2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device
*dev
);
37 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
38 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
39 u8
*sas_addr
, int include
);
40 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(unsigned long _task
)
46 struct sas_task
*task
= (void *) _task
;
49 spin_lock_irqsave(&task
->task_state_lock
, flags
);
50 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
51 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
52 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
54 complete(&task
->completion
);
57 static void smp_task_done(struct sas_task
*task
)
59 if (!del_timer(&task
->timer
))
61 complete(&task
->completion
);
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
67 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
68 void *resp
, int resp_size
)
71 struct sas_task
*task
= NULL
;
72 struct sas_internal
*i
=
73 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
75 mutex_lock(&dev
->ex_dev
.cmd_mutex
);
76 for (retry
= 0; retry
< 3; retry
++) {
77 if (test_bit(SAS_DEV_GONE
, &dev
->state
)) {
82 task
= sas_alloc_task(GFP_KERNEL
);
88 task
->task_proto
= dev
->tproto
;
89 sg_init_one(&task
->smp_task
.smp_req
, req
, req_size
);
90 sg_init_one(&task
->smp_task
.smp_resp
, resp
, resp_size
);
92 task
->task_done
= smp_task_done
;
94 task
->timer
.data
= (unsigned long) task
;
95 task
->timer
.function
= smp_task_timedout
;
96 task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
97 add_timer(&task
->timer
);
99 res
= i
->dft
->lldd_execute_task(task
, 1, GFP_KERNEL
);
102 del_timer(&task
->timer
);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
107 wait_for_completion(&task
->completion
);
109 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i
->dft
->lldd_abort_task(task
);
112 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
117 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
118 task
->task_status
.stat
== SAM_STAT_GOOD
) {
122 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
123 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
124 /* no error, but return the number of bytes of
126 res
= task
->task_status
.residual
;
129 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
130 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
134 if (task
->task_status
.resp
== SAS_TASK_UNDELIVERED
&&
135 task
->task_status
.stat
== SAS_DEVICE_UNKNOWN
)
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__
,
140 SAS_ADDR(dev
->sas_addr
),
141 task
->task_status
.resp
,
142 task
->task_status
.stat
);
147 mutex_unlock(&dev
->ex_dev
.cmd_mutex
);
149 BUG_ON(retry
== 3 && task
!= NULL
);
154 /* ---------- Allocations ---------- */
156 static inline void *alloc_smp_req(int size
)
158 u8
*p
= kzalloc(size
, GFP_KERNEL
);
164 static inline void *alloc_smp_resp(int size
)
166 return kzalloc(size
, GFP_KERNEL
);
169 static char sas_route_char(struct domain_device
*dev
, struct ex_phy
*phy
)
171 switch (phy
->routing_attr
) {
173 if (dev
->ex_dev
.t2t_supp
)
179 case SUBTRACTIVE_ROUTING
:
186 static enum sas_dev_type
to_dev_type(struct discover_resp
*dr
)
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
191 if (dr
->attached_dev_type
== NO_DEVICE
&& dr
->attached_sata_dev
&&
192 dr
->linkrate
>= SAS_LINK_RATE_1_5_GBPS
)
195 return dr
->attached_dev_type
;
198 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
, void *rsp
)
200 enum sas_dev_type dev_type
;
201 enum sas_linkrate linkrate
;
202 u8 sas_addr
[SAS_ADDR_SIZE
];
203 struct smp_resp
*resp
= rsp
;
204 struct discover_resp
*dr
= &resp
->disc
;
205 struct sas_ha_struct
*ha
= dev
->port
->ha
;
206 struct expander_device
*ex
= &dev
->ex_dev
;
207 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
208 struct sas_rphy
*rphy
= dev
->rphy
;
209 bool new_phy
= !phy
->phy
;
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)))
215 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
217 /* FIXME: error_handling */
221 switch (resp
->result
) {
222 case SMP_RESP_PHY_VACANT
:
223 phy
->phy_state
= PHY_VACANT
;
226 phy
->phy_state
= PHY_NOT_PRESENT
;
228 case SMP_RESP_FUNC_ACC
:
229 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
233 /* check if anything important changed to squelch debug */
234 dev_type
= phy
->attached_dev_type
;
235 linkrate
= phy
->linkrate
;
236 memcpy(sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
238 phy
->attached_dev_type
= to_dev_type(dr
);
239 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
241 phy
->phy_id
= phy_id
;
242 phy
->linkrate
= dr
->linkrate
;
243 phy
->attached_sata_host
= dr
->attached_sata_host
;
244 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
245 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
246 phy
->attached_iproto
= dr
->iproto
<< 1;
247 phy
->attached_tproto
= dr
->tproto
<< 1;
248 /* help some expanders that fail to zero sas_address in the 'no
251 if (phy
->attached_dev_type
== NO_DEVICE
||
252 phy
->linkrate
< SAS_LINK_RATE_1_5_GBPS
)
253 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
255 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
256 phy
->attached_phy_id
= dr
->attached_phy_id
;
257 phy
->phy_change_count
= dr
->change_count
;
258 phy
->routing_attr
= dr
->routing_attr
;
259 phy
->virtual = dr
->virtual;
260 phy
->last_da_index
= -1;
262 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
263 phy
->phy
->identify
.device_type
= dr
->attached_dev_type
;
264 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
265 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
266 if (!phy
->attached_tproto
&& dr
->attached_sata_dev
)
267 phy
->phy
->identify
.target_port_protocols
= SAS_PROTOCOL_SATA
;
268 phy
->phy
->identify
.phy_identifier
= phy_id
;
269 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
270 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
271 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
272 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
273 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
276 if (sas_phy_add(phy
->phy
)) {
277 sas_phy_free(phy
->phy
);
282 switch (phy
->attached_dev_type
) {
284 type
= "stp pending";
290 if (phy
->attached_iproto
) {
291 if (phy
->attached_tproto
)
292 type
= "host+target";
296 if (dr
->attached_sata_dev
)
310 /* this routine is polled by libata error recovery so filter
311 * unimportant messages
313 if (new_phy
|| phy
->attached_dev_type
!= dev_type
||
314 phy
->linkrate
!= linkrate
||
315 SAS_ADDR(phy
->attached_sas_addr
) != SAS_ADDR(sas_addr
))
320 /* if the attached device type changed and ata_eh is active,
321 * make sure we run revalidation when eh completes (see:
322 * sas_enable_revalidation)
324 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
325 set_bit(DISCE_REVALIDATE_DOMAIN
, &dev
->port
->disc
.pending
);
327 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
328 test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
) ? "ata: " : "",
329 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
330 sas_route_char(dev
, phy
), phy
->linkrate
,
331 SAS_ADDR(phy
->attached_sas_addr
), type
);
334 /* check if we have an existing attached ata device on this expander phy */
335 struct domain_device
*sas_ex_to_ata(struct domain_device
*ex_dev
, int phy_id
)
337 struct ex_phy
*ex_phy
= &ex_dev
->ex_dev
.ex_phy
[phy_id
];
338 struct domain_device
*dev
;
339 struct sas_rphy
*rphy
;
344 rphy
= ex_phy
->port
->rphy
;
348 dev
= sas_find_dev_by_rphy(rphy
);
350 if (dev
&& dev_is_sata(dev
))
356 #define DISCOVER_REQ_SIZE 16
357 #define DISCOVER_RESP_SIZE 56
359 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
360 u8
*disc_resp
, int single
)
362 struct discover_resp
*dr
;
365 disc_req
[9] = single
;
367 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
368 disc_resp
, DISCOVER_RESP_SIZE
);
371 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
372 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
) == 0) {
373 sas_printk("Found loopback topology, just ignore it!\n");
376 sas_set_ex_phy(dev
, single
, disc_resp
);
380 int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
382 struct expander_device
*ex
= &dev
->ex_dev
;
387 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
391 disc_resp
= alloc_smp_req(DISCOVER_RESP_SIZE
);
397 disc_req
[1] = SMP_DISCOVER
;
399 if (0 <= single
&& single
< ex
->num_phys
) {
400 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
404 for (i
= 0; i
< ex
->num_phys
; i
++) {
405 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
417 static int sas_expander_discover(struct domain_device
*dev
)
419 struct expander_device
*ex
= &dev
->ex_dev
;
422 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
426 res
= sas_ex_phy_discover(dev
, -1);
437 #define MAX_EXPANDER_PHYS 128
439 static void ex_assign_report_general(struct domain_device
*dev
,
440 struct smp_resp
*resp
)
442 struct report_general_resp
*rg
= &resp
->rg
;
444 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
445 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
446 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
447 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
448 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
449 dev
->ex_dev
.configuring
= rg
->configuring
;
450 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
453 #define RG_REQ_SIZE 8
454 #define RG_RESP_SIZE 32
456 static int sas_ex_general(struct domain_device
*dev
)
459 struct smp_resp
*rg_resp
;
463 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
467 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
473 rg_req
[1] = SMP_REPORT_GENERAL
;
475 for (i
= 0; i
< 5; i
++) {
476 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
480 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
481 SAS_ADDR(dev
->sas_addr
), res
);
483 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
484 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
485 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
486 res
= rg_resp
->result
;
490 ex_assign_report_general(dev
, rg_resp
);
492 if (dev
->ex_dev
.configuring
) {
493 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
494 SAS_ADDR(dev
->sas_addr
));
495 schedule_timeout_interruptible(5*HZ
);
505 static void ex_assign_manuf_info(struct domain_device
*dev
, void
508 u8
*mi_resp
= _mi_resp
;
509 struct sas_rphy
*rphy
= dev
->rphy
;
510 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
512 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
513 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
514 memcpy(edev
->product_rev
, mi_resp
+ 36,
515 SAS_EXPANDER_PRODUCT_REV_LEN
);
517 if (mi_resp
[8] & 1) {
518 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
519 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
520 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
521 edev
->component_revision_id
= mi_resp
[50];
525 #define MI_REQ_SIZE 8
526 #define MI_RESP_SIZE 64
528 static int sas_ex_manuf_info(struct domain_device
*dev
)
534 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
538 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
544 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
546 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
548 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
549 SAS_ADDR(dev
->sas_addr
), res
);
551 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
552 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
553 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
557 ex_assign_manuf_info(dev
, mi_resp
);
564 #define PC_REQ_SIZE 44
565 #define PC_RESP_SIZE 8
567 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
568 enum phy_func phy_func
,
569 struct sas_phy_linkrates
*rates
)
575 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
579 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
585 pc_req
[1] = SMP_PHY_CONTROL
;
587 pc_req
[10]= phy_func
;
589 pc_req
[32] = rates
->minimum_linkrate
<< 4;
590 pc_req
[33] = rates
->maximum_linkrate
<< 4;
593 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
600 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
602 struct expander_device
*ex
= &dev
->ex_dev
;
603 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
605 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
606 phy
->linkrate
= SAS_PHY_DISABLED
;
609 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
611 struct expander_device
*ex
= &dev
->ex_dev
;
614 for (i
= 0; i
< ex
->num_phys
; i
++) {
615 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
617 if (phy
->phy_state
== PHY_VACANT
||
618 phy
->phy_state
== PHY_NOT_PRESENT
)
621 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
622 sas_ex_disable_phy(dev
, i
);
626 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
629 struct domain_device
*dev
;
631 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
633 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
634 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
640 #define RPEL_REQ_SIZE 16
641 #define RPEL_RESP_SIZE 32
642 int sas_smp_get_phy_events(struct sas_phy
*phy
)
647 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
648 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
650 req
= alloc_smp_req(RPEL_REQ_SIZE
);
654 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
660 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
661 req
[9] = phy
->number
;
663 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
664 resp
, RPEL_RESP_SIZE
);
669 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
670 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
671 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
672 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
680 #ifdef CONFIG_SCSI_SAS_ATA
682 #define RPS_REQ_SIZE 16
683 #define RPS_RESP_SIZE 60
685 int sas_get_report_phy_sata(struct domain_device
*dev
, int phy_id
,
686 struct smp_resp
*rps_resp
)
689 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
690 u8
*resp
= (u8
*)rps_resp
;
695 rps_req
[1] = SMP_REPORT_PHY_SATA
;
698 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
699 rps_resp
, RPS_RESP_SIZE
);
701 /* 0x34 is the FIS type for the D2H fis. There's a potential
702 * standards cockup here. sas-2 explicitly specifies the FIS
703 * should be encoded so that FIS type is in resp[24].
704 * However, some expanders endian reverse this. Undo the
706 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
709 for (i
= 0; i
< 5; i
++) {
714 resp
[j
+ 0] = resp
[j
+ 3];
715 resp
[j
+ 1] = resp
[j
+ 2];
726 static void sas_ex_get_linkrate(struct domain_device
*parent
,
727 struct domain_device
*child
,
728 struct ex_phy
*parent_phy
)
730 struct expander_device
*parent_ex
= &parent
->ex_dev
;
731 struct sas_port
*port
;
736 port
= parent_phy
->port
;
738 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
739 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
741 if (phy
->phy_state
== PHY_VACANT
||
742 phy
->phy_state
== PHY_NOT_PRESENT
)
745 if (SAS_ADDR(phy
->attached_sas_addr
) ==
746 SAS_ADDR(child
->sas_addr
)) {
748 child
->min_linkrate
= min(parent
->min_linkrate
,
750 child
->max_linkrate
= max(parent
->max_linkrate
,
753 sas_port_add_phy(port
, phy
->phy
);
756 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
757 child
->pathways
= min(child
->pathways
, parent
->pathways
);
760 static struct domain_device
*sas_ex_discover_end_dev(
761 struct domain_device
*parent
, int phy_id
)
763 struct expander_device
*parent_ex
= &parent
->ex_dev
;
764 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
765 struct domain_device
*child
= NULL
;
766 struct sas_rphy
*rphy
;
769 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
772 child
= sas_alloc_device();
776 kref_get(&parent
->kref
);
777 child
->parent
= parent
;
778 child
->port
= parent
->port
;
779 child
->iproto
= phy
->attached_iproto
;
780 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
781 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
783 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
784 if (unlikely(!phy
->port
))
786 if (unlikely(sas_port_add(phy
->port
) != 0)) {
787 sas_port_free(phy
->port
);
791 sas_ex_get_linkrate(parent
, child
, phy
);
792 sas_device_set_phy(child
, phy
->port
);
794 #ifdef CONFIG_SCSI_SAS_ATA
795 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
796 res
= sas_get_ata_info(child
, phy
);
801 res
= sas_ata_init(child
);
804 rphy
= sas_end_device_alloc(phy
->port
);
809 get_device(&rphy
->dev
);
811 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
813 res
= sas_discover_sata(child
);
815 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
816 "%016llx:0x%x returned 0x%x\n",
817 SAS_ADDR(child
->sas_addr
),
818 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
823 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
824 child
->dev_type
= SAS_END_DEV
;
825 rphy
= sas_end_device_alloc(phy
->port
);
826 /* FIXME: error handling */
829 child
->tproto
= phy
->attached_tproto
;
833 get_device(&rphy
->dev
);
834 sas_fill_in_rphy(child
, rphy
);
836 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
838 res
= sas_discover_end_dev(child
);
840 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
841 "at %016llx:0x%x returned 0x%x\n",
842 SAS_ADDR(child
->sas_addr
),
843 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
847 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
848 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
853 list_add_tail(&child
->siblings
, &parent_ex
->children
);
857 sas_rphy_free(child
->rphy
);
858 list_del(&child
->disco_list_node
);
859 spin_lock_irq(&parent
->port
->dev_list_lock
);
860 list_del(&child
->dev_list_node
);
861 spin_unlock_irq(&parent
->port
->dev_list_lock
);
863 sas_port_delete(phy
->port
);
866 sas_put_device(child
);
870 /* See if this phy is part of a wide port */
871 static bool sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
873 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
876 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
877 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
882 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
883 SAS_ADDR_SIZE
) && ephy
->port
) {
884 sas_port_add_phy(ephy
->port
, phy
->phy
);
885 phy
->port
= ephy
->port
;
886 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
894 static struct domain_device
*sas_ex_discover_expander(
895 struct domain_device
*parent
, int phy_id
)
897 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
898 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
899 struct domain_device
*child
= NULL
;
900 struct sas_rphy
*rphy
;
901 struct sas_expander_device
*edev
;
902 struct asd_sas_port
*port
;
905 if (phy
->routing_attr
== DIRECT_ROUTING
) {
906 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
908 SAS_ADDR(parent
->sas_addr
), phy_id
,
909 SAS_ADDR(phy
->attached_sas_addr
),
910 phy
->attached_phy_id
);
913 child
= sas_alloc_device();
917 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
918 /* FIXME: better error handling */
919 BUG_ON(sas_port_add(phy
->port
) != 0);
922 switch (phy
->attached_dev_type
) {
924 rphy
= sas_expander_alloc(phy
->port
,
925 SAS_EDGE_EXPANDER_DEVICE
);
928 rphy
= sas_expander_alloc(phy
->port
,
929 SAS_FANOUT_EXPANDER_DEVICE
);
932 rphy
= NULL
; /* shut gcc up */
937 get_device(&rphy
->dev
);
938 edev
= rphy_to_expander_device(rphy
);
939 child
->dev_type
= phy
->attached_dev_type
;
940 kref_get(&parent
->kref
);
941 child
->parent
= parent
;
943 child
->iproto
= phy
->attached_iproto
;
944 child
->tproto
= phy
->attached_tproto
;
945 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
946 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
947 sas_ex_get_linkrate(parent
, child
, phy
);
948 edev
->level
= parent_ex
->level
+ 1;
949 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
952 sas_fill_in_rphy(child
, rphy
);
955 spin_lock_irq(&parent
->port
->dev_list_lock
);
956 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
957 spin_unlock_irq(&parent
->port
->dev_list_lock
);
959 res
= sas_discover_expander(child
);
961 sas_rphy_delete(rphy
);
962 spin_lock_irq(&parent
->port
->dev_list_lock
);
963 list_del(&child
->dev_list_node
);
964 spin_unlock_irq(&parent
->port
->dev_list_lock
);
965 sas_put_device(child
);
968 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
972 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
974 struct expander_device
*ex
= &dev
->ex_dev
;
975 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
976 struct domain_device
*child
= NULL
;
980 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
981 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
982 res
= sas_ex_phy_discover(dev
, phy_id
);
987 /* Parent and domain coherency */
988 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
989 SAS_ADDR(dev
->port
->sas_addr
))) {
990 sas_add_parent_port(dev
, phy_id
);
993 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
994 SAS_ADDR(dev
->parent
->sas_addr
))) {
995 sas_add_parent_port(dev
, phy_id
);
996 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
997 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
1001 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
1002 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
1004 if (ex_phy
->attached_dev_type
== NO_DEVICE
) {
1005 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
1006 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1007 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1010 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
1013 if (ex_phy
->attached_dev_type
!= SAS_END_DEV
&&
1014 ex_phy
->attached_dev_type
!= FANOUT_DEV
&&
1015 ex_phy
->attached_dev_type
!= EDGE_DEV
&&
1016 ex_phy
->attached_dev_type
!= SATA_PENDING
) {
1017 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018 "phy 0x%x\n", ex_phy
->attached_dev_type
,
1019 SAS_ADDR(dev
->sas_addr
),
1024 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1026 SAS_DPRINTK("configure routing for dev %016llx "
1027 "reported 0x%x. Forgotten\n",
1028 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
1029 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
1033 if (sas_ex_join_wide_port(dev
, phy_id
)) {
1034 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1035 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
1039 switch (ex_phy
->attached_dev_type
) {
1042 child
= sas_ex_discover_end_dev(dev
, phy_id
);
1045 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
1046 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1047 "attached to ex %016llx phy 0x%x\n",
1048 SAS_ADDR(ex_phy
->attached_sas_addr
),
1049 ex_phy
->attached_phy_id
,
1050 SAS_ADDR(dev
->sas_addr
),
1052 sas_ex_disable_phy(dev
, phy_id
);
1055 memcpy(dev
->port
->disc
.fanout_sas_addr
,
1056 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1059 child
= sas_ex_discover_expander(dev
, phy_id
);
1068 for (i
= 0; i
< ex
->num_phys
; i
++) {
1069 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
1070 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
1073 * Due to races, the phy might not get added to the
1074 * wide port, so we add the phy to the wide port here.
1076 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
1077 SAS_ADDR(child
->sas_addr
)) {
1078 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
1079 if (sas_ex_join_wide_port(dev
, i
))
1080 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1081 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
1090 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
1092 struct expander_device
*ex
= &dev
->ex_dev
;
1095 for (i
= 0; i
< ex
->num_phys
; i
++) {
1096 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1098 if (phy
->phy_state
== PHY_VACANT
||
1099 phy
->phy_state
== PHY_NOT_PRESENT
)
1102 if ((phy
->attached_dev_type
== EDGE_DEV
||
1103 phy
->attached_dev_type
== FANOUT_DEV
) &&
1104 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1106 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1114 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1116 struct expander_device
*ex
= &dev
->ex_dev
;
1117 struct domain_device
*child
;
1118 u8 sub_addr
[8] = {0, };
1120 list_for_each_entry(child
, &ex
->children
, siblings
) {
1121 if (child
->dev_type
!= EDGE_DEV
&&
1122 child
->dev_type
!= FANOUT_DEV
)
1124 if (sub_addr
[0] == 0) {
1125 sas_find_sub_addr(child
, sub_addr
);
1130 if (sas_find_sub_addr(child
, s2
) &&
1131 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1133 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1134 "diverges from subtractive "
1135 "boundary %016llx\n",
1136 SAS_ADDR(dev
->sas_addr
),
1137 SAS_ADDR(child
->sas_addr
),
1139 SAS_ADDR(sub_addr
));
1141 sas_ex_disable_port(child
, s2
);
1148 * sas_ex_discover_devices -- discover devices attached to this expander
1149 * dev: pointer to the expander domain device
1150 * single: if you want to do a single phy, else set to -1;
1152 * Configure this expander for use with its devices and register the
1153 * devices of this expander.
1155 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1157 struct expander_device
*ex
= &dev
->ex_dev
;
1158 int i
= 0, end
= ex
->num_phys
;
1161 if (0 <= single
&& single
< end
) {
1166 for ( ; i
< end
; i
++) {
1167 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1169 if (ex_phy
->phy_state
== PHY_VACANT
||
1170 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1171 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1174 switch (ex_phy
->linkrate
) {
1175 case SAS_PHY_DISABLED
:
1176 case SAS_PHY_RESET_PROBLEM
:
1177 case SAS_SATA_PORT_SELECTOR
:
1180 res
= sas_ex_discover_dev(dev
, i
);
1188 sas_check_level_subtractive_boundary(dev
);
1193 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1195 struct expander_device
*ex
= &dev
->ex_dev
;
1197 u8
*sub_sas_addr
= NULL
;
1199 if (dev
->dev_type
!= EDGE_DEV
)
1202 for (i
= 0; i
< ex
->num_phys
; i
++) {
1203 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1205 if (phy
->phy_state
== PHY_VACANT
||
1206 phy
->phy_state
== PHY_NOT_PRESENT
)
1209 if ((phy
->attached_dev_type
== FANOUT_DEV
||
1210 phy
->attached_dev_type
== EDGE_DEV
) &&
1211 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1214 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1215 else if (SAS_ADDR(sub_sas_addr
) !=
1216 SAS_ADDR(phy
->attached_sas_addr
)) {
1218 SAS_DPRINTK("ex %016llx phy 0x%x "
1219 "diverges(%016llx) on subtractive "
1220 "boundary(%016llx). Disabled\n",
1221 SAS_ADDR(dev
->sas_addr
), i
,
1222 SAS_ADDR(phy
->attached_sas_addr
),
1223 SAS_ADDR(sub_sas_addr
));
1224 sas_ex_disable_phy(dev
, i
);
1231 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1232 struct ex_phy
*parent_phy
,
1233 struct ex_phy
*child_phy
)
1235 static const char *ex_type
[] = {
1236 [EDGE_DEV
] = "edge",
1237 [FANOUT_DEV
] = "fanout",
1239 struct domain_device
*parent
= child
->parent
;
1241 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1242 "phy 0x%x has %c:%c routing link!\n",
1244 ex_type
[parent
->dev_type
],
1245 SAS_ADDR(parent
->sas_addr
),
1248 ex_type
[child
->dev_type
],
1249 SAS_ADDR(child
->sas_addr
),
1252 sas_route_char(parent
, parent_phy
),
1253 sas_route_char(child
, child_phy
));
1256 static int sas_check_eeds(struct domain_device
*child
,
1257 struct ex_phy
*parent_phy
,
1258 struct ex_phy
*child_phy
)
1261 struct domain_device
*parent
= child
->parent
;
1263 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1265 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1266 "phy S:0x%x, while there is a fanout ex %016llx\n",
1267 SAS_ADDR(parent
->sas_addr
),
1269 SAS_ADDR(child
->sas_addr
),
1271 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1272 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1273 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1275 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1277 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1278 SAS_ADDR(parent
->sas_addr
)) ||
1279 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1280 SAS_ADDR(child
->sas_addr
)))
1282 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1283 SAS_ADDR(parent
->sas_addr
)) ||
1284 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1285 SAS_ADDR(child
->sas_addr
))))
1289 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1290 "phy 0x%x link forms a third EEDS!\n",
1291 SAS_ADDR(parent
->sas_addr
),
1293 SAS_ADDR(child
->sas_addr
),
1300 /* Here we spill over 80 columns. It is intentional.
1302 static int sas_check_parent_topology(struct domain_device
*child
)
1304 struct expander_device
*child_ex
= &child
->ex_dev
;
1305 struct expander_device
*parent_ex
;
1312 if (child
->parent
->dev_type
!= EDGE_DEV
&&
1313 child
->parent
->dev_type
!= FANOUT_DEV
)
1316 parent_ex
= &child
->parent
->ex_dev
;
1318 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1319 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1320 struct ex_phy
*child_phy
;
1322 if (parent_phy
->phy_state
== PHY_VACANT
||
1323 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1326 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1329 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1331 switch (child
->parent
->dev_type
) {
1333 if (child
->dev_type
== FANOUT_DEV
) {
1334 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1335 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1336 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1339 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1340 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1341 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1342 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1343 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1346 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1347 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
||
1348 (child_phy
->routing_attr
== TABLE_ROUTING
&&
1349 child_ex
->t2t_supp
&& parent_ex
->t2t_supp
)) {
1352 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1358 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1359 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1360 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1372 #define RRI_REQ_SIZE 16
1373 #define RRI_RESP_SIZE 44
1375 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1376 u8
*sas_addr
, int *index
, int *present
)
1379 struct expander_device
*ex
= &dev
->ex_dev
;
1380 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1387 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1391 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1397 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1398 rri_req
[9] = phy_id
;
1400 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1401 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1402 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1407 if (res
== SMP_RESP_NO_INDEX
) {
1408 SAS_DPRINTK("overflow of indexes: dev %016llx "
1409 "phy 0x%x index 0x%x\n",
1410 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1412 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1413 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1414 "result 0x%x\n", __func__
,
1415 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1418 if (SAS_ADDR(sas_addr
) != 0) {
1419 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1421 if ((rri_resp
[12] & 0x80) == 0x80)
1426 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1431 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1432 phy
->last_da_index
< i
) {
1433 phy
->last_da_index
= i
;
1446 #define CRI_REQ_SIZE 44
1447 #define CRI_RESP_SIZE 8
1449 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1450 u8
*sas_addr
, int index
, int include
)
1456 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1460 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1466 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1467 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1468 cri_req
[9] = phy_id
;
1469 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1470 cri_req
[12] |= 0x80;
1471 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1473 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1478 if (res
== SMP_RESP_NO_INDEX
) {
1479 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1481 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1489 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1490 u8
*sas_addr
, int include
)
1496 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1499 if (include
^ present
)
1500 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1506 * sas_configure_parent -- configure routing table of parent
1507 * parent: parent expander
1508 * child: child expander
1509 * sas_addr: SAS port identifier of device directly attached to child
1511 static int sas_configure_parent(struct domain_device
*parent
,
1512 struct domain_device
*child
,
1513 u8
*sas_addr
, int include
)
1515 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1519 if (parent
->parent
) {
1520 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1526 if (ex_parent
->conf_route_table
== 0) {
1527 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1528 SAS_ADDR(parent
->sas_addr
));
1532 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1533 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1535 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1536 (SAS_ADDR(phy
->attached_sas_addr
) ==
1537 SAS_ADDR(child
->sas_addr
))) {
1538 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1548 * sas_configure_routing -- configure routing
1549 * dev: expander device
1550 * sas_addr: port identifier of device directly attached to the expander device
1552 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1555 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1559 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1562 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1567 * sas_discover_expander -- expander discovery
1568 * @ex: pointer to expander domain device
1570 * See comment in sas_discover_sata().
1572 static int sas_discover_expander(struct domain_device
*dev
)
1576 res
= sas_notify_lldd_dev_found(dev
);
1580 res
= sas_ex_general(dev
);
1583 res
= sas_ex_manuf_info(dev
);
1587 res
= sas_expander_discover(dev
);
1589 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1590 SAS_ADDR(dev
->sas_addr
), res
);
1594 sas_check_ex_subtractive_boundary(dev
);
1595 res
= sas_check_parent_topology(dev
);
1600 sas_notify_lldd_dev_gone(dev
);
1604 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1607 struct domain_device
*dev
;
1609 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1610 if (dev
->dev_type
== EDGE_DEV
||
1611 dev
->dev_type
== FANOUT_DEV
) {
1612 struct sas_expander_device
*ex
=
1613 rphy_to_expander_device(dev
->rphy
);
1615 if (level
== ex
->level
)
1616 res
= sas_ex_discover_devices(dev
, -1);
1618 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1626 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1632 level
= port
->disc
.max_level
;
1633 res
= sas_ex_level_discovery(port
, level
);
1635 } while (level
< port
->disc
.max_level
);
1640 int sas_discover_root_expander(struct domain_device
*dev
)
1643 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1645 res
= sas_rphy_add(dev
->rphy
);
1649 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1650 res
= sas_discover_expander(dev
);
1654 sas_ex_bfs_disc(dev
->port
);
1659 sas_rphy_remove(dev
->rphy
);
1664 /* ---------- Domain revalidation ---------- */
1666 static int sas_get_phy_discover(struct domain_device
*dev
,
1667 int phy_id
, struct smp_resp
*disc_resp
)
1672 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1676 disc_req
[1] = SMP_DISCOVER
;
1677 disc_req
[9] = phy_id
;
1679 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1680 disc_resp
, DISCOVER_RESP_SIZE
);
1683 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1684 res
= disc_resp
->result
;
1692 static int sas_get_phy_change_count(struct domain_device
*dev
,
1693 int phy_id
, int *pcc
)
1696 struct smp_resp
*disc_resp
;
1698 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1702 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1704 *pcc
= disc_resp
->disc
.change_count
;
1710 static int sas_get_phy_attached_dev(struct domain_device
*dev
, int phy_id
,
1711 u8
*sas_addr
, enum sas_dev_type
*type
)
1714 struct smp_resp
*disc_resp
;
1715 struct discover_resp
*dr
;
1717 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1720 dr
= &disc_resp
->disc
;
1722 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1724 memcpy(sas_addr
, disc_resp
->disc
.attached_sas_addr
, 8);
1725 *type
= to_dev_type(dr
);
1727 memset(sas_addr
, 0, 8);
1733 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1734 int from_phy
, bool update
)
1736 struct expander_device
*ex
= &dev
->ex_dev
;
1740 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1741 int phy_change_count
= 0;
1743 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1745 case SMP_RESP_PHY_VACANT
:
1746 case SMP_RESP_NO_PHY
:
1748 case SMP_RESP_FUNC_ACC
:
1754 if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1756 ex
->ex_phy
[i
].phy_change_count
=
1765 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1769 struct smp_resp
*rg_resp
;
1771 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1775 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1781 rg_req
[1] = SMP_REPORT_GENERAL
;
1783 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1787 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1788 res
= rg_resp
->result
;
1792 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1799 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1800 * @dev:domain device to be detect.
1801 * @src_dev: the device which originated BROADCAST(CHANGE).
1803 * Add self-configuration expander suport. Suppose two expander cascading,
1804 * when the first level expander is self-configuring, hotplug the disks in
1805 * second level expander, BROADCAST(CHANGE) will not only be originated
1806 * in the second level expander, but also be originated in the first level
1807 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1808 * expander changed count in two level expanders will all increment at least
1809 * once, but the phy which chang count has changed is the source device which
1813 static int sas_find_bcast_dev(struct domain_device
*dev
,
1814 struct domain_device
**src_dev
)
1816 struct expander_device
*ex
= &dev
->ex_dev
;
1817 int ex_change_count
= -1;
1820 struct domain_device
*ch
;
1822 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1825 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1826 /* Just detect if this expander phys phy change count changed,
1827 * in order to determine if this expander originate BROADCAST,
1828 * and do not update phy change count field in our structure.
1830 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1833 ex
->ex_change_count
= ex_change_count
;
1834 SAS_DPRINTK("Expander phy change count has changed\n");
1837 SAS_DPRINTK("Expander phys DID NOT change\n");
1839 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1840 if (ch
->dev_type
== EDGE_DEV
|| ch
->dev_type
== FANOUT_DEV
) {
1841 res
= sas_find_bcast_dev(ch
, src_dev
);
1850 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1852 struct expander_device
*ex
= &dev
->ex_dev
;
1853 struct domain_device
*child
, *n
;
1855 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1856 set_bit(SAS_DEV_GONE
, &child
->state
);
1857 if (child
->dev_type
== EDGE_DEV
||
1858 child
->dev_type
== FANOUT_DEV
)
1859 sas_unregister_ex_tree(port
, child
);
1861 sas_unregister_dev(port
, child
);
1863 sas_unregister_dev(port
, dev
);
1866 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1867 int phy_id
, bool last
)
1869 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1870 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1871 struct domain_device
*child
, *n
, *found
= NULL
;
1873 list_for_each_entry_safe(child
, n
,
1874 &ex_dev
->children
, siblings
) {
1875 if (SAS_ADDR(child
->sas_addr
) ==
1876 SAS_ADDR(phy
->attached_sas_addr
)) {
1877 set_bit(SAS_DEV_GONE
, &child
->state
);
1878 if (child
->dev_type
== EDGE_DEV
||
1879 child
->dev_type
== FANOUT_DEV
)
1880 sas_unregister_ex_tree(parent
->port
, child
);
1882 sas_unregister_dev(parent
->port
, child
);
1887 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1889 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1891 sas_port_delete_phy(phy
->port
, phy
->phy
);
1892 sas_device_set_phy(found
, phy
->port
);
1893 if (phy
->port
->num_phys
== 0)
1894 sas_port_delete(phy
->port
);
1899 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1902 struct expander_device
*ex_root
= &root
->ex_dev
;
1903 struct domain_device
*child
;
1906 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1907 if (child
->dev_type
== EDGE_DEV
||
1908 child
->dev_type
== FANOUT_DEV
) {
1909 struct sas_expander_device
*ex
=
1910 rphy_to_expander_device(child
->rphy
);
1912 if (level
> ex
->level
)
1913 res
= sas_discover_bfs_by_root_level(child
,
1915 else if (level
== ex
->level
)
1916 res
= sas_ex_discover_devices(child
, -1);
1922 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1925 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1926 int level
= ex
->level
+1;
1928 res
= sas_ex_discover_devices(dev
, -1);
1932 res
= sas_discover_bfs_by_root_level(dev
, level
);
1935 } while (level
<= dev
->port
->disc
.max_level
);
1940 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1942 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1943 struct domain_device
*child
;
1946 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1947 SAS_ADDR(dev
->sas_addr
), phy_id
);
1948 res
= sas_ex_phy_discover(dev
, phy_id
);
1952 if (sas_ex_join_wide_port(dev
, phy_id
))
1955 res
= sas_ex_discover_devices(dev
, phy_id
);
1958 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1959 if (SAS_ADDR(child
->sas_addr
) ==
1960 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1961 if (child
->dev_type
== EDGE_DEV
||
1962 child
->dev_type
== FANOUT_DEV
)
1963 res
= sas_discover_bfs_by_root(child
);
1970 static bool dev_type_flutter(enum sas_dev_type
new, enum sas_dev_type old
)
1975 /* treat device directed resets as flutter, if we went
1976 * SAS_END_DEV to SATA_PENDING the link needs recovery
1978 if ((old
== SATA_PENDING
&& new == SAS_END_DEV
) ||
1979 (old
== SAS_END_DEV
&& new == SATA_PENDING
))
1985 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
1987 struct expander_device
*ex
= &dev
->ex_dev
;
1988 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1989 enum sas_dev_type type
= NO_DEVICE
;
1993 res
= sas_get_phy_attached_dev(dev
, phy_id
, sas_addr
, &type
);
1995 case SMP_RESP_NO_PHY
:
1996 phy
->phy_state
= PHY_NOT_PRESENT
;
1997 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1999 case SMP_RESP_PHY_VACANT
:
2000 phy
->phy_state
= PHY_VACANT
;
2001 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2003 case SMP_RESP_FUNC_ACC
:
2007 if (SAS_ADDR(sas_addr
) == 0) {
2008 phy
->phy_state
= PHY_EMPTY
;
2009 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2011 } else if (SAS_ADDR(sas_addr
) == SAS_ADDR(phy
->attached_sas_addr
) &&
2012 dev_type_flutter(type
, phy
->attached_dev_type
)) {
2013 struct domain_device
*ata_dev
= sas_ex_to_ata(dev
, phy_id
);
2016 sas_ex_phy_discover(dev
, phy_id
);
2018 if (ata_dev
&& phy
->attached_dev_type
== SATA_PENDING
)
2019 action
= ", needs recovery";
2020 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2021 SAS_ADDR(dev
->sas_addr
), phy_id
, action
);
2025 /* delete the old link */
2026 if (SAS_ADDR(phy
->attached_sas_addr
) &&
2027 SAS_ADDR(sas_addr
) != SAS_ADDR(phy
->attached_sas_addr
)) {
2028 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2029 SAS_ADDR(dev
->sas_addr
), phy_id
,
2030 SAS_ADDR(phy
->attached_sas_addr
));
2031 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2034 return sas_discover_new(dev
, phy_id
);
2038 * sas_rediscover - revalidate the domain.
2039 * @dev:domain device to be detect.
2040 * @phy_id: the phy id will be detected.
2042 * NOTE: this process _must_ quit (return) as soon as any connection
2043 * errors are encountered. Connection recovery is done elsewhere.
2044 * Discover process only interrogates devices in order to discover the
2045 * domain.For plugging out, we un-register the device only when it is
2046 * the last phy in the port, for other phys in this port, we just delete it
2047 * from the port.For inserting, we do discovery when it is the
2048 * first phy,for other phys in this port, we add it to the port to
2049 * forming the wide-port.
2051 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
2053 struct expander_device
*ex
= &dev
->ex_dev
;
2054 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
2057 bool last
= true; /* is this the last phy of the port */
2059 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2060 SAS_ADDR(dev
->sas_addr
), phy_id
);
2062 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
2063 for (i
= 0; i
< ex
->num_phys
; i
++) {
2064 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
2068 if (SAS_ADDR(phy
->attached_sas_addr
) ==
2069 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
2070 SAS_DPRINTK("phy%d part of wide port with "
2071 "phy%d\n", phy_id
, i
);
2076 res
= sas_rediscover_dev(dev
, phy_id
, last
);
2078 res
= sas_discover_new(dev
, phy_id
);
2083 * sas_revalidate_domain -- revalidate the domain
2084 * @port: port to the domain of interest
2086 * NOTE: this process _must_ quit (return) as soon as any connection
2087 * errors are encountered. Connection recovery is done elsewhere.
2088 * Discover process only interrogates devices in order to discover the
2091 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
2094 struct domain_device
*dev
= NULL
;
2096 res
= sas_find_bcast_dev(port_dev
, &dev
);
2097 while (res
== 0 && dev
) {
2098 struct expander_device
*ex
= &dev
->ex_dev
;
2103 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
2106 res
= sas_rediscover(dev
, phy_id
);
2108 } while (i
< ex
->num_phys
);
2111 res
= sas_find_bcast_dev(port_dev
, &dev
);
2116 int sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
2117 struct request
*req
)
2119 struct domain_device
*dev
;
2121 struct request
*rsp
= req
->next_rq
;
2124 printk("%s: space for a smp response is missing\n",
2129 /* no rphy means no smp target support (ie aic94xx host) */
2131 return sas_smp_host_handler(shost
, req
, rsp
);
2133 type
= rphy
->identify
.device_type
;
2135 if (type
!= SAS_EDGE_EXPANDER_DEVICE
&&
2136 type
!= SAS_FANOUT_EXPANDER_DEVICE
) {
2137 printk("%s: can we send a smp request to a device?\n",
2142 dev
= sas_find_dev_by_rphy(rphy
);
2144 printk("%s: fail to find a domain_device?\n", __func__
);
2148 /* do we need to support multiple segments? */
2149 if (req
->bio
->bi_vcnt
> 1 || rsp
->bio
->bi_vcnt
> 1) {
2150 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2151 __func__
, req
->bio
->bi_vcnt
, blk_rq_bytes(req
),
2152 rsp
->bio
->bi_vcnt
, blk_rq_bytes(rsp
));
2156 ret
= smp_execute_task(dev
, bio_data(req
->bio
), blk_rq_bytes(req
),
2157 bio_data(rsp
->bio
), blk_rq_bytes(rsp
));
2159 /* positive number is the untransferred residual */
2160 rsp
->resid_len
= ret
;
2163 } else if (ret
== 0) {