2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 #include <scsi/scsi_cmnd.h>
60 #include "scu_completion_codes.h"
61 #include "scu_event_codes.h"
66 const char *req_state_name(enum sci_base_request_states state
)
68 static const char * const strings
[] = REQUEST_STATES
;
70 return strings
[state
];
74 static struct scu_sgl_element_pair
*to_sgl_element_pair(struct isci_request
*ireq
,
78 return &ireq
->tc
->sgl_pair_ab
;
80 return &ireq
->tc
->sgl_pair_cd
;
84 return &ireq
->sg_table
[idx
- 2];
87 static dma_addr_t
to_sgl_element_pair_dma(struct isci_host
*ihost
,
88 struct isci_request
*ireq
, u32 idx
)
93 offset
= (void *) &ireq
->tc
->sgl_pair_ab
-
94 (void *) &ihost
->task_context_table
[0];
95 return ihost
->task_context_dma
+ offset
;
96 } else if (idx
== 1) {
97 offset
= (void *) &ireq
->tc
->sgl_pair_cd
-
98 (void *) &ihost
->task_context_table
[0];
99 return ihost
->task_context_dma
+ offset
;
102 return sci_io_request_get_dma_addr(ireq
, &ireq
->sg_table
[idx
- 2]);
105 static void init_sgl_element(struct scu_sgl_element
*e
, struct scatterlist
*sg
)
107 e
->length
= sg_dma_len(sg
);
108 e
->address_upper
= upper_32_bits(sg_dma_address(sg
));
109 e
->address_lower
= lower_32_bits(sg_dma_address(sg
));
110 e
->address_modifier
= 0;
113 static void sci_request_build_sgl(struct isci_request
*ireq
)
115 struct isci_host
*ihost
= ireq
->isci_host
;
116 struct sas_task
*task
= isci_request_access_task(ireq
);
117 struct scatterlist
*sg
= NULL
;
120 struct scu_sgl_element_pair
*scu_sg
= NULL
;
121 struct scu_sgl_element_pair
*prev_sg
= NULL
;
123 if (task
->num_scatter
> 0) {
127 scu_sg
= to_sgl_element_pair(ireq
, sg_idx
);
128 init_sgl_element(&scu_sg
->A
, sg
);
131 init_sgl_element(&scu_sg
->B
, sg
);
134 memset(&scu_sg
->B
, 0, sizeof(scu_sg
->B
));
137 dma_addr
= to_sgl_element_pair_dma(ihost
,
141 prev_sg
->next_pair_upper
=
142 upper_32_bits(dma_addr
);
143 prev_sg
->next_pair_lower
=
144 lower_32_bits(dma_addr
);
150 } else { /* handle when no sg */
151 scu_sg
= to_sgl_element_pair(ireq
, sg_idx
);
153 dma_addr
= dma_map_single(&ihost
->pdev
->dev
,
155 task
->total_xfer_len
,
158 ireq
->zero_scatter_daddr
= dma_addr
;
160 scu_sg
->A
.length
= task
->total_xfer_len
;
161 scu_sg
->A
.address_upper
= upper_32_bits(dma_addr
);
162 scu_sg
->A
.address_lower
= lower_32_bits(dma_addr
);
166 scu_sg
->next_pair_upper
= 0;
167 scu_sg
->next_pair_lower
= 0;
171 static void sci_io_request_build_ssp_command_iu(struct isci_request
*ireq
)
173 struct ssp_cmd_iu
*cmd_iu
;
174 struct sas_task
*task
= isci_request_access_task(ireq
);
176 cmd_iu
= &ireq
->ssp
.cmd
;
178 memcpy(cmd_iu
->LUN
, task
->ssp_task
.LUN
, 8);
179 cmd_iu
->add_cdb_len
= 0;
182 cmd_iu
->en_fburst
= 0; /* unsupported */
183 cmd_iu
->task_prio
= task
->ssp_task
.task_prio
;
184 cmd_iu
->task_attr
= task
->ssp_task
.task_attr
;
187 sci_swab32_cpy(&cmd_iu
->cdb
, task
->ssp_task
.cdb
,
188 sizeof(task
->ssp_task
.cdb
) / sizeof(u32
));
191 static void sci_task_request_build_ssp_task_iu(struct isci_request
*ireq
)
193 struct ssp_task_iu
*task_iu
;
194 struct sas_task
*task
= isci_request_access_task(ireq
);
195 struct isci_tmf
*isci_tmf
= isci_request_access_tmf(ireq
);
197 task_iu
= &ireq
->ssp
.tmf
;
199 memset(task_iu
, 0, sizeof(struct ssp_task_iu
));
201 memcpy(task_iu
->LUN
, task
->ssp_task
.LUN
, 8);
203 task_iu
->task_func
= isci_tmf
->tmf_code
;
205 (test_bit(IREQ_TMF
, &ireq
->flags
)) ?
207 SCI_CONTROLLER_INVALID_IO_TAG
;
211 * This method is will fill in the SCU Task Context for any type of SSP request.
216 static void scu_ssp_reqeust_construct_task_context(
217 struct isci_request
*ireq
,
218 struct scu_task_context
*task_context
)
221 struct isci_remote_device
*idev
;
222 struct isci_port
*iport
;
224 idev
= ireq
->target_device
;
225 iport
= idev
->owning_port
;
227 /* Fill in the TC with the its required data */
228 task_context
->abort
= 0;
229 task_context
->priority
= 0;
230 task_context
->initiator_request
= 1;
231 task_context
->connection_rate
= idev
->connection_rate
;
232 task_context
->protocol_engine_index
= ISCI_PEG
;
233 task_context
->logical_port_index
= iport
->physical_port_index
;
234 task_context
->protocol_type
= SCU_TASK_CONTEXT_PROTOCOL_SSP
;
235 task_context
->valid
= SCU_TASK_CONTEXT_VALID
;
236 task_context
->context_type
= SCU_TASK_CONTEXT_TYPE
;
238 task_context
->remote_node_index
= idev
->rnc
.remote_node_index
;
239 task_context
->command_code
= 0;
241 task_context
->link_layer_control
= 0;
242 task_context
->do_not_dma_ssp_good_response
= 1;
243 task_context
->strict_ordering
= 0;
244 task_context
->control_frame
= 0;
245 task_context
->timeout_enable
= 0;
246 task_context
->block_guard_enable
= 0;
248 task_context
->address_modifier
= 0;
250 /* task_context->type.ssp.tag = ireq->io_tag; */
251 task_context
->task_phase
= 0x01;
253 ireq
->post_context
= (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
|
254 (ISCI_PEG
<< SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT
) |
255 (iport
->physical_port_index
<<
256 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT
) |
257 ISCI_TAG_TCI(ireq
->io_tag
));
260 * Copy the physical address for the command buffer to the
263 dma_addr
= sci_io_request_get_dma_addr(ireq
, &ireq
->ssp
.cmd
);
265 task_context
->command_iu_upper
= upper_32_bits(dma_addr
);
266 task_context
->command_iu_lower
= lower_32_bits(dma_addr
);
269 * Copy the physical address for the response buffer to the
272 dma_addr
= sci_io_request_get_dma_addr(ireq
, &ireq
->ssp
.rsp
);
274 task_context
->response_iu_upper
= upper_32_bits(dma_addr
);
275 task_context
->response_iu_lower
= lower_32_bits(dma_addr
);
278 static u8
scu_bg_blk_size(struct scsi_device
*sdp
)
280 switch (sdp
->sector_size
) {
292 static u32
scu_dif_bytes(u32 len
, u32 sector_size
)
294 return (len
>> ilog2(sector_size
)) * 8;
297 static void scu_ssp_ireq_dif_insert(struct isci_request
*ireq
, u8 type
, u8 op
)
299 struct scu_task_context
*tc
= ireq
->tc
;
300 struct scsi_cmnd
*scmd
= ireq
->ttype_ptr
.io_task_ptr
->uldd_task
;
301 u8 blk_sz
= scu_bg_blk_size(scmd
->device
);
303 tc
->block_guard_enable
= 1;
306 /* DIF write insert */
307 tc
->blk_prot_func
= 0x2;
309 tc
->transfer_length_bytes
+= scu_dif_bytes(tc
->transfer_length_bytes
,
310 scmd
->device
->sector_size
);
312 /* always init to 0, used by hw */
313 tc
->interm_crc_val
= 0;
315 tc
->init_crc_seed
= 0;
316 tc
->app_tag_verify
= 0;
318 tc
->ref_tag_seed_verify
= 0;
320 /* always init to same as bg_blk_sz */
321 tc
->UD_bytes_immed_val
= scmd
->device
->sector_size
;
323 tc
->reserved_DC_0
= 0;
325 /* always init to 8 */
326 tc
->DIF_bytes_immed_val
= 8;
328 tc
->reserved_DC_1
= 0;
329 tc
->bgc_blk_sz
= scmd
->device
->sector_size
;
330 tc
->reserved_E0_0
= 0;
331 tc
->app_tag_gen_mask
= 0;
333 /** setup block guard control **/
336 /* DIF write insert */
337 tc
->bgctl_f
.op
= 0x2;
339 tc
->app_tag_verify_mask
= 0;
341 /* must init to 0 for hw */
342 tc
->blk_guard_err
= 0;
344 tc
->reserved_E8_0
= 0;
346 if ((type
& SCSI_PROT_DIF_TYPE1
) || (type
& SCSI_PROT_DIF_TYPE2
))
347 tc
->ref_tag_seed_gen
= scsi_get_lba(scmd
) & 0xffffffff;
348 else if (type
& SCSI_PROT_DIF_TYPE3
)
349 tc
->ref_tag_seed_gen
= 0;
352 static void scu_ssp_ireq_dif_strip(struct isci_request
*ireq
, u8 type
, u8 op
)
354 struct scu_task_context
*tc
= ireq
->tc
;
355 struct scsi_cmnd
*scmd
= ireq
->ttype_ptr
.io_task_ptr
->uldd_task
;
356 u8 blk_sz
= scu_bg_blk_size(scmd
->device
);
358 tc
->block_guard_enable
= 1;
362 tc
->blk_prot_func
= 0x1;
364 tc
->transfer_length_bytes
+= scu_dif_bytes(tc
->transfer_length_bytes
,
365 scmd
->device
->sector_size
);
367 /* always init to 0, used by hw */
368 tc
->interm_crc_val
= 0;
370 tc
->init_crc_seed
= 0;
371 tc
->app_tag_verify
= 0;
374 if ((type
& SCSI_PROT_DIF_TYPE1
) || (type
& SCSI_PROT_DIF_TYPE2
))
375 tc
->ref_tag_seed_verify
= scsi_get_lba(scmd
) & 0xffffffff;
376 else if (type
& SCSI_PROT_DIF_TYPE3
)
377 tc
->ref_tag_seed_verify
= 0;
379 /* always init to same as bg_blk_sz */
380 tc
->UD_bytes_immed_val
= scmd
->device
->sector_size
;
382 tc
->reserved_DC_0
= 0;
384 /* always init to 8 */
385 tc
->DIF_bytes_immed_val
= 8;
387 tc
->reserved_DC_1
= 0;
388 tc
->bgc_blk_sz
= scmd
->device
->sector_size
;
389 tc
->reserved_E0_0
= 0;
390 tc
->app_tag_gen_mask
= 0;
392 /** setup block guard control **/
396 tc
->bgctl_f
.crc_verify
= 1;
397 tc
->bgctl_f
.op
= 0x1;
398 if ((type
& SCSI_PROT_DIF_TYPE1
) || (type
& SCSI_PROT_DIF_TYPE2
)) {
399 tc
->bgctl_f
.ref_tag_chk
= 1;
400 tc
->bgctl_f
.app_f_detect
= 1;
401 } else if (type
& SCSI_PROT_DIF_TYPE3
)
402 tc
->bgctl_f
.app_ref_f_detect
= 1;
404 tc
->app_tag_verify_mask
= 0;
406 /* must init to 0 for hw */
407 tc
->blk_guard_err
= 0;
409 tc
->reserved_E8_0
= 0;
410 tc
->ref_tag_seed_gen
= 0;
414 * This method is will fill in the SCU Task Context for a SSP IO request.
418 static void scu_ssp_io_request_construct_task_context(struct isci_request
*ireq
,
419 enum dma_data_direction dir
,
422 struct scu_task_context
*task_context
= ireq
->tc
;
423 struct sas_task
*sas_task
= ireq
->ttype_ptr
.io_task_ptr
;
424 struct scsi_cmnd
*scmd
= sas_task
->uldd_task
;
425 u8 prot_type
= scsi_get_prot_type(scmd
);
426 u8 prot_op
= scsi_get_prot_op(scmd
);
428 scu_ssp_reqeust_construct_task_context(ireq
, task_context
);
430 task_context
->ssp_command_iu_length
=
431 sizeof(struct ssp_cmd_iu
) / sizeof(u32
);
432 task_context
->type
.ssp
.frame_type
= SSP_COMMAND
;
435 case DMA_FROM_DEVICE
:
438 task_context
->task_type
= SCU_TASK_TYPE_IOREAD
;
441 task_context
->task_type
= SCU_TASK_TYPE_IOWRITE
;
445 task_context
->transfer_length_bytes
= len
;
447 if (task_context
->transfer_length_bytes
> 0)
448 sci_request_build_sgl(ireq
);
450 if (prot_type
!= SCSI_PROT_DIF_TYPE0
) {
451 if (prot_op
== SCSI_PROT_READ_STRIP
)
452 scu_ssp_ireq_dif_strip(ireq
, prot_type
, prot_op
);
453 else if (prot_op
== SCSI_PROT_WRITE_INSERT
)
454 scu_ssp_ireq_dif_insert(ireq
, prot_type
, prot_op
);
459 * This method will fill in the SCU Task Context for a SSP Task request. The
460 * following important settings are utilized: -# priority ==
461 * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
462 * ahead of other task destined for the same Remote Node. -# task_type ==
463 * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
464 * (i.e. non-raw frame) is being utilized to perform task management. -#
465 * control_frame == 1. This ensures that the proper endianess is set so
466 * that the bytes are transmitted in the right order for a task frame.
467 * @sci_req: This parameter specifies the task request object being
471 static void scu_ssp_task_request_construct_task_context(struct isci_request
*ireq
)
473 struct scu_task_context
*task_context
= ireq
->tc
;
475 scu_ssp_reqeust_construct_task_context(ireq
, task_context
);
477 task_context
->control_frame
= 1;
478 task_context
->priority
= SCU_TASK_PRIORITY_HIGH
;
479 task_context
->task_type
= SCU_TASK_TYPE_RAW_FRAME
;
480 task_context
->transfer_length_bytes
= 0;
481 task_context
->type
.ssp
.frame_type
= SSP_TASK
;
482 task_context
->ssp_command_iu_length
=
483 sizeof(struct ssp_task_iu
) / sizeof(u32
);
487 * This method is will fill in the SCU Task Context for any type of SATA
488 * request. This is called from the various SATA constructors.
489 * @sci_req: The general IO request object which is to be used in
490 * constructing the SCU task context.
491 * @task_context: The buffer pointer for the SCU task context which is being
494 * The general io request construction is complete. The buffer assignment for
495 * the command buffer is complete. none Revisit task context construction to
496 * determine what is common for SSP/SMP/STP task context structures.
498 static void scu_sata_reqeust_construct_task_context(
499 struct isci_request
*ireq
,
500 struct scu_task_context
*task_context
)
503 struct isci_remote_device
*idev
;
504 struct isci_port
*iport
;
506 idev
= ireq
->target_device
;
507 iport
= idev
->owning_port
;
509 /* Fill in the TC with the its required data */
510 task_context
->abort
= 0;
511 task_context
->priority
= SCU_TASK_PRIORITY_NORMAL
;
512 task_context
->initiator_request
= 1;
513 task_context
->connection_rate
= idev
->connection_rate
;
514 task_context
->protocol_engine_index
= ISCI_PEG
;
515 task_context
->logical_port_index
= iport
->physical_port_index
;
516 task_context
->protocol_type
= SCU_TASK_CONTEXT_PROTOCOL_STP
;
517 task_context
->valid
= SCU_TASK_CONTEXT_VALID
;
518 task_context
->context_type
= SCU_TASK_CONTEXT_TYPE
;
520 task_context
->remote_node_index
= idev
->rnc
.remote_node_index
;
521 task_context
->command_code
= 0;
523 task_context
->link_layer_control
= 0;
524 task_context
->do_not_dma_ssp_good_response
= 1;
525 task_context
->strict_ordering
= 0;
526 task_context
->control_frame
= 0;
527 task_context
->timeout_enable
= 0;
528 task_context
->block_guard_enable
= 0;
530 task_context
->address_modifier
= 0;
531 task_context
->task_phase
= 0x01;
533 task_context
->ssp_command_iu_length
=
534 (sizeof(struct host_to_dev_fis
) - sizeof(u32
)) / sizeof(u32
);
536 /* Set the first word of the H2D REG FIS */
537 task_context
->type
.words
[0] = *(u32
*)&ireq
->stp
.cmd
;
539 ireq
->post_context
= (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
|
540 (ISCI_PEG
<< SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT
) |
541 (iport
->physical_port_index
<<
542 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT
) |
543 ISCI_TAG_TCI(ireq
->io_tag
));
545 * Copy the physical address for the command buffer to the SCU Task
546 * Context. We must offset the command buffer by 4 bytes because the
547 * first 4 bytes are transfered in the body of the TC.
549 dma_addr
= sci_io_request_get_dma_addr(ireq
,
550 ((char *) &ireq
->stp
.cmd
) +
553 task_context
->command_iu_upper
= upper_32_bits(dma_addr
);
554 task_context
->command_iu_lower
= lower_32_bits(dma_addr
);
556 /* SATA Requests do not have a response buffer */
557 task_context
->response_iu_upper
= 0;
558 task_context
->response_iu_lower
= 0;
561 static void scu_stp_raw_request_construct_task_context(struct isci_request
*ireq
)
563 struct scu_task_context
*task_context
= ireq
->tc
;
565 scu_sata_reqeust_construct_task_context(ireq
, task_context
);
567 task_context
->control_frame
= 0;
568 task_context
->priority
= SCU_TASK_PRIORITY_NORMAL
;
569 task_context
->task_type
= SCU_TASK_TYPE_SATA_RAW_FRAME
;
570 task_context
->type
.stp
.fis_type
= FIS_REGH2D
;
571 task_context
->transfer_length_bytes
= sizeof(struct host_to_dev_fis
) - sizeof(u32
);
574 static enum sci_status
sci_stp_pio_request_construct(struct isci_request
*ireq
,
577 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
579 scu_stp_raw_request_construct_task_context(ireq
);
582 stp_req
->sgl
.offset
= 0;
583 stp_req
->sgl
.set
= SCU_SGL_ELEMENT_PAIR_A
;
586 sci_request_build_sgl(ireq
);
587 stp_req
->sgl
.index
= 0;
589 /* The user does not want the data copied to the SGL buffer location */
590 stp_req
->sgl
.index
= -1;
598 * @sci_req: This parameter specifies the request to be constructed as an
600 * @optimized_task_type: This parameter specifies whether the request is to be
601 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
602 * value of 1 indicates NCQ.
604 * This method will perform request construction common to all types of STP
605 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
606 * returns an indication as to whether the construction was successful.
608 static void sci_stp_optimized_request_construct(struct isci_request
*ireq
,
609 u8 optimized_task_type
,
611 enum dma_data_direction dir
)
613 struct scu_task_context
*task_context
= ireq
->tc
;
615 /* Build the STP task context structure */
616 scu_sata_reqeust_construct_task_context(ireq
, task_context
);
618 /* Copy over the SGL elements */
619 sci_request_build_sgl(ireq
);
621 /* Copy over the number of bytes to be transfered */
622 task_context
->transfer_length_bytes
= len
;
624 if (dir
== DMA_TO_DEVICE
) {
626 * The difference between the DMA IN and DMA OUT request task type
627 * values are consistent with the difference between FPDMA READ
628 * and FPDMA WRITE values. Add the supplied task type parameter
629 * to this difference to set the task type properly for this
630 * DATA OUT (WRITE) case. */
631 task_context
->task_type
= optimized_task_type
+ (SCU_TASK_TYPE_DMA_OUT
632 - SCU_TASK_TYPE_DMA_IN
);
635 * For the DATA IN (READ) case, simply save the supplied
636 * optimized task type. */
637 task_context
->task_type
= optimized_task_type
;
641 static void sci_atapi_construct(struct isci_request
*ireq
)
643 struct host_to_dev_fis
*h2d_fis
= &ireq
->stp
.cmd
;
644 struct sas_task
*task
;
646 /* To simplify the implementation we take advantage of the
647 * silicon's partial acceleration of atapi protocol (dma data
648 * transfers), so we promote all commands to dma protocol. This
649 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
651 h2d_fis
->features
|= ATAPI_PKT_DMA
;
653 scu_stp_raw_request_construct_task_context(ireq
);
655 task
= isci_request_access_task(ireq
);
656 if (task
->data_dir
== DMA_NONE
)
657 task
->total_xfer_len
= 0;
659 /* clear the response so we can detect arrivial of an
660 * unsolicited h2d fis
662 ireq
->stp
.rsp
.fis_type
= 0;
665 static enum sci_status
666 sci_io_request_construct_sata(struct isci_request
*ireq
,
668 enum dma_data_direction dir
,
671 enum sci_status status
= SCI_SUCCESS
;
672 struct sas_task
*task
= isci_request_access_task(ireq
);
673 struct domain_device
*dev
= ireq
->target_device
->domain_dev
;
675 /* check for management protocols */
676 if (test_bit(IREQ_TMF
, &ireq
->flags
)) {
677 struct isci_tmf
*tmf
= isci_request_access_tmf(ireq
);
679 dev_err(&ireq
->owning_controller
->pdev
->dev
,
680 "%s: Request 0x%p received un-handled SAT "
681 "management protocol 0x%x.\n",
682 __func__
, ireq
, tmf
->tmf_code
);
687 if (!sas_protocol_ata(task
->task_proto
)) {
688 dev_err(&ireq
->owning_controller
->pdev
->dev
,
689 "%s: Non-ATA protocol in SATA path: 0x%x\n",
697 if (dev
->sata_dev
.command_set
== ATAPI_COMMAND_SET
&&
698 task
->ata_task
.fis
.command
== ATA_CMD_PACKET
) {
699 sci_atapi_construct(ireq
);
704 if (task
->data_dir
== DMA_NONE
) {
705 scu_stp_raw_request_construct_task_context(ireq
);
710 if (task
->ata_task
.use_ncq
) {
711 sci_stp_optimized_request_construct(ireq
,
712 SCU_TASK_TYPE_FPDMAQ_READ
,
718 if (task
->ata_task
.dma_xfer
) {
719 sci_stp_optimized_request_construct(ireq
,
720 SCU_TASK_TYPE_DMA_IN
,
724 return sci_stp_pio_request_construct(ireq
, copy
);
729 static enum sci_status
sci_io_request_construct_basic_ssp(struct isci_request
*ireq
)
731 struct sas_task
*task
= isci_request_access_task(ireq
);
733 ireq
->protocol
= SCIC_SSP_PROTOCOL
;
735 scu_ssp_io_request_construct_task_context(ireq
,
737 task
->total_xfer_len
);
739 sci_io_request_build_ssp_command_iu(ireq
);
741 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
746 enum sci_status
sci_task_request_construct_ssp(
747 struct isci_request
*ireq
)
749 /* Construct the SSP Task SCU Task Context */
750 scu_ssp_task_request_construct_task_context(ireq
);
752 /* Fill in the SSP Task IU */
753 sci_task_request_build_ssp_task_iu(ireq
);
755 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
760 static enum sci_status
sci_io_request_construct_basic_sata(struct isci_request
*ireq
)
762 enum sci_status status
;
764 struct sas_task
*task
= isci_request_access_task(ireq
);
766 ireq
->protocol
= SCIC_STP_PROTOCOL
;
768 copy
= (task
->data_dir
== DMA_NONE
) ? false : true;
770 status
= sci_io_request_construct_sata(ireq
,
771 task
->total_xfer_len
,
775 if (status
== SCI_SUCCESS
)
776 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
782 * sci_req_tx_bytes - bytes transferred when reply underruns request
783 * @ireq: request that was terminated early
785 #define SCU_TASK_CONTEXT_SRAM 0x200000
786 static u32
sci_req_tx_bytes(struct isci_request
*ireq
)
788 struct isci_host
*ihost
= ireq
->owning_controller
;
791 if (readl(&ihost
->smu_registers
->address_modifier
) == 0) {
792 void __iomem
*scu_reg_base
= ihost
->scu_registers
;
794 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
795 * BAR1 is the scu_registers
796 * 0x20002C = 0x200000 + 0x2c
797 * = start of task context SRAM + offset of (type.ssp.data_offset)
798 * TCi is the io_tag of struct sci_request
800 ret_val
= readl(scu_reg_base
+
801 (SCU_TASK_CONTEXT_SRAM
+ offsetof(struct scu_task_context
, type
.ssp
.data_offset
)) +
802 ((sizeof(struct scu_task_context
)) * ISCI_TAG_TCI(ireq
->io_tag
)));
808 enum sci_status
sci_request_start(struct isci_request
*ireq
)
810 enum sci_base_request_states state
;
811 struct scu_task_context
*tc
= ireq
->tc
;
812 struct isci_host
*ihost
= ireq
->owning_controller
;
814 state
= ireq
->sm
.current_state_id
;
815 if (state
!= SCI_REQ_CONSTRUCTED
) {
816 dev_warn(&ihost
->pdev
->dev
,
817 "%s: SCIC IO Request requested to start while in wrong "
818 "state %d\n", __func__
, state
);
819 return SCI_FAILURE_INVALID_STATE
;
822 tc
->task_index
= ISCI_TAG_TCI(ireq
->io_tag
);
824 switch (tc
->protocol_type
) {
825 case SCU_TASK_CONTEXT_PROTOCOL_SMP
:
826 case SCU_TASK_CONTEXT_PROTOCOL_SSP
:
828 tc
->type
.ssp
.tag
= ireq
->io_tag
;
829 tc
->type
.ssp
.target_port_transfer_tag
= 0xFFFF;
832 case SCU_TASK_CONTEXT_PROTOCOL_STP
:
834 * tc->type.stp.ncq_tag = ireq->ncq_tag;
838 case SCU_TASK_CONTEXT_PROTOCOL_NONE
:
839 /* / @todo When do we set no protocol type? */
843 /* This should never happen since we build the IO
848 /* Add to the post_context the io tag value */
849 ireq
->post_context
|= ISCI_TAG_TCI(ireq
->io_tag
);
851 /* Everything is good go ahead and change state */
852 sci_change_state(&ireq
->sm
, SCI_REQ_STARTED
);
858 sci_io_request_terminate(struct isci_request
*ireq
)
860 enum sci_base_request_states state
;
862 state
= ireq
->sm
.current_state_id
;
865 case SCI_REQ_CONSTRUCTED
:
866 ireq
->scu_status
= SCU_TASK_DONE_TASK_ABORT
;
867 ireq
->sci_status
= SCI_FAILURE_IO_TERMINATED
;
868 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
870 case SCI_REQ_STARTED
:
871 case SCI_REQ_TASK_WAIT_TC_COMP
:
872 case SCI_REQ_SMP_WAIT_RESP
:
873 case SCI_REQ_SMP_WAIT_TC_COMP
:
874 case SCI_REQ_STP_UDMA_WAIT_TC_COMP
:
875 case SCI_REQ_STP_UDMA_WAIT_D2H
:
876 case SCI_REQ_STP_NON_DATA_WAIT_H2D
:
877 case SCI_REQ_STP_NON_DATA_WAIT_D2H
:
878 case SCI_REQ_STP_PIO_WAIT_H2D
:
879 case SCI_REQ_STP_PIO_WAIT_FRAME
:
880 case SCI_REQ_STP_PIO_DATA_IN
:
881 case SCI_REQ_STP_PIO_DATA_OUT
:
882 case SCI_REQ_ATAPI_WAIT_H2D
:
883 case SCI_REQ_ATAPI_WAIT_PIO_SETUP
:
884 case SCI_REQ_ATAPI_WAIT_D2H
:
885 case SCI_REQ_ATAPI_WAIT_TC_COMP
:
886 sci_change_state(&ireq
->sm
, SCI_REQ_ABORTING
);
888 case SCI_REQ_TASK_WAIT_TC_RESP
:
889 /* The task frame was already confirmed to have been
890 * sent by the SCU HW. Since the state machine is
891 * now only waiting for the task response itself,
892 * abort the request and complete it immediately
893 * and don't wait for the task response.
895 sci_change_state(&ireq
->sm
, SCI_REQ_ABORTING
);
896 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
898 case SCI_REQ_ABORTING
:
899 /* If a request has a termination requested twice, return
900 * a failure indication, since HW confirmation of the first
901 * abort is still outstanding.
903 case SCI_REQ_COMPLETED
:
905 dev_warn(&ireq
->owning_controller
->pdev
->dev
,
906 "%s: SCIC IO Request requested to abort while in wrong "
909 ireq
->sm
.current_state_id
);
913 return SCI_FAILURE_INVALID_STATE
;
916 enum sci_status
sci_request_complete(struct isci_request
*ireq
)
918 enum sci_base_request_states state
;
919 struct isci_host
*ihost
= ireq
->owning_controller
;
921 state
= ireq
->sm
.current_state_id
;
922 if (WARN_ONCE(state
!= SCI_REQ_COMPLETED
,
923 "isci: request completion from wrong state (%s)\n",
924 req_state_name(state
)))
925 return SCI_FAILURE_INVALID_STATE
;
927 if (ireq
->saved_rx_frame_index
!= SCU_INVALID_FRAME_INDEX
)
928 sci_controller_release_frame(ihost
,
929 ireq
->saved_rx_frame_index
);
931 /* XXX can we just stop the machine and remove the 'final' state? */
932 sci_change_state(&ireq
->sm
, SCI_REQ_FINAL
);
936 enum sci_status
sci_io_request_event_handler(struct isci_request
*ireq
,
939 enum sci_base_request_states state
;
940 struct isci_host
*ihost
= ireq
->owning_controller
;
942 state
= ireq
->sm
.current_state_id
;
944 if (state
!= SCI_REQ_STP_PIO_DATA_IN
) {
945 dev_warn(&ihost
->pdev
->dev
, "%s: (%x) in wrong state %s\n",
946 __func__
, event_code
, req_state_name(state
));
948 return SCI_FAILURE_INVALID_STATE
;
951 switch (scu_get_event_specifier(event_code
)) {
952 case SCU_TASK_DONE_CRC_ERR
<< SCU_EVENT_SPECIFIC_CODE_SHIFT
:
953 /* We are waiting for data and the SCU has R_ERR the data frame.
954 * Go back to waiting for the D2H Register FIS
956 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
959 dev_err(&ihost
->pdev
->dev
,
960 "%s: pio request unexpected event %#x\n",
961 __func__
, event_code
);
963 /* TODO Should we fail the PIO request when we get an
971 * This function copies response data for requests returning response data
972 * instead of sense data.
973 * @sci_req: This parameter specifies the request object for which to copy
976 static void sci_io_request_copy_response(struct isci_request
*ireq
)
980 struct ssp_response_iu
*ssp_response
;
981 struct isci_tmf
*isci_tmf
= isci_request_access_tmf(ireq
);
983 ssp_response
= &ireq
->ssp
.rsp
;
985 resp_buf
= &isci_tmf
->resp
.resp_iu
;
988 SSP_RESP_IU_MAX_SIZE
,
989 be32_to_cpu(ssp_response
->response_data_len
));
991 memcpy(resp_buf
, ssp_response
->resp_data
, len
);
994 static enum sci_status
995 request_started_state_tc_event(struct isci_request
*ireq
,
998 struct ssp_response_iu
*resp_iu
;
1001 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
1002 * to determine SDMA status
1004 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1005 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1006 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1007 ireq
->sci_status
= SCI_SUCCESS
;
1009 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP
): {
1010 /* There are times when the SCU hardware will return an early
1011 * response because the io request specified more data than is
1012 * returned by the target device (mode pages, inquiry data,
1013 * etc.). We must check the response stats to see if this is
1014 * truly a failed request or a good request that just got
1017 struct ssp_response_iu
*resp
= &ireq
->ssp
.rsp
;
1018 ssize_t word_cnt
= SSP_RESP_IU_MAX_SIZE
/ sizeof(u32
);
1020 sci_swab32_cpy(&ireq
->ssp
.rsp
,
1024 if (resp
->status
== 0) {
1025 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1026 ireq
->sci_status
= SCI_SUCCESS_IO_DONE_EARLY
;
1028 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1029 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1033 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE
): {
1034 ssize_t word_cnt
= SSP_RESP_IU_MAX_SIZE
/ sizeof(u32
);
1036 sci_swab32_cpy(&ireq
->ssp
.rsp
,
1040 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1041 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1045 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR
):
1046 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1047 * guaranteed to be received before this completion status is
1050 resp_iu
= &ireq
->ssp
.rsp
;
1051 datapres
= resp_iu
->datapres
;
1053 if (datapres
== 1 || datapres
== 2) {
1054 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1055 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1057 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1058 ireq
->sci_status
= SCI_SUCCESS
;
1061 /* only stp device gets suspended. */
1062 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO
):
1063 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR
):
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR
):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR
):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR
):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN
):
1068 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR
):
1069 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP
):
1070 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS
):
1071 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR
):
1072 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR
):
1073 if (ireq
->protocol
== SCIC_STP_PROTOCOL
) {
1074 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
1075 SCU_COMPLETION_TL_STATUS_SHIFT
;
1076 ireq
->sci_status
= SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
;
1078 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
1079 SCU_COMPLETION_TL_STATUS_SHIFT
;
1080 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1084 /* both stp/ssp device gets suspended */
1085 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR
):
1086 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION
):
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1
):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2
):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3
):
1090 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION
):
1091 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION
):
1092 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY
):
1093 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED
):
1094 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED
):
1095 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
1096 SCU_COMPLETION_TL_STATUS_SHIFT
;
1097 ireq
->sci_status
= SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
;
1100 /* neither ssp nor stp gets suspended. */
1101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR
):
1102 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR
):
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR
):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR
):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR
):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA
):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR
):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR
):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR
):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR
):
1111 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA
):
1112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL
):
1113 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV
):
1114 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV
):
1115 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND
):
1117 ireq
->scu_status
= SCU_GET_COMPLETION_TL_STATUS(completion_code
) >>
1118 SCU_COMPLETION_TL_STATUS_SHIFT
;
1119 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1124 * TODO: This is probably wrong for ACK/NAK timeout conditions
1127 /* In all cases we will treat this as the completion of the IO req. */
1128 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1132 static enum sci_status
1133 request_aborting_state_tc_event(struct isci_request
*ireq
,
1134 u32 completion_code
)
1136 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1137 case (SCU_TASK_DONE_GOOD
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
1138 case (SCU_TASK_DONE_TASK_ABORT
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
1139 ireq
->scu_status
= SCU_TASK_DONE_TASK_ABORT
;
1140 ireq
->sci_status
= SCI_FAILURE_IO_TERMINATED
;
1141 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1145 /* Unless we get some strange error wait for the task abort to complete
1146 * TODO: Should there be a state change for this completion?
1154 static enum sci_status
ssp_task_request_await_tc_event(struct isci_request
*ireq
,
1155 u32 completion_code
)
1157 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1158 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1159 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1160 ireq
->sci_status
= SCI_SUCCESS
;
1161 sci_change_state(&ireq
->sm
, SCI_REQ_TASK_WAIT_TC_RESP
);
1163 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO
):
1164 /* Currently, the decision is to simply allow the task request
1165 * to timeout if the task IU wasn't received successfully.
1166 * There is a potential for receiving multiple task responses if
1167 * we decide to send the task IU again.
1169 dev_warn(&ireq
->owning_controller
->pdev
->dev
,
1170 "%s: TaskRequest:0x%p CompletionCode:%x - "
1171 "ACK/NAK timeout\n", __func__
, ireq
,
1174 sci_change_state(&ireq
->sm
, SCI_REQ_TASK_WAIT_TC_RESP
);
1178 * All other completion status cause the IO to be complete.
1179 * If a NAK was received, then it is up to the user to retry
1182 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1183 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1184 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1191 static enum sci_status
1192 smp_request_await_response_tc_event(struct isci_request
*ireq
,
1193 u32 completion_code
)
1195 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1196 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1197 /* In the AWAIT RESPONSE state, any TC completion is
1198 * unexpected. but if the TC has success status, we
1199 * complete the IO anyway.
1201 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1202 ireq
->sci_status
= SCI_SUCCESS
;
1203 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1205 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR
):
1206 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR
):
1207 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR
):
1208 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR
):
1209 /* These status has been seen in a specific LSI
1210 * expander, which sometimes is not able to send smp
1211 * response within 2 ms. This causes our hardware break
1212 * the connection and set TC completion with one of
1213 * these SMP_XXX_XX_ERR status. For these type of error,
1214 * we ask ihost user to retry the request.
1216 ireq
->scu_status
= SCU_TASK_DONE_SMP_RESP_TO_ERR
;
1217 ireq
->sci_status
= SCI_FAILURE_RETRY_REQUIRED
;
1218 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1221 /* All other completion status cause the IO to be complete. If a NAK
1222 * was received, then it is up to the user to retry the request
1224 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1225 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1226 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1233 static enum sci_status
1234 smp_request_await_tc_event(struct isci_request
*ireq
,
1235 u32 completion_code
)
1237 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1238 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1239 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1240 ireq
->sci_status
= SCI_SUCCESS
;
1241 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1244 /* All other completion status cause the IO to be
1245 * complete. If a NAK was received, then it is up to
1246 * the user to retry the request.
1248 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1249 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1250 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1257 static struct scu_sgl_element
*pio_sgl_next(struct isci_stp_request
*stp_req
)
1259 struct scu_sgl_element
*sgl
;
1260 struct scu_sgl_element_pair
*sgl_pair
;
1261 struct isci_request
*ireq
= to_ireq(stp_req
);
1262 struct isci_stp_pio_sgl
*pio_sgl
= &stp_req
->sgl
;
1264 sgl_pair
= to_sgl_element_pair(ireq
, pio_sgl
->index
);
1267 else if (pio_sgl
->set
== SCU_SGL_ELEMENT_PAIR_A
) {
1268 if (sgl_pair
->B
.address_lower
== 0 &&
1269 sgl_pair
->B
.address_upper
== 0) {
1272 pio_sgl
->set
= SCU_SGL_ELEMENT_PAIR_B
;
1276 if (sgl_pair
->next_pair_lower
== 0 &&
1277 sgl_pair
->next_pair_upper
== 0) {
1281 pio_sgl
->set
= SCU_SGL_ELEMENT_PAIR_A
;
1282 sgl_pair
= to_sgl_element_pair(ireq
, pio_sgl
->index
);
1290 static enum sci_status
1291 stp_request_non_data_await_h2d_tc_event(struct isci_request
*ireq
,
1292 u32 completion_code
)
1294 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1295 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1296 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1297 ireq
->sci_status
= SCI_SUCCESS
;
1298 sci_change_state(&ireq
->sm
, SCI_REQ_STP_NON_DATA_WAIT_D2H
);
1302 /* All other completion status cause the IO to be
1303 * complete. If a NAK was received, then it is up to
1304 * the user to retry the request.
1306 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1307 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1308 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1315 #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1317 /* transmit DATA_FIS from (current sgl + offset) for input
1318 * parameter length. current sgl and offset is alreay stored in the IO request
1320 static enum sci_status
sci_stp_request_pio_data_out_trasmit_data_frame(
1321 struct isci_request
*ireq
,
1324 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1325 struct scu_task_context
*task_context
= ireq
->tc
;
1326 struct scu_sgl_element_pair
*sgl_pair
;
1327 struct scu_sgl_element
*current_sgl
;
1329 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1330 * for the data from current_sgl+offset for the input length
1332 sgl_pair
= to_sgl_element_pair(ireq
, stp_req
->sgl
.index
);
1333 if (stp_req
->sgl
.set
== SCU_SGL_ELEMENT_PAIR_A
)
1334 current_sgl
= &sgl_pair
->A
;
1336 current_sgl
= &sgl_pair
->B
;
1339 task_context
->command_iu_upper
= current_sgl
->address_upper
;
1340 task_context
->command_iu_lower
= current_sgl
->address_lower
;
1341 task_context
->transfer_length_bytes
= length
;
1342 task_context
->type
.stp
.fis_type
= FIS_DATA
;
1344 /* send the new TC out. */
1345 return sci_controller_continue_io(ireq
);
1348 static enum sci_status
sci_stp_request_pio_data_out_transmit_data(struct isci_request
*ireq
)
1350 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1351 struct scu_sgl_element_pair
*sgl_pair
;
1352 enum sci_status status
= SCI_SUCCESS
;
1353 struct scu_sgl_element
*sgl
;
1357 offset
= stp_req
->sgl
.offset
;
1358 sgl_pair
= to_sgl_element_pair(ireq
, stp_req
->sgl
.index
);
1359 if (WARN_ONCE(!sgl_pair
, "%s: null sgl element", __func__
))
1362 if (stp_req
->sgl
.set
== SCU_SGL_ELEMENT_PAIR_A
) {
1364 len
= sgl_pair
->A
.length
- offset
;
1367 len
= sgl_pair
->B
.length
- offset
;
1370 if (stp_req
->pio_len
== 0)
1373 if (stp_req
->pio_len
>= len
) {
1374 status
= sci_stp_request_pio_data_out_trasmit_data_frame(ireq
, len
);
1375 if (status
!= SCI_SUCCESS
)
1377 stp_req
->pio_len
-= len
;
1379 /* update the current sgl, offset and save for future */
1380 sgl
= pio_sgl_next(stp_req
);
1382 } else if (stp_req
->pio_len
< len
) {
1383 sci_stp_request_pio_data_out_trasmit_data_frame(ireq
, stp_req
->pio_len
);
1385 /* Sgl offset will be adjusted and saved for future */
1386 offset
+= stp_req
->pio_len
;
1387 sgl
->address_lower
+= stp_req
->pio_len
;
1388 stp_req
->pio_len
= 0;
1391 stp_req
->sgl
.offset
= offset
;
1398 * @stp_request: The request that is used for the SGL processing.
1399 * @data_buffer: The buffer of data to be copied.
1400 * @length: The length of the data transfer.
1402 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1403 * specified data region. enum sci_status
1405 static enum sci_status
1406 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request
*stp_req
,
1407 u8
*data_buf
, u32 len
)
1409 struct isci_request
*ireq
;
1412 struct sas_task
*task
;
1413 struct scatterlist
*sg
;
1415 int total_len
= len
;
1417 ireq
= to_ireq(stp_req
);
1418 task
= isci_request_access_task(ireq
);
1419 src_addr
= data_buf
;
1421 if (task
->num_scatter
> 0) {
1424 while (total_len
> 0) {
1425 struct page
*page
= sg_page(sg
);
1427 copy_len
= min_t(int, total_len
, sg_dma_len(sg
));
1428 kaddr
= kmap_atomic(page
);
1429 memcpy(kaddr
+ sg
->offset
, src_addr
, copy_len
);
1430 kunmap_atomic(kaddr
);
1431 total_len
-= copy_len
;
1432 src_addr
+= copy_len
;
1436 BUG_ON(task
->total_xfer_len
< total_len
);
1437 memcpy(task
->scatter
, src_addr
, total_len
);
1445 * @sci_req: The PIO DATA IN request that is to receive the data.
1446 * @data_buffer: The buffer to copy from.
1448 * Copy the data buffer to the io request data region. enum sci_status
1450 static enum sci_status
sci_stp_request_pio_data_in_copy_data(
1451 struct isci_stp_request
*stp_req
,
1454 enum sci_status status
;
1457 * If there is less than 1K remaining in the transfer request
1458 * copy just the data for the transfer */
1459 if (stp_req
->pio_len
< SCU_MAX_FRAME_BUFFER_SIZE
) {
1460 status
= sci_stp_request_pio_data_in_copy_data_buffer(
1461 stp_req
, data_buffer
, stp_req
->pio_len
);
1463 if (status
== SCI_SUCCESS
)
1464 stp_req
->pio_len
= 0;
1466 /* We are transfering the whole frame so copy */
1467 status
= sci_stp_request_pio_data_in_copy_data_buffer(
1468 stp_req
, data_buffer
, SCU_MAX_FRAME_BUFFER_SIZE
);
1470 if (status
== SCI_SUCCESS
)
1471 stp_req
->pio_len
-= SCU_MAX_FRAME_BUFFER_SIZE
;
1477 static enum sci_status
1478 stp_request_pio_await_h2d_completion_tc_event(struct isci_request
*ireq
,
1479 u32 completion_code
)
1481 enum sci_status status
= SCI_SUCCESS
;
1483 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1484 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1485 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1486 ireq
->sci_status
= SCI_SUCCESS
;
1487 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1491 /* All other completion status cause the IO to be
1492 * complete. If a NAK was received, then it is up to
1493 * the user to retry the request.
1495 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1496 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1497 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1504 static enum sci_status
1505 pio_data_out_tx_done_tc_event(struct isci_request
*ireq
,
1506 u32 completion_code
)
1508 enum sci_status status
= SCI_SUCCESS
;
1509 bool all_frames_transferred
= false;
1510 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1512 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
1513 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
1515 if (stp_req
->pio_len
!= 0) {
1516 status
= sci_stp_request_pio_data_out_transmit_data(ireq
);
1517 if (status
== SCI_SUCCESS
) {
1518 if (stp_req
->pio_len
== 0)
1519 all_frames_transferred
= true;
1521 } else if (stp_req
->pio_len
== 0) {
1523 * this will happen if the all data is written at the
1524 * first time after the pio setup fis is received
1526 all_frames_transferred
= true;
1529 /* all data transferred. */
1530 if (all_frames_transferred
) {
1532 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1533 * and wait for PIO_SETUP fis / or D2H REg fis. */
1534 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1540 * All other completion status cause the IO to be complete.
1541 * If a NAK was received, then it is up to the user to retry
1544 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
1545 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1546 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1553 static enum sci_status
sci_stp_request_udma_general_frame_handler(struct isci_request
*ireq
,
1556 struct isci_host
*ihost
= ireq
->owning_controller
;
1557 struct dev_to_host_fis
*frame_header
;
1558 enum sci_status status
;
1561 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1563 (void **)&frame_header
);
1565 if ((status
== SCI_SUCCESS
) &&
1566 (frame_header
->fis_type
== FIS_REGD2H
)) {
1567 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1569 (void **)&frame_buffer
);
1571 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1576 sci_controller_release_frame(ihost
, frame_index
);
1581 static enum sci_status
process_unsolicited_fis(struct isci_request
*ireq
,
1584 struct isci_host
*ihost
= ireq
->owning_controller
;
1585 enum sci_status status
;
1586 struct dev_to_host_fis
*frame_header
;
1589 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1591 (void **)&frame_header
);
1593 if (status
!= SCI_SUCCESS
)
1596 if (frame_header
->fis_type
!= FIS_REGD2H
) {
1597 dev_err(&ireq
->isci_host
->pdev
->dev
,
1598 "%s ERROR: invalid fis type 0x%X\n",
1599 __func__
, frame_header
->fis_type
);
1603 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1605 (void **)&frame_buffer
);
1607 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1608 (u32
*)frame_header
,
1611 /* Frame has been decoded return it to the controller */
1612 sci_controller_release_frame(ihost
, frame_index
);
1617 static enum sci_status
atapi_d2h_reg_frame_handler(struct isci_request
*ireq
,
1620 struct sas_task
*task
= isci_request_access_task(ireq
);
1621 enum sci_status status
;
1623 status
= process_unsolicited_fis(ireq
, frame_index
);
1625 if (status
== SCI_SUCCESS
) {
1626 if (ireq
->stp
.rsp
.status
& ATA_ERR
)
1627 status
= SCI_IO_FAILURE_RESPONSE_VALID
;
1629 status
= SCI_IO_FAILURE_RESPONSE_VALID
;
1632 if (status
!= SCI_SUCCESS
) {
1633 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1634 ireq
->sci_status
= status
;
1636 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1637 ireq
->sci_status
= SCI_SUCCESS
;
1640 /* the d2h ufi is the end of non-data commands */
1641 if (task
->data_dir
== DMA_NONE
)
1642 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1647 static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request
*ireq
)
1649 struct ata_device
*dev
= sas_to_ata_dev(ireq
->target_device
->domain_dev
);
1650 void *atapi_cdb
= ireq
->ttype_ptr
.io_task_ptr
->ata_task
.atapi_packet
;
1651 struct scu_task_context
*task_context
= ireq
->tc
;
1653 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1654 * type. The TC for previous Packet fis was already there, we only need to
1655 * change the H2D fis content.
1657 memset(&ireq
->stp
.cmd
, 0, sizeof(struct host_to_dev_fis
));
1658 memcpy(((u8
*)&ireq
->stp
.cmd
+ sizeof(u32
)), atapi_cdb
, ATAPI_CDB_LEN
);
1659 memset(&(task_context
->type
.stp
), 0, sizeof(struct stp_task_context
));
1660 task_context
->type
.stp
.fis_type
= FIS_DATA
;
1661 task_context
->transfer_length_bytes
= dev
->cdb_len
;
1664 static void scu_atapi_construct_task_context(struct isci_request
*ireq
)
1666 struct ata_device
*dev
= sas_to_ata_dev(ireq
->target_device
->domain_dev
);
1667 struct sas_task
*task
= isci_request_access_task(ireq
);
1668 struct scu_task_context
*task_context
= ireq
->tc
;
1669 int cdb_len
= dev
->cdb_len
;
1671 /* reference: SSTL 1.13.4.2
1672 * task_type, sata_direction
1674 if (task
->data_dir
== DMA_TO_DEVICE
) {
1675 task_context
->task_type
= SCU_TASK_TYPE_PACKET_DMA_OUT
;
1676 task_context
->sata_direction
= 0;
1678 /* todo: for NO_DATA command, we need to send out raw frame. */
1679 task_context
->task_type
= SCU_TASK_TYPE_PACKET_DMA_IN
;
1680 task_context
->sata_direction
= 1;
1683 memset(&task_context
->type
.stp
, 0, sizeof(task_context
->type
.stp
));
1684 task_context
->type
.stp
.fis_type
= FIS_DATA
;
1686 memset(&ireq
->stp
.cmd
, 0, sizeof(ireq
->stp
.cmd
));
1687 memcpy(&ireq
->stp
.cmd
.lbal
, task
->ata_task
.atapi_packet
, cdb_len
);
1688 task_context
->ssp_command_iu_length
= cdb_len
/ sizeof(u32
);
1690 /* task phase is set to TX_CMD */
1691 task_context
->task_phase
= 0x1;
1694 task_context
->stp_retry_count
= 0;
1696 /* data transfer size. */
1697 task_context
->transfer_length_bytes
= task
->total_xfer_len
;
1700 sci_request_build_sgl(ireq
);
1704 sci_io_request_frame_handler(struct isci_request
*ireq
,
1707 struct isci_host
*ihost
= ireq
->owning_controller
;
1708 struct isci_stp_request
*stp_req
= &ireq
->stp
.req
;
1709 enum sci_base_request_states state
;
1710 enum sci_status status
;
1713 state
= ireq
->sm
.current_state_id
;
1715 case SCI_REQ_STARTED
: {
1716 struct ssp_frame_hdr ssp_hdr
;
1719 sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1723 word_cnt
= sizeof(struct ssp_frame_hdr
) / sizeof(u32
);
1724 sci_swab32_cpy(&ssp_hdr
, frame_header
, word_cnt
);
1726 if (ssp_hdr
.frame_type
== SSP_RESPONSE
) {
1727 struct ssp_response_iu
*resp_iu
;
1728 ssize_t word_cnt
= SSP_RESP_IU_MAX_SIZE
/ sizeof(u32
);
1730 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1734 sci_swab32_cpy(&ireq
->ssp
.rsp
, resp_iu
, word_cnt
);
1736 resp_iu
= &ireq
->ssp
.rsp
;
1738 if (resp_iu
->datapres
== 0x01 ||
1739 resp_iu
->datapres
== 0x02) {
1740 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1741 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1743 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1744 ireq
->sci_status
= SCI_SUCCESS
;
1747 /* not a response frame, why did it get forwarded? */
1748 dev_err(&ihost
->pdev
->dev
,
1749 "%s: SCIC IO Request 0x%p received unexpected "
1750 "frame %d type 0x%02x\n", __func__
, ireq
,
1751 frame_index
, ssp_hdr
.frame_type
);
1755 * In any case we are done with this frame buffer return it to
1758 sci_controller_release_frame(ihost
, frame_index
);
1763 case SCI_REQ_TASK_WAIT_TC_RESP
:
1764 sci_io_request_copy_response(ireq
);
1765 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1766 sci_controller_release_frame(ihost
, frame_index
);
1769 case SCI_REQ_SMP_WAIT_RESP
: {
1770 struct sas_task
*task
= isci_request_access_task(ireq
);
1771 struct scatterlist
*sg
= &task
->smp_task
.smp_resp
;
1772 void *frame_header
, *kaddr
;
1775 sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1778 kaddr
= kmap_atomic(sg_page(sg
));
1779 rsp
= kaddr
+ sg
->offset
;
1780 sci_swab32_cpy(rsp
, frame_header
, 1);
1782 if (rsp
[0] == SMP_RESPONSE
) {
1785 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1789 word_cnt
= (sg
->length
/4)-1;
1791 word_cnt
= min_t(unsigned int, word_cnt
,
1792 SCU_UNSOLICITED_FRAME_BUFFER_SIZE
/4);
1793 sci_swab32_cpy(rsp
+ 4, smp_resp
, word_cnt
);
1795 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
1796 ireq
->sci_status
= SCI_SUCCESS
;
1797 sci_change_state(&ireq
->sm
, SCI_REQ_SMP_WAIT_TC_COMP
);
1800 * This was not a response frame why did it get
1803 dev_err(&ihost
->pdev
->dev
,
1804 "%s: SCIC SMP Request 0x%p received unexpected "
1805 "frame %d type 0x%02x\n",
1811 ireq
->scu_status
= SCU_TASK_DONE_SMP_FRM_TYPE_ERR
;
1812 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
1813 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1815 kunmap_atomic(kaddr
);
1817 sci_controller_release_frame(ihost
, frame_index
);
1822 case SCI_REQ_STP_UDMA_WAIT_TC_COMP
:
1823 return sci_stp_request_udma_general_frame_handler(ireq
,
1826 case SCI_REQ_STP_UDMA_WAIT_D2H
:
1827 /* Use the general frame handler to copy the resposne data */
1828 status
= sci_stp_request_udma_general_frame_handler(ireq
, frame_index
);
1830 if (status
!= SCI_SUCCESS
)
1833 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1834 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1835 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1838 case SCI_REQ_STP_NON_DATA_WAIT_D2H
: {
1839 struct dev_to_host_fis
*frame_header
;
1842 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1844 (void **)&frame_header
);
1846 if (status
!= SCI_SUCCESS
) {
1847 dev_err(&ihost
->pdev
->dev
,
1848 "%s: SCIC IO Request 0x%p could not get frame "
1849 "header for frame index %d, status %x\n",
1858 switch (frame_header
->fis_type
) {
1860 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1862 (void **)&frame_buffer
);
1864 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1868 /* The command has completed with error */
1869 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1870 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1874 dev_warn(&ihost
->pdev
->dev
,
1875 "%s: IO Request:0x%p Frame Id:%d protocol "
1876 "violation occurred\n", __func__
, stp_req
,
1879 ireq
->scu_status
= SCU_TASK_DONE_UNEXP_FIS
;
1880 ireq
->sci_status
= SCI_FAILURE_PROTOCOL_VIOLATION
;
1884 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1886 /* Frame has been decoded return it to the controller */
1887 sci_controller_release_frame(ihost
, frame_index
);
1892 case SCI_REQ_STP_PIO_WAIT_FRAME
: {
1893 struct sas_task
*task
= isci_request_access_task(ireq
);
1894 struct dev_to_host_fis
*frame_header
;
1897 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1899 (void **)&frame_header
);
1901 if (status
!= SCI_SUCCESS
) {
1902 dev_err(&ihost
->pdev
->dev
,
1903 "%s: SCIC IO Request 0x%p could not get frame "
1904 "header for frame index %d, status %x\n",
1905 __func__
, stp_req
, frame_index
, status
);
1909 switch (frame_header
->fis_type
) {
1911 /* Get from the frame buffer the PIO Setup Data */
1912 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1914 (void **)&frame_buffer
);
1916 /* Get the data from the PIO Setup The SCU Hardware
1917 * returns first word in the frame_header and the rest
1918 * of the data is in the frame buffer so we need to
1922 /* transfer_count: first 16bits in the 4th dword */
1923 stp_req
->pio_len
= frame_buffer
[3] & 0xffff;
1925 /* status: 4th byte in the 3rd dword */
1926 stp_req
->status
= (frame_buffer
[2] >> 24) & 0xff;
1928 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1932 ireq
->stp
.rsp
.status
= stp_req
->status
;
1934 /* The next state is dependent on whether the
1935 * request was PIO Data-in or Data out
1937 if (task
->data_dir
== DMA_FROM_DEVICE
) {
1938 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_DATA_IN
);
1939 } else if (task
->data_dir
== DMA_TO_DEVICE
) {
1941 status
= sci_stp_request_pio_data_out_transmit_data(ireq
);
1942 if (status
!= SCI_SUCCESS
)
1944 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_DATA_OUT
);
1948 case FIS_SETDEVBITS
:
1949 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
1953 if (frame_header
->status
& ATA_BUSY
) {
1955 * Now why is the drive sending a D2H Register
1956 * FIS when it is still busy? Do nothing since
1957 * we are still in the right state.
1959 dev_dbg(&ihost
->pdev
->dev
,
1960 "%s: SCIC PIO Request 0x%p received "
1961 "D2H Register FIS with BSY status "
1965 frame_header
->status
);
1969 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
1971 (void **)&frame_buffer
);
1973 sci_controller_copy_sata_response(&ireq
->stp
.rsp
,
1977 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
1978 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
1979 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
1983 /* FIXME: what do we do here? */
1987 /* Frame is decoded return it to the controller */
1988 sci_controller_release_frame(ihost
, frame_index
);
1993 case SCI_REQ_STP_PIO_DATA_IN
: {
1994 struct dev_to_host_fis
*frame_header
;
1995 struct sata_fis_data
*frame_buffer
;
1997 status
= sci_unsolicited_frame_control_get_header(&ihost
->uf_control
,
1999 (void **)&frame_header
);
2001 if (status
!= SCI_SUCCESS
) {
2002 dev_err(&ihost
->pdev
->dev
,
2003 "%s: SCIC IO Request 0x%p could not get frame "
2004 "header for frame index %d, status %x\n",
2012 if (frame_header
->fis_type
!= FIS_DATA
) {
2013 dev_err(&ihost
->pdev
->dev
,
2014 "%s: SCIC PIO Request 0x%p received frame %d "
2015 "with fis type 0x%02x when expecting a data "
2020 frame_header
->fis_type
);
2022 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2023 ireq
->sci_status
= SCI_FAILURE_IO_REQUIRES_SCSI_ABORT
;
2024 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2026 /* Frame is decoded return it to the controller */
2027 sci_controller_release_frame(ihost
, frame_index
);
2031 if (stp_req
->sgl
.index
< 0) {
2032 ireq
->saved_rx_frame_index
= frame_index
;
2033 stp_req
->pio_len
= 0;
2035 sci_unsolicited_frame_control_get_buffer(&ihost
->uf_control
,
2037 (void **)&frame_buffer
);
2039 status
= sci_stp_request_pio_data_in_copy_data(stp_req
,
2040 (u8
*)frame_buffer
);
2042 /* Frame is decoded return it to the controller */
2043 sci_controller_release_frame(ihost
, frame_index
);
2046 /* Check for the end of the transfer, are there more
2047 * bytes remaining for this data transfer
2049 if (status
!= SCI_SUCCESS
|| stp_req
->pio_len
!= 0)
2052 if ((stp_req
->status
& ATA_BUSY
) == 0) {
2053 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
2054 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
2055 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2057 sci_change_state(&ireq
->sm
, SCI_REQ_STP_PIO_WAIT_FRAME
);
2062 case SCI_REQ_ATAPI_WAIT_PIO_SETUP
: {
2063 struct sas_task
*task
= isci_request_access_task(ireq
);
2065 sci_controller_release_frame(ihost
, frame_index
);
2066 ireq
->target_device
->working_request
= ireq
;
2067 if (task
->data_dir
== DMA_NONE
) {
2068 sci_change_state(&ireq
->sm
, SCI_REQ_ATAPI_WAIT_TC_COMP
);
2069 scu_atapi_reconstruct_raw_frame_task_context(ireq
);
2071 sci_change_state(&ireq
->sm
, SCI_REQ_ATAPI_WAIT_D2H
);
2072 scu_atapi_construct_task_context(ireq
);
2075 sci_controller_continue_io(ireq
);
2078 case SCI_REQ_ATAPI_WAIT_D2H
:
2079 return atapi_d2h_reg_frame_handler(ireq
, frame_index
);
2080 case SCI_REQ_ABORTING
:
2082 * TODO: Is it even possible to get an unsolicited frame in the
2085 sci_controller_release_frame(ihost
, frame_index
);
2089 dev_warn(&ihost
->pdev
->dev
,
2090 "%s: SCIC IO Request given unexpected frame %x while "
2096 sci_controller_release_frame(ihost
, frame_index
);
2097 return SCI_FAILURE_INVALID_STATE
;
2101 static enum sci_status
stp_request_udma_await_tc_event(struct isci_request
*ireq
,
2102 u32 completion_code
)
2104 enum sci_status status
= SCI_SUCCESS
;
2106 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
2107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
2108 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2109 ireq
->sci_status
= SCI_SUCCESS
;
2110 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS
):
2113 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR
):
2114 /* We must check ther response buffer to see if the D2H
2115 * Register FIS was received before we got the TC
2118 if (ireq
->stp
.rsp
.fis_type
== FIS_REGD2H
) {
2119 sci_remote_device_suspend(ireq
->target_device
,
2120 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code
)));
2122 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
2123 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
2124 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2126 /* If we have an error completion status for the
2127 * TC then we can expect a D2H register FIS from
2128 * the device so we must change state to wait
2131 sci_change_state(&ireq
->sm
, SCI_REQ_STP_UDMA_WAIT_D2H
);
2135 /* TODO Check to see if any of these completion status need to
2136 * wait for the device to host register fis.
2138 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2139 * - this comes only for B0
2141 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN
):
2142 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR
):
2143 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR
):
2144 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR
):
2145 sci_remote_device_suspend(ireq
->target_device
,
2146 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code
)));
2147 /* Fall through to the default case */
2149 /* All other completion status cause the IO to be complete. */
2150 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
2151 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
2152 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2159 static enum sci_status
atapi_raw_completion(struct isci_request
*ireq
, u32 completion_code
,
2160 enum sci_base_request_states next
)
2162 enum sci_status status
= SCI_SUCCESS
;
2164 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
2165 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD
):
2166 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2167 ireq
->sci_status
= SCI_SUCCESS
;
2168 sci_change_state(&ireq
->sm
, next
);
2171 /* All other completion status cause the IO to be complete.
2172 * If a NAK was received, then it is up to the user to retry
2175 ireq
->scu_status
= SCU_NORMALIZE_COMPLETION_STATUS(completion_code
);
2176 ireq
->sci_status
= SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
;
2178 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2185 static enum sci_status
atapi_data_tc_completion_handler(struct isci_request
*ireq
,
2186 u32 completion_code
)
2188 struct isci_remote_device
*idev
= ireq
->target_device
;
2189 struct dev_to_host_fis
*d2h
= &ireq
->stp
.rsp
;
2190 enum sci_status status
= SCI_SUCCESS
;
2192 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code
)) {
2193 case (SCU_TASK_DONE_GOOD
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
2194 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2197 case (SCU_TASK_DONE_UNEXP_FIS
<< SCU_COMPLETION_TL_STATUS_SHIFT
): {
2198 u16 len
= sci_req_tx_bytes(ireq
);
2200 /* likely non-error data underrrun, workaround missing
2201 * d2h frame from the controller
2203 if (d2h
->fis_type
!= FIS_REGD2H
) {
2204 d2h
->fis_type
= FIS_REGD2H
;
2205 d2h
->flags
= (1 << 6);
2209 d2h
->byte_count_low
= len
& 0xff;
2210 d2h
->byte_count_high
= len
>> 8;
2216 d2h
->sector_count
= 0x3;
2217 d2h
->sector_count_exp
= 0;
2223 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2224 ireq
->sci_status
= SCI_SUCCESS_IO_DONE_EARLY
;
2225 status
= ireq
->sci_status
;
2227 /* the hw will have suspended the rnc, so complete the
2228 * request upon pending resume
2230 sci_change_state(&idev
->sm
, SCI_STP_DEV_ATAPI_ERROR
);
2233 case (SCU_TASK_DONE_EXCESS_DATA
<< SCU_COMPLETION_TL_STATUS_SHIFT
):
2234 /* In this case, there is no UF coming after.
2235 * compelte the IO now.
2237 ireq
->scu_status
= SCU_TASK_DONE_GOOD
;
2238 ireq
->sci_status
= SCI_SUCCESS
;
2239 sci_change_state(&ireq
->sm
, SCI_REQ_COMPLETED
);
2243 if (d2h
->fis_type
== FIS_REGD2H
) {
2244 /* UF received change the device state to ATAPI_ERROR */
2245 status
= ireq
->sci_status
;
2246 sci_change_state(&idev
->sm
, SCI_STP_DEV_ATAPI_ERROR
);
2248 /* If receiving any non-sucess TC status, no UF
2249 * received yet, then an UF for the status fis
2250 * is coming after (XXX: suspect this is
2251 * actually a protocol error or a bug like the
2252 * DONE_UNEXP_FIS case)
2254 ireq
->scu_status
= SCU_TASK_DONE_CHECK_RESPONSE
;
2255 ireq
->sci_status
= SCI_FAILURE_IO_RESPONSE_VALID
;
2257 sci_change_state(&ireq
->sm
, SCI_REQ_ATAPI_WAIT_D2H
);
2266 sci_io_request_tc_completion(struct isci_request
*ireq
,
2267 u32 completion_code
)
2269 enum sci_base_request_states state
;
2270 struct isci_host
*ihost
= ireq
->owning_controller
;
2272 state
= ireq
->sm
.current_state_id
;
2275 case SCI_REQ_STARTED
:
2276 return request_started_state_tc_event(ireq
, completion_code
);
2278 case SCI_REQ_TASK_WAIT_TC_COMP
:
2279 return ssp_task_request_await_tc_event(ireq
,
2282 case SCI_REQ_SMP_WAIT_RESP
:
2283 return smp_request_await_response_tc_event(ireq
,
2286 case SCI_REQ_SMP_WAIT_TC_COMP
:
2287 return smp_request_await_tc_event(ireq
, completion_code
);
2289 case SCI_REQ_STP_UDMA_WAIT_TC_COMP
:
2290 return stp_request_udma_await_tc_event(ireq
,
2293 case SCI_REQ_STP_NON_DATA_WAIT_H2D
:
2294 return stp_request_non_data_await_h2d_tc_event(ireq
,
2297 case SCI_REQ_STP_PIO_WAIT_H2D
:
2298 return stp_request_pio_await_h2d_completion_tc_event(ireq
,
2301 case SCI_REQ_STP_PIO_DATA_OUT
:
2302 return pio_data_out_tx_done_tc_event(ireq
, completion_code
);
2304 case SCI_REQ_ABORTING
:
2305 return request_aborting_state_tc_event(ireq
,
2308 case SCI_REQ_ATAPI_WAIT_H2D
:
2309 return atapi_raw_completion(ireq
, completion_code
,
2310 SCI_REQ_ATAPI_WAIT_PIO_SETUP
);
2312 case SCI_REQ_ATAPI_WAIT_TC_COMP
:
2313 return atapi_raw_completion(ireq
, completion_code
,
2314 SCI_REQ_ATAPI_WAIT_D2H
);
2316 case SCI_REQ_ATAPI_WAIT_D2H
:
2317 return atapi_data_tc_completion_handler(ireq
, completion_code
);
2320 dev_warn(&ihost
->pdev
->dev
, "%s: %x in wrong state %s\n",
2321 __func__
, completion_code
, req_state_name(state
));
2322 return SCI_FAILURE_INVALID_STATE
;
2327 * isci_request_process_response_iu() - This function sets the status and
2328 * response iu, in the task struct, from the request object for the upper
2330 * @sas_task: This parameter is the task struct from the upper layer driver.
2331 * @resp_iu: This parameter points to the response iu of the completed request.
2332 * @dev: This parameter specifies the linux device struct.
2336 static void isci_request_process_response_iu(
2337 struct sas_task
*task
,
2338 struct ssp_response_iu
*resp_iu
,
2343 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2344 "resp_iu->response_data_len = %x, "
2345 "resp_iu->sense_data_len = %x\nrepsonse data: ",
2350 resp_iu
->response_data_len
,
2351 resp_iu
->sense_data_len
);
2353 task
->task_status
.stat
= resp_iu
->status
;
2355 /* libsas updates the task status fields based on the response iu. */
2356 sas_ssp_task_response(dev
, task
, resp_iu
);
2360 * isci_request_set_open_reject_status() - This function prepares the I/O
2361 * completion for OPEN_REJECT conditions.
2362 * @request: This parameter is the completed isci_request object.
2363 * @response_ptr: This parameter specifies the service response for the I/O.
2364 * @status_ptr: This parameter specifies the exec status for the I/O.
2365 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2366 * the LLDD with respect to completing this request or forcing an abort
2367 * condition on the I/O.
2368 * @open_rej_reason: This parameter specifies the encoded reason for the
2369 * abandon-class reject.
2373 static void isci_request_set_open_reject_status(
2374 struct isci_request
*request
,
2375 struct sas_task
*task
,
2376 enum service_response
*response_ptr
,
2377 enum exec_status
*status_ptr
,
2378 enum isci_completion_selection
*complete_to_host_ptr
,
2379 enum sas_open_rej_reason open_rej_reason
)
2381 /* Task in the target is done. */
2382 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2383 *response_ptr
= SAS_TASK_UNDELIVERED
;
2384 *status_ptr
= SAS_OPEN_REJECT
;
2385 *complete_to_host_ptr
= isci_perform_normal_io_completion
;
2386 task
->task_status
.open_rej_reason
= open_rej_reason
;
2390 * isci_request_handle_controller_specific_errors() - This function decodes
2391 * controller-specific I/O completion error conditions.
2392 * @request: This parameter is the completed isci_request object.
2393 * @response_ptr: This parameter specifies the service response for the I/O.
2394 * @status_ptr: This parameter specifies the exec status for the I/O.
2395 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2396 * the LLDD with respect to completing this request or forcing an abort
2397 * condition on the I/O.
2401 static void isci_request_handle_controller_specific_errors(
2402 struct isci_remote_device
*idev
,
2403 struct isci_request
*request
,
2404 struct sas_task
*task
,
2405 enum service_response
*response_ptr
,
2406 enum exec_status
*status_ptr
,
2407 enum isci_completion_selection
*complete_to_host_ptr
)
2409 unsigned int cstatus
;
2411 cstatus
= request
->scu_status
;
2413 dev_dbg(&request
->isci_host
->pdev
->dev
,
2414 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2415 "- controller status = 0x%x\n",
2416 __func__
, request
, cstatus
);
2418 /* Decode the controller-specific errors; most
2419 * important is to recognize those conditions in which
2420 * the target may still have a task outstanding that
2423 * Note that there are SCU completion codes being
2424 * named in the decode below for which SCIC has already
2425 * done work to handle them in a way other than as
2426 * a controller-specific completion code; these are left
2427 * in the decode below for completeness sake.
2430 case SCU_TASK_DONE_DMASETUP_DIRERR
:
2431 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2432 case SCU_TASK_DONE_XFERCNT_ERR
:
2433 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2434 if (task
->task_proto
== SAS_PROTOCOL_SMP
) {
2435 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2436 *response_ptr
= SAS_TASK_COMPLETE
;
2438 /* See if the device has been/is being stopped. Note
2439 * that we ignore the quiesce state, since we are
2440 * concerned about the actual device state.
2443 *status_ptr
= SAS_DEVICE_UNKNOWN
;
2445 *status_ptr
= SAS_ABORTED_TASK
;
2447 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2449 *complete_to_host_ptr
=
2450 isci_perform_normal_io_completion
;
2452 /* Task in the target is not done. */
2453 *response_ptr
= SAS_TASK_UNDELIVERED
;
2456 *status_ptr
= SAS_DEVICE_UNKNOWN
;
2458 *status_ptr
= SAM_STAT_TASK_ABORTED
;
2460 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2462 *complete_to_host_ptr
=
2463 isci_perform_error_io_completion
;
2468 case SCU_TASK_DONE_CRC_ERR
:
2469 case SCU_TASK_DONE_NAK_CMD_ERR
:
2470 case SCU_TASK_DONE_EXCESS_DATA
:
2471 case SCU_TASK_DONE_UNEXP_FIS
:
2472 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2473 case SCU_TASK_DONE_VIIT_ENTRY_NV
: /* TODO - conditions? */
2474 case SCU_TASK_DONE_IIT_ENTRY_NV
: /* TODO - conditions? */
2475 case SCU_TASK_DONE_RNCNV_OUTBOUND
: /* TODO - conditions? */
2476 /* These are conditions in which the target
2477 * has completed the task, so that no cleanup
2480 *response_ptr
= SAS_TASK_COMPLETE
;
2482 /* See if the device has been/is being stopped. Note
2483 * that we ignore the quiesce state, since we are
2484 * concerned about the actual device state.
2487 *status_ptr
= SAS_DEVICE_UNKNOWN
;
2489 *status_ptr
= SAS_ABORTED_TASK
;
2491 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2493 *complete_to_host_ptr
= isci_perform_normal_io_completion
;
2497 /* Note that the only open reject completion codes seen here will be
2498 * abandon-class codes; all others are automatically retried in the SCU.
2500 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION
:
2502 isci_request_set_open_reject_status(
2503 request
, task
, response_ptr
, status_ptr
,
2504 complete_to_host_ptr
, SAS_OREJ_WRONG_DEST
);
2507 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION
:
2509 /* Note - the return of AB0 will change when
2510 * libsas implements detection of zone violations.
2512 isci_request_set_open_reject_status(
2513 request
, task
, response_ptr
, status_ptr
,
2514 complete_to_host_ptr
, SAS_OREJ_RESV_AB0
);
2517 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1
:
2519 isci_request_set_open_reject_status(
2520 request
, task
, response_ptr
, status_ptr
,
2521 complete_to_host_ptr
, SAS_OREJ_RESV_AB1
);
2524 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2
:
2526 isci_request_set_open_reject_status(
2527 request
, task
, response_ptr
, status_ptr
,
2528 complete_to_host_ptr
, SAS_OREJ_RESV_AB2
);
2531 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3
:
2533 isci_request_set_open_reject_status(
2534 request
, task
, response_ptr
, status_ptr
,
2535 complete_to_host_ptr
, SAS_OREJ_RESV_AB3
);
2538 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION
:
2540 isci_request_set_open_reject_status(
2541 request
, task
, response_ptr
, status_ptr
,
2542 complete_to_host_ptr
, SAS_OREJ_BAD_DEST
);
2545 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY
:
2547 isci_request_set_open_reject_status(
2548 request
, task
, response_ptr
, status_ptr
,
2549 complete_to_host_ptr
, SAS_OREJ_STP_NORES
);
2552 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED
:
2554 isci_request_set_open_reject_status(
2555 request
, task
, response_ptr
, status_ptr
,
2556 complete_to_host_ptr
, SAS_OREJ_EPROTO
);
2559 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED
:
2561 isci_request_set_open_reject_status(
2562 request
, task
, response_ptr
, status_ptr
,
2563 complete_to_host_ptr
, SAS_OREJ_CONN_RATE
);
2566 case SCU_TASK_DONE_LL_R_ERR
:
2567 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2568 case SCU_TASK_DONE_LL_PERR
:
2569 case SCU_TASK_DONE_LL_SY_TERM
:
2570 /* Also SCU_TASK_DONE_NAK_ERR:*/
2571 case SCU_TASK_DONE_LL_LF_TERM
:
2572 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2573 case SCU_TASK_DONE_LL_ABORT_ERR
:
2574 case SCU_TASK_DONE_SEQ_INV_TYPE
:
2575 /* Also SCU_TASK_DONE_UNEXP_XR: */
2576 case SCU_TASK_DONE_XR_IU_LEN_ERR
:
2577 case SCU_TASK_DONE_INV_FIS_LEN
:
2578 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2579 case SCU_TASK_DONE_SDMA_ERR
:
2580 case SCU_TASK_DONE_OFFSET_ERR
:
2581 case SCU_TASK_DONE_MAX_PLD_ERR
:
2582 case SCU_TASK_DONE_LF_ERR
:
2583 case SCU_TASK_DONE_SMP_RESP_TO_ERR
: /* Escalate to dev reset? */
2584 case SCU_TASK_DONE_SMP_LL_RX_ERR
:
2585 case SCU_TASK_DONE_UNEXP_DATA
:
2586 case SCU_TASK_DONE_UNEXP_SDBFIS
:
2587 case SCU_TASK_DONE_REG_ERR
:
2588 case SCU_TASK_DONE_SDB_ERR
:
2589 case SCU_TASK_DONE_TASK_ABORT
:
2591 /* Task in the target is not done. */
2592 *response_ptr
= SAS_TASK_UNDELIVERED
;
2593 *status_ptr
= SAM_STAT_TASK_ABORTED
;
2595 if (task
->task_proto
== SAS_PROTOCOL_SMP
) {
2596 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2598 *complete_to_host_ptr
= isci_perform_normal_io_completion
;
2600 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2602 *complete_to_host_ptr
= isci_perform_error_io_completion
;
2609 * isci_task_save_for_upper_layer_completion() - This function saves the
2610 * request for later completion to the upper layer driver.
2611 * @host: This parameter is a pointer to the host on which the the request
2612 * should be queued (either as an error or success).
2613 * @request: This parameter is the completed request.
2614 * @response: This parameter is the response code for the completed task.
2615 * @status: This parameter is the status code for the completed task.
2619 static void isci_task_save_for_upper_layer_completion(
2620 struct isci_host
*host
,
2621 struct isci_request
*request
,
2622 enum service_response response
,
2623 enum exec_status status
,
2624 enum isci_completion_selection task_notification_selection
)
2626 struct sas_task
*task
= isci_request_access_task(request
);
2628 task_notification_selection
2629 = isci_task_set_completion_status(task
, response
, status
,
2630 task_notification_selection
);
2632 /* Tasks aborted specifically by a call to the lldd_abort_task
2633 * function should not be completed to the host in the regular path.
2635 switch (task_notification_selection
) {
2637 case isci_perform_normal_io_completion
:
2638 /* Normal notification (task_done) */
2640 /* Add to the completed list. */
2641 list_add(&request
->completed_node
,
2642 &host
->requests_to_complete
);
2644 /* Take the request off the device's pending request list. */
2645 list_del_init(&request
->dev_node
);
2648 case isci_perform_aborted_io_completion
:
2649 /* No notification to libsas because this request is
2650 * already in the abort path.
2652 /* Wake up whatever process was waiting for this
2653 * request to complete.
2655 WARN_ON(request
->io_request_completion
== NULL
);
2657 if (request
->io_request_completion
!= NULL
) {
2659 /* Signal whoever is waiting that this
2660 * request is complete.
2662 complete(request
->io_request_completion
);
2666 case isci_perform_error_io_completion
:
2667 /* Use sas_task_abort */
2668 /* Add to the aborted list. */
2669 list_add(&request
->completed_node
,
2670 &host
->requests_to_errorback
);
2674 /* Add to the error to libsas list. */
2675 list_add(&request
->completed_node
,
2676 &host
->requests_to_errorback
);
2679 dev_dbg(&host
->pdev
->dev
,
2680 "%s: %d - task = %p, response=%d (%d), status=%d (%d)\n",
2681 __func__
, task_notification_selection
, task
,
2682 (task
) ? task
->task_status
.resp
: 0, response
,
2683 (task
) ? task
->task_status
.stat
: 0, status
);
2686 static void isci_process_stp_response(struct sas_task
*task
, struct dev_to_host_fis
*fis
)
2688 struct task_status_struct
*ts
= &task
->task_status
;
2689 struct ata_task_resp
*resp
= (void *)&ts
->buf
[0];
2691 resp
->frame_len
= sizeof(*fis
);
2692 memcpy(resp
->ending_fis
, fis
, sizeof(*fis
));
2693 ts
->buf_valid_size
= sizeof(*resp
);
2695 /* If the device fault bit is set in the status register, then
2696 * set the sense data and return.
2698 if (fis
->status
& ATA_DF
)
2699 ts
->stat
= SAS_PROTO_RESPONSE
;
2700 else if (fis
->status
& ATA_ERR
)
2701 ts
->stat
= SAM_STAT_CHECK_CONDITION
;
2703 ts
->stat
= SAM_STAT_GOOD
;
2705 ts
->resp
= SAS_TASK_COMPLETE
;
2708 static void isci_request_io_request_complete(struct isci_host
*ihost
,
2709 struct isci_request
*request
,
2710 enum sci_io_status completion_status
)
2712 struct sas_task
*task
= isci_request_access_task(request
);
2713 struct ssp_response_iu
*resp_iu
;
2714 unsigned long task_flags
;
2715 struct isci_remote_device
*idev
= request
->target_device
;
2716 enum service_response response
= SAS_TASK_UNDELIVERED
;
2717 enum exec_status status
= SAS_ABORTED_TASK
;
2718 enum isci_request_status request_status
;
2719 enum isci_completion_selection complete_to_host
2720 = isci_perform_normal_io_completion
;
2722 dev_dbg(&ihost
->pdev
->dev
,
2723 "%s: request = %p, task = %p,\n"
2724 "task->data_dir = %d completion_status = 0x%x\n",
2731 spin_lock(&request
->state_lock
);
2732 request_status
= request
->status
;
2734 /* Decode the request status. Note that if the request has been
2735 * aborted by a task management function, we don't care
2736 * what the status is.
2738 switch (request_status
) {
2741 /* "aborted" indicates that the request was aborted by a task
2742 * management function, since once a task management request is
2743 * perfomed by the device, the request only completes because
2744 * of the subsequent driver terminate.
2746 * Aborted also means an external thread is explicitly managing
2747 * this request, so that we do not complete it up the stack.
2749 * The target is still there (since the TMF was successful).
2751 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2752 response
= SAS_TASK_COMPLETE
;
2754 /* See if the device has been/is being stopped. Note
2755 * that we ignore the quiesce state, since we are
2756 * concerned about the actual device state.
2759 status
= SAS_DEVICE_UNKNOWN
;
2761 status
= SAS_ABORTED_TASK
;
2763 complete_to_host
= isci_perform_aborted_io_completion
;
2764 /* This was an aborted request. */
2766 spin_unlock(&request
->state_lock
);
2770 /* aborting means that the task management function tried and
2771 * failed to abort the request. We need to note the request
2772 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
2775 * Aborting also means an external thread is explicitly managing
2776 * this request, so that we do not complete it up the stack.
2778 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2779 response
= SAS_TASK_UNDELIVERED
;
2782 /* The device has been /is being stopped. Note that
2783 * we ignore the quiesce state, since we are
2784 * concerned about the actual device state.
2786 status
= SAS_DEVICE_UNKNOWN
;
2788 status
= SAS_PHY_DOWN
;
2790 complete_to_host
= isci_perform_aborted_io_completion
;
2792 /* This was an aborted request. */
2794 spin_unlock(&request
->state_lock
);
2799 /* This was an terminated request. This happens when
2800 * the I/O is being terminated because of an action on
2801 * the device (reset, tear down, etc.), and the I/O needs
2802 * to be completed up the stack.
2804 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2805 response
= SAS_TASK_UNDELIVERED
;
2807 /* See if the device has been/is being stopped. Note
2808 * that we ignore the quiesce state, since we are
2809 * concerned about the actual device state.
2812 status
= SAS_DEVICE_UNKNOWN
;
2814 status
= SAS_ABORTED_TASK
;
2816 complete_to_host
= isci_perform_aborted_io_completion
;
2818 /* This was a terminated request. */
2820 spin_unlock(&request
->state_lock
);
2824 /* This was a terminated request that timed-out during the
2825 * termination process. There is no task to complete to
2828 complete_to_host
= isci_perform_normal_io_completion
;
2829 spin_unlock(&request
->state_lock
);
2834 /* The request is done from an SCU HW perspective. */
2835 request
->status
= completed
;
2837 spin_unlock(&request
->state_lock
);
2839 /* This is an active request being completed from the core. */
2840 switch (completion_status
) {
2842 case SCI_IO_FAILURE_RESPONSE_VALID
:
2843 dev_dbg(&ihost
->pdev
->dev
,
2844 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2849 if (sas_protocol_ata(task
->task_proto
)) {
2850 isci_process_stp_response(task
, &request
->stp
.rsp
);
2851 } else if (SAS_PROTOCOL_SSP
== task
->task_proto
) {
2853 /* crack the iu response buffer. */
2854 resp_iu
= &request
->ssp
.rsp
;
2855 isci_request_process_response_iu(task
, resp_iu
,
2858 } else if (SAS_PROTOCOL_SMP
== task
->task_proto
) {
2860 dev_err(&ihost
->pdev
->dev
,
2861 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2862 "SAS_PROTOCOL_SMP protocol\n",
2866 dev_err(&ihost
->pdev
->dev
,
2867 "%s: unknown protocol\n", __func__
);
2869 /* use the task status set in the task struct by the
2870 * isci_request_process_response_iu call.
2872 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2873 response
= task
->task_status
.resp
;
2874 status
= task
->task_status
.stat
;
2877 case SCI_IO_SUCCESS
:
2878 case SCI_IO_SUCCESS_IO_DONE_EARLY
:
2880 response
= SAS_TASK_COMPLETE
;
2881 status
= SAM_STAT_GOOD
;
2882 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2884 if (completion_status
== SCI_IO_SUCCESS_IO_DONE_EARLY
) {
2886 /* This was an SSP / STP / SATA transfer.
2887 * There is a possibility that less data than
2888 * the maximum was transferred.
2890 u32 transferred_length
= sci_req_tx_bytes(request
);
2892 task
->task_status
.residual
2893 = task
->total_xfer_len
- transferred_length
;
2895 /* If there were residual bytes, call this an
2898 if (task
->task_status
.residual
!= 0)
2899 status
= SAS_DATA_UNDERRUN
;
2901 dev_dbg(&ihost
->pdev
->dev
,
2902 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2907 dev_dbg(&ihost
->pdev
->dev
,
2908 "%s: SCI_IO_SUCCESS\n",
2913 case SCI_IO_FAILURE_TERMINATED
:
2914 dev_dbg(&ihost
->pdev
->dev
,
2915 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2920 /* The request was terminated explicitly. No handling
2921 * is needed in the SCSI error handler path.
2923 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2924 response
= SAS_TASK_UNDELIVERED
;
2926 /* See if the device has been/is being stopped. Note
2927 * that we ignore the quiesce state, since we are
2928 * concerned about the actual device state.
2931 status
= SAS_DEVICE_UNKNOWN
;
2933 status
= SAS_ABORTED_TASK
;
2935 complete_to_host
= isci_perform_normal_io_completion
;
2938 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
:
2940 isci_request_handle_controller_specific_errors(
2941 idev
, request
, task
, &response
, &status
,
2946 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
:
2947 /* This is a special case, in that the I/O completion
2948 * is telling us that the device needs a reset.
2949 * In order for the device reset condition to be
2950 * noticed, the I/O has to be handled in the error
2951 * handler. Set the reset flag and cause the
2952 * SCSI error thread to be scheduled.
2954 spin_lock_irqsave(&task
->task_state_lock
, task_flags
);
2955 task
->task_state_flags
|= SAS_TASK_NEED_DEV_RESET
;
2956 spin_unlock_irqrestore(&task
->task_state_lock
, task_flags
);
2959 response
= SAS_TASK_UNDELIVERED
;
2960 status
= SAM_STAT_TASK_ABORTED
;
2962 complete_to_host
= isci_perform_error_io_completion
;
2963 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2966 case SCI_FAILURE_RETRY_REQUIRED
:
2968 /* Fail the I/O so it can be retried. */
2969 response
= SAS_TASK_UNDELIVERED
;
2971 status
= SAS_DEVICE_UNKNOWN
;
2973 status
= SAS_ABORTED_TASK
;
2975 complete_to_host
= isci_perform_normal_io_completion
;
2976 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
2981 /* Catch any otherwise unhandled error codes here. */
2982 dev_dbg(&ihost
->pdev
->dev
,
2983 "%s: invalid completion code: 0x%x - "
2984 "isci_request = %p\n",
2985 __func__
, completion_status
, request
);
2987 response
= SAS_TASK_UNDELIVERED
;
2989 /* See if the device has been/is being stopped. Note
2990 * that we ignore the quiesce state, since we are
2991 * concerned about the actual device state.
2994 status
= SAS_DEVICE_UNKNOWN
;
2996 status
= SAS_ABORTED_TASK
;
2998 if (SAS_PROTOCOL_SMP
== task
->task_proto
) {
2999 set_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
3000 complete_to_host
= isci_perform_normal_io_completion
;
3002 clear_bit(IREQ_COMPLETE_IN_TARGET
, &request
->flags
);
3003 complete_to_host
= isci_perform_error_io_completion
;
3010 switch (task
->task_proto
) {
3011 case SAS_PROTOCOL_SSP
:
3012 if (task
->data_dir
== DMA_NONE
)
3014 if (task
->num_scatter
== 0)
3015 /* 0 indicates a single dma address */
3016 dma_unmap_single(&ihost
->pdev
->dev
,
3017 request
->zero_scatter_daddr
,
3018 task
->total_xfer_len
, task
->data_dir
);
3019 else /* unmap the sgl dma addresses */
3020 dma_unmap_sg(&ihost
->pdev
->dev
, task
->scatter
,
3021 request
->num_sg_entries
, task
->data_dir
);
3023 case SAS_PROTOCOL_SMP
: {
3024 struct scatterlist
*sg
= &task
->smp_task
.smp_req
;
3025 struct smp_req
*smp_req
;
3028 dma_unmap_sg(&ihost
->pdev
->dev
, sg
, 1, DMA_TO_DEVICE
);
3030 /* need to swab it back in case the command buffer is re-used */
3031 kaddr
= kmap_atomic(sg_page(sg
));
3032 smp_req
= kaddr
+ sg
->offset
;
3033 sci_swab32_cpy(smp_req
, smp_req
, sg
->length
/ sizeof(u32
));
3034 kunmap_atomic(kaddr
);
3041 /* Put the completed request on the correct list */
3042 isci_task_save_for_upper_layer_completion(ihost
, request
, response
,
3043 status
, complete_to_host
3046 /* complete the io request to the core. */
3047 sci_controller_complete_io(ihost
, request
->target_device
, request
);
3049 /* set terminated handle so it cannot be completed or
3050 * terminated again, and to cause any calls into abort
3051 * task to recognize the already completed case.
3053 set_bit(IREQ_TERMINATED
, &request
->flags
);
3056 static void sci_request_started_state_enter(struct sci_base_state_machine
*sm
)
3058 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
3059 struct domain_device
*dev
= ireq
->target_device
->domain_dev
;
3060 enum sci_base_request_states state
;
3061 struct sas_task
*task
;
3063 /* XXX as hch said always creating an internal sas_task for tmf
3064 * requests would simplify the driver
3066 task
= (test_bit(IREQ_TMF
, &ireq
->flags
)) ? NULL
: isci_request_access_task(ireq
);
3068 /* all unaccelerated request types (non ssp or ncq) handled with
3071 if (!task
&& dev
->dev_type
== SAS_END_DEV
) {
3072 state
= SCI_REQ_TASK_WAIT_TC_COMP
;
3073 } else if (task
&& task
->task_proto
== SAS_PROTOCOL_SMP
) {
3074 state
= SCI_REQ_SMP_WAIT_RESP
;
3075 } else if (task
&& sas_protocol_ata(task
->task_proto
) &&
3076 !task
->ata_task
.use_ncq
) {
3077 if (dev
->sata_dev
.command_set
== ATAPI_COMMAND_SET
&&
3078 task
->ata_task
.fis
.command
== ATA_CMD_PACKET
) {
3079 state
= SCI_REQ_ATAPI_WAIT_H2D
;
3080 } else if (task
->data_dir
== DMA_NONE
) {
3081 state
= SCI_REQ_STP_NON_DATA_WAIT_H2D
;
3082 } else if (task
->ata_task
.dma_xfer
) {
3083 state
= SCI_REQ_STP_UDMA_WAIT_TC_COMP
;
3085 state
= SCI_REQ_STP_PIO_WAIT_H2D
;
3088 /* SSP or NCQ are fully accelerated, no substates */
3091 sci_change_state(sm
, state
);
3094 static void sci_request_completed_state_enter(struct sci_base_state_machine
*sm
)
3096 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
3097 struct isci_host
*ihost
= ireq
->owning_controller
;
3099 /* Tell the SCI_USER that the IO request is complete */
3100 if (!test_bit(IREQ_TMF
, &ireq
->flags
))
3101 isci_request_io_request_complete(ihost
, ireq
,
3104 isci_task_request_complete(ihost
, ireq
, ireq
->sci_status
);
3107 static void sci_request_aborting_state_enter(struct sci_base_state_machine
*sm
)
3109 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
3111 /* Setting the abort bit in the Task Context is required by the silicon. */
3112 ireq
->tc
->abort
= 1;
3115 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine
*sm
)
3117 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
3119 ireq
->target_device
->working_request
= ireq
;
3122 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine
*sm
)
3124 struct isci_request
*ireq
= container_of(sm
, typeof(*ireq
), sm
);
3126 ireq
->target_device
->working_request
= ireq
;
3129 static const struct sci_base_state sci_request_state_table
[] = {
3130 [SCI_REQ_INIT
] = { },
3131 [SCI_REQ_CONSTRUCTED
] = { },
3132 [SCI_REQ_STARTED
] = {
3133 .enter_state
= sci_request_started_state_enter
,
3135 [SCI_REQ_STP_NON_DATA_WAIT_H2D
] = {
3136 .enter_state
= sci_stp_request_started_non_data_await_h2d_completion_enter
,
3138 [SCI_REQ_STP_NON_DATA_WAIT_D2H
] = { },
3139 [SCI_REQ_STP_PIO_WAIT_H2D
] = {
3140 .enter_state
= sci_stp_request_started_pio_await_h2d_completion_enter
,
3142 [SCI_REQ_STP_PIO_WAIT_FRAME
] = { },
3143 [SCI_REQ_STP_PIO_DATA_IN
] = { },
3144 [SCI_REQ_STP_PIO_DATA_OUT
] = { },
3145 [SCI_REQ_STP_UDMA_WAIT_TC_COMP
] = { },
3146 [SCI_REQ_STP_UDMA_WAIT_D2H
] = { },
3147 [SCI_REQ_TASK_WAIT_TC_COMP
] = { },
3148 [SCI_REQ_TASK_WAIT_TC_RESP
] = { },
3149 [SCI_REQ_SMP_WAIT_RESP
] = { },
3150 [SCI_REQ_SMP_WAIT_TC_COMP
] = { },
3151 [SCI_REQ_ATAPI_WAIT_H2D
] = { },
3152 [SCI_REQ_ATAPI_WAIT_PIO_SETUP
] = { },
3153 [SCI_REQ_ATAPI_WAIT_D2H
] = { },
3154 [SCI_REQ_ATAPI_WAIT_TC_COMP
] = { },
3155 [SCI_REQ_COMPLETED
] = {
3156 .enter_state
= sci_request_completed_state_enter
,
3158 [SCI_REQ_ABORTING
] = {
3159 .enter_state
= sci_request_aborting_state_enter
,
3161 [SCI_REQ_FINAL
] = { },
3165 sci_general_request_construct(struct isci_host
*ihost
,
3166 struct isci_remote_device
*idev
,
3167 struct isci_request
*ireq
)
3169 sci_init_sm(&ireq
->sm
, sci_request_state_table
, SCI_REQ_INIT
);
3171 ireq
->target_device
= idev
;
3172 ireq
->protocol
= SCIC_NO_PROTOCOL
;
3173 ireq
->saved_rx_frame_index
= SCU_INVALID_FRAME_INDEX
;
3175 ireq
->sci_status
= SCI_SUCCESS
;
3176 ireq
->scu_status
= 0;
3177 ireq
->post_context
= 0xFFFFFFFF;
3180 static enum sci_status
3181 sci_io_request_construct(struct isci_host
*ihost
,
3182 struct isci_remote_device
*idev
,
3183 struct isci_request
*ireq
)
3185 struct domain_device
*dev
= idev
->domain_dev
;
3186 enum sci_status status
= SCI_SUCCESS
;
3188 /* Build the common part of the request */
3189 sci_general_request_construct(ihost
, idev
, ireq
);
3191 if (idev
->rnc
.remote_node_index
== SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
)
3192 return SCI_FAILURE_INVALID_REMOTE_DEVICE
;
3194 if (dev
->dev_type
== SAS_END_DEV
)
3196 else if (dev
->dev_type
== SATA_DEV
|| (dev
->tproto
& SAS_PROTOCOL_STP
))
3197 memset(&ireq
->stp
.cmd
, 0, sizeof(ireq
->stp
.cmd
));
3198 else if (dev_is_expander(dev
))
3201 return SCI_FAILURE_UNSUPPORTED_PROTOCOL
;
3203 memset(ireq
->tc
, 0, offsetof(struct scu_task_context
, sgl_pair_ab
));
3208 enum sci_status
sci_task_request_construct(struct isci_host
*ihost
,
3209 struct isci_remote_device
*idev
,
3210 u16 io_tag
, struct isci_request
*ireq
)
3212 struct domain_device
*dev
= idev
->domain_dev
;
3213 enum sci_status status
= SCI_SUCCESS
;
3215 /* Build the common part of the request */
3216 sci_general_request_construct(ihost
, idev
, ireq
);
3218 if (dev
->dev_type
== SAS_END_DEV
||
3219 dev
->dev_type
== SATA_DEV
|| (dev
->tproto
& SAS_PROTOCOL_STP
)) {
3220 set_bit(IREQ_TMF
, &ireq
->flags
);
3221 memset(ireq
->tc
, 0, sizeof(struct scu_task_context
));
3223 status
= SCI_FAILURE_UNSUPPORTED_PROTOCOL
;
3228 static enum sci_status
isci_request_ssp_request_construct(
3229 struct isci_request
*request
)
3231 enum sci_status status
;
3233 dev_dbg(&request
->isci_host
->pdev
->dev
,
3234 "%s: request = %p\n",
3237 status
= sci_io_request_construct_basic_ssp(request
);
3241 static enum sci_status
isci_request_stp_request_construct(struct isci_request
*ireq
)
3243 struct sas_task
*task
= isci_request_access_task(ireq
);
3244 struct host_to_dev_fis
*fis
= &ireq
->stp
.cmd
;
3245 struct ata_queued_cmd
*qc
= task
->uldd_task
;
3246 enum sci_status status
;
3248 dev_dbg(&ireq
->isci_host
->pdev
->dev
,
3253 memcpy(fis
, &task
->ata_task
.fis
, sizeof(struct host_to_dev_fis
));
3254 if (!task
->ata_task
.device_control_reg_update
)
3258 status
= sci_io_request_construct_basic_sata(ireq
);
3260 if (qc
&& (qc
->tf
.command
== ATA_CMD_FPDMA_WRITE
||
3261 qc
->tf
.command
== ATA_CMD_FPDMA_READ
)) {
3262 fis
->sector_count
= qc
->tag
<< 3;
3263 ireq
->tc
->type
.stp
.ncq_tag
= qc
->tag
;
3269 static enum sci_status
3270 sci_io_request_construct_smp(struct device
*dev
,
3271 struct isci_request
*ireq
,
3272 struct sas_task
*task
)
3274 struct scatterlist
*sg
= &task
->smp_task
.smp_req
;
3275 struct isci_remote_device
*idev
;
3276 struct scu_task_context
*task_context
;
3277 struct isci_port
*iport
;
3278 struct smp_req
*smp_req
;
3283 kaddr
= kmap_atomic(sg_page(sg
));
3284 smp_req
= kaddr
+ sg
->offset
;
3286 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3287 * functions under SAS 2.0, a zero request length really indicates
3288 * a non-zero default length.
3290 if (smp_req
->req_len
== 0) {
3291 switch (smp_req
->func
) {
3293 case SMP_REPORT_PHY_ERR_LOG
:
3294 case SMP_REPORT_PHY_SATA
:
3295 case SMP_REPORT_ROUTE_INFO
:
3296 smp_req
->req_len
= 2;
3298 case SMP_CONF_ROUTE_INFO
:
3299 case SMP_PHY_CONTROL
:
3300 case SMP_PHY_TEST_FUNCTION
:
3301 smp_req
->req_len
= 9;
3303 /* Default - zero is a valid default for 2.0. */
3306 req_len
= smp_req
->req_len
;
3307 sci_swab32_cpy(smp_req
, smp_req
, sg
->length
/ sizeof(u32
));
3308 cmd
= *(u32
*) smp_req
;
3309 kunmap_atomic(kaddr
);
3311 if (!dma_map_sg(dev
, sg
, 1, DMA_TO_DEVICE
))
3314 ireq
->protocol
= SCIC_SMP_PROTOCOL
;
3316 /* byte swap the smp request. */
3318 task_context
= ireq
->tc
;
3320 idev
= ireq
->target_device
;
3321 iport
= idev
->owning_port
;
3324 * Fill in the TC with the its required data
3327 task_context
->priority
= 0;
3328 task_context
->initiator_request
= 1;
3329 task_context
->connection_rate
= idev
->connection_rate
;
3330 task_context
->protocol_engine_index
= ISCI_PEG
;
3331 task_context
->logical_port_index
= iport
->physical_port_index
;
3332 task_context
->protocol_type
= SCU_TASK_CONTEXT_PROTOCOL_SMP
;
3333 task_context
->abort
= 0;
3334 task_context
->valid
= SCU_TASK_CONTEXT_VALID
;
3335 task_context
->context_type
= SCU_TASK_CONTEXT_TYPE
;
3338 task_context
->remote_node_index
= idev
->rnc
.remote_node_index
;
3339 task_context
->command_code
= 0;
3340 task_context
->task_type
= SCU_TASK_TYPE_SMP_REQUEST
;
3343 task_context
->link_layer_control
= 0;
3344 task_context
->do_not_dma_ssp_good_response
= 1;
3345 task_context
->strict_ordering
= 0;
3346 task_context
->control_frame
= 1;
3347 task_context
->timeout_enable
= 0;
3348 task_context
->block_guard_enable
= 0;
3351 task_context
->address_modifier
= 0;
3354 task_context
->ssp_command_iu_length
= req_len
;
3357 task_context
->transfer_length_bytes
= 0;
3360 * 18h ~ 30h, protocol specific
3361 * since commandIU has been build by framework at this point, we just
3362 * copy the frist DWord from command IU to this location. */
3363 memcpy(&task_context
->type
.smp
, &cmd
, sizeof(u32
));
3367 * "For SMP you could program it to zero. We would prefer that way
3368 * so that done code will be consistent." - Venki
3370 task_context
->task_phase
= 0;
3372 ireq
->post_context
= (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
|
3373 (ISCI_PEG
<< SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT
) |
3374 (iport
->physical_port_index
<<
3375 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT
) |
3376 ISCI_TAG_TCI(ireq
->io_tag
));
3378 * Copy the physical address for the command buffer to the SCU Task
3379 * Context command buffer should not contain command header.
3381 task_context
->command_iu_upper
= upper_32_bits(sg_dma_address(sg
));
3382 task_context
->command_iu_lower
= lower_32_bits(sg_dma_address(sg
) + sizeof(u32
));
3384 /* SMP response comes as UF, so no need to set response IU address. */
3385 task_context
->response_iu_upper
= 0;
3386 task_context
->response_iu_lower
= 0;
3388 sci_change_state(&ireq
->sm
, SCI_REQ_CONSTRUCTED
);
3394 * isci_smp_request_build() - This function builds the smp request.
3395 * @ireq: This parameter points to the isci_request allocated in the
3396 * request construct function.
3398 * SCI_SUCCESS on successfull completion, or specific failure code.
3400 static enum sci_status
isci_smp_request_build(struct isci_request
*ireq
)
3402 struct sas_task
*task
= isci_request_access_task(ireq
);
3403 struct device
*dev
= &ireq
->isci_host
->pdev
->dev
;
3404 enum sci_status status
= SCI_FAILURE
;
3406 status
= sci_io_request_construct_smp(dev
, ireq
, task
);
3407 if (status
!= SCI_SUCCESS
)
3408 dev_dbg(&ireq
->isci_host
->pdev
->dev
,
3409 "%s: failed with status = %d\n",
3417 * isci_io_request_build() - This function builds the io request object.
3418 * @ihost: This parameter specifies the ISCI host object
3419 * @request: This parameter points to the isci_request object allocated in the
3420 * request construct function.
3421 * @sci_device: This parameter is the handle for the sci core's remote device
3422 * object that is the destination for this request.
3424 * SCI_SUCCESS on successfull completion, or specific failure code.
3426 static enum sci_status
isci_io_request_build(struct isci_host
*ihost
,
3427 struct isci_request
*request
,
3428 struct isci_remote_device
*idev
)
3430 enum sci_status status
= SCI_SUCCESS
;
3431 struct sas_task
*task
= isci_request_access_task(request
);
3433 dev_dbg(&ihost
->pdev
->dev
,
3434 "%s: idev = 0x%p; request = %p, "
3435 "num_scatter = %d\n",
3441 /* map the sgl addresses, if present.
3442 * libata does the mapping for sata devices
3443 * before we get the request.
3445 if (task
->num_scatter
&&
3446 !sas_protocol_ata(task
->task_proto
) &&
3447 !(SAS_PROTOCOL_SMP
& task
->task_proto
)) {
3449 request
->num_sg_entries
= dma_map_sg(
3456 if (request
->num_sg_entries
== 0)
3457 return SCI_FAILURE_INSUFFICIENT_RESOURCES
;
3460 status
= sci_io_request_construct(ihost
, idev
, request
);
3462 if (status
!= SCI_SUCCESS
) {
3463 dev_dbg(&ihost
->pdev
->dev
,
3464 "%s: failed request construct\n",
3469 switch (task
->task_proto
) {
3470 case SAS_PROTOCOL_SMP
:
3471 status
= isci_smp_request_build(request
);
3473 case SAS_PROTOCOL_SSP
:
3474 status
= isci_request_ssp_request_construct(request
);
3476 case SAS_PROTOCOL_SATA
:
3477 case SAS_PROTOCOL_STP
:
3478 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
3479 status
= isci_request_stp_request_construct(request
);
3482 dev_dbg(&ihost
->pdev
->dev
,
3483 "%s: unknown protocol\n", __func__
);
3490 static struct isci_request
*isci_request_from_tag(struct isci_host
*ihost
, u16 tag
)
3492 struct isci_request
*ireq
;
3494 ireq
= ihost
->reqs
[ISCI_TAG_TCI(tag
)];
3496 ireq
->io_request_completion
= NULL
;
3498 ireq
->num_sg_entries
= 0;
3499 INIT_LIST_HEAD(&ireq
->completed_node
);
3500 INIT_LIST_HEAD(&ireq
->dev_node
);
3501 isci_request_change_state(ireq
, allocated
);
3506 static struct isci_request
*isci_io_request_from_tag(struct isci_host
*ihost
,
3507 struct sas_task
*task
,
3510 struct isci_request
*ireq
;
3512 ireq
= isci_request_from_tag(ihost
, tag
);
3513 ireq
->ttype_ptr
.io_task_ptr
= task
;
3514 clear_bit(IREQ_TMF
, &ireq
->flags
);
3515 task
->lldd_task
= ireq
;
3520 struct isci_request
*isci_tmf_request_from_tag(struct isci_host
*ihost
,
3521 struct isci_tmf
*isci_tmf
,
3524 struct isci_request
*ireq
;
3526 ireq
= isci_request_from_tag(ihost
, tag
);
3527 ireq
->ttype_ptr
.tmf_task_ptr
= isci_tmf
;
3528 set_bit(IREQ_TMF
, &ireq
->flags
);
3533 int isci_request_execute(struct isci_host
*ihost
, struct isci_remote_device
*idev
,
3534 struct sas_task
*task
, u16 tag
)
3536 enum sci_status status
= SCI_FAILURE_UNSUPPORTED_PROTOCOL
;
3537 struct isci_request
*ireq
;
3538 unsigned long flags
;
3541 /* do common allocation and init of request object. */
3542 ireq
= isci_io_request_from_tag(ihost
, task
, tag
);
3544 status
= isci_io_request_build(ihost
, ireq
, idev
);
3545 if (status
!= SCI_SUCCESS
) {
3546 dev_dbg(&ihost
->pdev
->dev
,
3547 "%s: request_construct failed - status = 0x%x\n",
3553 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
3555 if (test_bit(IDEV_IO_NCQERROR
, &idev
->flags
)) {
3557 if (isci_task_is_ncq_recovery(task
)) {
3559 /* The device is in an NCQ recovery state. Issue the
3560 * request on the task side. Note that it will
3561 * complete on the I/O request side because the
3562 * request was built that way (ie.
3563 * ireq->is_task_management_request is false).
3565 status
= sci_controller_start_task(ihost
,
3569 status
= SCI_FAILURE
;
3572 /* send the request, let the core assign the IO TAG. */
3573 status
= sci_controller_start_io(ihost
, idev
,
3577 if (status
!= SCI_SUCCESS
&&
3578 status
!= SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
) {
3579 dev_dbg(&ihost
->pdev
->dev
,
3580 "%s: failed request start (0x%x)\n",
3582 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
3586 /* Either I/O started OK, or the core has signaled that
3587 * the device needs a target reset.
3589 * In either case, hold onto the I/O for later.
3591 * Update it's status and add it to the list in the
3592 * remote device object.
3594 list_add(&ireq
->dev_node
, &idev
->reqs_in_process
);
3596 if (status
== SCI_SUCCESS
) {
3597 isci_request_change_state(ireq
, started
);
3599 /* The request did not really start in the
3600 * hardware, so clear the request handle
3601 * here so no terminations will be done.
3603 set_bit(IREQ_TERMINATED
, &ireq
->flags
);
3604 isci_request_change_state(ireq
, completed
);
3606 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
3609 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED
) {
3610 /* Signal libsas that we need the SCSI error
3611 * handler thread to work on this I/O and that
3612 * we want a device reset.
3614 spin_lock_irqsave(&task
->task_state_lock
, flags
);
3615 task
->task_state_flags
|= SAS_TASK_NEED_DEV_RESET
;
3616 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
3618 /* Cause this task to be scheduled in the SCSI error
3621 sas_task_abort(task
);
3623 /* Change the status, since we are holding
3624 * the I/O until it is managed by the SCSI
3627 status
= SCI_SUCCESS
;