name);
841 id = jid;
842 info = (void *)jid->driver_data;
846 flash = kzalloc(sizeof *flash, GFP_KERNEL);
847 if (!flash)
848 return -ENOMEM;
849 flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
850 if (!flash->command) {
851 kfree(flash);
852 return -ENOMEM;
855 flash->spi = spi;
856 mutex_init(&flash->lock);
857 dev_set_drvdata(&spi->dev, flash);
860 * Atmel, SST and Intel/Numonyx serial flash tend to power
861 * up with the software protection bits set
864 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
865 JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
866 JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
867 write_enable(flash);
868 write_sr(flash, 0);
871 if (data && data->name)
872 flash->mtd.name = data->name;
873 else
874 flash->mtd.name = dev_name(&spi->dev);
876 flash->mtd.type = MTD_NORFLASH;
877 flash->mtd.writesize = 1;
878 flash->mtd.flags = MTD_CAP_NORFLASH;
879 flash->mtd.size = info->sector_size * info->n_sectors;
880 flash->mtd._erase = m25p80_erase;
881 flash->mtd._read = m25p80_read;
883 /* sst flash chips use AAI word program */
884 if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
885 flash->mtd._write = sst_write;
886 else
887 flash->mtd._write = m25p80_write;
889 /* prefer "small sector" erase if possible */
890 if (info->flags & SECT_4K) {
891 flash->erase_opcode = OPCODE_BE_4K;
892 flash->mtd.erasesize = 4096;
893 } else {
894 flash->erase_opcode = OPCODE_SE;
895 flash->mtd.erasesize = info->sector_size;
898 if (info->flags & M25P_NO_ERASE)
899 flash->mtd.flags |= MTD_NO_ERASE;
901 ppdata.of_node = spi->dev.of_node;
902 flash->mtd.dev.parent = &spi->dev;
903 flash->page_size = info->page_size;
904 flash->mtd.writebufsize = flash->page_size;
906 if (info->addr_width)
907 flash->addr_width = info->addr_width;
908 else {
909 /* enable 4-byte addressing if the device exceeds 16MiB */
910 if (flash->mtd.size > 0x1000000) {
911 flash->addr_width = 4;
912 set_4byte(flash, info->jedec_id, 1);
913 } else
914 flash->addr_width = 3;
917 dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
918 (long long)flash->mtd.size >> 10);
920 pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
921 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
922 flash->mtd.name,
923 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
924 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
925 flash->mtd.numeraseregions);
927 if (flash->mtd.numeraseregions)
928 for (i = 0; i < flash->mtd.numeraseregions; i++)
929 pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
930 ".erasesize = 0x%.8x (%uKiB), "
931 ".numblocks = %d }\n",
932 i, (long long)flash->mtd.eraseregions[i].offset,
933 flash->mtd.eraseregions[i].erasesize,
934 flash->mtd.eraseregions[i].erasesize / 1024,
935 flash->mtd.eraseregions[i].numblocks);
938 /* partitions should match sector boundaries; and it may be good to
939 * use readonly partitions for writeprotected sectors (BP2..BP0).
941 return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
942 data ? data->parts : NULL,
943 data ? data->nr_parts : 0);
947 static int __devexit m25p_remove(struct spi_device *spi)
949 struct m25p *flash = dev_get_drvdata(&spi->dev);
950 int status;
952 /* Clean up MTD stuff. */
953 status = mtd_device_unregister(&flash->mtd);
954 if (status == 0) {
955 kfree(flash->command);
956 kfree(flash);
958 return 0;
962 static struct spi_driver m25p80_driver = {
963 .driver = {
964 .name = "m25p80",
965 .owner = THIS_MODULE,
967 .id_table = m25p_ids,
968 .probe = m25p_probe,
969 .remove = __devexit_p(m25p_remove),
971 /* REVISIT: many of these chips have deep power-down modes, which
972 * should clearly be entered on suspend() to minimize power use.
973 * And also when they're otherwise idle...
977 module_spi_driver(m25p80_driver);
979 MODULE_LICENSE("GPL");
980 MODULE_AUTHOR("Mike Lavender");
981 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");