2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
23 * UBI wear-leveling sub-system.
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
45 * an "optimal" physical eraseblock. For example, when it is known that the
46 * physical eraseblock will be "put" soon because it contains short-term data,
47 * the WL sub-system may pick a free physical eraseblock with low erase
48 * counter, and so forth.
50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
54 * in a physical eraseblock, it has to be moved. Technically this is the same
55 * as moving it for wear-leveling reasons.
57 * As it was said, for the UBI sub-system all physical eraseblocks are either
58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
62 * When the WL sub-system returns a physical eraseblock, the physical
63 * eraseblock is protected from being moved for some "time". For this reason,
64 * the physical eraseblock is not directly moved from the @wl->free tree to the
65 * @wl->used tree. There is a protection queue in between where this
66 * physical eraseblock is temporarily stored (@wl->pq).
68 * All this protection stuff is needed because:
69 * o we don't want to move physical eraseblocks just after we have given them
70 * to the user; instead, we first want to let users fill them up with data;
72 * o there is a chance that the user will put the physical eraseblock very
73 * soon, so it makes sense not to move it for some time, but wait; this is
74 * especially important in case of "short term" physical eraseblocks.
76 * Physical eraseblocks stay protected only for limited time. But the "time" is
77 * measured in erase cycles in this case. This is implemented with help of the
78 * protection queue. Eraseblocks are put to the tail of this queue when they
79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
80 * head of the queue on each erase operation (for any eraseblock). So the
81 * length of the queue defines how may (global) erase cycles PEBs are protected.
83 * To put it differently, each physical eraseblock has 2 main states: free and
84 * used. The former state corresponds to the @wl->free tree. The latter state
85 * is split up on several sub-states:
86 * o the WL movement is allowed (@wl->used tree);
87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
88 * erroneous - e.g., there was a read error;
89 * o the WL movement is temporarily prohibited (@wl->pq queue);
90 * o scrubbing is needed (@wl->scrub tree).
92 * Depending on the sub-state, wear-leveling entries of the used physical
93 * eraseblocks may be kept in one of those structures.
95 * Note, in this implementation, we keep a small in-RAM object for each physical
96 * eraseblock. This is surely not a scalable solution. But it appears to be good
97 * enough for moderately large flashes and it is simple. In future, one may
98 * re-work this sub-system and make it more scalable.
100 * At the moment this sub-system does not utilize the sequence number, which
101 * was introduced relatively recently. But it would be wise to do this because
102 * the sequence number of a logical eraseblock characterizes how old is it. For
103 * example, when we move a PEB with low erase counter, and we need to pick the
104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
105 * pick target PEB with an average EC if our PEB is not very "old". This is a
106 * room for future re-works of the WL sub-system.
109 #include <linux/slab.h>
110 #include <linux/crc32.h>
111 #include <linux/freezer.h>
112 #include <linux/kthread.h>
115 /* Number of physical eraseblocks reserved for wear-leveling purposes */
116 #define WL_RESERVED_PEBS 1
119 * Maximum difference between two erase counters. If this threshold is
120 * exceeded, the WL sub-system starts moving data from used physical
121 * eraseblocks with low erase counter to free physical eraseblocks with high
124 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
128 * physical eraseblock to move to. The simplest way would be just to pick the
129 * one with the highest erase counter. But in certain workloads this could lead
130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
131 * situation when the picked physical eraseblock is constantly erased after the
132 * data is written to it. So, we have a constant which limits the highest erase
133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
134 * does not pick eraseblocks with erase counter greater than the lowest erase
135 * counter plus %WL_FREE_MAX_DIFF.
137 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
140 * Maximum number of consecutive background thread failures which is enough to
141 * switch to read-only mode.
143 #define WL_MAX_FAILURES 32
146 * struct ubi_work - UBI work description data structure.
147 * @list: a link in the list of pending works
148 * @func: worker function
149 * @e: physical eraseblock to erase
150 * @torture: if the physical eraseblock has to be tortured
152 * The @func pointer points to the worker function. If the @cancel argument is
153 * not zero, the worker has to free the resources and exit immediately. The
154 * worker has to return zero in case of success and a negative error code in
158 struct list_head list
;
159 int (*func
)(struct ubi_device
*ubi
, struct ubi_work
*wrk
, int cancel
);
160 /* The below fields are only relevant to erasure works */
161 struct ubi_wl_entry
*e
;
165 #ifdef CONFIG_MTD_UBI_DEBUG
166 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
167 static int paranoid_check_in_wl_tree(const struct ubi_device
*ubi
,
168 struct ubi_wl_entry
*e
,
169 struct rb_root
*root
);
170 static int paranoid_check_in_pq(const struct ubi_device
*ubi
,
171 struct ubi_wl_entry
*e
);
173 #define paranoid_check_ec(ubi, pnum, ec) 0
174 #define paranoid_check_in_wl_tree(ubi, e, root)
175 #define paranoid_check_in_pq(ubi, e) 0
179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
180 * @e: the wear-leveling entry to add
181 * @root: the root of the tree
183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
184 * the @ubi->used and @ubi->free RB-trees.
186 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
188 struct rb_node
**p
, *parent
= NULL
;
192 struct ubi_wl_entry
*e1
;
195 e1
= rb_entry(parent
, struct ubi_wl_entry
, u
.rb
);
199 else if (e
->ec
> e1
->ec
)
202 ubi_assert(e
->pnum
!= e1
->pnum
);
203 if (e
->pnum
< e1
->pnum
)
210 rb_link_node(&e
->u
.rb
, parent
, p
);
211 rb_insert_color(&e
->u
.rb
, root
);
215 * do_work - do one pending work.
216 * @ubi: UBI device description object
218 * This function returns zero in case of success and a negative error code in
221 static int do_work(struct ubi_device
*ubi
)
224 struct ubi_work
*wrk
;
229 * @ubi->work_sem is used to synchronize with the workers. Workers take
230 * it in read mode, so many of them may be doing works at a time. But
231 * the queue flush code has to be sure the whole queue of works is
232 * done, and it takes the mutex in write mode.
234 down_read(&ubi
->work_sem
);
235 spin_lock(&ubi
->wl_lock
);
236 if (list_empty(&ubi
->works
)) {
237 spin_unlock(&ubi
->wl_lock
);
238 up_read(&ubi
->work_sem
);
242 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
243 list_del(&wrk
->list
);
244 ubi
->works_count
-= 1;
245 ubi_assert(ubi
->works_count
>= 0);
246 spin_unlock(&ubi
->wl_lock
);
249 * Call the worker function. Do not touch the work structure
250 * after this call as it will have been freed or reused by that
251 * time by the worker function.
253 err
= wrk
->func(ubi
, wrk
, 0);
255 ubi_err("work failed with error code %d", err
);
256 up_read(&ubi
->work_sem
);
262 * produce_free_peb - produce a free physical eraseblock.
263 * @ubi: UBI device description object
265 * This function tries to make a free PEB by means of synchronous execution of
266 * pending works. This may be needed if, for example the background thread is
267 * disabled. Returns zero in case of success and a negative error code in case
270 static int produce_free_peb(struct ubi_device
*ubi
)
274 spin_lock(&ubi
->wl_lock
);
275 while (!ubi
->free
.rb_node
) {
276 spin_unlock(&ubi
->wl_lock
);
278 dbg_wl("do one work synchronously");
283 spin_lock(&ubi
->wl_lock
);
285 spin_unlock(&ubi
->wl_lock
);
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
298 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
304 struct ubi_wl_entry
*e1
;
306 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
308 if (e
->pnum
== e1
->pnum
) {
315 else if (e
->ec
> e1
->ec
)
318 ubi_assert(e
->pnum
!= e1
->pnum
);
319 if (e
->pnum
< e1
->pnum
)
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
339 static void prot_queue_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
341 int pq_tail
= ubi
->pq_head
- 1;
344 pq_tail
= UBI_PROT_QUEUE_LEN
- 1;
345 ubi_assert(pq_tail
>= 0 && pq_tail
< UBI_PROT_QUEUE_LEN
);
346 list_add_tail(&e
->u
.list
, &ubi
->pq
[pq_tail
]);
347 dbg_wl("added PEB %d EC %d to the protection queue", e
->pnum
, e
->ec
);
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @root: the RB-tree where to look for
353 * @diff: maximum possible difference from the smallest erase counter
355 * This function looks for a wear leveling entry with erase counter closest to
356 * min + @diff, where min is the smallest erase counter.
358 static struct ubi_wl_entry
*find_wl_entry(struct rb_root
*root
, int diff
)
361 struct ubi_wl_entry
*e
;
364 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
369 struct ubi_wl_entry
*e1
;
371 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
384 * ubi_wl_get_peb - get a physical eraseblock.
385 * @ubi: UBI device description object
386 * @dtype: type of data which will be stored in this physical eraseblock
388 * This function returns a physical eraseblock in case of success and a
389 * negative error code in case of failure. Might sleep.
391 int ubi_wl_get_peb(struct ubi_device
*ubi
, int dtype
)
394 struct ubi_wl_entry
*e
, *first
, *last
;
396 ubi_assert(dtype
== UBI_LONGTERM
|| dtype
== UBI_SHORTTERM
||
397 dtype
== UBI_UNKNOWN
);
400 spin_lock(&ubi
->wl_lock
);
401 if (!ubi
->free
.rb_node
) {
402 if (ubi
->works_count
== 0) {
403 ubi_assert(list_empty(&ubi
->works
));
404 ubi_err("no free eraseblocks");
405 spin_unlock(&ubi
->wl_lock
);
408 spin_unlock(&ubi
->wl_lock
);
410 err
= produce_free_peb(ubi
);
419 * For long term data we pick a physical eraseblock with high
420 * erase counter. But the highest erase counter we can pick is
421 * bounded by the the lowest erase counter plus
424 e
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
428 * For unknown data we pick a physical eraseblock with medium
429 * erase counter. But we by no means can pick a physical
430 * eraseblock with erase counter greater or equivalent than the
431 * lowest erase counter plus %WL_FREE_MAX_DIFF/2.
433 first
= rb_entry(rb_first(&ubi
->free
), struct ubi_wl_entry
,
435 last
= rb_entry(rb_last(&ubi
->free
), struct ubi_wl_entry
, u
.rb
);
437 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
)
438 e
= rb_entry(ubi
->free
.rb_node
,
439 struct ubi_wl_entry
, u
.rb
);
441 e
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
/2);
445 * For short term data we pick a physical eraseblock with the
446 * lowest erase counter as we expect it will be erased soon.
448 e
= rb_entry(rb_first(&ubi
->free
), struct ubi_wl_entry
, u
.rb
);
454 paranoid_check_in_wl_tree(ubi
, e
, &ubi
->free
);
457 * Move the physical eraseblock to the protection queue where it will
458 * be protected from being moved for some time.
460 rb_erase(&e
->u
.rb
, &ubi
->free
);
461 dbg_wl("PEB %d EC %d", e
->pnum
, e
->ec
);
462 prot_queue_add(ubi
, e
);
463 spin_unlock(&ubi
->wl_lock
);
465 err
= ubi_dbg_check_all_ff(ubi
, e
->pnum
, ubi
->vid_hdr_aloffset
,
466 ubi
->peb_size
- ubi
->vid_hdr_aloffset
);
468 ubi_err("new PEB %d does not contain all 0xFF bytes", e
->pnum
);
476 * prot_queue_del - remove a physical eraseblock from the protection queue.
477 * @ubi: UBI device description object
478 * @pnum: the physical eraseblock to remove
480 * This function deletes PEB @pnum from the protection queue and returns zero
481 * in case of success and %-ENODEV if the PEB was not found.
483 static int prot_queue_del(struct ubi_device
*ubi
, int pnum
)
485 struct ubi_wl_entry
*e
;
487 e
= ubi
->lookuptbl
[pnum
];
491 if (paranoid_check_in_pq(ubi
, e
))
494 list_del(&e
->u
.list
);
495 dbg_wl("deleted PEB %d from the protection queue", e
->pnum
);
500 * sync_erase - synchronously erase a physical eraseblock.
501 * @ubi: UBI device description object
502 * @e: the the physical eraseblock to erase
503 * @torture: if the physical eraseblock has to be tortured
505 * This function returns zero in case of success and a negative error code in
508 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
512 struct ubi_ec_hdr
*ec_hdr
;
513 unsigned long long ec
= e
->ec
;
515 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
517 err
= paranoid_check_ec(ubi
, e
->pnum
, e
->ec
);
521 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
525 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
530 if (ec
> UBI_MAX_ERASECOUNTER
) {
532 * Erase counter overflow. Upgrade UBI and use 64-bit
533 * erase counters internally.
535 ubi_err("erase counter overflow at PEB %d, EC %llu",
541 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
543 ec_hdr
->ec
= cpu_to_be64(ec
);
545 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
550 spin_lock(&ubi
->wl_lock
);
551 if (e
->ec
> ubi
->max_ec
)
553 spin_unlock(&ubi
->wl_lock
);
561 * serve_prot_queue - check if it is time to stop protecting PEBs.
562 * @ubi: UBI device description object
564 * This function is called after each erase operation and removes PEBs from the
565 * tail of the protection queue. These PEBs have been protected for long enough
566 * and should be moved to the used tree.
568 static void serve_prot_queue(struct ubi_device
*ubi
)
570 struct ubi_wl_entry
*e
, *tmp
;
574 * There may be several protected physical eraseblock to remove,
579 spin_lock(&ubi
->wl_lock
);
580 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[ubi
->pq_head
], u
.list
) {
581 dbg_wl("PEB %d EC %d protection over, move to used tree",
584 list_del(&e
->u
.list
);
585 wl_tree_add(e
, &ubi
->used
);
588 * Let's be nice and avoid holding the spinlock for
591 spin_unlock(&ubi
->wl_lock
);
598 if (ubi
->pq_head
== UBI_PROT_QUEUE_LEN
)
600 ubi_assert(ubi
->pq_head
>= 0 && ubi
->pq_head
< UBI_PROT_QUEUE_LEN
);
601 spin_unlock(&ubi
->wl_lock
);
605 * schedule_ubi_work - schedule a work.
606 * @ubi: UBI device description object
607 * @wrk: the work to schedule
609 * This function adds a work defined by @wrk to the tail of the pending works
612 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
614 spin_lock(&ubi
->wl_lock
);
615 list_add_tail(&wrk
->list
, &ubi
->works
);
616 ubi_assert(ubi
->works_count
>= 0);
617 ubi
->works_count
+= 1;
618 if (ubi
->thread_enabled
&& !ubi_dbg_is_bgt_disabled(ubi
))
619 wake_up_process(ubi
->bgt_thread
);
620 spin_unlock(&ubi
->wl_lock
);
623 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
627 * schedule_erase - schedule an erase work.
628 * @ubi: UBI device description object
629 * @e: the WL entry of the physical eraseblock to erase
630 * @torture: if the physical eraseblock has to be tortured
632 * This function returns zero in case of success and a %-ENOMEM in case of
635 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
638 struct ubi_work
*wl_wrk
;
640 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
641 e
->pnum
, e
->ec
, torture
);
643 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
647 wl_wrk
->func
= &erase_worker
;
649 wl_wrk
->torture
= torture
;
651 schedule_ubi_work(ubi
, wl_wrk
);
656 * wear_leveling_worker - wear-leveling worker function.
657 * @ubi: UBI device description object
658 * @wrk: the work object
659 * @cancel: non-zero if the worker has to free memory and exit
661 * This function copies a more worn out physical eraseblock to a less worn out
662 * one. Returns zero in case of success and a negative error code in case of
665 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
668 int err
, scrubbing
= 0, torture
= 0, protect
= 0, erroneous
= 0;
669 int vol_id
= -1, uninitialized_var(lnum
);
670 struct ubi_wl_entry
*e1
, *e2
;
671 struct ubi_vid_hdr
*vid_hdr
;
677 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
681 mutex_lock(&ubi
->move_mutex
);
682 spin_lock(&ubi
->wl_lock
);
683 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
684 ubi_assert(!ubi
->move_to_put
);
686 if (!ubi
->free
.rb_node
||
687 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
689 * No free physical eraseblocks? Well, they must be waiting in
690 * the queue to be erased. Cancel movement - it will be
691 * triggered again when a free physical eraseblock appears.
693 * No used physical eraseblocks? They must be temporarily
694 * protected from being moved. They will be moved to the
695 * @ubi->used tree later and the wear-leveling will be
698 dbg_wl("cancel WL, a list is empty: free %d, used %d",
699 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
703 if (!ubi
->scrub
.rb_node
) {
705 * Now pick the least worn-out used physical eraseblock and a
706 * highly worn-out free physical eraseblock. If the erase
707 * counters differ much enough, start wear-leveling.
709 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
710 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
712 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
713 dbg_wl("no WL needed: min used EC %d, max free EC %d",
717 paranoid_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
718 rb_erase(&e1
->u
.rb
, &ubi
->used
);
719 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
720 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
722 /* Perform scrubbing */
724 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, u
.rb
);
725 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
726 paranoid_check_in_wl_tree(ubi
, e1
, &ubi
->scrub
);
727 rb_erase(&e1
->u
.rb
, &ubi
->scrub
);
728 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
731 paranoid_check_in_wl_tree(ubi
, e2
, &ubi
->free
);
732 rb_erase(&e2
->u
.rb
, &ubi
->free
);
735 spin_unlock(&ubi
->wl_lock
);
738 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
739 * We so far do not know which logical eraseblock our physical
740 * eraseblock (@e1) belongs to. We have to read the volume identifier
743 * Note, we are protected from this PEB being unmapped and erased. The
744 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
745 * which is being moved was unmapped.
748 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vid_hdr
, 0);
749 if (err
&& err
!= UBI_IO_BITFLIPS
) {
750 if (err
== UBI_IO_FF
) {
752 * We are trying to move PEB without a VID header. UBI
753 * always write VID headers shortly after the PEB was
754 * given, so we have a situation when it has not yet
755 * had a chance to write it, because it was preempted.
756 * So add this PEB to the protection queue so far,
757 * because presumably more data will be written there
758 * (including the missing VID header), and then we'll
761 dbg_wl("PEB %d has no VID header", e1
->pnum
);
764 } else if (err
== UBI_IO_FF_BITFLIPS
) {
766 * The same situation as %UBI_IO_FF, but bit-flips were
767 * detected. It is better to schedule this PEB for
770 dbg_wl("PEB %d has no VID header but has bit-flips",
776 ubi_err("error %d while reading VID header from PEB %d",
781 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
782 lnum
= be32_to_cpu(vid_hdr
->lnum
);
784 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vid_hdr
);
786 if (err
== MOVE_CANCEL_RACE
) {
788 * The LEB has not been moved because the volume is
789 * being deleted or the PEB has been put meanwhile. We
790 * should prevent this PEB from being selected for
791 * wear-leveling movement again, so put it to the
797 if (err
== MOVE_RETRY
) {
801 if (err
== MOVE_TARGET_BITFLIPS
|| err
== MOVE_TARGET_WR_ERR
||
802 err
== MOVE_TARGET_RD_ERR
) {
804 * Target PEB had bit-flips or write error - torture it.
810 if (err
== MOVE_SOURCE_RD_ERR
) {
812 * An error happened while reading the source PEB. Do
813 * not switch to R/O mode in this case, and give the
814 * upper layers a possibility to recover from this,
815 * e.g. by unmapping corresponding LEB. Instead, just
816 * put this PEB to the @ubi->erroneous list to prevent
817 * UBI from trying to move it over and over again.
819 if (ubi
->erroneous_peb_count
> ubi
->max_erroneous
) {
820 ubi_err("too many erroneous eraseblocks (%d)",
821 ubi
->erroneous_peb_count
);
834 /* The PEB has been successfully moved */
836 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
837 e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
838 ubi_free_vid_hdr(ubi
, vid_hdr
);
840 spin_lock(&ubi
->wl_lock
);
841 if (!ubi
->move_to_put
) {
842 wl_tree_add(e2
, &ubi
->used
);
845 ubi
->move_from
= ubi
->move_to
= NULL
;
846 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
847 spin_unlock(&ubi
->wl_lock
);
849 err
= schedule_erase(ubi
, e1
, 0);
851 kmem_cache_free(ubi_wl_entry_slab
, e1
);
853 kmem_cache_free(ubi_wl_entry_slab
, e2
);
859 * Well, the target PEB was put meanwhile, schedule it for
862 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
863 e2
->pnum
, vol_id
, lnum
);
864 err
= schedule_erase(ubi
, e2
, 0);
866 kmem_cache_free(ubi_wl_entry_slab
, e2
);
872 mutex_unlock(&ubi
->move_mutex
);
876 * For some reasons the LEB was not moved, might be an error, might be
877 * something else. @e1 was not changed, so return it back. @e2 might
878 * have been changed, schedule it for erasure.
882 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
883 e1
->pnum
, vol_id
, lnum
, e2
->pnum
, err
);
885 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
886 e1
->pnum
, e2
->pnum
, err
);
887 spin_lock(&ubi
->wl_lock
);
889 prot_queue_add(ubi
, e1
);
890 else if (erroneous
) {
891 wl_tree_add(e1
, &ubi
->erroneous
);
892 ubi
->erroneous_peb_count
+= 1;
893 } else if (scrubbing
)
894 wl_tree_add(e1
, &ubi
->scrub
);
896 wl_tree_add(e1
, &ubi
->used
);
897 ubi_assert(!ubi
->move_to_put
);
898 ubi
->move_from
= ubi
->move_to
= NULL
;
899 ubi
->wl_scheduled
= 0;
900 spin_unlock(&ubi
->wl_lock
);
902 ubi_free_vid_hdr(ubi
, vid_hdr
);
903 err
= schedule_erase(ubi
, e2
, torture
);
905 kmem_cache_free(ubi_wl_entry_slab
, e2
);
908 mutex_unlock(&ubi
->move_mutex
);
913 ubi_err("error %d while moving PEB %d to PEB %d",
914 err
, e1
->pnum
, e2
->pnum
);
916 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
917 err
, e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
918 spin_lock(&ubi
->wl_lock
);
919 ubi
->move_from
= ubi
->move_to
= NULL
;
920 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
921 spin_unlock(&ubi
->wl_lock
);
923 ubi_free_vid_hdr(ubi
, vid_hdr
);
924 kmem_cache_free(ubi_wl_entry_slab
, e1
);
925 kmem_cache_free(ubi_wl_entry_slab
, e2
);
929 mutex_unlock(&ubi
->move_mutex
);
930 ubi_assert(err
!= 0);
931 return err
< 0 ? err
: -EIO
;
934 ubi
->wl_scheduled
= 0;
935 spin_unlock(&ubi
->wl_lock
);
936 mutex_unlock(&ubi
->move_mutex
);
937 ubi_free_vid_hdr(ubi
, vid_hdr
);
942 * ensure_wear_leveling - schedule wear-leveling if it is needed.
943 * @ubi: UBI device description object
945 * This function checks if it is time to start wear-leveling and schedules it
946 * if yes. This function returns zero in case of success and a negative error
947 * code in case of failure.
949 static int ensure_wear_leveling(struct ubi_device
*ubi
)
952 struct ubi_wl_entry
*e1
;
953 struct ubi_wl_entry
*e2
;
954 struct ubi_work
*wrk
;
956 spin_lock(&ubi
->wl_lock
);
957 if (ubi
->wl_scheduled
)
958 /* Wear-leveling is already in the work queue */
962 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
963 * the WL worker has to be scheduled anyway.
965 if (!ubi
->scrub
.rb_node
) {
966 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
967 /* No physical eraseblocks - no deal */
971 * We schedule wear-leveling only if the difference between the
972 * lowest erase counter of used physical eraseblocks and a high
973 * erase counter of free physical eraseblocks is greater than
976 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
977 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
979 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
981 dbg_wl("schedule wear-leveling");
983 dbg_wl("schedule scrubbing");
985 ubi
->wl_scheduled
= 1;
986 spin_unlock(&ubi
->wl_lock
);
988 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
994 wrk
->func
= &wear_leveling_worker
;
995 schedule_ubi_work(ubi
, wrk
);
999 spin_lock(&ubi
->wl_lock
);
1000 ubi
->wl_scheduled
= 0;
1002 spin_unlock(&ubi
->wl_lock
);
1007 * erase_worker - physical eraseblock erase worker function.
1008 * @ubi: UBI device description object
1009 * @wl_wrk: the work object
1010 * @cancel: non-zero if the worker has to free memory and exit
1012 * This function erases a physical eraseblock and perform torture testing if
1013 * needed. It also takes care about marking the physical eraseblock bad if
1014 * needed. Returns zero in case of success and a negative error code in case of
1017 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
1020 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1021 int pnum
= e
->pnum
, err
, need
;
1024 dbg_wl("cancel erasure of PEB %d EC %d", pnum
, e
->ec
);
1026 kmem_cache_free(ubi_wl_entry_slab
, e
);
1030 dbg_wl("erase PEB %d EC %d", pnum
, e
->ec
);
1032 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
1034 /* Fine, we've erased it successfully */
1037 spin_lock(&ubi
->wl_lock
);
1038 wl_tree_add(e
, &ubi
->free
);
1039 spin_unlock(&ubi
->wl_lock
);
1042 * One more erase operation has happened, take care about
1043 * protected physical eraseblocks.
1045 serve_prot_queue(ubi
);
1047 /* And take care about wear-leveling */
1048 err
= ensure_wear_leveling(ubi
);
1052 ubi_err("failed to erase PEB %d, error %d", pnum
, err
);
1055 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1059 /* Re-schedule the LEB for erasure */
1060 err1
= schedule_erase(ubi
, e
, 0);
1068 kmem_cache_free(ubi_wl_entry_slab
, e
);
1071 * If this is not %-EIO, we have no idea what to do. Scheduling
1072 * this physical eraseblock for erasure again would cause
1073 * errors again and again. Well, lets switch to R/O mode.
1077 /* It is %-EIO, the PEB went bad */
1079 if (!ubi
->bad_allowed
) {
1080 ubi_err("bad physical eraseblock %d detected", pnum
);
1084 spin_lock(&ubi
->volumes_lock
);
1085 need
= ubi
->beb_rsvd_level
- ubi
->beb_rsvd_pebs
+ 1;
1087 need
= ubi
->avail_pebs
>= need
? need
: ubi
->avail_pebs
;
1088 ubi
->avail_pebs
-= need
;
1089 ubi
->rsvd_pebs
+= need
;
1090 ubi
->beb_rsvd_pebs
+= need
;
1092 ubi_msg("reserve more %d PEBs", need
);
1095 if (ubi
->beb_rsvd_pebs
== 0) {
1096 spin_unlock(&ubi
->volumes_lock
);
1097 ubi_err("no reserved physical eraseblocks");
1100 spin_unlock(&ubi
->volumes_lock
);
1102 ubi_msg("mark PEB %d as bad", pnum
);
1103 err
= ubi_io_mark_bad(ubi
, pnum
);
1107 spin_lock(&ubi
->volumes_lock
);
1108 ubi
->beb_rsvd_pebs
-= 1;
1109 ubi
->bad_peb_count
+= 1;
1110 ubi
->good_peb_count
-= 1;
1111 ubi_calculate_reserved(ubi
);
1112 if (ubi
->beb_rsvd_pebs
)
1113 ubi_msg("%d PEBs left in the reserve", ubi
->beb_rsvd_pebs
);
1115 ubi_warn("last PEB from the reserved pool was used");
1116 spin_unlock(&ubi
->volumes_lock
);
1126 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1127 * @ubi: UBI device description object
1128 * @pnum: physical eraseblock to return
1129 * @torture: if this physical eraseblock has to be tortured
1131 * This function is called to return physical eraseblock @pnum to the pool of
1132 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1133 * occurred to this @pnum and it has to be tested. This function returns zero
1134 * in case of success, and a negative error code in case of failure.
1136 int ubi_wl_put_peb(struct ubi_device
*ubi
, int pnum
, int torture
)
1139 struct ubi_wl_entry
*e
;
1141 dbg_wl("PEB %d", pnum
);
1142 ubi_assert(pnum
>= 0);
1143 ubi_assert(pnum
< ubi
->peb_count
);
1146 spin_lock(&ubi
->wl_lock
);
1147 e
= ubi
->lookuptbl
[pnum
];
1148 if (e
== ubi
->move_from
) {
1150 * User is putting the physical eraseblock which was selected to
1151 * be moved. It will be scheduled for erasure in the
1152 * wear-leveling worker.
1154 dbg_wl("PEB %d is being moved, wait", pnum
);
1155 spin_unlock(&ubi
->wl_lock
);
1157 /* Wait for the WL worker by taking the @ubi->move_mutex */
1158 mutex_lock(&ubi
->move_mutex
);
1159 mutex_unlock(&ubi
->move_mutex
);
1161 } else if (e
== ubi
->move_to
) {
1163 * User is putting the physical eraseblock which was selected
1164 * as the target the data is moved to. It may happen if the EBA
1165 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1166 * but the WL sub-system has not put the PEB to the "used" tree
1167 * yet, but it is about to do this. So we just set a flag which
1168 * will tell the WL worker that the PEB is not needed anymore
1169 * and should be scheduled for erasure.
1171 dbg_wl("PEB %d is the target of data moving", pnum
);
1172 ubi_assert(!ubi
->move_to_put
);
1173 ubi
->move_to_put
= 1;
1174 spin_unlock(&ubi
->wl_lock
);
1177 if (in_wl_tree(e
, &ubi
->used
)) {
1178 paranoid_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1179 rb_erase(&e
->u
.rb
, &ubi
->used
);
1180 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1181 paranoid_check_in_wl_tree(ubi
, e
, &ubi
->scrub
);
1182 rb_erase(&e
->u
.rb
, &ubi
->scrub
);
1183 } else if (in_wl_tree(e
, &ubi
->erroneous
)) {
1184 paranoid_check_in_wl_tree(ubi
, e
, &ubi
->erroneous
);
1185 rb_erase(&e
->u
.rb
, &ubi
->erroneous
);
1186 ubi
->erroneous_peb_count
-= 1;
1187 ubi_assert(ubi
->erroneous_peb_count
>= 0);
1188 /* Erroneous PEBs should be tortured */
1191 err
= prot_queue_del(ubi
, e
->pnum
);
1193 ubi_err("PEB %d not found", pnum
);
1195 spin_unlock(&ubi
->wl_lock
);
1200 spin_unlock(&ubi
->wl_lock
);
1202 err
= schedule_erase(ubi
, e
, torture
);
1204 spin_lock(&ubi
->wl_lock
);
1205 wl_tree_add(e
, &ubi
->used
);
1206 spin_unlock(&ubi
->wl_lock
);
1213 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1214 * @ubi: UBI device description object
1215 * @pnum: the physical eraseblock to schedule
1217 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1218 * needs scrubbing. This function schedules a physical eraseblock for
1219 * scrubbing which is done in background. This function returns zero in case of
1220 * success and a negative error code in case of failure.
1222 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1224 struct ubi_wl_entry
*e
;
1226 dbg_msg("schedule PEB %d for scrubbing", pnum
);
1229 spin_lock(&ubi
->wl_lock
);
1230 e
= ubi
->lookuptbl
[pnum
];
1231 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
) ||
1232 in_wl_tree(e
, &ubi
->erroneous
)) {
1233 spin_unlock(&ubi
->wl_lock
);
1237 if (e
== ubi
->move_to
) {
1239 * This physical eraseblock was used to move data to. The data
1240 * was moved but the PEB was not yet inserted to the proper
1241 * tree. We should just wait a little and let the WL worker
1244 spin_unlock(&ubi
->wl_lock
);
1245 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1250 if (in_wl_tree(e
, &ubi
->used
)) {
1251 paranoid_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1252 rb_erase(&e
->u
.rb
, &ubi
->used
);
1256 err
= prot_queue_del(ubi
, e
->pnum
);
1258 ubi_err("PEB %d not found", pnum
);
1260 spin_unlock(&ubi
->wl_lock
);
1265 wl_tree_add(e
, &ubi
->scrub
);
1266 spin_unlock(&ubi
->wl_lock
);
1269 * Technically scrubbing is the same as wear-leveling, so it is done
1272 return ensure_wear_leveling(ubi
);
1276 * ubi_wl_flush - flush all pending works.
1277 * @ubi: UBI device description object
1279 * This function returns zero in case of success and a negative error code in
1282 int ubi_wl_flush(struct ubi_device
*ubi
)
1287 * Erase while the pending works queue is not empty, but not more than
1288 * the number of currently pending works.
1290 dbg_wl("flush (%d pending works)", ubi
->works_count
);
1291 while (ubi
->works_count
) {
1298 * Make sure all the works which have been done in parallel are
1301 down_write(&ubi
->work_sem
);
1302 up_write(&ubi
->work_sem
);
1305 * And in case last was the WL worker and it canceled the LEB
1306 * movement, flush again.
1308 while (ubi
->works_count
) {
1309 dbg_wl("flush more (%d pending works)", ubi
->works_count
);
1319 * tree_destroy - destroy an RB-tree.
1320 * @root: the root of the tree to destroy
1322 static void tree_destroy(struct rb_root
*root
)
1325 struct ubi_wl_entry
*e
;
1331 else if (rb
->rb_right
)
1334 e
= rb_entry(rb
, struct ubi_wl_entry
, u
.rb
);
1338 if (rb
->rb_left
== &e
->u
.rb
)
1341 rb
->rb_right
= NULL
;
1344 kmem_cache_free(ubi_wl_entry_slab
, e
);
1350 * ubi_thread - UBI background thread.
1351 * @u: the UBI device description object pointer
1353 int ubi_thread(void *u
)
1356 struct ubi_device
*ubi
= u
;
1358 ubi_msg("background thread \"%s\" started, PID %d",
1359 ubi
->bgt_name
, task_pid_nr(current
));
1365 if (kthread_should_stop())
1368 if (try_to_freeze())
1371 spin_lock(&ubi
->wl_lock
);
1372 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1373 !ubi
->thread_enabled
|| ubi_dbg_is_bgt_disabled(ubi
)) {
1374 set_current_state(TASK_INTERRUPTIBLE
);
1375 spin_unlock(&ubi
->wl_lock
);
1379 spin_unlock(&ubi
->wl_lock
);
1383 ubi_err("%s: work failed with error code %d",
1384 ubi
->bgt_name
, err
);
1385 if (failures
++ > WL_MAX_FAILURES
) {
1387 * Too many failures, disable the thread and
1388 * switch to read-only mode.
1390 ubi_msg("%s: %d consecutive failures",
1391 ubi
->bgt_name
, WL_MAX_FAILURES
);
1393 ubi
->thread_enabled
= 0;
1402 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1407 * cancel_pending - cancel all pending works.
1408 * @ubi: UBI device description object
1410 static void cancel_pending(struct ubi_device
*ubi
)
1412 while (!list_empty(&ubi
->works
)) {
1413 struct ubi_work
*wrk
;
1415 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1416 list_del(&wrk
->list
);
1417 wrk
->func(ubi
, wrk
, 1);
1418 ubi
->works_count
-= 1;
1419 ubi_assert(ubi
->works_count
>= 0);
1424 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1425 * @ubi: UBI device description object
1426 * @si: scanning information
1428 * This function returns zero in case of success, and a negative error code in
1431 int ubi_wl_init_scan(struct ubi_device
*ubi
, struct ubi_scan_info
*si
)
1434 struct rb_node
*rb1
, *rb2
;
1435 struct ubi_scan_volume
*sv
;
1436 struct ubi_scan_leb
*seb
, *tmp
;
1437 struct ubi_wl_entry
*e
;
1439 ubi
->used
= ubi
->erroneous
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1440 spin_lock_init(&ubi
->wl_lock
);
1441 mutex_init(&ubi
->move_mutex
);
1442 init_rwsem(&ubi
->work_sem
);
1443 ubi
->max_ec
= si
->max_ec
;
1444 INIT_LIST_HEAD(&ubi
->works
);
1446 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1449 ubi
->lookuptbl
= kzalloc(ubi
->peb_count
* sizeof(void *), GFP_KERNEL
);
1450 if (!ubi
->lookuptbl
)
1453 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; i
++)
1454 INIT_LIST_HEAD(&ubi
->pq
[i
]);
1457 list_for_each_entry_safe(seb
, tmp
, &si
->erase
, u
.list
) {
1460 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1464 e
->pnum
= seb
->pnum
;
1466 ubi
->lookuptbl
[e
->pnum
] = e
;
1467 if (schedule_erase(ubi
, e
, 0)) {
1468 kmem_cache_free(ubi_wl_entry_slab
, e
);
1473 list_for_each_entry(seb
, &si
->free
, u
.list
) {
1476 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1480 e
->pnum
= seb
->pnum
;
1482 ubi_assert(e
->ec
>= 0);
1483 wl_tree_add(e
, &ubi
->free
);
1484 ubi
->lookuptbl
[e
->pnum
] = e
;
1487 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
1488 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
) {
1491 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1495 e
->pnum
= seb
->pnum
;
1497 ubi
->lookuptbl
[e
->pnum
] = e
;
1499 dbg_wl("add PEB %d EC %d to the used tree",
1501 wl_tree_add(e
, &ubi
->used
);
1503 dbg_wl("add PEB %d EC %d to the scrub tree",
1505 wl_tree_add(e
, &ubi
->scrub
);
1510 if (ubi
->avail_pebs
< WL_RESERVED_PEBS
) {
1511 ubi_err("no enough physical eraseblocks (%d, need %d)",
1512 ubi
->avail_pebs
, WL_RESERVED_PEBS
);
1513 if (ubi
->corr_peb_count
)
1514 ubi_err("%d PEBs are corrupted and not used",
1515 ubi
->corr_peb_count
);
1518 ubi
->avail_pebs
-= WL_RESERVED_PEBS
;
1519 ubi
->rsvd_pebs
+= WL_RESERVED_PEBS
;
1521 /* Schedule wear-leveling if needed */
1522 err
= ensure_wear_leveling(ubi
);
1529 cancel_pending(ubi
);
1530 tree_destroy(&ubi
->used
);
1531 tree_destroy(&ubi
->free
);
1532 tree_destroy(&ubi
->scrub
);
1533 kfree(ubi
->lookuptbl
);
1538 * protection_queue_destroy - destroy the protection queue.
1539 * @ubi: UBI device description object
1541 static void protection_queue_destroy(struct ubi_device
*ubi
)
1544 struct ubi_wl_entry
*e
, *tmp
;
1546 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
) {
1547 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[i
], u
.list
) {
1548 list_del(&e
->u
.list
);
1549 kmem_cache_free(ubi_wl_entry_slab
, e
);
1555 * ubi_wl_close - close the wear-leveling sub-system.
1556 * @ubi: UBI device description object
1558 void ubi_wl_close(struct ubi_device
*ubi
)
1560 dbg_wl("close the WL sub-system");
1561 cancel_pending(ubi
);
1562 protection_queue_destroy(ubi
);
1563 tree_destroy(&ubi
->used
);
1564 tree_destroy(&ubi
->erroneous
);
1565 tree_destroy(&ubi
->free
);
1566 tree_destroy(&ubi
->scrub
);
1567 kfree(ubi
->lookuptbl
);
1570 #ifdef CONFIG_MTD_UBI_DEBUG
1573 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1574 * @ubi: UBI device description object
1575 * @pnum: the physical eraseblock number to check
1576 * @ec: the erase counter to check
1578 * This function returns zero if the erase counter of physical eraseblock @pnum
1579 * is equivalent to @ec, and a negative error code if not or if an error
1582 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1586 struct ubi_ec_hdr
*ec_hdr
;
1588 if (!ubi
->dbg
->chk_gen
)
1591 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1595 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1596 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1597 /* The header does not have to exist */
1602 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1603 if (ec
!= read_ec
) {
1604 ubi_err("paranoid check failed for PEB %d", pnum
);
1605 ubi_err("read EC is %lld, should be %d", read_ec
, ec
);
1606 ubi_dbg_dump_stack();
1617 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1618 * @ubi: UBI device description object
1619 * @e: the wear-leveling entry to check
1620 * @root: the root of the tree
1622 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1625 static int paranoid_check_in_wl_tree(const struct ubi_device
*ubi
,
1626 struct ubi_wl_entry
*e
,
1627 struct rb_root
*root
)
1629 if (!ubi
->dbg
->chk_gen
)
1632 if (in_wl_tree(e
, root
))
1635 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1636 e
->pnum
, e
->ec
, root
);
1637 ubi_dbg_dump_stack();
1642 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1644 * @ubi: UBI device description object
1645 * @e: the wear-leveling entry to check
1647 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1649 static int paranoid_check_in_pq(const struct ubi_device
*ubi
,
1650 struct ubi_wl_entry
*e
)
1652 struct ubi_wl_entry
*p
;
1655 if (!ubi
->dbg
->chk_gen
)
1658 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
)
1659 list_for_each_entry(p
, &ubi
->pq
[i
], u
.list
)
1663 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1665 ubi_dbg_dump_stack();
1669 #endif /* CONFIG_MTD_UBI_DEBUG */