2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool
{
42 struct kmem_cache
*slab
;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
50 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 SP(SCSI_MAX_SG_SEGMENTS
)
69 struct kmem_cache
*scsi_sdb_cache
;
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
76 #define SCSI_QUEUE_DELAY 3
79 * Function: scsi_unprep_request()
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
84 * Arguments: req - request to unprepare
86 * Lock status: Assumed that no locks are held upon entry.
90 static void scsi_unprep_request(struct request
*req
)
92 struct scsi_cmnd
*cmd
= req
->special
;
94 blk_unprep_request(req
);
97 scsi_put_command(cmd
);
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
112 static int __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
114 struct Scsi_Host
*host
= cmd
->device
->host
;
115 struct scsi_device
*device
= cmd
->device
;
116 struct scsi_target
*starget
= scsi_target(device
);
117 struct request_queue
*q
= device
->request_queue
;
121 printk("Inserting command %p into mlqueue\n", cmd
));
124 * Set the appropriate busy bit for the device/host.
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
137 case SCSI_MLQUEUE_HOST_BUSY
:
138 host
->host_blocked
= host
->max_host_blocked
;
140 case SCSI_MLQUEUE_DEVICE_BUSY
:
141 case SCSI_MLQUEUE_EH_RETRY
:
142 device
->device_blocked
= device
->max_device_blocked
;
144 case SCSI_MLQUEUE_TARGET_BUSY
:
145 starget
->target_blocked
= starget
->max_target_blocked
;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
154 scsi_device_unbusy(device
);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
160 spin_lock_irqsave(q
->queue_lock
, flags
);
161 blk_requeue_request(q
, cmd
->request
);
162 spin_unlock_irqrestore(q
->queue_lock
, flags
);
164 kblockd_schedule_work(q
, &device
->requeue_work
);
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
190 return __scsi_queue_insert(cmd
, reason
, 1);
193 * scsi_execute - insert request and wait for the result
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
208 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
209 int data_direction
, void *buffer
, unsigned bufflen
,
210 unsigned char *sense
, int timeout
, int retries
, int flags
,
214 int write
= (data_direction
== DMA_TO_DEVICE
);
215 int ret
= DRIVER_ERROR
<< 24;
217 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
221 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
222 buffer
, bufflen
, __GFP_WAIT
))
225 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
226 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
229 req
->retries
= retries
;
230 req
->timeout
= timeout
;
231 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
232 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
235 * head injection *required* here otherwise quiesce won't work
237 blk_execute_rq(req
->q
, NULL
, req
, 1);
240 * Some devices (USB mass-storage in particular) may transfer
241 * garbage data together with a residue indicating that the data
242 * is invalid. Prevent the garbage from being misinterpreted
243 * and prevent security leaks by zeroing out the excess data.
245 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
246 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
249 *resid
= req
->resid_len
;
252 blk_put_request(req
);
256 EXPORT_SYMBOL(scsi_execute
);
259 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
260 int data_direction
, void *buffer
, unsigned bufflen
,
261 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
268 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
270 return DRIVER_ERROR
<< 24;
272 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
273 sense
, timeout
, retries
, 0, resid
);
275 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
280 EXPORT_SYMBOL(scsi_execute_req
);
283 * Function: scsi_init_cmd_errh()
285 * Purpose: Initialize cmd fields related to error handling.
287 * Arguments: cmd - command that is ready to be queued.
289 * Notes: This function has the job of initializing a number of
290 * fields related to error handling. Typically this will
291 * be called once for each command, as required.
293 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
295 cmd
->serial_number
= 0;
296 scsi_set_resid(cmd
, 0);
297 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
298 if (cmd
->cmd_len
== 0)
299 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
302 void scsi_device_unbusy(struct scsi_device
*sdev
)
304 struct Scsi_Host
*shost
= sdev
->host
;
305 struct scsi_target
*starget
= scsi_target(sdev
);
308 spin_lock_irqsave(shost
->host_lock
, flags
);
310 starget
->target_busy
--;
311 if (unlikely(scsi_host_in_recovery(shost
) &&
312 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
313 scsi_eh_wakeup(shost
);
314 spin_unlock(shost
->host_lock
);
315 spin_lock(sdev
->request_queue
->queue_lock
);
317 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322 * and call blk_run_queue for all the scsi_devices on the target -
323 * including current_sdev first.
325 * Called with *no* scsi locks held.
327 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
329 struct Scsi_Host
*shost
= current_sdev
->host
;
330 struct scsi_device
*sdev
, *tmp
;
331 struct scsi_target
*starget
= scsi_target(current_sdev
);
334 spin_lock_irqsave(shost
->host_lock
, flags
);
335 starget
->starget_sdev_user
= NULL
;
336 spin_unlock_irqrestore(shost
->host_lock
, flags
);
339 * Call blk_run_queue for all LUNs on the target, starting with
340 * current_sdev. We race with others (to set starget_sdev_user),
341 * but in most cases, we will be first. Ideally, each LU on the
342 * target would get some limited time or requests on the target.
344 blk_run_queue(current_sdev
->request_queue
);
346 spin_lock_irqsave(shost
->host_lock
, flags
);
347 if (starget
->starget_sdev_user
)
349 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
350 same_target_siblings
) {
351 if (sdev
== current_sdev
)
353 if (scsi_device_get(sdev
))
356 spin_unlock_irqrestore(shost
->host_lock
, flags
);
357 blk_run_queue(sdev
->request_queue
);
358 spin_lock_irqsave(shost
->host_lock
, flags
);
360 scsi_device_put(sdev
);
363 spin_unlock_irqrestore(shost
->host_lock
, flags
);
366 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
368 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
374 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
376 return ((starget
->can_queue
> 0 &&
377 starget
->target_busy
>= starget
->can_queue
) ||
378 starget
->target_blocked
);
381 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
383 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
384 shost
->host_blocked
|| shost
->host_self_blocked
)
391 * Function: scsi_run_queue()
393 * Purpose: Select a proper request queue to serve next
395 * Arguments: q - last request's queue
399 * Notes: The previous command was completely finished, start
400 * a new one if possible.
402 static void scsi_run_queue(struct request_queue
*q
)
404 struct scsi_device
*sdev
= q
->queuedata
;
405 struct Scsi_Host
*shost
;
406 LIST_HEAD(starved_list
);
410 if (scsi_target(sdev
)->single_lun
)
411 scsi_single_lun_run(sdev
);
413 spin_lock_irqsave(shost
->host_lock
, flags
);
414 list_splice_init(&shost
->starved_list
, &starved_list
);
416 while (!list_empty(&starved_list
)) {
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
427 if (scsi_host_is_busy(shost
))
430 sdev
= list_entry(starved_list
.next
,
431 struct scsi_device
, starved_entry
);
432 list_del_init(&sdev
->starved_entry
);
433 if (scsi_target_is_busy(scsi_target(sdev
))) {
434 list_move_tail(&sdev
->starved_entry
,
435 &shost
->starved_list
);
439 spin_unlock(shost
->host_lock
);
440 spin_lock(sdev
->request_queue
->queue_lock
);
441 __blk_run_queue(sdev
->request_queue
);
442 spin_unlock(sdev
->request_queue
->queue_lock
);
443 spin_lock(shost
->host_lock
);
445 /* put any unprocessed entries back */
446 list_splice(&starved_list
, &shost
->starved_list
);
447 spin_unlock_irqrestore(shost
->host_lock
, flags
);
452 void scsi_requeue_run_queue(struct work_struct
*work
)
454 struct scsi_device
*sdev
;
455 struct request_queue
*q
;
457 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
458 q
= sdev
->request_queue
;
463 * Function: scsi_requeue_command()
465 * Purpose: Handle post-processing of completed commands.
467 * Arguments: q - queue to operate on
468 * cmd - command that may need to be requeued.
472 * Notes: After command completion, there may be blocks left
473 * over which weren't finished by the previous command
474 * this can be for a number of reasons - the main one is
475 * I/O errors in the middle of the request, in which case
476 * we need to request the blocks that come after the bad
478 * Notes: Upon return, cmd is a stale pointer.
480 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
482 struct scsi_device
*sdev
= cmd
->device
;
483 struct request
*req
= cmd
->request
;
487 * We need to hold a reference on the device to avoid the queue being
488 * killed after the unlock and before scsi_run_queue is invoked which
489 * may happen because scsi_unprep_request() puts the command which
490 * releases its reference on the device.
492 get_device(&sdev
->sdev_gendev
);
494 spin_lock_irqsave(q
->queue_lock
, flags
);
495 scsi_unprep_request(req
);
496 blk_requeue_request(q
, req
);
497 spin_unlock_irqrestore(q
->queue_lock
, flags
);
501 put_device(&sdev
->sdev_gendev
);
504 void scsi_next_command(struct scsi_cmnd
*cmd
)
506 struct scsi_device
*sdev
= cmd
->device
;
507 struct request_queue
*q
= sdev
->request_queue
;
509 /* need to hold a reference on the device before we let go of the cmd */
510 get_device(&sdev
->sdev_gendev
);
512 scsi_put_command(cmd
);
515 /* ok to remove device now */
516 put_device(&sdev
->sdev_gendev
);
519 void scsi_run_host_queues(struct Scsi_Host
*shost
)
521 struct scsi_device
*sdev
;
523 shost_for_each_device(sdev
, shost
)
524 scsi_run_queue(sdev
->request_queue
);
527 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
530 * Function: scsi_end_request()
532 * Purpose: Post-processing of completed commands (usually invoked at end
533 * of upper level post-processing and scsi_io_completion).
535 * Arguments: cmd - command that is complete.
536 * error - 0 if I/O indicates success, < 0 for I/O error.
537 * bytes - number of bytes of completed I/O
538 * requeue - indicates whether we should requeue leftovers.
540 * Lock status: Assumed that lock is not held upon entry.
542 * Returns: cmd if requeue required, NULL otherwise.
544 * Notes: This is called for block device requests in order to
545 * mark some number of sectors as complete.
547 * We are guaranteeing that the request queue will be goosed
548 * at some point during this call.
549 * Notes: If cmd was requeued, upon return it will be a stale pointer.
551 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
552 int bytes
, int requeue
)
554 struct request_queue
*q
= cmd
->device
->request_queue
;
555 struct request
*req
= cmd
->request
;
558 * If there are blocks left over at the end, set up the command
559 * to queue the remainder of them.
561 if (blk_end_request(req
, error
, bytes
)) {
562 /* kill remainder if no retrys */
563 if (error
&& scsi_noretry_cmd(cmd
))
564 blk_end_request_all(req
, error
);
568 * Bleah. Leftovers again. Stick the
569 * leftovers in the front of the
570 * queue, and goose the queue again.
572 scsi_release_buffers(cmd
);
573 scsi_requeue_command(q
, cmd
);
581 * This will goose the queue request function at the end, so we don't
582 * need to worry about launching another command.
584 __scsi_release_buffers(cmd
, 0);
585 scsi_next_command(cmd
);
589 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
593 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
598 index
= get_count_order(nents
) - 3;
603 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
605 struct scsi_host_sg_pool
*sgp
;
607 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
608 mempool_free(sgl
, sgp
->pool
);
611 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
613 struct scsi_host_sg_pool
*sgp
;
615 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
616 return mempool_alloc(sgp
->pool
, gfp_mask
);
619 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
626 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
627 gfp_mask
, scsi_sg_alloc
);
629 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
635 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
637 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
640 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
643 if (cmd
->sdb
.table
.nents
)
644 scsi_free_sgtable(&cmd
->sdb
);
646 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
648 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
649 struct scsi_data_buffer
*bidi_sdb
=
650 cmd
->request
->next_rq
->special
;
651 scsi_free_sgtable(bidi_sdb
);
652 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
653 cmd
->request
->next_rq
->special
= NULL
;
656 if (scsi_prot_sg_count(cmd
))
657 scsi_free_sgtable(cmd
->prot_sdb
);
661 * Function: scsi_release_buffers()
663 * Purpose: Completion processing for block device I/O requests.
665 * Arguments: cmd - command that we are bailing.
667 * Lock status: Assumed that no lock is held upon entry.
671 * Notes: In the event that an upper level driver rejects a
672 * command, we must release resources allocated during
673 * the __init_io() function. Primarily this would involve
674 * the scatter-gather table, and potentially any bounce
677 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
679 __scsi_release_buffers(cmd
, 1);
681 EXPORT_SYMBOL(scsi_release_buffers
);
683 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
687 switch(host_byte(result
)) {
688 case DID_TRANSPORT_FAILFAST
:
691 case DID_TARGET_FAILURE
:
692 set_host_byte(cmd
, DID_OK
);
695 case DID_NEXUS_FAILURE
:
696 set_host_byte(cmd
, DID_OK
);
708 * Function: scsi_io_completion()
710 * Purpose: Completion processing for block device I/O requests.
712 * Arguments: cmd - command that is finished.
714 * Lock status: Assumed that no lock is held upon entry.
718 * Notes: This function is matched in terms of capabilities to
719 * the function that created the scatter-gather list.
720 * In other words, if there are no bounce buffers
721 * (the normal case for most drivers), we don't need
722 * the logic to deal with cleaning up afterwards.
724 * We must call scsi_end_request(). This will finish off
725 * the specified number of sectors. If we are done, the
726 * command block will be released and the queue function
727 * will be goosed. If we are not done then we have to
728 * figure out what to do next:
730 * a) We can call scsi_requeue_command(). The request
731 * will be unprepared and put back on the queue. Then
732 * a new command will be created for it. This should
733 * be used if we made forward progress, or if we want
734 * to switch from READ(10) to READ(6) for example.
736 * b) We can call scsi_queue_insert(). The request will
737 * be put back on the queue and retried using the same
738 * command as before, possibly after a delay.
740 * c) We can call blk_end_request() with -EIO to fail
741 * the remainder of the request.
743 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
745 int result
= cmd
->result
;
746 struct request_queue
*q
= cmd
->device
->request_queue
;
747 struct request
*req
= cmd
->request
;
749 struct scsi_sense_hdr sshdr
;
751 int sense_deferred
= 0;
752 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
753 ACTION_DELAYED_RETRY
} action
;
754 char *description
= NULL
;
757 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
759 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
762 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
764 if (sense_valid
&& req
->sense
) {
766 * SG_IO wants current and deferred errors
768 int len
= 8 + cmd
->sense_buffer
[7];
770 if (len
> SCSI_SENSE_BUFFERSIZE
)
771 len
= SCSI_SENSE_BUFFERSIZE
;
772 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
773 req
->sense_len
= len
;
776 error
= __scsi_error_from_host_byte(cmd
, result
);
779 * __scsi_error_from_host_byte may have reset the host_byte
781 req
->errors
= cmd
->result
;
783 req
->resid_len
= scsi_get_resid(cmd
);
785 if (scsi_bidi_cmnd(cmd
)) {
787 * Bidi commands Must be complete as a whole,
788 * both sides at once.
790 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
792 scsi_release_buffers(cmd
);
793 blk_end_request_all(req
, 0);
795 scsi_next_command(cmd
);
800 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
801 BUG_ON(blk_bidi_rq(req
));
804 * Next deal with any sectors which we were able to correctly
807 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
809 blk_rq_sectors(req
), good_bytes
));
812 * Recovered errors need reporting, but they're always treated
813 * as success, so fiddle the result code here. For BLOCK_PC
814 * we already took a copy of the original into rq->errors which
815 * is what gets returned to the user
817 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
818 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
819 * print since caller wants ATA registers. Only occurs on
820 * SCSI ATA PASS_THROUGH commands when CK_COND=1
822 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
824 else if (!(req
->cmd_flags
& REQ_QUIET
))
825 scsi_print_sense("", cmd
);
827 /* BLOCK_PC may have set error */
832 * A number of bytes were successfully read. If there
833 * are leftovers and there is some kind of error
834 * (result != 0), retry the rest.
836 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
839 error
= __scsi_error_from_host_byte(cmd
, result
);
841 if (host_byte(result
) == DID_RESET
) {
842 /* Third party bus reset or reset for error recovery
843 * reasons. Just retry the command and see what
846 action
= ACTION_RETRY
;
847 } else if (sense_valid
&& !sense_deferred
) {
848 switch (sshdr
.sense_key
) {
850 if (cmd
->device
->removable
) {
851 /* Detected disc change. Set a bit
852 * and quietly refuse further access.
854 cmd
->device
->changed
= 1;
855 description
= "Media Changed";
856 action
= ACTION_FAIL
;
858 /* Must have been a power glitch, or a
859 * bus reset. Could not have been a
860 * media change, so we just retry the
861 * command and see what happens.
863 action
= ACTION_RETRY
;
866 case ILLEGAL_REQUEST
:
867 /* If we had an ILLEGAL REQUEST returned, then
868 * we may have performed an unsupported
869 * command. The only thing this should be
870 * would be a ten byte read where only a six
871 * byte read was supported. Also, on a system
872 * where READ CAPACITY failed, we may have
873 * read past the end of the disk.
875 if ((cmd
->device
->use_10_for_rw
&&
876 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
877 (cmd
->cmnd
[0] == READ_10
||
878 cmd
->cmnd
[0] == WRITE_10
)) {
879 /* This will issue a new 6-byte command. */
880 cmd
->device
->use_10_for_rw
= 0;
881 action
= ACTION_REPREP
;
882 } else if (sshdr
.asc
== 0x10) /* DIX */ {
883 description
= "Host Data Integrity Failure";
884 action
= ACTION_FAIL
;
886 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
887 } else if ((sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) &&
888 (cmd
->cmnd
[0] == UNMAP
||
889 cmd
->cmnd
[0] == WRITE_SAME_16
||
890 cmd
->cmnd
[0] == WRITE_SAME
)) {
891 description
= "Discard failure";
892 action
= ACTION_FAIL
;
895 action
= ACTION_FAIL
;
897 case ABORTED_COMMAND
:
898 action
= ACTION_FAIL
;
899 if (sshdr
.asc
== 0x10) { /* DIF */
900 description
= "Target Data Integrity Failure";
905 /* If the device is in the process of becoming
906 * ready, or has a temporary blockage, retry.
908 if (sshdr
.asc
== 0x04) {
909 switch (sshdr
.ascq
) {
910 case 0x01: /* becoming ready */
911 case 0x04: /* format in progress */
912 case 0x05: /* rebuild in progress */
913 case 0x06: /* recalculation in progress */
914 case 0x07: /* operation in progress */
915 case 0x08: /* Long write in progress */
916 case 0x09: /* self test in progress */
917 case 0x14: /* space allocation in progress */
918 action
= ACTION_DELAYED_RETRY
;
921 description
= "Device not ready";
922 action
= ACTION_FAIL
;
926 description
= "Device not ready";
927 action
= ACTION_FAIL
;
930 case VOLUME_OVERFLOW
:
931 /* See SSC3rXX or current. */
932 action
= ACTION_FAIL
;
935 description
= "Unhandled sense code";
936 action
= ACTION_FAIL
;
940 description
= "Unhandled error code";
941 action
= ACTION_FAIL
;
946 /* Give up and fail the remainder of the request */
947 scsi_release_buffers(cmd
);
948 if (!(req
->cmd_flags
& REQ_QUIET
)) {
950 scmd_printk(KERN_INFO
, cmd
, "%s\n",
952 scsi_print_result(cmd
);
953 if (driver_byte(result
) & DRIVER_SENSE
)
954 scsi_print_sense("", cmd
);
955 scsi_print_command(cmd
);
957 if (blk_end_request_err(req
, error
))
958 scsi_requeue_command(q
, cmd
);
960 scsi_next_command(cmd
);
963 /* Unprep the request and put it back at the head of the queue.
964 * A new command will be prepared and issued.
966 scsi_release_buffers(cmd
);
967 scsi_requeue_command(q
, cmd
);
970 /* Retry the same command immediately */
971 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
973 case ACTION_DELAYED_RETRY
:
974 /* Retry the same command after a delay */
975 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
980 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
986 * If sg table allocation fails, requeue request later.
988 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
990 return BLKPREP_DEFER
;
996 * Next, walk the list, and fill in the addresses and sizes of
999 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
1000 BUG_ON(count
> sdb
->table
.nents
);
1001 sdb
->table
.nents
= count
;
1002 sdb
->length
= blk_rq_bytes(req
);
1007 * Function: scsi_init_io()
1009 * Purpose: SCSI I/O initialize function.
1011 * Arguments: cmd - Command descriptor we wish to initialize
1013 * Returns: 0 on success
1014 * BLKPREP_DEFER if the failure is retryable
1015 * BLKPREP_KILL if the failure is fatal
1017 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
1019 struct request
*rq
= cmd
->request
;
1021 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
1025 if (blk_bidi_rq(rq
)) {
1026 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1027 scsi_sdb_cache
, GFP_ATOMIC
);
1029 error
= BLKPREP_DEFER
;
1033 rq
->next_rq
->special
= bidi_sdb
;
1034 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1039 if (blk_integrity_rq(rq
)) {
1040 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1043 BUG_ON(prot_sdb
== NULL
);
1044 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1046 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1047 error
= BLKPREP_DEFER
;
1051 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1052 prot_sdb
->table
.sgl
);
1053 BUG_ON(unlikely(count
> ivecs
));
1054 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1056 cmd
->prot_sdb
= prot_sdb
;
1057 cmd
->prot_sdb
->table
.nents
= count
;
1063 scsi_release_buffers(cmd
);
1064 cmd
->request
->special
= NULL
;
1065 scsi_put_command(cmd
);
1068 EXPORT_SYMBOL(scsi_init_io
);
1070 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1071 struct request
*req
)
1073 struct scsi_cmnd
*cmd
;
1075 if (!req
->special
) {
1076 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1084 /* pull a tag out of the request if we have one */
1085 cmd
->tag
= req
->tag
;
1088 cmd
->cmnd
= req
->cmd
;
1089 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1094 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1096 struct scsi_cmnd
*cmd
;
1097 int ret
= scsi_prep_state_check(sdev
, req
);
1099 if (ret
!= BLKPREP_OK
)
1102 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1104 return BLKPREP_DEFER
;
1107 * BLOCK_PC requests may transfer data, in which case they must
1108 * a bio attached to them. Or they might contain a SCSI command
1109 * that does not transfer data, in which case they may optionally
1110 * submit a request without an attached bio.
1115 BUG_ON(!req
->nr_phys_segments
);
1117 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1121 BUG_ON(blk_rq_bytes(req
));
1123 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1127 cmd
->cmd_len
= req
->cmd_len
;
1128 if (!blk_rq_bytes(req
))
1129 cmd
->sc_data_direction
= DMA_NONE
;
1130 else if (rq_data_dir(req
) == WRITE
)
1131 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1133 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1135 cmd
->transfersize
= blk_rq_bytes(req
);
1136 cmd
->allowed
= req
->retries
;
1139 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1142 * Setup a REQ_TYPE_FS command. These are simple read/write request
1143 * from filesystems that still need to be translated to SCSI CDBs from
1146 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1148 struct scsi_cmnd
*cmd
;
1149 int ret
= scsi_prep_state_check(sdev
, req
);
1151 if (ret
!= BLKPREP_OK
)
1154 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1155 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1156 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1157 if (ret
!= BLKPREP_OK
)
1162 * Filesystem requests must transfer data.
1164 BUG_ON(!req
->nr_phys_segments
);
1166 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1168 return BLKPREP_DEFER
;
1170 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1171 return scsi_init_io(cmd
, GFP_ATOMIC
);
1173 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1175 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1177 int ret
= BLKPREP_OK
;
1180 * If the device is not in running state we will reject some
1183 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1184 switch (sdev
->sdev_state
) {
1187 * If the device is offline we refuse to process any
1188 * commands. The device must be brought online
1189 * before trying any recovery commands.
1191 sdev_printk(KERN_ERR
, sdev
,
1192 "rejecting I/O to offline device\n");
1197 * If the device is fully deleted, we refuse to
1198 * process any commands as well.
1200 sdev_printk(KERN_ERR
, sdev
,
1201 "rejecting I/O to dead device\n");
1206 case SDEV_CREATED_BLOCK
:
1208 * If the devices is blocked we defer normal commands.
1210 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1211 ret
= BLKPREP_DEFER
;
1215 * For any other not fully online state we only allow
1216 * special commands. In particular any user initiated
1217 * command is not allowed.
1219 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1226 EXPORT_SYMBOL(scsi_prep_state_check
);
1228 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1230 struct scsi_device
*sdev
= q
->queuedata
;
1234 req
->errors
= DID_NO_CONNECT
<< 16;
1235 /* release the command and kill it */
1237 struct scsi_cmnd
*cmd
= req
->special
;
1238 scsi_release_buffers(cmd
);
1239 scsi_put_command(cmd
);
1240 req
->special
= NULL
;
1245 * If we defer, the blk_peek_request() returns NULL, but the
1246 * queue must be restarted, so we schedule a callback to happen
1249 if (sdev
->device_busy
== 0)
1250 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1253 req
->cmd_flags
|= REQ_DONTPREP
;
1258 EXPORT_SYMBOL(scsi_prep_return
);
1260 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1262 struct scsi_device
*sdev
= q
->queuedata
;
1263 int ret
= BLKPREP_KILL
;
1265 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1266 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1267 return scsi_prep_return(q
, req
, ret
);
1269 EXPORT_SYMBOL(scsi_prep_fn
);
1272 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1275 * Called with the queue_lock held.
1277 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1278 struct scsi_device
*sdev
)
1280 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1282 * unblock after device_blocked iterates to zero
1284 if (--sdev
->device_blocked
== 0) {
1286 sdev_printk(KERN_INFO
, sdev
,
1287 "unblocking device at zero depth\n"));
1289 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1293 if (scsi_device_is_busy(sdev
))
1301 * scsi_target_queue_ready: checks if there we can send commands to target
1302 * @sdev: scsi device on starget to check.
1304 * Called with the host lock held.
1306 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1307 struct scsi_device
*sdev
)
1309 struct scsi_target
*starget
= scsi_target(sdev
);
1311 if (starget
->single_lun
) {
1312 if (starget
->starget_sdev_user
&&
1313 starget
->starget_sdev_user
!= sdev
)
1315 starget
->starget_sdev_user
= sdev
;
1318 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1320 * unblock after target_blocked iterates to zero
1322 if (--starget
->target_blocked
== 0) {
1323 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1324 "unblocking target at zero depth\n"));
1329 if (scsi_target_is_busy(starget
)) {
1330 list_move_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1338 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1339 * return 0. We must end up running the queue again whenever 0 is
1340 * returned, else IO can hang.
1342 * Called with host_lock held.
1344 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1345 struct Scsi_Host
*shost
,
1346 struct scsi_device
*sdev
)
1348 if (scsi_host_in_recovery(shost
))
1350 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1352 * unblock after host_blocked iterates to zero
1354 if (--shost
->host_blocked
== 0) {
1356 printk("scsi%d unblocking host at zero depth\n",
1362 if (scsi_host_is_busy(shost
)) {
1363 if (list_empty(&sdev
->starved_entry
))
1364 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1368 /* We're OK to process the command, so we can't be starved */
1369 if (!list_empty(&sdev
->starved_entry
))
1370 list_del_init(&sdev
->starved_entry
);
1376 * Busy state exporting function for request stacking drivers.
1378 * For efficiency, no lock is taken to check the busy state of
1379 * shost/starget/sdev, since the returned value is not guaranteed and
1380 * may be changed after request stacking drivers call the function,
1381 * regardless of taking lock or not.
1383 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1384 * needs to return 'not busy'. Otherwise, request stacking drivers
1385 * may hold requests forever.
1387 static int scsi_lld_busy(struct request_queue
*q
)
1389 struct scsi_device
*sdev
= q
->queuedata
;
1390 struct Scsi_Host
*shost
;
1392 if (blk_queue_dead(q
))
1398 * Ignore host/starget busy state.
1399 * Since block layer does not have a concept of fairness across
1400 * multiple queues, congestion of host/starget needs to be handled
1403 if (scsi_host_in_recovery(shost
) || scsi_device_is_busy(sdev
))
1410 * Kill a request for a dead device
1412 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1414 struct scsi_cmnd
*cmd
= req
->special
;
1415 struct scsi_device
*sdev
;
1416 struct scsi_target
*starget
;
1417 struct Scsi_Host
*shost
;
1419 blk_start_request(req
);
1421 scmd_printk(KERN_INFO
, cmd
, "killing request\n");
1424 starget
= scsi_target(sdev
);
1426 scsi_init_cmd_errh(cmd
);
1427 cmd
->result
= DID_NO_CONNECT
<< 16;
1428 atomic_inc(&cmd
->device
->iorequest_cnt
);
1431 * SCSI request completion path will do scsi_device_unbusy(),
1432 * bump busy counts. To bump the counters, we need to dance
1433 * with the locks as normal issue path does.
1435 sdev
->device_busy
++;
1436 spin_unlock(sdev
->request_queue
->queue_lock
);
1437 spin_lock(shost
->host_lock
);
1439 starget
->target_busy
++;
1440 spin_unlock(shost
->host_lock
);
1441 spin_lock(sdev
->request_queue
->queue_lock
);
1443 blk_complete_request(req
);
1446 static void scsi_softirq_done(struct request
*rq
)
1448 struct scsi_cmnd
*cmd
= rq
->special
;
1449 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1452 INIT_LIST_HEAD(&cmd
->eh_entry
);
1454 atomic_inc(&cmd
->device
->iodone_cnt
);
1456 atomic_inc(&cmd
->device
->ioerr_cnt
);
1458 disposition
= scsi_decide_disposition(cmd
);
1459 if (disposition
!= SUCCESS
&&
1460 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1461 sdev_printk(KERN_ERR
, cmd
->device
,
1462 "timing out command, waited %lus\n",
1464 disposition
= SUCCESS
;
1467 scsi_log_completion(cmd
, disposition
);
1469 switch (disposition
) {
1471 scsi_finish_command(cmd
);
1474 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1476 case ADD_TO_MLQUEUE
:
1477 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1480 if (!scsi_eh_scmd_add(cmd
, 0))
1481 scsi_finish_command(cmd
);
1486 * Function: scsi_request_fn()
1488 * Purpose: Main strategy routine for SCSI.
1490 * Arguments: q - Pointer to actual queue.
1494 * Lock status: IO request lock assumed to be held when called.
1496 static void scsi_request_fn(struct request_queue
*q
)
1498 struct scsi_device
*sdev
= q
->queuedata
;
1499 struct Scsi_Host
*shost
;
1500 struct scsi_cmnd
*cmd
;
1501 struct request
*req
;
1503 if(!get_device(&sdev
->sdev_gendev
))
1504 /* We must be tearing the block queue down already */
1508 * To start with, we keep looping until the queue is empty, or until
1509 * the host is no longer able to accept any more requests.
1515 * get next queueable request. We do this early to make sure
1516 * that the request is fully prepared even if we cannot
1519 req
= blk_peek_request(q
);
1520 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1523 if (unlikely(!scsi_device_online(sdev
))) {
1524 sdev_printk(KERN_ERR
, sdev
,
1525 "rejecting I/O to offline device\n");
1526 scsi_kill_request(req
, q
);
1532 * Remove the request from the request list.
1534 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1535 blk_start_request(req
);
1536 sdev
->device_busy
++;
1538 spin_unlock(q
->queue_lock
);
1540 if (unlikely(cmd
== NULL
)) {
1541 printk(KERN_CRIT
"impossible request in %s.\n"
1542 "please mail a stack trace to "
1543 "linux-scsi@vger.kernel.org\n",
1545 blk_dump_rq_flags(req
, "foo");
1548 spin_lock(shost
->host_lock
);
1551 * We hit this when the driver is using a host wide
1552 * tag map. For device level tag maps the queue_depth check
1553 * in the device ready fn would prevent us from trying
1554 * to allocate a tag. Since the map is a shared host resource
1555 * we add the dev to the starved list so it eventually gets
1556 * a run when a tag is freed.
1558 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1559 if (list_empty(&sdev
->starved_entry
))
1560 list_add_tail(&sdev
->starved_entry
,
1561 &shost
->starved_list
);
1565 if (!scsi_target_queue_ready(shost
, sdev
))
1568 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1571 scsi_target(sdev
)->target_busy
++;
1575 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1576 * take the lock again.
1578 spin_unlock_irq(shost
->host_lock
);
1581 * Finally, initialize any error handling parameters, and set up
1582 * the timers for timeouts.
1584 scsi_init_cmd_errh(cmd
);
1587 * Dispatch the command to the low-level driver.
1589 rtn
= scsi_dispatch_cmd(cmd
);
1590 spin_lock_irq(q
->queue_lock
);
1598 spin_unlock_irq(shost
->host_lock
);
1601 * lock q, handle tag, requeue req, and decrement device_busy. We
1602 * must return with queue_lock held.
1604 * Decrementing device_busy without checking it is OK, as all such
1605 * cases (host limits or settings) should run the queue at some
1608 spin_lock_irq(q
->queue_lock
);
1609 blk_requeue_request(q
, req
);
1610 sdev
->device_busy
--;
1612 if (sdev
->device_busy
== 0)
1613 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1615 /* must be careful here...if we trigger the ->remove() function
1616 * we cannot be holding the q lock */
1617 spin_unlock_irq(q
->queue_lock
);
1618 put_device(&sdev
->sdev_gendev
);
1619 spin_lock_irq(q
->queue_lock
);
1622 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1624 struct device
*host_dev
;
1625 u64 bounce_limit
= 0xffffffff;
1627 if (shost
->unchecked_isa_dma
)
1628 return BLK_BOUNCE_ISA
;
1630 * Platforms with virtual-DMA translation
1631 * hardware have no practical limit.
1633 if (!PCI_DMA_BUS_IS_PHYS
)
1634 return BLK_BOUNCE_ANY
;
1636 host_dev
= scsi_get_device(shost
);
1637 if (host_dev
&& host_dev
->dma_mask
)
1638 bounce_limit
= *host_dev
->dma_mask
;
1640 return bounce_limit
;
1642 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1644 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1645 request_fn_proc
*request_fn
)
1647 struct request_queue
*q
;
1648 struct device
*dev
= shost
->dma_dev
;
1650 q
= blk_init_queue(request_fn
, NULL
);
1655 * this limit is imposed by hardware restrictions
1657 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1658 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1660 if (scsi_host_prot_dma(shost
)) {
1661 shost
->sg_prot_tablesize
=
1662 min_not_zero(shost
->sg_prot_tablesize
,
1663 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1664 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1665 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1668 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1669 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1670 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1671 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1673 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1675 if (!shost
->use_clustering
)
1676 q
->limits
.cluster
= 0;
1679 * set a reasonable default alignment on word boundaries: the
1680 * host and device may alter it using
1681 * blk_queue_update_dma_alignment() later.
1683 blk_queue_dma_alignment(q
, 0x03);
1687 EXPORT_SYMBOL(__scsi_alloc_queue
);
1689 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1691 struct request_queue
*q
;
1693 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1697 blk_queue_prep_rq(q
, scsi_prep_fn
);
1698 blk_queue_softirq_done(q
, scsi_softirq_done
);
1699 blk_queue_rq_timed_out(q
, scsi_times_out
);
1700 blk_queue_lld_busy(q
, scsi_lld_busy
);
1705 * Function: scsi_block_requests()
1707 * Purpose: Utility function used by low-level drivers to prevent further
1708 * commands from being queued to the device.
1710 * Arguments: shost - Host in question
1714 * Lock status: No locks are assumed held.
1716 * Notes: There is no timer nor any other means by which the requests
1717 * get unblocked other than the low-level driver calling
1718 * scsi_unblock_requests().
1720 void scsi_block_requests(struct Scsi_Host
*shost
)
1722 shost
->host_self_blocked
= 1;
1724 EXPORT_SYMBOL(scsi_block_requests
);
1727 * Function: scsi_unblock_requests()
1729 * Purpose: Utility function used by low-level drivers to allow further
1730 * commands from being queued to the device.
1732 * Arguments: shost - Host in question
1736 * Lock status: No locks are assumed held.
1738 * Notes: There is no timer nor any other means by which the requests
1739 * get unblocked other than the low-level driver calling
1740 * scsi_unblock_requests().
1742 * This is done as an API function so that changes to the
1743 * internals of the scsi mid-layer won't require wholesale
1744 * changes to drivers that use this feature.
1746 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1748 shost
->host_self_blocked
= 0;
1749 scsi_run_host_queues(shost
);
1751 EXPORT_SYMBOL(scsi_unblock_requests
);
1753 int __init
scsi_init_queue(void)
1757 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1758 sizeof(struct scsi_data_buffer
),
1760 if (!scsi_sdb_cache
) {
1761 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1765 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1766 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1767 int size
= sgp
->size
* sizeof(struct scatterlist
);
1769 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1770 SLAB_HWCACHE_ALIGN
, NULL
);
1772 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1777 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1780 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1789 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1790 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1792 mempool_destroy(sgp
->pool
);
1794 kmem_cache_destroy(sgp
->slab
);
1796 kmem_cache_destroy(scsi_sdb_cache
);
1801 void scsi_exit_queue(void)
1805 kmem_cache_destroy(scsi_sdb_cache
);
1807 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1808 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1809 mempool_destroy(sgp
->pool
);
1810 kmem_cache_destroy(sgp
->slab
);
1815 * scsi_mode_select - issue a mode select
1816 * @sdev: SCSI device to be queried
1817 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1818 * @sp: Save page bit (0 == don't save, 1 == save)
1819 * @modepage: mode page being requested
1820 * @buffer: request buffer (may not be smaller than eight bytes)
1821 * @len: length of request buffer.
1822 * @timeout: command timeout
1823 * @retries: number of retries before failing
1824 * @data: returns a structure abstracting the mode header data
1825 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1826 * must be SCSI_SENSE_BUFFERSIZE big.
1828 * Returns zero if successful; negative error number or scsi
1833 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1834 unsigned char *buffer
, int len
, int timeout
, int retries
,
1835 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1837 unsigned char cmd
[10];
1838 unsigned char *real_buffer
;
1841 memset(cmd
, 0, sizeof(cmd
));
1842 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1844 if (sdev
->use_10_for_ms
) {
1847 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1850 memcpy(real_buffer
+ 8, buffer
, len
);
1854 real_buffer
[2] = data
->medium_type
;
1855 real_buffer
[3] = data
->device_specific
;
1856 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1858 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1859 real_buffer
[7] = data
->block_descriptor_length
;
1861 cmd
[0] = MODE_SELECT_10
;
1865 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1869 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1872 memcpy(real_buffer
+ 4, buffer
, len
);
1875 real_buffer
[1] = data
->medium_type
;
1876 real_buffer
[2] = data
->device_specific
;
1877 real_buffer
[3] = data
->block_descriptor_length
;
1880 cmd
[0] = MODE_SELECT
;
1884 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1885 sshdr
, timeout
, retries
, NULL
);
1889 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1892 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1893 * @sdev: SCSI device to be queried
1894 * @dbd: set if mode sense will allow block descriptors to be returned
1895 * @modepage: mode page being requested
1896 * @buffer: request buffer (may not be smaller than eight bytes)
1897 * @len: length of request buffer.
1898 * @timeout: command timeout
1899 * @retries: number of retries before failing
1900 * @data: returns a structure abstracting the mode header data
1901 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1902 * must be SCSI_SENSE_BUFFERSIZE big.
1904 * Returns zero if unsuccessful, or the header offset (either 4
1905 * or 8 depending on whether a six or ten byte command was
1906 * issued) if successful.
1909 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1910 unsigned char *buffer
, int len
, int timeout
, int retries
,
1911 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1913 unsigned char cmd
[12];
1917 struct scsi_sense_hdr my_sshdr
;
1919 memset(data
, 0, sizeof(*data
));
1920 memset(&cmd
[0], 0, 12);
1921 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1924 /* caller might not be interested in sense, but we need it */
1929 use_10_for_ms
= sdev
->use_10_for_ms
;
1931 if (use_10_for_ms
) {
1935 cmd
[0] = MODE_SENSE_10
;
1942 cmd
[0] = MODE_SENSE
;
1947 memset(buffer
, 0, len
);
1949 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1950 sshdr
, timeout
, retries
, NULL
);
1952 /* This code looks awful: what it's doing is making sure an
1953 * ILLEGAL REQUEST sense return identifies the actual command
1954 * byte as the problem. MODE_SENSE commands can return
1955 * ILLEGAL REQUEST if the code page isn't supported */
1957 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1958 (driver_byte(result
) & DRIVER_SENSE
)) {
1959 if (scsi_sense_valid(sshdr
)) {
1960 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1961 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1963 * Invalid command operation code
1965 sdev
->use_10_for_ms
= 0;
1971 if(scsi_status_is_good(result
)) {
1972 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1973 (modepage
== 6 || modepage
== 8))) {
1974 /* Initio breakage? */
1977 data
->medium_type
= 0;
1978 data
->device_specific
= 0;
1980 data
->block_descriptor_length
= 0;
1981 } else if(use_10_for_ms
) {
1982 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1983 data
->medium_type
= buffer
[2];
1984 data
->device_specific
= buffer
[3];
1985 data
->longlba
= buffer
[4] & 0x01;
1986 data
->block_descriptor_length
= buffer
[6]*256
1989 data
->length
= buffer
[0] + 1;
1990 data
->medium_type
= buffer
[1];
1991 data
->device_specific
= buffer
[2];
1992 data
->block_descriptor_length
= buffer
[3];
1994 data
->header_length
= header_length
;
1999 EXPORT_SYMBOL(scsi_mode_sense
);
2002 * scsi_test_unit_ready - test if unit is ready
2003 * @sdev: scsi device to change the state of.
2004 * @timeout: command timeout
2005 * @retries: number of retries before failing
2006 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2007 * returning sense. Make sure that this is cleared before passing
2010 * Returns zero if unsuccessful or an error if TUR failed. For
2011 * removable media, UNIT_ATTENTION sets ->changed flag.
2014 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2015 struct scsi_sense_hdr
*sshdr_external
)
2018 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2020 struct scsi_sense_hdr
*sshdr
;
2023 if (!sshdr_external
)
2024 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2026 sshdr
= sshdr_external
;
2028 /* try to eat the UNIT_ATTENTION if there are enough retries */
2030 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2031 timeout
, retries
, NULL
);
2032 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2033 sshdr
->sense_key
== UNIT_ATTENTION
)
2035 } while (scsi_sense_valid(sshdr
) &&
2036 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2038 if (!sshdr_external
)
2042 EXPORT_SYMBOL(scsi_test_unit_ready
);
2045 * scsi_device_set_state - Take the given device through the device state model.
2046 * @sdev: scsi device to change the state of.
2047 * @state: state to change to.
2049 * Returns zero if unsuccessful or an error if the requested
2050 * transition is illegal.
2053 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2055 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2057 if (state
== oldstate
)
2063 case SDEV_CREATED_BLOCK
:
2107 case SDEV_CREATED_BLOCK
:
2114 case SDEV_CREATED_BLOCK
:
2149 sdev
->sdev_state
= state
;
2153 SCSI_LOG_ERROR_RECOVERY(1,
2154 sdev_printk(KERN_ERR
, sdev
,
2155 "Illegal state transition %s->%s\n",
2156 scsi_device_state_name(oldstate
),
2157 scsi_device_state_name(state
))
2161 EXPORT_SYMBOL(scsi_device_set_state
);
2164 * sdev_evt_emit - emit a single SCSI device uevent
2165 * @sdev: associated SCSI device
2166 * @evt: event to emit
2168 * Send a single uevent (scsi_event) to the associated scsi_device.
2170 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2175 switch (evt
->evt_type
) {
2176 case SDEV_EVT_MEDIA_CHANGE
:
2177 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2187 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2191 * sdev_evt_thread - send a uevent for each scsi event
2192 * @work: work struct for scsi_device
2194 * Dispatch queued events to their associated scsi_device kobjects
2197 void scsi_evt_thread(struct work_struct
*work
)
2199 struct scsi_device
*sdev
;
2200 LIST_HEAD(event_list
);
2202 sdev
= container_of(work
, struct scsi_device
, event_work
);
2205 struct scsi_event
*evt
;
2206 struct list_head
*this, *tmp
;
2207 unsigned long flags
;
2209 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2210 list_splice_init(&sdev
->event_list
, &event_list
);
2211 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2213 if (list_empty(&event_list
))
2216 list_for_each_safe(this, tmp
, &event_list
) {
2217 evt
= list_entry(this, struct scsi_event
, node
);
2218 list_del(&evt
->node
);
2219 scsi_evt_emit(sdev
, evt
);
2226 * sdev_evt_send - send asserted event to uevent thread
2227 * @sdev: scsi_device event occurred on
2228 * @evt: event to send
2230 * Assert scsi device event asynchronously.
2232 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2234 unsigned long flags
;
2237 /* FIXME: currently this check eliminates all media change events
2238 * for polled devices. Need to update to discriminate between AN
2239 * and polled events */
2240 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2246 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2247 list_add_tail(&evt
->node
, &sdev
->event_list
);
2248 schedule_work(&sdev
->event_work
);
2249 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2251 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2254 * sdev_evt_alloc - allocate a new scsi event
2255 * @evt_type: type of event to allocate
2256 * @gfpflags: GFP flags for allocation
2258 * Allocates and returns a new scsi_event.
2260 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2263 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2267 evt
->evt_type
= evt_type
;
2268 INIT_LIST_HEAD(&evt
->node
);
2270 /* evt_type-specific initialization, if any */
2272 case SDEV_EVT_MEDIA_CHANGE
:
2280 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2283 * sdev_evt_send_simple - send asserted event to uevent thread
2284 * @sdev: scsi_device event occurred on
2285 * @evt_type: type of event to send
2286 * @gfpflags: GFP flags for allocation
2288 * Assert scsi device event asynchronously, given an event type.
2290 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2291 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2293 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2295 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2300 sdev_evt_send(sdev
, evt
);
2302 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2305 * scsi_device_quiesce - Block user issued commands.
2306 * @sdev: scsi device to quiesce.
2308 * This works by trying to transition to the SDEV_QUIESCE state
2309 * (which must be a legal transition). When the device is in this
2310 * state, only special requests will be accepted, all others will
2311 * be deferred. Since special requests may also be requeued requests,
2312 * a successful return doesn't guarantee the device will be
2313 * totally quiescent.
2315 * Must be called with user context, may sleep.
2317 * Returns zero if unsuccessful or an error if not.
2320 scsi_device_quiesce(struct scsi_device
*sdev
)
2322 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2326 scsi_run_queue(sdev
->request_queue
);
2327 while (sdev
->device_busy
) {
2328 msleep_interruptible(200);
2329 scsi_run_queue(sdev
->request_queue
);
2333 EXPORT_SYMBOL(scsi_device_quiesce
);
2336 * scsi_device_resume - Restart user issued commands to a quiesced device.
2337 * @sdev: scsi device to resume.
2339 * Moves the device from quiesced back to running and restarts the
2342 * Must be called with user context, may sleep.
2345 scsi_device_resume(struct scsi_device
*sdev
)
2347 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2349 scsi_run_queue(sdev
->request_queue
);
2351 EXPORT_SYMBOL(scsi_device_resume
);
2354 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2356 scsi_device_quiesce(sdev
);
2360 scsi_target_quiesce(struct scsi_target
*starget
)
2362 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2364 EXPORT_SYMBOL(scsi_target_quiesce
);
2367 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2369 scsi_device_resume(sdev
);
2373 scsi_target_resume(struct scsi_target
*starget
)
2375 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2377 EXPORT_SYMBOL(scsi_target_resume
);
2380 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2381 * @sdev: device to block
2383 * Block request made by scsi lld's to temporarily stop all
2384 * scsi commands on the specified device. Called from interrupt
2385 * or normal process context.
2387 * Returns zero if successful or error if not
2390 * This routine transitions the device to the SDEV_BLOCK state
2391 * (which must be a legal transition). When the device is in this
2392 * state, all commands are deferred until the scsi lld reenables
2393 * the device with scsi_device_unblock or device_block_tmo fires.
2394 * This routine assumes the host_lock is held on entry.
2397 scsi_internal_device_block(struct scsi_device
*sdev
)
2399 struct request_queue
*q
= sdev
->request_queue
;
2400 unsigned long flags
;
2403 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2405 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2412 * The device has transitioned to SDEV_BLOCK. Stop the
2413 * block layer from calling the midlayer with this device's
2416 spin_lock_irqsave(q
->queue_lock
, flags
);
2418 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2422 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2425 * scsi_internal_device_unblock - resume a device after a block request
2426 * @sdev: device to resume
2428 * Called by scsi lld's or the midlayer to restart the device queue
2429 * for the previously suspended scsi device. Called from interrupt or
2430 * normal process context.
2432 * Returns zero if successful or error if not.
2435 * This routine transitions the device to the SDEV_RUNNING state
2436 * (which must be a legal transition) allowing the midlayer to
2437 * goose the queue for this device. This routine assumes the
2438 * host_lock is held upon entry.
2441 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2443 struct request_queue
*q
= sdev
->request_queue
;
2444 unsigned long flags
;
2447 * Try to transition the scsi device to SDEV_RUNNING
2448 * and goose the device queue if successful.
2450 if (sdev
->sdev_state
== SDEV_BLOCK
)
2451 sdev
->sdev_state
= SDEV_RUNNING
;
2452 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
)
2453 sdev
->sdev_state
= SDEV_CREATED
;
2454 else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2455 sdev
->sdev_state
!= SDEV_OFFLINE
)
2458 spin_lock_irqsave(q
->queue_lock
, flags
);
2460 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2464 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2467 device_block(struct scsi_device
*sdev
, void *data
)
2469 scsi_internal_device_block(sdev
);
2473 target_block(struct device
*dev
, void *data
)
2475 if (scsi_is_target_device(dev
))
2476 starget_for_each_device(to_scsi_target(dev
), NULL
,
2482 scsi_target_block(struct device
*dev
)
2484 if (scsi_is_target_device(dev
))
2485 starget_for_each_device(to_scsi_target(dev
), NULL
,
2488 device_for_each_child(dev
, NULL
, target_block
);
2490 EXPORT_SYMBOL_GPL(scsi_target_block
);
2493 device_unblock(struct scsi_device
*sdev
, void *data
)
2495 scsi_internal_device_unblock(sdev
);
2499 target_unblock(struct device
*dev
, void *data
)
2501 if (scsi_is_target_device(dev
))
2502 starget_for_each_device(to_scsi_target(dev
), NULL
,
2508 scsi_target_unblock(struct device
*dev
)
2510 if (scsi_is_target_device(dev
))
2511 starget_for_each_device(to_scsi_target(dev
), NULL
,
2514 device_for_each_child(dev
, NULL
, target_unblock
);
2516 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2519 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2520 * @sgl: scatter-gather list
2521 * @sg_count: number of segments in sg
2522 * @offset: offset in bytes into sg, on return offset into the mapped area
2523 * @len: bytes to map, on return number of bytes mapped
2525 * Returns virtual address of the start of the mapped page
2527 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2528 size_t *offset
, size_t *len
)
2531 size_t sg_len
= 0, len_complete
= 0;
2532 struct scatterlist
*sg
;
2535 WARN_ON(!irqs_disabled());
2537 for_each_sg(sgl
, sg
, sg_count
, i
) {
2538 len_complete
= sg_len
; /* Complete sg-entries */
2539 sg_len
+= sg
->length
;
2540 if (sg_len
> *offset
)
2544 if (unlikely(i
== sg_count
)) {
2545 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2547 __func__
, sg_len
, *offset
, sg_count
);
2552 /* Offset starting from the beginning of first page in this sg-entry */
2553 *offset
= *offset
- len_complete
+ sg
->offset
;
2555 /* Assumption: contiguous pages can be accessed as "page + i" */
2556 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2557 *offset
&= ~PAGE_MASK
;
2559 /* Bytes in this sg-entry from *offset to the end of the page */
2560 sg_len
= PAGE_SIZE
- *offset
;
2564 return kmap_atomic(page
);
2566 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2569 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2570 * @virt: virtual address to be unmapped
2572 void scsi_kunmap_atomic_sg(void *virt
)
2574 kunmap_atomic(virt
);
2576 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);