2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
61 #include "probe_roms.h"
62 #include "remote_device.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
72 #define smu_max_ports(dcc_value) \
74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
78 #define smu_max_task_contexts(dcc_value) \
80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
84 #define smu_max_rncs(dcc_value) \
86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
95 * The number of milliseconds to wait while a given phy is consuming power
96 * before allowing another set of phys to consume power. Ultimately, this will
97 * be specified by OEM parameter.
99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
102 * NORMALIZE_PUT_POINTER() -
104 * This macro will normalize the completion queue put pointer so its value can
105 * be used as an array inde
107 #define NORMALIZE_PUT_POINTER(x) \
108 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
112 * NORMALIZE_EVENT_POINTER() -
114 * This macro will normalize the completion queue event entry so its value can
115 * be used as an index.
117 #define NORMALIZE_EVENT_POINTER(x) \
119 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
120 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
124 * NORMALIZE_GET_POINTER() -
126 * This macro will normalize the completion queue get pointer so its value can
127 * be used as an index into an array
129 #define NORMALIZE_GET_POINTER(x) \
130 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
133 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135 * This macro will normalize the completion queue cycle pointer so it matches
136 * the completion queue cycle bit
138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
139 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
142 * COMPLETION_QUEUE_CYCLE_BIT() -
144 * This macro will return the cycle bit of the completion queue entry
146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148 /* Init the state machine and call the state entry function (if any) */
149 void sci_init_sm(struct sci_base_state_machine
*sm
,
150 const struct sci_base_state
*state_table
, u32 initial_state
)
152 sci_state_transition_t handler
;
154 sm
->initial_state_id
= initial_state
;
155 sm
->previous_state_id
= initial_state
;
156 sm
->current_state_id
= initial_state
;
157 sm
->state_table
= state_table
;
159 handler
= sm
->state_table
[initial_state
].enter_state
;
164 /* Call the state exit fn, update the current state, call the state entry fn */
165 void sci_change_state(struct sci_base_state_machine
*sm
, u32 next_state
)
167 sci_state_transition_t handler
;
169 handler
= sm
->state_table
[sm
->current_state_id
].exit_state
;
173 sm
->previous_state_id
= sm
->current_state_id
;
174 sm
->current_state_id
= next_state
;
176 handler
= sm
->state_table
[sm
->current_state_id
].enter_state
;
181 static bool sci_controller_completion_queue_has_entries(struct isci_host
*ihost
)
183 u32 get_value
= ihost
->completion_queue_get
;
184 u32 get_index
= get_value
& SMU_COMPLETION_QUEUE_GET_POINTER_MASK
;
186 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value
) ==
187 COMPLETION_QUEUE_CYCLE_BIT(ihost
->completion_queue
[get_index
]))
193 static bool sci_controller_isr(struct isci_host
*ihost
)
195 if (sci_controller_completion_queue_has_entries(ihost
)) {
199 * we have a spurious interrupt it could be that we have already
200 * emptied the completion queue from a previous interrupt */
201 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
204 * There is a race in the hardware that could cause us not to be notified
205 * of an interrupt completion if we do not take this step. We will mask
206 * then unmask the interrupts so if there is another interrupt pending
207 * the clearing of the interrupt source we get the next interrupt message. */
208 writel(0xFF000000, &ihost
->smu_registers
->interrupt_mask
);
209 writel(0, &ihost
->smu_registers
->interrupt_mask
);
215 irqreturn_t
isci_msix_isr(int vec
, void *data
)
217 struct isci_host
*ihost
= data
;
219 if (sci_controller_isr(ihost
))
220 tasklet_schedule(&ihost
->completion_tasklet
);
225 static bool sci_controller_error_isr(struct isci_host
*ihost
)
227 u32 interrupt_status
;
230 readl(&ihost
->smu_registers
->interrupt_status
);
231 interrupt_status
&= (SMU_ISR_QUEUE_ERROR
| SMU_ISR_QUEUE_SUSPEND
);
233 if (interrupt_status
!= 0) {
235 * There is an error interrupt pending so let it through and handle
241 * There is a race in the hardware that could cause us not to be notified
242 * of an interrupt completion if we do not take this step. We will mask
243 * then unmask the error interrupts so if there was another interrupt
244 * pending we will be notified.
245 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
246 writel(0xff, &ihost
->smu_registers
->interrupt_mask
);
247 writel(0, &ihost
->smu_registers
->interrupt_mask
);
252 static void sci_controller_task_completion(struct isci_host
*ihost
, u32 ent
)
254 u32 index
= SCU_GET_COMPLETION_INDEX(ent
);
255 struct isci_request
*ireq
= ihost
->reqs
[index
];
257 /* Make sure that we really want to process this IO request */
258 if (test_bit(IREQ_ACTIVE
, &ireq
->flags
) &&
259 ireq
->io_tag
!= SCI_CONTROLLER_INVALID_IO_TAG
&&
260 ISCI_TAG_SEQ(ireq
->io_tag
) == ihost
->io_request_sequence
[index
])
261 /* Yep this is a valid io request pass it along to the
264 sci_io_request_tc_completion(ireq
, ent
);
267 static void sci_controller_sdma_completion(struct isci_host
*ihost
, u32 ent
)
270 struct isci_request
*ireq
;
271 struct isci_remote_device
*idev
;
273 index
= SCU_GET_COMPLETION_INDEX(ent
);
275 switch (scu_get_command_request_type(ent
)) {
276 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
:
277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC
:
278 ireq
= ihost
->reqs
[index
];
279 dev_warn(&ihost
->pdev
->dev
, "%s: %x for io request %p\n",
280 __func__
, ent
, ireq
);
281 /* @todo For a post TC operation we need to fail the IO
285 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC
:
286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC
:
287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC
:
288 idev
= ihost
->device_table
[index
];
289 dev_warn(&ihost
->pdev
->dev
, "%s: %x for device %p\n",
290 __func__
, ent
, idev
);
291 /* @todo For a port RNC operation we need to fail the
296 dev_warn(&ihost
->pdev
->dev
, "%s: unknown completion type %x\n",
302 static void sci_controller_unsolicited_frame(struct isci_host
*ihost
, u32 ent
)
307 struct scu_unsolicited_frame_header
*frame_header
;
308 struct isci_phy
*iphy
;
309 struct isci_remote_device
*idev
;
311 enum sci_status result
= SCI_FAILURE
;
313 frame_index
= SCU_GET_FRAME_INDEX(ent
);
315 frame_header
= ihost
->uf_control
.buffers
.array
[frame_index
].header
;
316 ihost
->uf_control
.buffers
.array
[frame_index
].state
= UNSOLICITED_FRAME_IN_USE
;
318 if (SCU_GET_FRAME_ERROR(ent
)) {
320 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
321 * / this cause a problem? We expect the phy initialization will
322 * / fail if there is an error in the frame. */
323 sci_controller_release_frame(ihost
, frame_index
);
327 if (frame_header
->is_address_frame
) {
328 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
329 iphy
= &ihost
->phys
[index
];
330 result
= sci_phy_frame_handler(iphy
, frame_index
);
333 index
= SCU_GET_COMPLETION_INDEX(ent
);
335 if (index
== SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
) {
337 * This is a signature fis or a frame from a direct attached SATA
338 * device that has not yet been created. In either case forwared
339 * the frame to the PE and let it take care of the frame data. */
340 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
341 iphy
= &ihost
->phys
[index
];
342 result
= sci_phy_frame_handler(iphy
, frame_index
);
344 if (index
< ihost
->remote_node_entries
)
345 idev
= ihost
->device_table
[index
];
350 result
= sci_remote_device_frame_handler(idev
, frame_index
);
352 sci_controller_release_frame(ihost
, frame_index
);
356 if (result
!= SCI_SUCCESS
) {
358 * / @todo Is there any reason to report some additional error message
359 * / when we get this failure notifiction? */
363 static void sci_controller_event_completion(struct isci_host
*ihost
, u32 ent
)
365 struct isci_remote_device
*idev
;
366 struct isci_request
*ireq
;
367 struct isci_phy
*iphy
;
370 index
= SCU_GET_COMPLETION_INDEX(ent
);
372 switch (scu_get_event_type(ent
)) {
373 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR
:
374 /* / @todo The driver did something wrong and we need to fix the condtion. */
375 dev_err(&ihost
->pdev
->dev
,
376 "%s: SCIC Controller 0x%p received SMU command error "
383 case SCU_EVENT_TYPE_SMU_PCQ_ERROR
:
384 case SCU_EVENT_TYPE_SMU_ERROR
:
385 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR
:
387 * / @todo This is a hardware failure and its likely that we want to
388 * / reset the controller. */
389 dev_err(&ihost
->pdev
->dev
,
390 "%s: SCIC Controller 0x%p received fatal controller "
397 case SCU_EVENT_TYPE_TRANSPORT_ERROR
:
398 ireq
= ihost
->reqs
[index
];
399 sci_io_request_event_handler(ireq
, ent
);
402 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT
:
403 switch (scu_get_event_specifier(ent
)) {
404 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE
:
405 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT
:
406 ireq
= ihost
->reqs
[index
];
408 sci_io_request_event_handler(ireq
, ent
);
410 dev_warn(&ihost
->pdev
->dev
,
411 "%s: SCIC Controller 0x%p received "
412 "event 0x%x for io request object "
413 "that doesnt exist.\n",
420 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT
:
421 idev
= ihost
->device_table
[index
];
423 sci_remote_device_event_handler(idev
, ent
);
425 dev_warn(&ihost
->pdev
->dev
,
426 "%s: SCIC Controller 0x%p received "
427 "event 0x%x for remote device object "
428 "that doesnt exist.\n",
437 case SCU_EVENT_TYPE_BROADCAST_CHANGE
:
439 * direct the broadcast change event to the phy first and then let
440 * the phy redirect the broadcast change to the port object */
441 case SCU_EVENT_TYPE_ERR_CNT_EVENT
:
443 * direct error counter event to the phy object since that is where
444 * we get the event notification. This is a type 4 event. */
445 case SCU_EVENT_TYPE_OSSP_EVENT
:
446 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
447 iphy
= &ihost
->phys
[index
];
448 sci_phy_event_handler(iphy
, ent
);
451 case SCU_EVENT_TYPE_RNC_SUSPEND_TX
:
452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX
:
453 case SCU_EVENT_TYPE_RNC_OPS_MISC
:
454 if (index
< ihost
->remote_node_entries
) {
455 idev
= ihost
->device_table
[index
];
458 sci_remote_device_event_handler(idev
, ent
);
460 dev_err(&ihost
->pdev
->dev
,
461 "%s: SCIC Controller 0x%p received event 0x%x "
462 "for remote device object 0x%0x that doesnt "
472 dev_warn(&ihost
->pdev
->dev
,
473 "%s: SCIC Controller received unknown event code %x\n",
480 static void sci_controller_process_completions(struct isci_host
*ihost
)
482 u32 completion_count
= 0;
489 dev_dbg(&ihost
->pdev
->dev
,
490 "%s: completion queue begining get:0x%08x\n",
492 ihost
->completion_queue_get
);
494 /* Get the component parts of the completion queue */
495 get_index
= NORMALIZE_GET_POINTER(ihost
->completion_queue_get
);
496 get_cycle
= SMU_CQGR_CYCLE_BIT
& ihost
->completion_queue_get
;
498 event_get
= NORMALIZE_EVENT_POINTER(ihost
->completion_queue_get
);
499 event_cycle
= SMU_CQGR_EVENT_CYCLE_BIT
& ihost
->completion_queue_get
;
502 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle
)
503 == COMPLETION_QUEUE_CYCLE_BIT(ihost
->completion_queue
[get_index
])
507 ent
= ihost
->completion_queue
[get_index
];
509 /* increment the get pointer and check for rollover to toggle the cycle bit */
510 get_cycle
^= ((get_index
+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES
) <<
511 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT
- SCU_MAX_COMPLETION_QUEUE_SHIFT
);
512 get_index
= (get_index
+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES
-1);
514 dev_dbg(&ihost
->pdev
->dev
,
515 "%s: completion queue entry:0x%08x\n",
519 switch (SCU_GET_COMPLETION_TYPE(ent
)) {
520 case SCU_COMPLETION_TYPE_TASK
:
521 sci_controller_task_completion(ihost
, ent
);
524 case SCU_COMPLETION_TYPE_SDMA
:
525 sci_controller_sdma_completion(ihost
, ent
);
528 case SCU_COMPLETION_TYPE_UFI
:
529 sci_controller_unsolicited_frame(ihost
, ent
);
532 case SCU_COMPLETION_TYPE_EVENT
:
533 sci_controller_event_completion(ihost
, ent
);
536 case SCU_COMPLETION_TYPE_NOTIFY
: {
537 event_cycle
^= ((event_get
+1) & SCU_MAX_EVENTS
) <<
538 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT
- SCU_MAX_EVENTS_SHIFT
);
539 event_get
= (event_get
+1) & (SCU_MAX_EVENTS
-1);
541 sci_controller_event_completion(ihost
, ent
);
545 dev_warn(&ihost
->pdev
->dev
,
546 "%s: SCIC Controller received unknown "
547 "completion type %x\n",
554 /* Update the get register if we completed one or more entries */
555 if (completion_count
> 0) {
556 ihost
->completion_queue_get
=
557 SMU_CQGR_GEN_BIT(ENABLE
) |
558 SMU_CQGR_GEN_BIT(EVENT_ENABLE
) |
560 SMU_CQGR_GEN_VAL(EVENT_POINTER
, event_get
) |
562 SMU_CQGR_GEN_VAL(POINTER
, get_index
);
564 writel(ihost
->completion_queue_get
,
565 &ihost
->smu_registers
->completion_queue_get
);
569 dev_dbg(&ihost
->pdev
->dev
,
570 "%s: completion queue ending get:0x%08x\n",
572 ihost
->completion_queue_get
);
576 static void sci_controller_error_handler(struct isci_host
*ihost
)
578 u32 interrupt_status
;
581 readl(&ihost
->smu_registers
->interrupt_status
);
583 if ((interrupt_status
& SMU_ISR_QUEUE_SUSPEND
) &&
584 sci_controller_completion_queue_has_entries(ihost
)) {
586 sci_controller_process_completions(ihost
);
587 writel(SMU_ISR_QUEUE_SUSPEND
, &ihost
->smu_registers
->interrupt_status
);
589 dev_err(&ihost
->pdev
->dev
, "%s: status: %#x\n", __func__
,
592 sci_change_state(&ihost
->sm
, SCIC_FAILED
);
597 /* If we dont process any completions I am not sure that we want to do this.
598 * We are in the middle of a hardware fault and should probably be reset.
600 writel(0, &ihost
->smu_registers
->interrupt_mask
);
603 irqreturn_t
isci_intx_isr(int vec
, void *data
)
605 irqreturn_t ret
= IRQ_NONE
;
606 struct isci_host
*ihost
= data
;
608 if (sci_controller_isr(ihost
)) {
609 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
610 tasklet_schedule(&ihost
->completion_tasklet
);
612 } else if (sci_controller_error_isr(ihost
)) {
613 spin_lock(&ihost
->scic_lock
);
614 sci_controller_error_handler(ihost
);
615 spin_unlock(&ihost
->scic_lock
);
622 irqreturn_t
isci_error_isr(int vec
, void *data
)
624 struct isci_host
*ihost
= data
;
626 if (sci_controller_error_isr(ihost
))
627 sci_controller_error_handler(ihost
);
633 * isci_host_start_complete() - This function is called by the core library,
634 * through the ISCI Module, to indicate controller start status.
635 * @isci_host: This parameter specifies the ISCI host object
636 * @completion_status: This parameter specifies the completion status from the
640 static void isci_host_start_complete(struct isci_host
*ihost
, enum sci_status completion_status
)
642 if (completion_status
!= SCI_SUCCESS
)
643 dev_info(&ihost
->pdev
->dev
,
644 "controller start timed out, continuing...\n");
645 isci_host_change_state(ihost
, isci_ready
);
646 clear_bit(IHOST_START_PENDING
, &ihost
->flags
);
647 wake_up(&ihost
->eventq
);
650 int isci_host_scan_finished(struct Scsi_Host
*shost
, unsigned long time
)
652 struct sas_ha_struct
*ha
= SHOST_TO_SAS_HA(shost
);
653 struct isci_host
*ihost
= ha
->lldd_ha
;
655 if (test_bit(IHOST_START_PENDING
, &ihost
->flags
))
660 dev_dbg(&ihost
->pdev
->dev
,
661 "%s: ihost->status = %d, time = %ld\n",
662 __func__
, isci_host_get_state(ihost
), time
);
669 * sci_controller_get_suggested_start_timeout() - This method returns the
670 * suggested sci_controller_start() timeout amount. The user is free to
671 * use any timeout value, but this method provides the suggested minimum
672 * start timeout value. The returned value is based upon empirical
673 * information determined as a result of interoperability testing.
674 * @controller: the handle to the controller object for which to return the
675 * suggested start timeout.
677 * This method returns the number of milliseconds for the suggested start
680 static u32
sci_controller_get_suggested_start_timeout(struct isci_host
*ihost
)
682 /* Validate the user supplied parameters. */
687 * The suggested minimum timeout value for a controller start operation:
689 * Signature FIS Timeout
690 * + Phy Start Timeout
691 * + Number of Phy Spin Up Intervals
692 * ---------------------------------
693 * Number of milliseconds for the controller start operation.
695 * NOTE: The number of phy spin up intervals will be equivalent
696 * to the number of phys divided by the number phys allowed
697 * per interval - 1 (once OEM parameters are supported).
698 * Currently we assume only 1 phy per interval. */
700 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
701 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
702 + ((SCI_MAX_PHYS
- 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
705 static void sci_controller_enable_interrupts(struct isci_host
*ihost
)
707 BUG_ON(ihost
->smu_registers
== NULL
);
708 writel(0, &ihost
->smu_registers
->interrupt_mask
);
711 void sci_controller_disable_interrupts(struct isci_host
*ihost
)
713 BUG_ON(ihost
->smu_registers
== NULL
);
714 writel(0xffffffff, &ihost
->smu_registers
->interrupt_mask
);
717 static void sci_controller_enable_port_task_scheduler(struct isci_host
*ihost
)
719 u32 port_task_scheduler_value
;
721 port_task_scheduler_value
=
722 readl(&ihost
->scu_registers
->peg0
.ptsg
.control
);
723 port_task_scheduler_value
|=
724 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE
) |
725 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE
));
726 writel(port_task_scheduler_value
,
727 &ihost
->scu_registers
->peg0
.ptsg
.control
);
730 static void sci_controller_assign_task_entries(struct isci_host
*ihost
)
735 * Assign all the TCs to function 0
736 * TODO: Do we actually need to read this register to write it back?
740 readl(&ihost
->smu_registers
->task_context_assignment
[0]);
742 task_assignment
|= (SMU_TCA_GEN_VAL(STARTING
, 0)) |
743 (SMU_TCA_GEN_VAL(ENDING
, ihost
->task_context_entries
- 1)) |
744 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE
));
746 writel(task_assignment
,
747 &ihost
->smu_registers
->task_context_assignment
[0]);
751 static void sci_controller_initialize_completion_queue(struct isci_host
*ihost
)
754 u32 completion_queue_control_value
;
755 u32 completion_queue_get_value
;
756 u32 completion_queue_put_value
;
758 ihost
->completion_queue_get
= 0;
760 completion_queue_control_value
=
761 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES
- 1) |
762 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS
- 1));
764 writel(completion_queue_control_value
,
765 &ihost
->smu_registers
->completion_queue_control
);
768 /* Set the completion queue get pointer and enable the queue */
769 completion_queue_get_value
= (
770 (SMU_CQGR_GEN_VAL(POINTER
, 0))
771 | (SMU_CQGR_GEN_VAL(EVENT_POINTER
, 0))
772 | (SMU_CQGR_GEN_BIT(ENABLE
))
773 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE
))
776 writel(completion_queue_get_value
,
777 &ihost
->smu_registers
->completion_queue_get
);
779 /* Set the completion queue put pointer */
780 completion_queue_put_value
= (
781 (SMU_CQPR_GEN_VAL(POINTER
, 0))
782 | (SMU_CQPR_GEN_VAL(EVENT_POINTER
, 0))
785 writel(completion_queue_put_value
,
786 &ihost
->smu_registers
->completion_queue_put
);
788 /* Initialize the cycle bit of the completion queue entries */
789 for (index
= 0; index
< SCU_MAX_COMPLETION_QUEUE_ENTRIES
; index
++) {
791 * If get.cycle_bit != completion_queue.cycle_bit
792 * its not a valid completion queue entry
793 * so at system start all entries are invalid */
794 ihost
->completion_queue
[index
] = 0x80000000;
798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host
*ihost
)
800 u32 frame_queue_control_value
;
801 u32 frame_queue_get_value
;
802 u32 frame_queue_put_value
;
804 /* Write the queue size */
805 frame_queue_control_value
=
806 SCU_UFQC_GEN_VAL(QUEUE_SIZE
, SCU_MAX_UNSOLICITED_FRAMES
);
808 writel(frame_queue_control_value
,
809 &ihost
->scu_registers
->sdma
.unsolicited_frame_queue_control
);
811 /* Setup the get pointer for the unsolicited frame queue */
812 frame_queue_get_value
= (
813 SCU_UFQGP_GEN_VAL(POINTER
, 0)
814 | SCU_UFQGP_GEN_BIT(ENABLE_BIT
)
817 writel(frame_queue_get_value
,
818 &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
819 /* Setup the put pointer for the unsolicited frame queue */
820 frame_queue_put_value
= SCU_UFQPP_GEN_VAL(POINTER
, 0);
821 writel(frame_queue_put_value
,
822 &ihost
->scu_registers
->sdma
.unsolicited_frame_put_pointer
);
825 static void sci_controller_transition_to_ready(struct isci_host
*ihost
, enum sci_status status
)
827 if (ihost
->sm
.current_state_id
== SCIC_STARTING
) {
829 * We move into the ready state, because some of the phys/ports
830 * may be up and operational.
832 sci_change_state(&ihost
->sm
, SCIC_READY
);
834 isci_host_start_complete(ihost
, status
);
838 static bool is_phy_starting(struct isci_phy
*iphy
)
840 enum sci_phy_states state
;
842 state
= iphy
->sm
.current_state_id
;
844 case SCI_PHY_STARTING
:
845 case SCI_PHY_SUB_INITIAL
:
846 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN
:
847 case SCI_PHY_SUB_AWAIT_IAF_UF
:
848 case SCI_PHY_SUB_AWAIT_SAS_POWER
:
849 case SCI_PHY_SUB_AWAIT_SATA_POWER
:
850 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN
:
851 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN
:
852 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF
:
853 case SCI_PHY_SUB_FINAL
:
861 * sci_controller_start_next_phy - start phy
864 * If all the phys have been started, then attempt to transition the
865 * controller to the READY state and inform the user
866 * (sci_cb_controller_start_complete()).
868 static enum sci_status
sci_controller_start_next_phy(struct isci_host
*ihost
)
870 struct sci_oem_params
*oem
= &ihost
->oem_parameters
;
871 struct isci_phy
*iphy
;
872 enum sci_status status
;
874 status
= SCI_SUCCESS
;
876 if (ihost
->phy_startup_timer_pending
)
879 if (ihost
->next_phy_to_start
>= SCI_MAX_PHYS
) {
880 bool is_controller_start_complete
= true;
884 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
885 iphy
= &ihost
->phys
[index
];
886 state
= iphy
->sm
.current_state_id
;
888 if (!phy_get_non_dummy_port(iphy
))
891 /* The controller start operation is complete iff:
892 * - all links have been given an opportunity to start
893 * - have no indication of a connected device
894 * - have an indication of a connected device and it has
895 * finished the link training process.
897 if ((iphy
->is_in_link_training
== false && state
== SCI_PHY_INITIAL
) ||
898 (iphy
->is_in_link_training
== false && state
== SCI_PHY_STOPPED
) ||
899 (iphy
->is_in_link_training
== true && is_phy_starting(iphy
)) ||
900 (ihost
->port_agent
.phy_ready_mask
!= ihost
->port_agent
.phy_configured_mask
)) {
901 is_controller_start_complete
= false;
907 * The controller has successfully finished the start process.
908 * Inform the SCI Core user and transition to the READY state. */
909 if (is_controller_start_complete
== true) {
910 sci_controller_transition_to_ready(ihost
, SCI_SUCCESS
);
911 sci_del_timer(&ihost
->phy_timer
);
912 ihost
->phy_startup_timer_pending
= false;
915 iphy
= &ihost
->phys
[ihost
->next_phy_to_start
];
917 if (oem
->controller
.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
) {
918 if (phy_get_non_dummy_port(iphy
) == NULL
) {
919 ihost
->next_phy_to_start
++;
921 /* Caution recursion ahead be forwarned
923 * The PHY was never added to a PORT in MPC mode
924 * so start the next phy in sequence This phy
925 * will never go link up and will not draw power
926 * the OEM parameters either configured the phy
927 * incorrectly for the PORT or it was never
930 return sci_controller_start_next_phy(ihost
);
934 status
= sci_phy_start(iphy
);
936 if (status
== SCI_SUCCESS
) {
937 sci_mod_timer(&ihost
->phy_timer
,
938 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
);
939 ihost
->phy_startup_timer_pending
= true;
941 dev_warn(&ihost
->pdev
->dev
,
942 "%s: Controller stop operation failed "
943 "to stop phy %d because of status "
946 ihost
->phys
[ihost
->next_phy_to_start
].phy_index
,
950 ihost
->next_phy_to_start
++;
956 static void phy_startup_timeout(unsigned long data
)
958 struct sci_timer
*tmr
= (struct sci_timer
*)data
;
959 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), phy_timer
);
961 enum sci_status status
;
963 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
968 ihost
->phy_startup_timer_pending
= false;
971 status
= sci_controller_start_next_phy(ihost
);
972 } while (status
!= SCI_SUCCESS
);
975 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
978 static u16
isci_tci_active(struct isci_host
*ihost
)
980 return CIRC_CNT(ihost
->tci_head
, ihost
->tci_tail
, SCI_MAX_IO_REQUESTS
);
983 static enum sci_status
sci_controller_start(struct isci_host
*ihost
,
986 enum sci_status result
;
989 if (ihost
->sm
.current_state_id
!= SCIC_INITIALIZED
) {
990 dev_warn(&ihost
->pdev
->dev
,
991 "SCIC Controller start operation requested in "
993 return SCI_FAILURE_INVALID_STATE
;
996 /* Build the TCi free pool */
997 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS
> 1 << sizeof(ihost
->tci_pool
[0]) * 8);
1000 for (index
= 0; index
< ihost
->task_context_entries
; index
++)
1001 isci_tci_free(ihost
, index
);
1003 /* Build the RNi free pool */
1004 sci_remote_node_table_initialize(&ihost
->available_remote_nodes
,
1005 ihost
->remote_node_entries
);
1008 * Before anything else lets make sure we will not be
1009 * interrupted by the hardware.
1011 sci_controller_disable_interrupts(ihost
);
1013 /* Enable the port task scheduler */
1014 sci_controller_enable_port_task_scheduler(ihost
);
1016 /* Assign all the task entries to ihost physical function */
1017 sci_controller_assign_task_entries(ihost
);
1019 /* Now initialize the completion queue */
1020 sci_controller_initialize_completion_queue(ihost
);
1022 /* Initialize the unsolicited frame queue for use */
1023 sci_controller_initialize_unsolicited_frame_queue(ihost
);
1025 /* Start all of the ports on this controller */
1026 for (index
= 0; index
< ihost
->logical_port_entries
; index
++) {
1027 struct isci_port
*iport
= &ihost
->ports
[index
];
1029 result
= sci_port_start(iport
);
1034 sci_controller_start_next_phy(ihost
);
1036 sci_mod_timer(&ihost
->timer
, timeout
);
1038 sci_change_state(&ihost
->sm
, SCIC_STARTING
);
1043 void isci_host_scan_start(struct Scsi_Host
*shost
)
1045 struct isci_host
*ihost
= SHOST_TO_SAS_HA(shost
)->lldd_ha
;
1046 unsigned long tmo
= sci_controller_get_suggested_start_timeout(ihost
);
1048 set_bit(IHOST_START_PENDING
, &ihost
->flags
);
1050 spin_lock_irq(&ihost
->scic_lock
);
1051 sci_controller_start(ihost
, tmo
);
1052 sci_controller_enable_interrupts(ihost
);
1053 spin_unlock_irq(&ihost
->scic_lock
);
1056 static void isci_host_stop_complete(struct isci_host
*ihost
, enum sci_status completion_status
)
1058 isci_host_change_state(ihost
, isci_stopped
);
1059 sci_controller_disable_interrupts(ihost
);
1060 clear_bit(IHOST_STOP_PENDING
, &ihost
->flags
);
1061 wake_up(&ihost
->eventq
);
1064 static void sci_controller_completion_handler(struct isci_host
*ihost
)
1066 /* Empty out the completion queue */
1067 if (sci_controller_completion_queue_has_entries(ihost
))
1068 sci_controller_process_completions(ihost
);
1070 /* Clear the interrupt and enable all interrupts again */
1071 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
1072 /* Could we write the value of SMU_ISR_COMPLETION? */
1073 writel(0xFF000000, &ihost
->smu_registers
->interrupt_mask
);
1074 writel(0, &ihost
->smu_registers
->interrupt_mask
);
1078 * isci_host_completion_routine() - This function is the delayed service
1079 * routine that calls the sci core library's completion handler. It's
1080 * scheduled as a tasklet from the interrupt service routine when interrupts
1081 * in use, or set as the timeout function in polled mode.
1082 * @data: This parameter specifies the ISCI host object
1085 static void isci_host_completion_routine(unsigned long data
)
1087 struct isci_host
*ihost
= (struct isci_host
*)data
;
1088 struct list_head completed_request_list
;
1089 struct list_head errored_request_list
;
1090 struct list_head
*current_position
;
1091 struct list_head
*next_position
;
1092 struct isci_request
*request
;
1093 struct isci_request
*next_request
;
1094 struct sas_task
*task
;
1097 INIT_LIST_HEAD(&completed_request_list
);
1098 INIT_LIST_HEAD(&errored_request_list
);
1100 spin_lock_irq(&ihost
->scic_lock
);
1102 sci_controller_completion_handler(ihost
);
1104 /* Take the lists of completed I/Os from the host. */
1106 list_splice_init(&ihost
->requests_to_complete
,
1107 &completed_request_list
);
1109 /* Take the list of errored I/Os from the host. */
1110 list_splice_init(&ihost
->requests_to_errorback
,
1111 &errored_request_list
);
1113 spin_unlock_irq(&ihost
->scic_lock
);
1115 /* Process any completions in the lists. */
1116 list_for_each_safe(current_position
, next_position
,
1117 &completed_request_list
) {
1119 request
= list_entry(current_position
, struct isci_request
,
1121 task
= isci_request_access_task(request
);
1123 /* Normal notification (task_done) */
1124 dev_dbg(&ihost
->pdev
->dev
,
1125 "%s: Normal - request/task = %p/%p\n",
1130 /* Return the task to libsas */
1133 task
->lldd_task
= NULL
;
1134 if (!(task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
1136 /* If the task is already in the abort path,
1137 * the task_done callback cannot be called.
1139 task
->task_done(task
);
1143 spin_lock_irq(&ihost
->scic_lock
);
1144 isci_free_tag(ihost
, request
->io_tag
);
1145 spin_unlock_irq(&ihost
->scic_lock
);
1147 list_for_each_entry_safe(request
, next_request
, &errored_request_list
,
1150 task
= isci_request_access_task(request
);
1152 /* Use sas_task_abort */
1153 dev_warn(&ihost
->pdev
->dev
,
1154 "%s: Error - request/task = %p/%p\n",
1161 /* Put the task into the abort path if it's not there
1164 if (!(task
->task_state_flags
& SAS_TASK_STATE_ABORTED
))
1165 sas_task_abort(task
);
1168 /* This is a case where the request has completed with a
1169 * status such that it needed further target servicing,
1170 * but the sas_task reference has already been removed
1171 * from the request. Since it was errored, it was not
1172 * being aborted, so there is nothing to do except free
1176 spin_lock_irq(&ihost
->scic_lock
);
1177 /* Remove the request from the remote device's list
1178 * of pending requests.
1180 list_del_init(&request
->dev_node
);
1181 isci_free_tag(ihost
, request
->io_tag
);
1182 spin_unlock_irq(&ihost
->scic_lock
);
1186 /* the coalesence timeout doubles at each encoding step, so
1187 * update it based on the ilog2 value of the outstanding requests
1189 active
= isci_tci_active(ihost
);
1190 writel(SMU_ICC_GEN_VAL(NUMBER
, active
) |
1191 SMU_ICC_GEN_VAL(TIMER
, ISCI_COALESCE_BASE
+ ilog2(active
)),
1192 &ihost
->smu_registers
->interrupt_coalesce_control
);
1196 * sci_controller_stop() - This method will stop an individual controller
1197 * object.This method will invoke the associated user callback upon
1198 * completion. The completion callback is called when the following
1199 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1200 * controller has been quiesced. This method will ensure that all IO
1201 * requests are quiesced, phys are stopped, and all additional operation by
1202 * the hardware is halted.
1203 * @controller: the handle to the controller object to stop.
1204 * @timeout: This parameter specifies the number of milliseconds in which the
1205 * stop operation should complete.
1207 * The controller must be in the STARTED or STOPPED state. Indicate if the
1208 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1209 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1210 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1211 * controller is not either in the STARTED or STOPPED states.
1213 static enum sci_status
sci_controller_stop(struct isci_host
*ihost
, u32 timeout
)
1215 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
1216 dev_warn(&ihost
->pdev
->dev
,
1217 "SCIC Controller stop operation requested in "
1219 return SCI_FAILURE_INVALID_STATE
;
1222 sci_mod_timer(&ihost
->timer
, timeout
);
1223 sci_change_state(&ihost
->sm
, SCIC_STOPPING
);
1228 * sci_controller_reset() - This method will reset the supplied core
1229 * controller regardless of the state of said controller. This operation is
1230 * considered destructive. In other words, all current operations are wiped
1231 * out. No IO completions for outstanding devices occur. Outstanding IO
1232 * requests are not aborted or completed at the actual remote device.
1233 * @controller: the handle to the controller object to reset.
1235 * Indicate if the controller reset method succeeded or failed in some way.
1236 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1237 * the controller reset operation is unable to complete.
1239 static enum sci_status
sci_controller_reset(struct isci_host
*ihost
)
1241 switch (ihost
->sm
.current_state_id
) {
1247 * The reset operation is not a graceful cleanup, just
1248 * perform the state transition.
1250 sci_change_state(&ihost
->sm
, SCIC_RESETTING
);
1253 dev_warn(&ihost
->pdev
->dev
,
1254 "SCIC Controller reset operation requested in "
1256 return SCI_FAILURE_INVALID_STATE
;
1260 void isci_host_deinit(struct isci_host
*ihost
)
1264 /* disable output data selects */
1265 for (i
= 0; i
< isci_gpio_count(ihost
); i
++)
1266 writel(SGPIO_HW_CONTROL
, &ihost
->scu_registers
->peg0
.sgpio
.output_data_select
[i
]);
1268 isci_host_change_state(ihost
, isci_stopping
);
1269 for (i
= 0; i
< SCI_MAX_PORTS
; i
++) {
1270 struct isci_port
*iport
= &ihost
->ports
[i
];
1271 struct isci_remote_device
*idev
, *d
;
1273 list_for_each_entry_safe(idev
, d
, &iport
->remote_dev_list
, node
) {
1274 if (test_bit(IDEV_ALLOCATED
, &idev
->flags
))
1275 isci_remote_device_stop(ihost
, idev
);
1279 set_bit(IHOST_STOP_PENDING
, &ihost
->flags
);
1281 spin_lock_irq(&ihost
->scic_lock
);
1282 sci_controller_stop(ihost
, SCIC_CONTROLLER_STOP_TIMEOUT
);
1283 spin_unlock_irq(&ihost
->scic_lock
);
1285 wait_for_stop(ihost
);
1287 /* disable sgpio: where the above wait should give time for the
1288 * enclosure to sample the gpios going inactive
1290 writel(0, &ihost
->scu_registers
->peg0
.sgpio
.interface_control
);
1292 sci_controller_reset(ihost
);
1294 /* Cancel any/all outstanding port timers */
1295 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
1296 struct isci_port
*iport
= &ihost
->ports
[i
];
1297 del_timer_sync(&iport
->timer
.timer
);
1300 /* Cancel any/all outstanding phy timers */
1301 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1302 struct isci_phy
*iphy
= &ihost
->phys
[i
];
1303 del_timer_sync(&iphy
->sata_timer
.timer
);
1306 del_timer_sync(&ihost
->port_agent
.timer
.timer
);
1308 del_timer_sync(&ihost
->power_control
.timer
.timer
);
1310 del_timer_sync(&ihost
->timer
.timer
);
1312 del_timer_sync(&ihost
->phy_timer
.timer
);
1315 static void __iomem
*scu_base(struct isci_host
*isci_host
)
1317 struct pci_dev
*pdev
= isci_host
->pdev
;
1318 int id
= isci_host
->id
;
1320 return pcim_iomap_table(pdev
)[SCI_SCU_BAR
* 2] + SCI_SCU_BAR_SIZE
* id
;
1323 static void __iomem
*smu_base(struct isci_host
*isci_host
)
1325 struct pci_dev
*pdev
= isci_host
->pdev
;
1326 int id
= isci_host
->id
;
1328 return pcim_iomap_table(pdev
)[SCI_SMU_BAR
* 2] + SCI_SMU_BAR_SIZE
* id
;
1331 static void isci_user_parameters_get(struct sci_user_parameters
*u
)
1335 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1336 struct sci_phy_user_params
*u_phy
= &u
->phys
[i
];
1338 u_phy
->max_speed_generation
= phy_gen
;
1340 /* we are not exporting these for now */
1341 u_phy
->align_insertion_frequency
= 0x7f;
1342 u_phy
->in_connection_align_insertion_frequency
= 0xff;
1343 u_phy
->notify_enable_spin_up_insertion_frequency
= 0x33;
1346 u
->stp_inactivity_timeout
= stp_inactive_to
;
1347 u
->ssp_inactivity_timeout
= ssp_inactive_to
;
1348 u
->stp_max_occupancy_timeout
= stp_max_occ_to
;
1349 u
->ssp_max_occupancy_timeout
= ssp_max_occ_to
;
1350 u
->no_outbound_task_timeout
= no_outbound_task_to
;
1351 u
->max_concurr_spinup
= max_concurr_spinup
;
1354 static void sci_controller_initial_state_enter(struct sci_base_state_machine
*sm
)
1356 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1358 sci_change_state(&ihost
->sm
, SCIC_RESET
);
1361 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine
*sm
)
1363 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1365 sci_del_timer(&ihost
->timer
);
1368 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1369 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1370 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1371 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1372 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1373 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1376 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1377 * configure the interrupt coalescence.
1378 * @controller: This parameter represents the handle to the controller object
1379 * for which its interrupt coalesce register is overridden.
1380 * @coalesce_number: Used to control the number of entries in the Completion
1381 * Queue before an interrupt is generated. If the number of entries exceed
1382 * this number, an interrupt will be generated. The valid range of the input
1383 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1384 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1385 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1386 * interrupt coalescing timeout.
1388 * Indicate if the user successfully set the interrupt coalesce parameters.
1389 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1390 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1392 static enum sci_status
1393 sci_controller_set_interrupt_coalescence(struct isci_host
*ihost
,
1394 u32 coalesce_number
,
1395 u32 coalesce_timeout
)
1397 u8 timeout_encode
= 0;
1401 /* Check if the input parameters fall in the range. */
1402 if (coalesce_number
> INTERRUPT_COALESCE_NUMBER_MAX
)
1403 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1406 * Defined encoding for interrupt coalescing timeout:
1407 * Value Min Max Units
1408 * ----- --- --- -----
1438 * Others Undefined */
1441 * Use the table above to decide the encode of interrupt coalescing timeout
1442 * value for register writing. */
1443 if (coalesce_timeout
== 0)
1446 /* make the timeout value in unit of (10 ns). */
1447 coalesce_timeout
= coalesce_timeout
* 100;
1448 min
= INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS
/ 10;
1449 max
= INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS
/ 10;
1451 /* get the encode of timeout for register writing. */
1452 for (timeout_encode
= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN
;
1453 timeout_encode
<= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX
;
1455 if (min
<= coalesce_timeout
&& max
> coalesce_timeout
)
1457 else if (coalesce_timeout
>= max
&& coalesce_timeout
< min
* 2
1458 && coalesce_timeout
<= INTERRUPT_COALESCE_TIMEOUT_MAX_US
* 100) {
1459 if ((coalesce_timeout
- max
) < (2 * min
- coalesce_timeout
))
1471 if (timeout_encode
== INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX
+ 1)
1472 /* the value is out of range. */
1473 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1476 writel(SMU_ICC_GEN_VAL(NUMBER
, coalesce_number
) |
1477 SMU_ICC_GEN_VAL(TIMER
, timeout_encode
),
1478 &ihost
->smu_registers
->interrupt_coalesce_control
);
1481 ihost
->interrupt_coalesce_number
= (u16
)coalesce_number
;
1482 ihost
->interrupt_coalesce_timeout
= coalesce_timeout
/ 100;
1488 static void sci_controller_ready_state_enter(struct sci_base_state_machine
*sm
)
1490 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1493 /* enable clock gating for power control of the scu unit */
1494 val
= readl(&ihost
->smu_registers
->clock_gating_control
);
1495 val
&= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE
) |
1496 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE
) |
1497 SMU_CGUCR_GEN_BIT(XCLK_ENABLE
));
1498 val
|= SMU_CGUCR_GEN_BIT(IDLE_ENABLE
);
1499 writel(val
, &ihost
->smu_registers
->clock_gating_control
);
1501 /* set the default interrupt coalescence number and timeout value. */
1502 sci_controller_set_interrupt_coalescence(ihost
, 0, 0);
1505 static void sci_controller_ready_state_exit(struct sci_base_state_machine
*sm
)
1507 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1509 /* disable interrupt coalescence. */
1510 sci_controller_set_interrupt_coalescence(ihost
, 0, 0);
1513 static enum sci_status
sci_controller_stop_phys(struct isci_host
*ihost
)
1516 enum sci_status status
;
1517 enum sci_status phy_status
;
1519 status
= SCI_SUCCESS
;
1521 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
1522 phy_status
= sci_phy_stop(&ihost
->phys
[index
]);
1524 if (phy_status
!= SCI_SUCCESS
&&
1525 phy_status
!= SCI_FAILURE_INVALID_STATE
) {
1526 status
= SCI_FAILURE
;
1528 dev_warn(&ihost
->pdev
->dev
,
1529 "%s: Controller stop operation failed to stop "
1530 "phy %d because of status %d.\n",
1532 ihost
->phys
[index
].phy_index
, phy_status
);
1539 static enum sci_status
sci_controller_stop_ports(struct isci_host
*ihost
)
1542 enum sci_status port_status
;
1543 enum sci_status status
= SCI_SUCCESS
;
1545 for (index
= 0; index
< ihost
->logical_port_entries
; index
++) {
1546 struct isci_port
*iport
= &ihost
->ports
[index
];
1548 port_status
= sci_port_stop(iport
);
1550 if ((port_status
!= SCI_SUCCESS
) &&
1551 (port_status
!= SCI_FAILURE_INVALID_STATE
)) {
1552 status
= SCI_FAILURE
;
1554 dev_warn(&ihost
->pdev
->dev
,
1555 "%s: Controller stop operation failed to "
1556 "stop port %d because of status %d.\n",
1558 iport
->logical_port_index
,
1566 static enum sci_status
sci_controller_stop_devices(struct isci_host
*ihost
)
1569 enum sci_status status
;
1570 enum sci_status device_status
;
1572 status
= SCI_SUCCESS
;
1574 for (index
= 0; index
< ihost
->remote_node_entries
; index
++) {
1575 if (ihost
->device_table
[index
] != NULL
) {
1576 /* / @todo What timeout value do we want to provide to this request? */
1577 device_status
= sci_remote_device_stop(ihost
->device_table
[index
], 0);
1579 if ((device_status
!= SCI_SUCCESS
) &&
1580 (device_status
!= SCI_FAILURE_INVALID_STATE
)) {
1581 dev_warn(&ihost
->pdev
->dev
,
1582 "%s: Controller stop operation failed "
1583 "to stop device 0x%p because of "
1586 ihost
->device_table
[index
], device_status
);
1594 static void sci_controller_stopping_state_enter(struct sci_base_state_machine
*sm
)
1596 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1598 /* Stop all of the components for this controller */
1599 sci_controller_stop_phys(ihost
);
1600 sci_controller_stop_ports(ihost
);
1601 sci_controller_stop_devices(ihost
);
1604 static void sci_controller_stopping_state_exit(struct sci_base_state_machine
*sm
)
1606 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1608 sci_del_timer(&ihost
->timer
);
1611 static void sci_controller_reset_hardware(struct isci_host
*ihost
)
1613 /* Disable interrupts so we dont take any spurious interrupts */
1614 sci_controller_disable_interrupts(ihost
);
1617 writel(0xFFFFFFFF, &ihost
->smu_registers
->soft_reset_control
);
1619 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1622 /* The write to the CQGR clears the CQP */
1623 writel(0x00000000, &ihost
->smu_registers
->completion_queue_get
);
1625 /* The write to the UFQGP clears the UFQPR */
1626 writel(0, &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
1629 static void sci_controller_resetting_state_enter(struct sci_base_state_machine
*sm
)
1631 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1633 sci_controller_reset_hardware(ihost
);
1634 sci_change_state(&ihost
->sm
, SCIC_RESET
);
1637 static const struct sci_base_state sci_controller_state_table
[] = {
1639 .enter_state
= sci_controller_initial_state_enter
,
1642 [SCIC_INITIALIZING
] = {},
1643 [SCIC_INITIALIZED
] = {},
1645 .exit_state
= sci_controller_starting_state_exit
,
1648 .enter_state
= sci_controller_ready_state_enter
,
1649 .exit_state
= sci_controller_ready_state_exit
,
1651 [SCIC_RESETTING
] = {
1652 .enter_state
= sci_controller_resetting_state_enter
,
1655 .enter_state
= sci_controller_stopping_state_enter
,
1656 .exit_state
= sci_controller_stopping_state_exit
,
1658 [SCIC_STOPPED
] = {},
1662 static void sci_controller_set_default_config_parameters(struct isci_host
*ihost
)
1664 /* these defaults are overridden by the platform / firmware */
1667 /* Default to APC mode. */
1668 ihost
->oem_parameters
.controller
.mode_type
= SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
;
1670 /* Default to APC mode. */
1671 ihost
->oem_parameters
.controller
.max_concurr_spin_up
= 1;
1673 /* Default to no SSC operation. */
1674 ihost
->oem_parameters
.controller
.do_enable_ssc
= false;
1676 /* Default to short cables on all phys. */
1677 ihost
->oem_parameters
.controller
.cable_selection_mask
= 0;
1679 /* Initialize all of the port parameter information to narrow ports. */
1680 for (index
= 0; index
< SCI_MAX_PORTS
; index
++) {
1681 ihost
->oem_parameters
.ports
[index
].phy_mask
= 0;
1684 /* Initialize all of the phy parameter information. */
1685 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
1686 /* Default to 3G (i.e. Gen 2). */
1687 ihost
->user_parameters
.phys
[index
].max_speed_generation
=
1688 SCIC_SDS_PARM_GEN2_SPEED
;
1690 /* the frequencies cannot be 0 */
1691 ihost
->user_parameters
.phys
[index
].align_insertion_frequency
= 0x7f;
1692 ihost
->user_parameters
.phys
[index
].in_connection_align_insertion_frequency
= 0xff;
1693 ihost
->user_parameters
.phys
[index
].notify_enable_spin_up_insertion_frequency
= 0x33;
1696 * Previous Vitesse based expanders had a arbitration issue that
1697 * is worked around by having the upper 32-bits of SAS address
1698 * with a value greater then the Vitesse company identifier.
1699 * Hence, usage of 0x5FCFFFFF. */
1700 ihost
->oem_parameters
.phys
[index
].sas_address
.low
= 0x1 + ihost
->id
;
1701 ihost
->oem_parameters
.phys
[index
].sas_address
.high
= 0x5FCFFFFF;
1704 ihost
->user_parameters
.stp_inactivity_timeout
= 5;
1705 ihost
->user_parameters
.ssp_inactivity_timeout
= 5;
1706 ihost
->user_parameters
.stp_max_occupancy_timeout
= 5;
1707 ihost
->user_parameters
.ssp_max_occupancy_timeout
= 20;
1708 ihost
->user_parameters
.no_outbound_task_timeout
= 2;
1711 static void controller_timeout(unsigned long data
)
1713 struct sci_timer
*tmr
= (struct sci_timer
*)data
;
1714 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), timer
);
1715 struct sci_base_state_machine
*sm
= &ihost
->sm
;
1716 unsigned long flags
;
1718 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
1723 if (sm
->current_state_id
== SCIC_STARTING
)
1724 sci_controller_transition_to_ready(ihost
, SCI_FAILURE_TIMEOUT
);
1725 else if (sm
->current_state_id
== SCIC_STOPPING
) {
1726 sci_change_state(sm
, SCIC_FAILED
);
1727 isci_host_stop_complete(ihost
, SCI_FAILURE_TIMEOUT
);
1728 } else /* / @todo Now what do we want to do in this case? */
1729 dev_err(&ihost
->pdev
->dev
,
1730 "%s: Controller timer fired when controller was not "
1731 "in a state being timed.\n",
1735 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
1738 static enum sci_status
sci_controller_construct(struct isci_host
*ihost
,
1739 void __iomem
*scu_base
,
1740 void __iomem
*smu_base
)
1744 sci_init_sm(&ihost
->sm
, sci_controller_state_table
, SCIC_INITIAL
);
1746 ihost
->scu_registers
= scu_base
;
1747 ihost
->smu_registers
= smu_base
;
1749 sci_port_configuration_agent_construct(&ihost
->port_agent
);
1751 /* Construct the ports for this controller */
1752 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
1753 sci_port_construct(&ihost
->ports
[i
], i
, ihost
);
1754 sci_port_construct(&ihost
->ports
[i
], SCIC_SDS_DUMMY_PORT
, ihost
);
1756 /* Construct the phys for this controller */
1757 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1758 /* Add all the PHYs to the dummy port */
1759 sci_phy_construct(&ihost
->phys
[i
],
1760 &ihost
->ports
[SCI_MAX_PORTS
], i
);
1763 ihost
->invalid_phy_mask
= 0;
1765 sci_init_timer(&ihost
->timer
, controller_timeout
);
1767 /* Initialize the User and OEM parameters to default values. */
1768 sci_controller_set_default_config_parameters(ihost
);
1770 return sci_controller_reset(ihost
);
1773 int sci_oem_parameters_validate(struct sci_oem_params
*oem
, u8 version
)
1777 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
1778 if (oem
->ports
[i
].phy_mask
> SCIC_SDS_PARM_PHY_MASK_MAX
)
1781 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1782 if (oem
->phys
[i
].sas_address
.high
== 0 &&
1783 oem
->phys
[i
].sas_address
.low
== 0)
1786 if (oem
->controller
.mode_type
== SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
) {
1787 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1788 if (oem
->ports
[i
].phy_mask
!= 0)
1790 } else if (oem
->controller
.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
) {
1793 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1794 phy_mask
|= oem
->ports
[i
].phy_mask
;
1801 if (oem
->controller
.max_concurr_spin_up
> MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
||
1802 oem
->controller
.max_concurr_spin_up
< 1)
1805 if (oem
->controller
.do_enable_ssc
) {
1806 if (version
< ISCI_ROM_VER_1_1
&& oem
->controller
.do_enable_ssc
!= 1)
1809 if (version
>= ISCI_ROM_VER_1_1
) {
1810 u8 test
= oem
->controller
.ssc_sata_tx_spread_level
;
1823 test
= oem
->controller
.ssc_sas_tx_spread_level
;
1824 if (oem
->controller
.ssc_sas_tx_type
== 0) {
1833 } else if (oem
->controller
.ssc_sas_tx_type
== 1) {
1849 static enum sci_status
sci_oem_parameters_set(struct isci_host
*ihost
)
1851 u32 state
= ihost
->sm
.current_state_id
;
1852 struct isci_pci_info
*pci_info
= to_pci_info(ihost
->pdev
);
1854 if (state
== SCIC_RESET
||
1855 state
== SCIC_INITIALIZING
||
1856 state
== SCIC_INITIALIZED
) {
1857 u8 oem_version
= pci_info
->orom
? pci_info
->orom
->hdr
.version
:
1860 if (sci_oem_parameters_validate(&ihost
->oem_parameters
,
1862 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1867 return SCI_FAILURE_INVALID_STATE
;
1870 static u8
max_spin_up(struct isci_host
*ihost
)
1872 if (ihost
->user_parameters
.max_concurr_spinup
)
1873 return min_t(u8
, ihost
->user_parameters
.max_concurr_spinup
,
1874 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
);
1876 return min_t(u8
, ihost
->oem_parameters
.controller
.max_concurr_spin_up
,
1877 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
);
1880 static void power_control_timeout(unsigned long data
)
1882 struct sci_timer
*tmr
= (struct sci_timer
*)data
;
1883 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), power_control
.timer
);
1884 struct isci_phy
*iphy
;
1885 unsigned long flags
;
1888 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
1893 ihost
->power_control
.phys_granted_power
= 0;
1895 if (ihost
->power_control
.phys_waiting
== 0) {
1896 ihost
->power_control
.timer_started
= false;
1900 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1902 if (ihost
->power_control
.phys_waiting
== 0)
1905 iphy
= ihost
->power_control
.requesters
[i
];
1909 if (ihost
->power_control
.phys_granted_power
>= max_spin_up(ihost
))
1912 ihost
->power_control
.requesters
[i
] = NULL
;
1913 ihost
->power_control
.phys_waiting
--;
1914 ihost
->power_control
.phys_granted_power
++;
1915 sci_phy_consume_power_handler(iphy
);
1917 if (iphy
->protocol
== SCIC_SDS_PHY_PROTOCOL_SAS
) {
1920 for (j
= 0; j
< SCI_MAX_PHYS
; j
++) {
1921 struct isci_phy
*requester
= ihost
->power_control
.requesters
[j
];
1924 * Search the power_control queue to see if there are other phys
1925 * attached to the same remote device. If found, take all of
1926 * them out of await_sas_power state.
1928 if (requester
!= NULL
&& requester
!= iphy
) {
1929 u8 other
= memcmp(requester
->frame_rcvd
.iaf
.sas_addr
,
1930 iphy
->frame_rcvd
.iaf
.sas_addr
,
1931 sizeof(requester
->frame_rcvd
.iaf
.sas_addr
));
1934 ihost
->power_control
.requesters
[j
] = NULL
;
1935 ihost
->power_control
.phys_waiting
--;
1936 sci_phy_consume_power_handler(requester
);
1944 * It doesn't matter if the power list is empty, we need to start the
1945 * timer in case another phy becomes ready.
1947 sci_mod_timer(tmr
, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
1948 ihost
->power_control
.timer_started
= true;
1951 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
1954 void sci_controller_power_control_queue_insert(struct isci_host
*ihost
,
1955 struct isci_phy
*iphy
)
1957 BUG_ON(iphy
== NULL
);
1959 if (ihost
->power_control
.phys_granted_power
< max_spin_up(ihost
)) {
1960 ihost
->power_control
.phys_granted_power
++;
1961 sci_phy_consume_power_handler(iphy
);
1964 * stop and start the power_control timer. When the timer fires, the
1965 * no_of_phys_granted_power will be set to 0
1967 if (ihost
->power_control
.timer_started
)
1968 sci_del_timer(&ihost
->power_control
.timer
);
1970 sci_mod_timer(&ihost
->power_control
.timer
,
1971 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
1972 ihost
->power_control
.timer_started
= true;
1976 * There are phys, attached to the same sas address as this phy, are
1977 * already in READY state, this phy don't need wait.
1980 struct isci_phy
*current_phy
;
1982 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1984 current_phy
= &ihost
->phys
[i
];
1986 other
= memcmp(current_phy
->frame_rcvd
.iaf
.sas_addr
,
1987 iphy
->frame_rcvd
.iaf
.sas_addr
,
1988 sizeof(current_phy
->frame_rcvd
.iaf
.sas_addr
));
1990 if (current_phy
->sm
.current_state_id
== SCI_PHY_READY
&&
1991 current_phy
->protocol
== SCIC_SDS_PHY_PROTOCOL_SAS
&&
1993 sci_phy_consume_power_handler(iphy
);
1998 if (i
== SCI_MAX_PHYS
) {
1999 /* Add the phy in the waiting list */
2000 ihost
->power_control
.requesters
[iphy
->phy_index
] = iphy
;
2001 ihost
->power_control
.phys_waiting
++;
2006 void sci_controller_power_control_queue_remove(struct isci_host
*ihost
,
2007 struct isci_phy
*iphy
)
2009 BUG_ON(iphy
== NULL
);
2011 if (ihost
->power_control
.requesters
[iphy
->phy_index
])
2012 ihost
->power_control
.phys_waiting
--;
2014 ihost
->power_control
.requesters
[iphy
->phy_index
] = NULL
;
2017 static int is_long_cable(int phy
, unsigned char selection_byte
)
2019 return !!(selection_byte
& (1 << phy
));
2022 static int is_medium_cable(int phy
, unsigned char selection_byte
)
2024 return !!(selection_byte
& (1 << (phy
+ 4)));
2027 static enum cable_selections
decode_selection_byte(
2029 unsigned char selection_byte
)
2031 return ((selection_byte
& (1 << phy
)) ? 1 : 0)
2032 + (selection_byte
& (1 << (phy
+ 4)) ? 2 : 0);
2035 static unsigned char *to_cable_select(struct isci_host
*ihost
)
2037 if (is_cable_select_overridden())
2038 return ((unsigned char *)&cable_selection_override
)
2041 return &ihost
->oem_parameters
.controller
.cable_selection_mask
;
2044 enum cable_selections
decode_cable_selection(struct isci_host
*ihost
, int phy
)
2046 return decode_selection_byte(phy
, *to_cable_select(ihost
));
2049 char *lookup_cable_names(enum cable_selections selection
)
2051 static char *cable_names
[] = {
2052 [short_cable
] = "short",
2053 [long_cable
] = "long",
2054 [medium_cable
] = "medium",
2055 [undefined_cable
] = "<undefined, assumed long>" /* bit 0==1 */
2057 return (selection
<= undefined_cable
) ? cable_names
[selection
]
2058 : cable_names
[undefined_cable
];
2061 #define AFE_REGISTER_WRITE_DELAY 10
2063 static void sci_controller_afe_initialization(struct isci_host
*ihost
)
2065 struct scu_afe_registers __iomem
*afe
= &ihost
->scu_registers
->afe
;
2066 const struct sci_oem_params
*oem
= &ihost
->oem_parameters
;
2067 struct pci_dev
*pdev
= ihost
->pdev
;
2070 unsigned char cable_selection_mask
= *to_cable_select(ihost
);
2072 /* Clear DFX Status registers */
2073 writel(0x0081000f, &afe
->afe_dfx_master_control0
);
2074 udelay(AFE_REGISTER_WRITE_DELAY
);
2076 if (is_b0(pdev
) || is_c0(pdev
) || is_c1(pdev
)) {
2077 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2078 * Timer, PM Stagger Timer
2080 writel(0x0007FFFF, &afe
->afe_pmsn_master_control2
);
2081 udelay(AFE_REGISTER_WRITE_DELAY
);
2084 /* Configure bias currents to normal */
2086 writel(0x00005A00, &afe
->afe_bias_control
);
2087 else if (is_b0(pdev
) || is_c0(pdev
))
2088 writel(0x00005F00, &afe
->afe_bias_control
);
2089 else if (is_c1(pdev
))
2090 writel(0x00005500, &afe
->afe_bias_control
);
2092 udelay(AFE_REGISTER_WRITE_DELAY
);
2096 writel(0x80040908, &afe
->afe_pll_control0
);
2097 else if (is_b0(pdev
) || is_c0(pdev
))
2098 writel(0x80040A08, &afe
->afe_pll_control0
);
2099 else if (is_c1(pdev
)) {
2100 writel(0x80000B08, &afe
->afe_pll_control0
);
2101 udelay(AFE_REGISTER_WRITE_DELAY
);
2102 writel(0x00000B08, &afe
->afe_pll_control0
);
2103 udelay(AFE_REGISTER_WRITE_DELAY
);
2104 writel(0x80000B08, &afe
->afe_pll_control0
);
2107 udelay(AFE_REGISTER_WRITE_DELAY
);
2109 /* Wait for the PLL to lock */
2111 afe_status
= readl(&afe
->afe_common_block_status
);
2112 udelay(AFE_REGISTER_WRITE_DELAY
);
2113 } while ((afe_status
& 0x00001000) == 0);
2116 /* Shorten SAS SNW lock time (RxLock timer value from 76
2119 writel(0x7bcc96ad, &afe
->afe_pmsn_master_control0
);
2120 udelay(AFE_REGISTER_WRITE_DELAY
);
2123 for (phy_id
= 0; phy_id
< SCI_MAX_PHYS
; phy_id
++) {
2124 struct scu_afe_transceiver
*xcvr
= &afe
->scu_afe_xcvr
[phy_id
];
2125 const struct sci_phy_oem_params
*oem_phy
= &oem
->phys
[phy_id
];
2126 int cable_length_long
=
2127 is_long_cable(phy_id
, cable_selection_mask
);
2128 int cable_length_medium
=
2129 is_medium_cable(phy_id
, cable_selection_mask
);
2132 /* All defaults, except the Receive Word
2133 * Alignament/Comma Detect Enable....(0xe800)
2135 writel(0x00004512, &xcvr
->afe_xcvr_control0
);
2136 udelay(AFE_REGISTER_WRITE_DELAY
);
2138 writel(0x0050100F, &xcvr
->afe_xcvr_control1
);
2139 udelay(AFE_REGISTER_WRITE_DELAY
);
2140 } else if (is_b0(pdev
)) {
2141 /* Configure transmitter SSC parameters */
2142 writel(0x00030000, &xcvr
->afe_tx_ssc_control
);
2143 udelay(AFE_REGISTER_WRITE_DELAY
);
2144 } else if (is_c0(pdev
)) {
2145 /* Configure transmitter SSC parameters */
2146 writel(0x00010202, &xcvr
->afe_tx_ssc_control
);
2147 udelay(AFE_REGISTER_WRITE_DELAY
);
2149 /* All defaults, except the Receive Word
2150 * Alignament/Comma Detect Enable....(0xe800)
2152 writel(0x00014500, &xcvr
->afe_xcvr_control0
);
2153 udelay(AFE_REGISTER_WRITE_DELAY
);
2154 } else if (is_c1(pdev
)) {
2155 /* Configure transmitter SSC parameters */
2156 writel(0x00010202, &xcvr
->afe_tx_ssc_control
);
2157 udelay(AFE_REGISTER_WRITE_DELAY
);
2159 /* All defaults, except the Receive Word
2160 * Alignament/Comma Detect Enable....(0xe800)
2162 writel(0x0001C500, &xcvr
->afe_xcvr_control0
);
2163 udelay(AFE_REGISTER_WRITE_DELAY
);
2166 /* Power up TX and RX out from power down (PWRDNTX and
2167 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2170 writel(0x000003F0, &xcvr
->afe_channel_control
);
2171 else if (is_b0(pdev
)) {
2172 writel(0x000003D7, &xcvr
->afe_channel_control
);
2173 udelay(AFE_REGISTER_WRITE_DELAY
);
2175 writel(0x000003D4, &xcvr
->afe_channel_control
);
2176 } else if (is_c0(pdev
)) {
2177 writel(0x000001E7, &xcvr
->afe_channel_control
);
2178 udelay(AFE_REGISTER_WRITE_DELAY
);
2180 writel(0x000001E4, &xcvr
->afe_channel_control
);
2181 } else if (is_c1(pdev
)) {
2182 writel(cable_length_long
? 0x000002F7 : 0x000001F7,
2183 &xcvr
->afe_channel_control
);
2184 udelay(AFE_REGISTER_WRITE_DELAY
);
2186 writel(cable_length_long
? 0x000002F4 : 0x000001F4,
2187 &xcvr
->afe_channel_control
);
2189 udelay(AFE_REGISTER_WRITE_DELAY
);
2192 /* Enable TX equalization (0xe824) */
2193 writel(0x00040000, &xcvr
->afe_tx_control
);
2194 udelay(AFE_REGISTER_WRITE_DELAY
);
2197 if (is_a2(pdev
) || is_b0(pdev
))
2198 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2199 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2200 * Enabled) ....(0xe800)
2202 writel(0x00004100, &xcvr
->afe_xcvr_control0
);
2203 else if (is_c0(pdev
))
2204 writel(0x00014100, &xcvr
->afe_xcvr_control0
);
2205 else if (is_c1(pdev
))
2206 writel(0x0001C100, &xcvr
->afe_xcvr_control0
);
2207 udelay(AFE_REGISTER_WRITE_DELAY
);
2209 /* Leave DFE/FFE on */
2211 writel(0x3F11103F, &xcvr
->afe_rx_ssc_control0
);
2212 else if (is_b0(pdev
)) {
2213 writel(0x3F11103F, &xcvr
->afe_rx_ssc_control0
);
2214 udelay(AFE_REGISTER_WRITE_DELAY
);
2215 /* Enable TX equalization (0xe824) */
2216 writel(0x00040000, &xcvr
->afe_tx_control
);
2217 } else if (is_c0(pdev
)) {
2218 writel(0x01400C0F, &xcvr
->afe_rx_ssc_control1
);
2219 udelay(AFE_REGISTER_WRITE_DELAY
);
2221 writel(0x3F6F103F, &xcvr
->afe_rx_ssc_control0
);
2222 udelay(AFE_REGISTER_WRITE_DELAY
);
2224 /* Enable TX equalization (0xe824) */
2225 writel(0x00040000, &xcvr
->afe_tx_control
);
2226 } else if (is_c1(pdev
)) {
2227 writel(cable_length_long
? 0x01500C0C :
2228 cable_length_medium
? 0x01400C0D : 0x02400C0D,
2229 &xcvr
->afe_xcvr_control1
);
2230 udelay(AFE_REGISTER_WRITE_DELAY
);
2232 writel(0x000003E0, &xcvr
->afe_dfx_rx_control1
);
2233 udelay(AFE_REGISTER_WRITE_DELAY
);
2235 writel(cable_length_long
? 0x33091C1F :
2236 cable_length_medium
? 0x3315181F : 0x2B17161F,
2237 &xcvr
->afe_rx_ssc_control0
);
2238 udelay(AFE_REGISTER_WRITE_DELAY
);
2240 /* Enable TX equalization (0xe824) */
2241 writel(0x00040000, &xcvr
->afe_tx_control
);
2244 udelay(AFE_REGISTER_WRITE_DELAY
);
2246 writel(oem_phy
->afe_tx_amp_control0
, &xcvr
->afe_tx_amp_control0
);
2247 udelay(AFE_REGISTER_WRITE_DELAY
);
2249 writel(oem_phy
->afe_tx_amp_control1
, &xcvr
->afe_tx_amp_control1
);
2250 udelay(AFE_REGISTER_WRITE_DELAY
);
2252 writel(oem_phy
->afe_tx_amp_control2
, &xcvr
->afe_tx_amp_control2
);
2253 udelay(AFE_REGISTER_WRITE_DELAY
);
2255 writel(oem_phy
->afe_tx_amp_control3
, &xcvr
->afe_tx_amp_control3
);
2256 udelay(AFE_REGISTER_WRITE_DELAY
);
2259 /* Transfer control to the PEs */
2260 writel(0x00010f00, &afe
->afe_dfx_master_control0
);
2261 udelay(AFE_REGISTER_WRITE_DELAY
);
2264 static void sci_controller_initialize_power_control(struct isci_host
*ihost
)
2266 sci_init_timer(&ihost
->power_control
.timer
, power_control_timeout
);
2268 memset(ihost
->power_control
.requesters
, 0,
2269 sizeof(ihost
->power_control
.requesters
));
2271 ihost
->power_control
.phys_waiting
= 0;
2272 ihost
->power_control
.phys_granted_power
= 0;
2275 static enum sci_status
sci_controller_initialize(struct isci_host
*ihost
)
2277 struct sci_base_state_machine
*sm
= &ihost
->sm
;
2278 enum sci_status result
= SCI_FAILURE
;
2279 unsigned long i
, state
, val
;
2281 if (ihost
->sm
.current_state_id
!= SCIC_RESET
) {
2282 dev_warn(&ihost
->pdev
->dev
,
2283 "SCIC Controller initialize operation requested "
2284 "in invalid state\n");
2285 return SCI_FAILURE_INVALID_STATE
;
2288 sci_change_state(sm
, SCIC_INITIALIZING
);
2290 sci_init_timer(&ihost
->phy_timer
, phy_startup_timeout
);
2292 ihost
->next_phy_to_start
= 0;
2293 ihost
->phy_startup_timer_pending
= false;
2295 sci_controller_initialize_power_control(ihost
);
2298 * There is nothing to do here for B0 since we do not have to
2299 * program the AFE registers.
2300 * / @todo The AFE settings are supposed to be correct for the B0 but
2301 * / presently they seem to be wrong. */
2302 sci_controller_afe_initialization(ihost
);
2305 /* Take the hardware out of reset */
2306 writel(0, &ihost
->smu_registers
->soft_reset_control
);
2309 * / @todo Provide meaningfull error code for hardware failure
2310 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2311 for (i
= 100; i
>= 1; i
--) {
2314 /* Loop until the hardware reports success */
2315 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME
);
2316 status
= readl(&ihost
->smu_registers
->control_status
);
2318 if ((status
& SCU_RAM_INIT_COMPLETED
) == SCU_RAM_INIT_COMPLETED
)
2325 * Determine what are the actaul device capacities that the
2326 * hardware will support */
2327 val
= readl(&ihost
->smu_registers
->device_context_capacity
);
2329 /* Record the smaller of the two capacity values */
2330 ihost
->logical_port_entries
= min(smu_max_ports(val
), SCI_MAX_PORTS
);
2331 ihost
->task_context_entries
= min(smu_max_task_contexts(val
), SCI_MAX_IO_REQUESTS
);
2332 ihost
->remote_node_entries
= min(smu_max_rncs(val
), SCI_MAX_REMOTE_DEVICES
);
2335 * Make all PEs that are unassigned match up with the
2338 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
2339 struct scu_port_task_scheduler_group_registers __iomem
2340 *ptsg
= &ihost
->scu_registers
->peg0
.ptsg
;
2342 writel(i
, &ptsg
->protocol_engine
[i
]);
2345 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2346 val
= readl(&ihost
->scu_registers
->sdma
.pdma_configuration
);
2347 val
|= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE
);
2348 writel(val
, &ihost
->scu_registers
->sdma
.pdma_configuration
);
2350 val
= readl(&ihost
->scu_registers
->sdma
.cdma_configuration
);
2351 val
|= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE
);
2352 writel(val
, &ihost
->scu_registers
->sdma
.cdma_configuration
);
2355 * Initialize the PHYs before the PORTs because the PHY registers
2356 * are accessed during the port initialization.
2358 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
2359 result
= sci_phy_initialize(&ihost
->phys
[i
],
2360 &ihost
->scu_registers
->peg0
.pe
[i
].tl
,
2361 &ihost
->scu_registers
->peg0
.pe
[i
].ll
);
2362 if (result
!= SCI_SUCCESS
)
2366 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
2367 struct isci_port
*iport
= &ihost
->ports
[i
];
2369 iport
->port_task_scheduler_registers
= &ihost
->scu_registers
->peg0
.ptsg
.port
[i
];
2370 iport
->port_pe_configuration_register
= &ihost
->scu_registers
->peg0
.ptsg
.protocol_engine
[0];
2371 iport
->viit_registers
= &ihost
->scu_registers
->peg0
.viit
[i
];
2374 result
= sci_port_configuration_agent_initialize(ihost
, &ihost
->port_agent
);
2377 /* Advance the controller state machine */
2378 if (result
== SCI_SUCCESS
)
2379 state
= SCIC_INITIALIZED
;
2381 state
= SCIC_FAILED
;
2382 sci_change_state(sm
, state
);
2387 static enum sci_status
sci_user_parameters_set(struct isci_host
*ihost
,
2388 struct sci_user_parameters
*sci_parms
)
2390 u32 state
= ihost
->sm
.current_state_id
;
2392 if (state
== SCIC_RESET
||
2393 state
== SCIC_INITIALIZING
||
2394 state
== SCIC_INITIALIZED
) {
2398 * Validate the user parameters. If they are not legal, then
2401 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
2402 struct sci_phy_user_params
*user_phy
;
2404 user_phy
= &sci_parms
->phys
[index
];
2406 if (!((user_phy
->max_speed_generation
<=
2407 SCIC_SDS_PARM_MAX_SPEED
) &&
2408 (user_phy
->max_speed_generation
>
2409 SCIC_SDS_PARM_NO_SPEED
)))
2410 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2412 if (user_phy
->in_connection_align_insertion_frequency
<
2414 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2416 if ((user_phy
->in_connection_align_insertion_frequency
<
2418 (user_phy
->align_insertion_frequency
== 0) ||
2420 notify_enable_spin_up_insertion_frequency
==
2422 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2425 if ((sci_parms
->stp_inactivity_timeout
== 0) ||
2426 (sci_parms
->ssp_inactivity_timeout
== 0) ||
2427 (sci_parms
->stp_max_occupancy_timeout
== 0) ||
2428 (sci_parms
->ssp_max_occupancy_timeout
== 0) ||
2429 (sci_parms
->no_outbound_task_timeout
== 0))
2430 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2432 memcpy(&ihost
->user_parameters
, sci_parms
, sizeof(*sci_parms
));
2437 return SCI_FAILURE_INVALID_STATE
;
2440 static int sci_controller_mem_init(struct isci_host
*ihost
)
2442 struct device
*dev
= &ihost
->pdev
->dev
;
2447 size
= SCU_MAX_COMPLETION_QUEUE_ENTRIES
* sizeof(u32
);
2448 ihost
->completion_queue
= dmam_alloc_coherent(dev
, size
, &dma
, GFP_KERNEL
);
2449 if (!ihost
->completion_queue
)
2452 writel(lower_32_bits(dma
), &ihost
->smu_registers
->completion_queue_lower
);
2453 writel(upper_32_bits(dma
), &ihost
->smu_registers
->completion_queue_upper
);
2455 size
= ihost
->remote_node_entries
* sizeof(union scu_remote_node_context
);
2456 ihost
->remote_node_context_table
= dmam_alloc_coherent(dev
, size
, &dma
,
2458 if (!ihost
->remote_node_context_table
)
2461 writel(lower_32_bits(dma
), &ihost
->smu_registers
->remote_node_context_lower
);
2462 writel(upper_32_bits(dma
), &ihost
->smu_registers
->remote_node_context_upper
);
2464 size
= ihost
->task_context_entries
* sizeof(struct scu_task_context
),
2465 ihost
->task_context_table
= dmam_alloc_coherent(dev
, size
, &dma
, GFP_KERNEL
);
2466 if (!ihost
->task_context_table
)
2469 ihost
->task_context_dma
= dma
;
2470 writel(lower_32_bits(dma
), &ihost
->smu_registers
->host_task_table_lower
);
2471 writel(upper_32_bits(dma
), &ihost
->smu_registers
->host_task_table_upper
);
2473 err
= sci_unsolicited_frame_control_construct(ihost
);
2478 * Inform the silicon as to the location of the UF headers and
2481 writel(lower_32_bits(ihost
->uf_control
.headers
.physical_address
),
2482 &ihost
->scu_registers
->sdma
.uf_header_base_address_lower
);
2483 writel(upper_32_bits(ihost
->uf_control
.headers
.physical_address
),
2484 &ihost
->scu_registers
->sdma
.uf_header_base_address_upper
);
2486 writel(lower_32_bits(ihost
->uf_control
.address_table
.physical_address
),
2487 &ihost
->scu_registers
->sdma
.uf_address_table_lower
);
2488 writel(upper_32_bits(ihost
->uf_control
.address_table
.physical_address
),
2489 &ihost
->scu_registers
->sdma
.uf_address_table_upper
);
2494 int isci_host_init(struct isci_host
*ihost
)
2497 enum sci_status status
;
2498 struct sci_user_parameters sci_user_params
;
2499 struct isci_pci_info
*pci_info
= to_pci_info(ihost
->pdev
);
2501 spin_lock_init(&ihost
->state_lock
);
2502 spin_lock_init(&ihost
->scic_lock
);
2503 init_waitqueue_head(&ihost
->eventq
);
2505 isci_host_change_state(ihost
, isci_starting
);
2507 status
= sci_controller_construct(ihost
, scu_base(ihost
),
2510 if (status
!= SCI_SUCCESS
) {
2511 dev_err(&ihost
->pdev
->dev
,
2512 "%s: sci_controller_construct failed - status = %x\n",
2518 ihost
->sas_ha
.dev
= &ihost
->pdev
->dev
;
2519 ihost
->sas_ha
.lldd_ha
= ihost
;
2522 * grab initial values stored in the controller object for OEM and USER
2525 isci_user_parameters_get(&sci_user_params
);
2526 status
= sci_user_parameters_set(ihost
, &sci_user_params
);
2527 if (status
!= SCI_SUCCESS
) {
2528 dev_warn(&ihost
->pdev
->dev
,
2529 "%s: sci_user_parameters_set failed\n",
2534 /* grab any OEM parameters specified in orom */
2535 if (pci_info
->orom
) {
2536 status
= isci_parse_oem_parameters(&ihost
->oem_parameters
,
2539 if (status
!= SCI_SUCCESS
) {
2540 dev_warn(&ihost
->pdev
->dev
,
2541 "parsing firmware oem parameters failed\n");
2546 status
= sci_oem_parameters_set(ihost
);
2547 if (status
!= SCI_SUCCESS
) {
2548 dev_warn(&ihost
->pdev
->dev
,
2549 "%s: sci_oem_parameters_set failed\n",
2554 tasklet_init(&ihost
->completion_tasklet
,
2555 isci_host_completion_routine
, (unsigned long)ihost
);
2557 INIT_LIST_HEAD(&ihost
->requests_to_complete
);
2558 INIT_LIST_HEAD(&ihost
->requests_to_errorback
);
2560 spin_lock_irq(&ihost
->scic_lock
);
2561 status
= sci_controller_initialize(ihost
);
2562 spin_unlock_irq(&ihost
->scic_lock
);
2563 if (status
!= SCI_SUCCESS
) {
2564 dev_warn(&ihost
->pdev
->dev
,
2565 "%s: sci_controller_initialize failed -"
2571 err
= sci_controller_mem_init(ihost
);
2575 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
2576 isci_port_init(&ihost
->ports
[i
], ihost
, i
);
2578 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
2579 isci_phy_init(&ihost
->phys
[i
], ihost
, i
);
2582 writel(1, &ihost
->scu_registers
->peg0
.sgpio
.interface_control
);
2583 for (i
= 0; i
< isci_gpio_count(ihost
); i
++)
2584 writel(SGPIO_HW_CONTROL
, &ihost
->scu_registers
->peg0
.sgpio
.output_data_select
[i
]);
2585 writel(0, &ihost
->scu_registers
->peg0
.sgpio
.vendor_specific_code
);
2587 for (i
= 0; i
< SCI_MAX_REMOTE_DEVICES
; i
++) {
2588 struct isci_remote_device
*idev
= &ihost
->devices
[i
];
2590 INIT_LIST_HEAD(&idev
->reqs_in_process
);
2591 INIT_LIST_HEAD(&idev
->node
);
2594 for (i
= 0; i
< SCI_MAX_IO_REQUESTS
; i
++) {
2595 struct isci_request
*ireq
;
2598 ireq
= dmam_alloc_coherent(&ihost
->pdev
->dev
,
2599 sizeof(struct isci_request
), &dma
,
2604 ireq
->tc
= &ihost
->task_context_table
[i
];
2605 ireq
->owning_controller
= ihost
;
2606 spin_lock_init(&ireq
->state_lock
);
2607 ireq
->request_daddr
= dma
;
2608 ireq
->isci_host
= ihost
;
2609 ihost
->reqs
[i
] = ireq
;
2615 void sci_controller_link_up(struct isci_host
*ihost
, struct isci_port
*iport
,
2616 struct isci_phy
*iphy
)
2618 switch (ihost
->sm
.current_state_id
) {
2620 sci_del_timer(&ihost
->phy_timer
);
2621 ihost
->phy_startup_timer_pending
= false;
2622 ihost
->port_agent
.link_up_handler(ihost
, &ihost
->port_agent
,
2624 sci_controller_start_next_phy(ihost
);
2627 ihost
->port_agent
.link_up_handler(ihost
, &ihost
->port_agent
,
2631 dev_dbg(&ihost
->pdev
->dev
,
2632 "%s: SCIC Controller linkup event from phy %d in "
2633 "unexpected state %d\n", __func__
, iphy
->phy_index
,
2634 ihost
->sm
.current_state_id
);
2638 void sci_controller_link_down(struct isci_host
*ihost
, struct isci_port
*iport
,
2639 struct isci_phy
*iphy
)
2641 switch (ihost
->sm
.current_state_id
) {
2644 ihost
->port_agent
.link_down_handler(ihost
, &ihost
->port_agent
,
2648 dev_dbg(&ihost
->pdev
->dev
,
2649 "%s: SCIC Controller linkdown event from phy %d in "
2650 "unexpected state %d\n",
2653 ihost
->sm
.current_state_id
);
2657 static bool sci_controller_has_remote_devices_stopping(struct isci_host
*ihost
)
2661 for (index
= 0; index
< ihost
->remote_node_entries
; index
++) {
2662 if ((ihost
->device_table
[index
] != NULL
) &&
2663 (ihost
->device_table
[index
]->sm
.current_state_id
== SCI_DEV_STOPPING
))
2670 void sci_controller_remote_device_stopped(struct isci_host
*ihost
,
2671 struct isci_remote_device
*idev
)
2673 if (ihost
->sm
.current_state_id
!= SCIC_STOPPING
) {
2674 dev_dbg(&ihost
->pdev
->dev
,
2675 "SCIC Controller 0x%p remote device stopped event "
2676 "from device 0x%p in unexpected state %d\n",
2678 ihost
->sm
.current_state_id
);
2682 if (!sci_controller_has_remote_devices_stopping(ihost
))
2683 sci_change_state(&ihost
->sm
, SCIC_STOPPED
);
2686 void sci_controller_post_request(struct isci_host
*ihost
, u32 request
)
2688 dev_dbg(&ihost
->pdev
->dev
, "%s[%d]: %#x\n",
2689 __func__
, ihost
->id
, request
);
2691 writel(request
, &ihost
->smu_registers
->post_context_port
);
2694 struct isci_request
*sci_request_by_tag(struct isci_host
*ihost
, u16 io_tag
)
2699 task_index
= ISCI_TAG_TCI(io_tag
);
2701 if (task_index
< ihost
->task_context_entries
) {
2702 struct isci_request
*ireq
= ihost
->reqs
[task_index
];
2704 if (test_bit(IREQ_ACTIVE
, &ireq
->flags
)) {
2705 task_sequence
= ISCI_TAG_SEQ(io_tag
);
2707 if (task_sequence
== ihost
->io_request_sequence
[task_index
])
2716 * This method allocates remote node index and the reserves the remote node
2717 * context space for use. This method can fail if there are no more remote
2718 * node index available.
2719 * @scic: This is the controller object which contains the set of
2720 * free remote node ids
2721 * @sci_dev: This is the device object which is requesting the a remote node
2723 * @node_id: This is the remote node id that is assinged to the device if one
2726 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2727 * node index available.
2729 enum sci_status
sci_controller_allocate_remote_node_context(struct isci_host
*ihost
,
2730 struct isci_remote_device
*idev
,
2734 u32 remote_node_count
= sci_remote_device_node_count(idev
);
2736 node_index
= sci_remote_node_table_allocate_remote_node(
2737 &ihost
->available_remote_nodes
, remote_node_count
2740 if (node_index
!= SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
) {
2741 ihost
->device_table
[node_index
] = idev
;
2743 *node_id
= node_index
;
2748 return SCI_FAILURE_INSUFFICIENT_RESOURCES
;
2751 void sci_controller_free_remote_node_context(struct isci_host
*ihost
,
2752 struct isci_remote_device
*idev
,
2755 u32 remote_node_count
= sci_remote_device_node_count(idev
);
2757 if (ihost
->device_table
[node_id
] == idev
) {
2758 ihost
->device_table
[node_id
] = NULL
;
2760 sci_remote_node_table_release_remote_node_index(
2761 &ihost
->available_remote_nodes
, remote_node_count
, node_id
2766 void sci_controller_copy_sata_response(void *response_buffer
,
2770 /* XXX type safety? */
2771 memcpy(response_buffer
, frame_header
, sizeof(u32
));
2773 memcpy(response_buffer
+ sizeof(u32
),
2775 sizeof(struct dev_to_host_fis
) - sizeof(u32
));
2778 void sci_controller_release_frame(struct isci_host
*ihost
, u32 frame_index
)
2780 if (sci_unsolicited_frame_control_release_frame(&ihost
->uf_control
, frame_index
))
2781 writel(ihost
->uf_control
.get
,
2782 &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
2785 void isci_tci_free(struct isci_host
*ihost
, u16 tci
)
2787 u16 tail
= ihost
->tci_tail
& (SCI_MAX_IO_REQUESTS
-1);
2789 ihost
->tci_pool
[tail
] = tci
;
2790 ihost
->tci_tail
= tail
+ 1;
2793 static u16
isci_tci_alloc(struct isci_host
*ihost
)
2795 u16 head
= ihost
->tci_head
& (SCI_MAX_IO_REQUESTS
-1);
2796 u16 tci
= ihost
->tci_pool
[head
];
2798 ihost
->tci_head
= head
+ 1;
2802 static u16
isci_tci_space(struct isci_host
*ihost
)
2804 return CIRC_SPACE(ihost
->tci_head
, ihost
->tci_tail
, SCI_MAX_IO_REQUESTS
);
2807 u16
isci_alloc_tag(struct isci_host
*ihost
)
2809 if (isci_tci_space(ihost
)) {
2810 u16 tci
= isci_tci_alloc(ihost
);
2811 u8 seq
= ihost
->io_request_sequence
[tci
];
2813 return ISCI_TAG(seq
, tci
);
2816 return SCI_CONTROLLER_INVALID_IO_TAG
;
2819 enum sci_status
isci_free_tag(struct isci_host
*ihost
, u16 io_tag
)
2821 u16 tci
= ISCI_TAG_TCI(io_tag
);
2822 u16 seq
= ISCI_TAG_SEQ(io_tag
);
2824 /* prevent tail from passing head */
2825 if (isci_tci_active(ihost
) == 0)
2826 return SCI_FAILURE_INVALID_IO_TAG
;
2828 if (seq
== ihost
->io_request_sequence
[tci
]) {
2829 ihost
->io_request_sequence
[tci
] = (seq
+1) & (SCI_MAX_SEQ
-1);
2831 isci_tci_free(ihost
, tci
);
2835 return SCI_FAILURE_INVALID_IO_TAG
;
2838 enum sci_status
sci_controller_start_io(struct isci_host
*ihost
,
2839 struct isci_remote_device
*idev
,
2840 struct isci_request
*ireq
)
2842 enum sci_status status
;
2844 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2845 dev_warn(&ihost
->pdev
->dev
, "invalid state to start I/O");
2846 return SCI_FAILURE_INVALID_STATE
;
2849 status
= sci_remote_device_start_io(ihost
, idev
, ireq
);
2850 if (status
!= SCI_SUCCESS
)
2853 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2854 sci_controller_post_request(ihost
, ireq
->post_context
);
2858 enum sci_status
sci_controller_terminate_request(struct isci_host
*ihost
,
2859 struct isci_remote_device
*idev
,
2860 struct isci_request
*ireq
)
2862 /* terminate an ongoing (i.e. started) core IO request. This does not
2863 * abort the IO request at the target, but rather removes the IO
2864 * request from the host controller.
2866 enum sci_status status
;
2868 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2869 dev_warn(&ihost
->pdev
->dev
,
2870 "invalid state to terminate request\n");
2871 return SCI_FAILURE_INVALID_STATE
;
2874 status
= sci_io_request_terminate(ireq
);
2875 if (status
!= SCI_SUCCESS
)
2879 * Utilize the original post context command and or in the POST_TC_ABORT
2882 sci_controller_post_request(ihost
,
2883 ireq
->post_context
| SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT
);
2888 * sci_controller_complete_io() - This method will perform core specific
2889 * completion operations for an IO request. After this method is invoked,
2890 * the user should consider the IO request as invalid until it is properly
2891 * reused (i.e. re-constructed).
2892 * @ihost: The handle to the controller object for which to complete the
2894 * @idev: The handle to the remote device object for which to complete
2896 * @ireq: the handle to the io request object to complete.
2898 enum sci_status
sci_controller_complete_io(struct isci_host
*ihost
,
2899 struct isci_remote_device
*idev
,
2900 struct isci_request
*ireq
)
2902 enum sci_status status
;
2905 switch (ihost
->sm
.current_state_id
) {
2907 /* XXX: Implement this function */
2910 status
= sci_remote_device_complete_io(ihost
, idev
, ireq
);
2911 if (status
!= SCI_SUCCESS
)
2914 index
= ISCI_TAG_TCI(ireq
->io_tag
);
2915 clear_bit(IREQ_ACTIVE
, &ireq
->flags
);
2918 dev_warn(&ihost
->pdev
->dev
, "invalid state to complete I/O");
2919 return SCI_FAILURE_INVALID_STATE
;
2924 enum sci_status
sci_controller_continue_io(struct isci_request
*ireq
)
2926 struct isci_host
*ihost
= ireq
->owning_controller
;
2928 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2929 dev_warn(&ihost
->pdev
->dev
, "invalid state to continue I/O");
2930 return SCI_FAILURE_INVALID_STATE
;
2933 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2934 sci_controller_post_request(ihost
, ireq
->post_context
);
2939 * sci_controller_start_task() - This method is called by the SCIC user to
2940 * send/start a framework task management request.
2941 * @controller: the handle to the controller object for which to start the task
2942 * management request.
2943 * @remote_device: the handle to the remote device object for which to start
2944 * the task management request.
2945 * @task_request: the handle to the task request object to start.
2947 enum sci_task_status
sci_controller_start_task(struct isci_host
*ihost
,
2948 struct isci_remote_device
*idev
,
2949 struct isci_request
*ireq
)
2951 enum sci_status status
;
2953 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2954 dev_warn(&ihost
->pdev
->dev
,
2955 "%s: SCIC Controller starting task from invalid "
2958 return SCI_TASK_FAILURE_INVALID_STATE
;
2961 status
= sci_remote_device_start_task(ihost
, idev
, ireq
);
2963 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS
:
2964 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2967 * We will let framework know this task request started successfully,
2968 * although core is still woring on starting the request (to post tc when
2973 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2974 sci_controller_post_request(ihost
, ireq
->post_context
);
2983 static int sci_write_gpio_tx_gp(struct isci_host
*ihost
, u8 reg_index
, u8 reg_count
, u8
*write_data
)
2987 /* no support for TX_GP_CFG */
2991 for (d
= 0; d
< isci_gpio_count(ihost
); d
++) {
2992 u32 val
= 0x444; /* all ODx.n clear */
2995 for (i
= 0; i
< 3; i
++) {
2996 int bit
= (i
<< 2) + 2;
2998 bit
= try_test_sas_gpio_gp_bit(to_sas_gpio_od(d
, i
),
2999 write_data
, reg_index
,
3004 /* if od is set, clear the 'invert' bit */
3005 val
&= ~(bit
<< ((i
<< 2) + 2));
3010 writel(val
, &ihost
->scu_registers
->peg0
.sgpio
.output_data_select
[d
]);
3013 /* unless reg_index is > 1, we should always be able to write at
3014 * least one register
3019 int isci_gpio_write(struct sas_ha_struct
*sas_ha
, u8 reg_type
, u8 reg_index
,
3020 u8 reg_count
, u8
*write_data
)
3022 struct isci_host
*ihost
= sas_ha
->lldd_ha
;
3026 case SAS_GPIO_REG_TX_GP
:
3027 written
= sci_write_gpio_tx_gp(ihost
, reg_index
, reg_count
, write_data
);