USB: usb-storage: unusual_devs update for Super TOP SATA bridge
[linux/fpc-iii.git] / fs / binfmt_elf.c
bloba009b9e322ac414db383823863d4dc7883fb8c54
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
37 #include <asm/page.h>
38 #include <asm/exec.h>
40 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
41 static int load_elf_library(struct file *);
42 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
43 int, int, unsigned long);
46 * If we don't support core dumping, then supply a NULL so we
47 * don't even try.
49 #ifdef CONFIG_ELF_CORE
50 static int elf_core_dump(struct coredump_params *cprm);
51 #else
52 #define elf_core_dump NULL
53 #endif
55 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
56 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
57 #else
58 #define ELF_MIN_ALIGN PAGE_SIZE
59 #endif
61 #ifndef ELF_CORE_EFLAGS
62 #define ELF_CORE_EFLAGS 0
63 #endif
65 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
66 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
67 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
69 static struct linux_binfmt elf_format = {
70 .module = THIS_MODULE,
71 .load_binary = load_elf_binary,
72 .load_shlib = load_elf_library,
73 .core_dump = elf_core_dump,
74 .min_coredump = ELF_EXEC_PAGESIZE,
77 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
79 static int set_brk(unsigned long start, unsigned long end)
81 start = ELF_PAGEALIGN(start);
82 end = ELF_PAGEALIGN(end);
83 if (end > start) {
84 unsigned long addr;
85 addr = vm_brk(start, end - start);
86 if (BAD_ADDR(addr))
87 return addr;
89 current->mm->start_brk = current->mm->brk = end;
90 return 0;
93 /* We need to explicitly zero any fractional pages
94 after the data section (i.e. bss). This would
95 contain the junk from the file that should not
96 be in memory
98 static int padzero(unsigned long elf_bss)
100 unsigned long nbyte;
102 nbyte = ELF_PAGEOFFSET(elf_bss);
103 if (nbyte) {
104 nbyte = ELF_MIN_ALIGN - nbyte;
105 if (clear_user((void __user *) elf_bss, nbyte))
106 return -EFAULT;
108 return 0;
111 /* Let's use some macros to make this stack manipulation a little clearer */
112 #ifdef CONFIG_STACK_GROWSUP
113 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
114 #define STACK_ROUND(sp, items) \
115 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
116 #define STACK_ALLOC(sp, len) ({ \
117 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
118 old_sp; })
119 #else
120 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
121 #define STACK_ROUND(sp, items) \
122 (((unsigned long) (sp - items)) &~ 15UL)
123 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
124 #endif
126 #ifndef ELF_BASE_PLATFORM
128 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
129 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
130 * will be copied to the user stack in the same manner as AT_PLATFORM.
132 #define ELF_BASE_PLATFORM NULL
133 #endif
135 static int
136 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
137 unsigned long load_addr, unsigned long interp_load_addr)
139 unsigned long p = bprm->p;
140 int argc = bprm->argc;
141 int envc = bprm->envc;
142 elf_addr_t __user *argv;
143 elf_addr_t __user *envp;
144 elf_addr_t __user *sp;
145 elf_addr_t __user *u_platform;
146 elf_addr_t __user *u_base_platform;
147 elf_addr_t __user *u_rand_bytes;
148 const char *k_platform = ELF_PLATFORM;
149 const char *k_base_platform = ELF_BASE_PLATFORM;
150 unsigned char k_rand_bytes[16];
151 int items;
152 elf_addr_t *elf_info;
153 int ei_index = 0;
154 const struct cred *cred = current_cred();
155 struct vm_area_struct *vma;
158 * In some cases (e.g. Hyper-Threading), we want to avoid L1
159 * evictions by the processes running on the same package. One
160 * thing we can do is to shuffle the initial stack for them.
163 p = arch_align_stack(p);
166 * If this architecture has a platform capability string, copy it
167 * to userspace. In some cases (Sparc), this info is impossible
168 * for userspace to get any other way, in others (i386) it is
169 * merely difficult.
171 u_platform = NULL;
172 if (k_platform) {
173 size_t len = strlen(k_platform) + 1;
175 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
176 if (__copy_to_user(u_platform, k_platform, len))
177 return -EFAULT;
181 * If this architecture has a "base" platform capability
182 * string, copy it to userspace.
184 u_base_platform = NULL;
185 if (k_base_platform) {
186 size_t len = strlen(k_base_platform) + 1;
188 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
189 if (__copy_to_user(u_base_platform, k_base_platform, len))
190 return -EFAULT;
194 * Generate 16 random bytes for userspace PRNG seeding.
196 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
197 u_rand_bytes = (elf_addr_t __user *)
198 STACK_ALLOC(p, sizeof(k_rand_bytes));
199 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
200 return -EFAULT;
202 /* Create the ELF interpreter info */
203 elf_info = (elf_addr_t *)current->mm->saved_auxv;
204 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
205 #define NEW_AUX_ENT(id, val) \
206 do { \
207 elf_info[ei_index++] = id; \
208 elf_info[ei_index++] = val; \
209 } while (0)
211 #ifdef ARCH_DLINFO
213 * ARCH_DLINFO must come first so PPC can do its special alignment of
214 * AUXV.
215 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
216 * ARCH_DLINFO changes
218 ARCH_DLINFO;
219 #endif
220 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
221 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
222 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
223 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
224 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
225 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
226 NEW_AUX_ENT(AT_BASE, interp_load_addr);
227 NEW_AUX_ENT(AT_FLAGS, 0);
228 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
229 NEW_AUX_ENT(AT_UID, cred->uid);
230 NEW_AUX_ENT(AT_EUID, cred->euid);
231 NEW_AUX_ENT(AT_GID, cred->gid);
232 NEW_AUX_ENT(AT_EGID, cred->egid);
233 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
234 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
235 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
236 if (k_platform) {
237 NEW_AUX_ENT(AT_PLATFORM,
238 (elf_addr_t)(unsigned long)u_platform);
240 if (k_base_platform) {
241 NEW_AUX_ENT(AT_BASE_PLATFORM,
242 (elf_addr_t)(unsigned long)u_base_platform);
244 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
245 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
247 #undef NEW_AUX_ENT
248 /* AT_NULL is zero; clear the rest too */
249 memset(&elf_info[ei_index], 0,
250 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
252 /* And advance past the AT_NULL entry. */
253 ei_index += 2;
255 sp = STACK_ADD(p, ei_index);
257 items = (argc + 1) + (envc + 1) + 1;
258 bprm->p = STACK_ROUND(sp, items);
260 /* Point sp at the lowest address on the stack */
261 #ifdef CONFIG_STACK_GROWSUP
262 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
263 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
264 #else
265 sp = (elf_addr_t __user *)bprm->p;
266 #endif
270 * Grow the stack manually; some architectures have a limit on how
271 * far ahead a user-space access may be in order to grow the stack.
273 vma = find_extend_vma(current->mm, bprm->p);
274 if (!vma)
275 return -EFAULT;
277 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
278 if (__put_user(argc, sp++))
279 return -EFAULT;
280 argv = sp;
281 envp = argv + argc + 1;
283 /* Populate argv and envp */
284 p = current->mm->arg_end = current->mm->arg_start;
285 while (argc-- > 0) {
286 size_t len;
287 if (__put_user((elf_addr_t)p, argv++))
288 return -EFAULT;
289 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
290 if (!len || len > MAX_ARG_STRLEN)
291 return -EINVAL;
292 p += len;
294 if (__put_user(0, argv))
295 return -EFAULT;
296 current->mm->arg_end = current->mm->env_start = p;
297 while (envc-- > 0) {
298 size_t len;
299 if (__put_user((elf_addr_t)p, envp++))
300 return -EFAULT;
301 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
302 if (!len || len > MAX_ARG_STRLEN)
303 return -EINVAL;
304 p += len;
306 if (__put_user(0, envp))
307 return -EFAULT;
308 current->mm->env_end = p;
310 /* Put the elf_info on the stack in the right place. */
311 sp = (elf_addr_t __user *)envp + 1;
312 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
313 return -EFAULT;
314 return 0;
317 static unsigned long elf_map(struct file *filep, unsigned long addr,
318 struct elf_phdr *eppnt, int prot, int type,
319 unsigned long total_size)
321 unsigned long map_addr;
322 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
323 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
324 addr = ELF_PAGESTART(addr);
325 size = ELF_PAGEALIGN(size);
327 /* mmap() will return -EINVAL if given a zero size, but a
328 * segment with zero filesize is perfectly valid */
329 if (!size)
330 return addr;
332 down_write(&current->mm->mmap_sem);
334 * total_size is the size of the ELF (interpreter) image.
335 * The _first_ mmap needs to know the full size, otherwise
336 * randomization might put this image into an overlapping
337 * position with the ELF binary image. (since size < total_size)
338 * So we first map the 'big' image - and unmap the remainder at
339 * the end. (which unmap is needed for ELF images with holes.)
341 if (total_size) {
342 total_size = ELF_PAGEALIGN(total_size);
343 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
344 if (!BAD_ADDR(map_addr))
345 do_munmap(current->mm, map_addr+size, total_size-size);
346 } else
347 map_addr = do_mmap(filep, addr, size, prot, type, off);
349 up_write(&current->mm->mmap_sem);
350 return(map_addr);
353 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
355 int i, first_idx = -1, last_idx = -1;
357 for (i = 0; i < nr; i++) {
358 if (cmds[i].p_type == PT_LOAD) {
359 last_idx = i;
360 if (first_idx == -1)
361 first_idx = i;
364 if (first_idx == -1)
365 return 0;
367 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
368 ELF_PAGESTART(cmds[first_idx].p_vaddr);
372 /* This is much more generalized than the library routine read function,
373 so we keep this separate. Technically the library read function
374 is only provided so that we can read a.out libraries that have
375 an ELF header */
377 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
378 struct file *interpreter, unsigned long *interp_map_addr,
379 unsigned long no_base)
381 struct elf_phdr *elf_phdata;
382 struct elf_phdr *eppnt;
383 unsigned long load_addr = 0;
384 int load_addr_set = 0;
385 unsigned long last_bss = 0, elf_bss = 0;
386 unsigned long error = ~0UL;
387 unsigned long total_size;
388 int retval, i, size;
390 /* First of all, some simple consistency checks */
391 if (interp_elf_ex->e_type != ET_EXEC &&
392 interp_elf_ex->e_type != ET_DYN)
393 goto out;
394 if (!elf_check_arch(interp_elf_ex))
395 goto out;
396 if (!interpreter->f_op || !interpreter->f_op->mmap)
397 goto out;
400 * If the size of this structure has changed, then punt, since
401 * we will be doing the wrong thing.
403 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
404 goto out;
405 if (interp_elf_ex->e_phnum < 1 ||
406 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
407 goto out;
409 /* Now read in all of the header information */
410 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
411 if (size > ELF_MIN_ALIGN)
412 goto out;
413 elf_phdata = kmalloc(size, GFP_KERNEL);
414 if (!elf_phdata)
415 goto out;
417 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
418 (char *)elf_phdata, size);
419 error = -EIO;
420 if (retval != size) {
421 if (retval < 0)
422 error = retval;
423 goto out_close;
426 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
427 if (!total_size) {
428 error = -EINVAL;
429 goto out_close;
432 eppnt = elf_phdata;
433 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
434 if (eppnt->p_type == PT_LOAD) {
435 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
436 int elf_prot = 0;
437 unsigned long vaddr = 0;
438 unsigned long k, map_addr;
440 if (eppnt->p_flags & PF_R)
441 elf_prot = PROT_READ;
442 if (eppnt->p_flags & PF_W)
443 elf_prot |= PROT_WRITE;
444 if (eppnt->p_flags & PF_X)
445 elf_prot |= PROT_EXEC;
446 vaddr = eppnt->p_vaddr;
447 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
448 elf_type |= MAP_FIXED;
449 else if (no_base && interp_elf_ex->e_type == ET_DYN)
450 load_addr = -vaddr;
452 map_addr = elf_map(interpreter, load_addr + vaddr,
453 eppnt, elf_prot, elf_type, total_size);
454 total_size = 0;
455 if (!*interp_map_addr)
456 *interp_map_addr = map_addr;
457 error = map_addr;
458 if (BAD_ADDR(map_addr))
459 goto out_close;
461 if (!load_addr_set &&
462 interp_elf_ex->e_type == ET_DYN) {
463 load_addr = map_addr - ELF_PAGESTART(vaddr);
464 load_addr_set = 1;
468 * Check to see if the section's size will overflow the
469 * allowed task size. Note that p_filesz must always be
470 * <= p_memsize so it's only necessary to check p_memsz.
472 k = load_addr + eppnt->p_vaddr;
473 if (BAD_ADDR(k) ||
474 eppnt->p_filesz > eppnt->p_memsz ||
475 eppnt->p_memsz > TASK_SIZE ||
476 TASK_SIZE - eppnt->p_memsz < k) {
477 error = -ENOMEM;
478 goto out_close;
482 * Find the end of the file mapping for this phdr, and
483 * keep track of the largest address we see for this.
485 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
486 if (k > elf_bss)
487 elf_bss = k;
490 * Do the same thing for the memory mapping - between
491 * elf_bss and last_bss is the bss section.
493 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
494 if (k > last_bss)
495 last_bss = k;
499 if (last_bss > elf_bss) {
501 * Now fill out the bss section. First pad the last page up
502 * to the page boundary, and then perform a mmap to make sure
503 * that there are zero-mapped pages up to and including the
504 * last bss page.
506 if (padzero(elf_bss)) {
507 error = -EFAULT;
508 goto out_close;
511 /* What we have mapped so far */
512 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
514 /* Map the last of the bss segment */
515 error = vm_brk(elf_bss, last_bss - elf_bss);
516 if (BAD_ADDR(error))
517 goto out_close;
520 error = load_addr;
522 out_close:
523 kfree(elf_phdata);
524 out:
525 return error;
529 * These are the functions used to load ELF style executables and shared
530 * libraries. There is no binary dependent code anywhere else.
533 #define INTERPRETER_NONE 0
534 #define INTERPRETER_ELF 2
536 #ifndef STACK_RND_MASK
537 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
538 #endif
540 static unsigned long randomize_stack_top(unsigned long stack_top)
542 unsigned int random_variable = 0;
544 if ((current->flags & PF_RANDOMIZE) &&
545 !(current->personality & ADDR_NO_RANDOMIZE)) {
546 random_variable = get_random_int() & STACK_RND_MASK;
547 random_variable <<= PAGE_SHIFT;
549 #ifdef CONFIG_STACK_GROWSUP
550 return PAGE_ALIGN(stack_top) + random_variable;
551 #else
552 return PAGE_ALIGN(stack_top) - random_variable;
553 #endif
556 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
558 struct file *interpreter = NULL; /* to shut gcc up */
559 unsigned long load_addr = 0, load_bias = 0;
560 int load_addr_set = 0;
561 char * elf_interpreter = NULL;
562 unsigned long error;
563 struct elf_phdr *elf_ppnt, *elf_phdata;
564 unsigned long elf_bss, elf_brk;
565 int retval, i;
566 unsigned int size;
567 unsigned long elf_entry;
568 unsigned long interp_load_addr = 0;
569 unsigned long start_code, end_code, start_data, end_data;
570 unsigned long reloc_func_desc __maybe_unused = 0;
571 int executable_stack = EXSTACK_DEFAULT;
572 unsigned long def_flags = 0;
573 struct {
574 struct elfhdr elf_ex;
575 struct elfhdr interp_elf_ex;
576 } *loc;
578 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
579 if (!loc) {
580 retval = -ENOMEM;
581 goto out_ret;
584 /* Get the exec-header */
585 loc->elf_ex = *((struct elfhdr *)bprm->buf);
587 retval = -ENOEXEC;
588 /* First of all, some simple consistency checks */
589 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
590 goto out;
592 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
593 goto out;
594 if (!elf_check_arch(&loc->elf_ex))
595 goto out;
596 if (!bprm->file->f_op || !bprm->file->f_op->mmap)
597 goto out;
599 /* Now read in all of the header information */
600 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
601 goto out;
602 if (loc->elf_ex.e_phnum < 1 ||
603 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
604 goto out;
605 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
606 retval = -ENOMEM;
607 elf_phdata = kmalloc(size, GFP_KERNEL);
608 if (!elf_phdata)
609 goto out;
611 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
612 (char *)elf_phdata, size);
613 if (retval != size) {
614 if (retval >= 0)
615 retval = -EIO;
616 goto out_free_ph;
619 elf_ppnt = elf_phdata;
620 elf_bss = 0;
621 elf_brk = 0;
623 start_code = ~0UL;
624 end_code = 0;
625 start_data = 0;
626 end_data = 0;
628 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
629 if (elf_ppnt->p_type == PT_INTERP) {
630 /* This is the program interpreter used for
631 * shared libraries - for now assume that this
632 * is an a.out format binary
634 retval = -ENOEXEC;
635 if (elf_ppnt->p_filesz > PATH_MAX ||
636 elf_ppnt->p_filesz < 2)
637 goto out_free_ph;
639 retval = -ENOMEM;
640 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
641 GFP_KERNEL);
642 if (!elf_interpreter)
643 goto out_free_ph;
645 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
646 elf_interpreter,
647 elf_ppnt->p_filesz);
648 if (retval != elf_ppnt->p_filesz) {
649 if (retval >= 0)
650 retval = -EIO;
651 goto out_free_interp;
653 /* make sure path is NULL terminated */
654 retval = -ENOEXEC;
655 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
656 goto out_free_interp;
658 interpreter = open_exec(elf_interpreter);
659 retval = PTR_ERR(interpreter);
660 if (IS_ERR(interpreter))
661 goto out_free_interp;
664 * If the binary is not readable then enforce
665 * mm->dumpable = 0 regardless of the interpreter's
666 * permissions.
668 would_dump(bprm, interpreter);
670 retval = kernel_read(interpreter, 0, bprm->buf,
671 BINPRM_BUF_SIZE);
672 if (retval != BINPRM_BUF_SIZE) {
673 if (retval >= 0)
674 retval = -EIO;
675 goto out_free_dentry;
678 /* Get the exec headers */
679 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
680 break;
682 elf_ppnt++;
685 elf_ppnt = elf_phdata;
686 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
687 if (elf_ppnt->p_type == PT_GNU_STACK) {
688 if (elf_ppnt->p_flags & PF_X)
689 executable_stack = EXSTACK_ENABLE_X;
690 else
691 executable_stack = EXSTACK_DISABLE_X;
692 break;
695 /* Some simple consistency checks for the interpreter */
696 if (elf_interpreter) {
697 retval = -ELIBBAD;
698 /* Not an ELF interpreter */
699 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
700 goto out_free_dentry;
701 /* Verify the interpreter has a valid arch */
702 if (!elf_check_arch(&loc->interp_elf_ex))
703 goto out_free_dentry;
706 /* Flush all traces of the currently running executable */
707 retval = flush_old_exec(bprm);
708 if (retval)
709 goto out_free_dentry;
711 /* OK, This is the point of no return */
712 current->mm->def_flags = def_flags;
714 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
715 may depend on the personality. */
716 SET_PERSONALITY(loc->elf_ex);
717 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
718 current->personality |= READ_IMPLIES_EXEC;
720 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
721 current->flags |= PF_RANDOMIZE;
723 setup_new_exec(bprm);
725 /* Do this so that we can load the interpreter, if need be. We will
726 change some of these later */
727 current->mm->free_area_cache = current->mm->mmap_base;
728 current->mm->cached_hole_size = 0;
729 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
730 executable_stack);
731 if (retval < 0) {
732 send_sig(SIGKILL, current, 0);
733 goto out_free_dentry;
736 current->mm->start_stack = bprm->p;
738 /* Now we do a little grungy work by mmapping the ELF image into
739 the correct location in memory. */
740 for(i = 0, elf_ppnt = elf_phdata;
741 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
742 int elf_prot = 0, elf_flags;
743 unsigned long k, vaddr;
745 if (elf_ppnt->p_type != PT_LOAD)
746 continue;
748 if (unlikely (elf_brk > elf_bss)) {
749 unsigned long nbyte;
751 /* There was a PT_LOAD segment with p_memsz > p_filesz
752 before this one. Map anonymous pages, if needed,
753 and clear the area. */
754 retval = set_brk(elf_bss + load_bias,
755 elf_brk + load_bias);
756 if (retval) {
757 send_sig(SIGKILL, current, 0);
758 goto out_free_dentry;
760 nbyte = ELF_PAGEOFFSET(elf_bss);
761 if (nbyte) {
762 nbyte = ELF_MIN_ALIGN - nbyte;
763 if (nbyte > elf_brk - elf_bss)
764 nbyte = elf_brk - elf_bss;
765 if (clear_user((void __user *)elf_bss +
766 load_bias, nbyte)) {
768 * This bss-zeroing can fail if the ELF
769 * file specifies odd protections. So
770 * we don't check the return value
776 if (elf_ppnt->p_flags & PF_R)
777 elf_prot |= PROT_READ;
778 if (elf_ppnt->p_flags & PF_W)
779 elf_prot |= PROT_WRITE;
780 if (elf_ppnt->p_flags & PF_X)
781 elf_prot |= PROT_EXEC;
783 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
785 vaddr = elf_ppnt->p_vaddr;
786 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
787 elf_flags |= MAP_FIXED;
788 } else if (loc->elf_ex.e_type == ET_DYN) {
789 /* Try and get dynamic programs out of the way of the
790 * default mmap base, as well as whatever program they
791 * might try to exec. This is because the brk will
792 * follow the loader, and is not movable. */
793 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
794 /* Memory randomization might have been switched off
795 * in runtime via sysctl.
796 * If that is the case, retain the original non-zero
797 * load_bias value in order to establish proper
798 * non-randomized mappings.
800 if (current->flags & PF_RANDOMIZE)
801 load_bias = 0;
802 else
803 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
804 #else
805 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
806 #endif
809 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
810 elf_prot, elf_flags, 0);
811 if (BAD_ADDR(error)) {
812 send_sig(SIGKILL, current, 0);
813 retval = IS_ERR((void *)error) ?
814 PTR_ERR((void*)error) : -EINVAL;
815 goto out_free_dentry;
818 if (!load_addr_set) {
819 load_addr_set = 1;
820 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
821 if (loc->elf_ex.e_type == ET_DYN) {
822 load_bias += error -
823 ELF_PAGESTART(load_bias + vaddr);
824 load_addr += load_bias;
825 reloc_func_desc = load_bias;
828 k = elf_ppnt->p_vaddr;
829 if (k < start_code)
830 start_code = k;
831 if (start_data < k)
832 start_data = k;
835 * Check to see if the section's size will overflow the
836 * allowed task size. Note that p_filesz must always be
837 * <= p_memsz so it is only necessary to check p_memsz.
839 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
840 elf_ppnt->p_memsz > TASK_SIZE ||
841 TASK_SIZE - elf_ppnt->p_memsz < k) {
842 /* set_brk can never work. Avoid overflows. */
843 send_sig(SIGKILL, current, 0);
844 retval = -EINVAL;
845 goto out_free_dentry;
848 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
850 if (k > elf_bss)
851 elf_bss = k;
852 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
853 end_code = k;
854 if (end_data < k)
855 end_data = k;
856 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
857 if (k > elf_brk)
858 elf_brk = k;
861 loc->elf_ex.e_entry += load_bias;
862 elf_bss += load_bias;
863 elf_brk += load_bias;
864 start_code += load_bias;
865 end_code += load_bias;
866 start_data += load_bias;
867 end_data += load_bias;
869 /* Calling set_brk effectively mmaps the pages that we need
870 * for the bss and break sections. We must do this before
871 * mapping in the interpreter, to make sure it doesn't wind
872 * up getting placed where the bss needs to go.
874 retval = set_brk(elf_bss, elf_brk);
875 if (retval) {
876 send_sig(SIGKILL, current, 0);
877 goto out_free_dentry;
879 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
880 send_sig(SIGSEGV, current, 0);
881 retval = -EFAULT; /* Nobody gets to see this, but.. */
882 goto out_free_dentry;
885 if (elf_interpreter) {
886 unsigned long uninitialized_var(interp_map_addr);
888 elf_entry = load_elf_interp(&loc->interp_elf_ex,
889 interpreter,
890 &interp_map_addr,
891 load_bias);
892 if (!IS_ERR((void *)elf_entry)) {
894 * load_elf_interp() returns relocation
895 * adjustment
897 interp_load_addr = elf_entry;
898 elf_entry += loc->interp_elf_ex.e_entry;
900 if (BAD_ADDR(elf_entry)) {
901 force_sig(SIGSEGV, current);
902 retval = IS_ERR((void *)elf_entry) ?
903 (int)elf_entry : -EINVAL;
904 goto out_free_dentry;
906 reloc_func_desc = interp_load_addr;
908 allow_write_access(interpreter);
909 fput(interpreter);
910 kfree(elf_interpreter);
911 } else {
912 elf_entry = loc->elf_ex.e_entry;
913 if (BAD_ADDR(elf_entry)) {
914 force_sig(SIGSEGV, current);
915 retval = -EINVAL;
916 goto out_free_dentry;
920 kfree(elf_phdata);
922 set_binfmt(&elf_format);
924 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
925 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
926 if (retval < 0) {
927 send_sig(SIGKILL, current, 0);
928 goto out;
930 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
932 install_exec_creds(bprm);
933 retval = create_elf_tables(bprm, &loc->elf_ex,
934 load_addr, interp_load_addr);
935 if (retval < 0) {
936 send_sig(SIGKILL, current, 0);
937 goto out;
939 /* N.B. passed_fileno might not be initialized? */
940 current->mm->end_code = end_code;
941 current->mm->start_code = start_code;
942 current->mm->start_data = start_data;
943 current->mm->end_data = end_data;
944 current->mm->start_stack = bprm->p;
946 #ifdef arch_randomize_brk
947 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
948 current->mm->brk = current->mm->start_brk =
949 arch_randomize_brk(current->mm);
950 #ifdef CONFIG_COMPAT_BRK
951 current->brk_randomized = 1;
952 #endif
954 #endif
956 if (current->personality & MMAP_PAGE_ZERO) {
957 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
958 and some applications "depend" upon this behavior.
959 Since we do not have the power to recompile these, we
960 emulate the SVr4 behavior. Sigh. */
961 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
962 MAP_FIXED | MAP_PRIVATE, 0);
965 #ifdef ELF_PLAT_INIT
967 * The ABI may specify that certain registers be set up in special
968 * ways (on i386 %edx is the address of a DT_FINI function, for
969 * example. In addition, it may also specify (eg, PowerPC64 ELF)
970 * that the e_entry field is the address of the function descriptor
971 * for the startup routine, rather than the address of the startup
972 * routine itself. This macro performs whatever initialization to
973 * the regs structure is required as well as any relocations to the
974 * function descriptor entries when executing dynamically links apps.
976 ELF_PLAT_INIT(regs, reloc_func_desc);
977 #endif
979 start_thread(regs, elf_entry, bprm->p);
980 retval = 0;
981 out:
982 kfree(loc);
983 out_ret:
984 return retval;
986 /* error cleanup */
987 out_free_dentry:
988 allow_write_access(interpreter);
989 if (interpreter)
990 fput(interpreter);
991 out_free_interp:
992 kfree(elf_interpreter);
993 out_free_ph:
994 kfree(elf_phdata);
995 goto out;
998 /* This is really simpleminded and specialized - we are loading an
999 a.out library that is given an ELF header. */
1000 static int load_elf_library(struct file *file)
1002 struct elf_phdr *elf_phdata;
1003 struct elf_phdr *eppnt;
1004 unsigned long elf_bss, bss, len;
1005 int retval, error, i, j;
1006 struct elfhdr elf_ex;
1008 error = -ENOEXEC;
1009 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1010 if (retval != sizeof(elf_ex))
1011 goto out;
1013 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1014 goto out;
1016 /* First of all, some simple consistency checks */
1017 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1018 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1019 goto out;
1021 /* Now read in all of the header information */
1023 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1024 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1026 error = -ENOMEM;
1027 elf_phdata = kmalloc(j, GFP_KERNEL);
1028 if (!elf_phdata)
1029 goto out;
1031 eppnt = elf_phdata;
1032 error = -ENOEXEC;
1033 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1034 if (retval != j)
1035 goto out_free_ph;
1037 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1038 if ((eppnt + i)->p_type == PT_LOAD)
1039 j++;
1040 if (j != 1)
1041 goto out_free_ph;
1043 while (eppnt->p_type != PT_LOAD)
1044 eppnt++;
1046 /* Now use mmap to map the library into memory. */
1047 error = vm_mmap(file,
1048 ELF_PAGESTART(eppnt->p_vaddr),
1049 (eppnt->p_filesz +
1050 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1051 PROT_READ | PROT_WRITE | PROT_EXEC,
1052 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1053 (eppnt->p_offset -
1054 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1055 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1056 goto out_free_ph;
1058 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1059 if (padzero(elf_bss)) {
1060 error = -EFAULT;
1061 goto out_free_ph;
1064 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1065 ELF_MIN_ALIGN - 1);
1066 bss = eppnt->p_memsz + eppnt->p_vaddr;
1067 if (bss > len)
1068 vm_brk(len, bss - len);
1069 error = 0;
1071 out_free_ph:
1072 kfree(elf_phdata);
1073 out:
1074 return error;
1077 #ifdef CONFIG_ELF_CORE
1079 * ELF core dumper
1081 * Modelled on fs/exec.c:aout_core_dump()
1082 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1086 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1087 * that are useful for post-mortem analysis are included in every core dump.
1088 * In that way we ensure that the core dump is fully interpretable later
1089 * without matching up the same kernel and hardware config to see what PC values
1090 * meant. These special mappings include - vDSO, vsyscall, and other
1091 * architecture specific mappings
1093 static bool always_dump_vma(struct vm_area_struct *vma)
1095 /* Any vsyscall mappings? */
1096 if (vma == get_gate_vma(vma->vm_mm))
1097 return true;
1099 * arch_vma_name() returns non-NULL for special architecture mappings,
1100 * such as vDSO sections.
1102 if (arch_vma_name(vma))
1103 return true;
1105 return false;
1109 * Decide what to dump of a segment, part, all or none.
1111 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1112 unsigned long mm_flags)
1114 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1116 /* always dump the vdso and vsyscall sections */
1117 if (always_dump_vma(vma))
1118 goto whole;
1120 if (vma->vm_flags & VM_NODUMP)
1121 return 0;
1123 /* Hugetlb memory check */
1124 if (vma->vm_flags & VM_HUGETLB) {
1125 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1126 goto whole;
1127 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1128 goto whole;
1131 /* Do not dump I/O mapped devices or special mappings */
1132 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1133 return 0;
1135 /* By default, dump shared memory if mapped from an anonymous file. */
1136 if (vma->vm_flags & VM_SHARED) {
1137 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1138 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1139 goto whole;
1140 return 0;
1143 /* Dump segments that have been written to. */
1144 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1145 goto whole;
1146 if (vma->vm_file == NULL)
1147 return 0;
1149 if (FILTER(MAPPED_PRIVATE))
1150 goto whole;
1153 * If this looks like the beginning of a DSO or executable mapping,
1154 * check for an ELF header. If we find one, dump the first page to
1155 * aid in determining what was mapped here.
1157 if (FILTER(ELF_HEADERS) &&
1158 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1159 u32 __user *header = (u32 __user *) vma->vm_start;
1160 u32 word;
1161 mm_segment_t fs = get_fs();
1163 * Doing it this way gets the constant folded by GCC.
1165 union {
1166 u32 cmp;
1167 char elfmag[SELFMAG];
1168 } magic;
1169 BUILD_BUG_ON(SELFMAG != sizeof word);
1170 magic.elfmag[EI_MAG0] = ELFMAG0;
1171 magic.elfmag[EI_MAG1] = ELFMAG1;
1172 magic.elfmag[EI_MAG2] = ELFMAG2;
1173 magic.elfmag[EI_MAG3] = ELFMAG3;
1175 * Switch to the user "segment" for get_user(),
1176 * then put back what elf_core_dump() had in place.
1178 set_fs(USER_DS);
1179 if (unlikely(get_user(word, header)))
1180 word = 0;
1181 set_fs(fs);
1182 if (word == magic.cmp)
1183 return PAGE_SIZE;
1186 #undef FILTER
1188 return 0;
1190 whole:
1191 return vma->vm_end - vma->vm_start;
1194 /* An ELF note in memory */
1195 struct memelfnote
1197 const char *name;
1198 int type;
1199 unsigned int datasz;
1200 void *data;
1203 static int notesize(struct memelfnote *en)
1205 int sz;
1207 sz = sizeof(struct elf_note);
1208 sz += roundup(strlen(en->name) + 1, 4);
1209 sz += roundup(en->datasz, 4);
1211 return sz;
1214 #define DUMP_WRITE(addr, nr, foffset) \
1215 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1217 static int alignfile(struct file *file, loff_t *foffset)
1219 static const char buf[4] = { 0, };
1220 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1221 return 1;
1224 static int writenote(struct memelfnote *men, struct file *file,
1225 loff_t *foffset)
1227 struct elf_note en;
1228 en.n_namesz = strlen(men->name) + 1;
1229 en.n_descsz = men->datasz;
1230 en.n_type = men->type;
1232 DUMP_WRITE(&en, sizeof(en), foffset);
1233 DUMP_WRITE(men->name, en.n_namesz, foffset);
1234 if (!alignfile(file, foffset))
1235 return 0;
1236 DUMP_WRITE(men->data, men->datasz, foffset);
1237 if (!alignfile(file, foffset))
1238 return 0;
1240 return 1;
1242 #undef DUMP_WRITE
1244 static void fill_elf_header(struct elfhdr *elf, int segs,
1245 u16 machine, u32 flags, u8 osabi)
1247 memset(elf, 0, sizeof(*elf));
1249 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1250 elf->e_ident[EI_CLASS] = ELF_CLASS;
1251 elf->e_ident[EI_DATA] = ELF_DATA;
1252 elf->e_ident[EI_VERSION] = EV_CURRENT;
1253 elf->e_ident[EI_OSABI] = ELF_OSABI;
1255 elf->e_type = ET_CORE;
1256 elf->e_machine = machine;
1257 elf->e_version = EV_CURRENT;
1258 elf->e_phoff = sizeof(struct elfhdr);
1259 elf->e_flags = flags;
1260 elf->e_ehsize = sizeof(struct elfhdr);
1261 elf->e_phentsize = sizeof(struct elf_phdr);
1262 elf->e_phnum = segs;
1264 return;
1267 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1269 phdr->p_type = PT_NOTE;
1270 phdr->p_offset = offset;
1271 phdr->p_vaddr = 0;
1272 phdr->p_paddr = 0;
1273 phdr->p_filesz = sz;
1274 phdr->p_memsz = 0;
1275 phdr->p_flags = 0;
1276 phdr->p_align = 0;
1277 return;
1280 static void fill_note(struct memelfnote *note, const char *name, int type,
1281 unsigned int sz, void *data)
1283 note->name = name;
1284 note->type = type;
1285 note->datasz = sz;
1286 note->data = data;
1287 return;
1291 * fill up all the fields in prstatus from the given task struct, except
1292 * registers which need to be filled up separately.
1294 static void fill_prstatus(struct elf_prstatus *prstatus,
1295 struct task_struct *p, long signr)
1297 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1298 prstatus->pr_sigpend = p->pending.signal.sig[0];
1299 prstatus->pr_sighold = p->blocked.sig[0];
1300 rcu_read_lock();
1301 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1302 rcu_read_unlock();
1303 prstatus->pr_pid = task_pid_vnr(p);
1304 prstatus->pr_pgrp = task_pgrp_vnr(p);
1305 prstatus->pr_sid = task_session_vnr(p);
1306 if (thread_group_leader(p)) {
1307 struct task_cputime cputime;
1310 * This is the record for the group leader. It shows the
1311 * group-wide total, not its individual thread total.
1313 thread_group_cputime(p, &cputime);
1314 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1315 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1316 } else {
1317 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1318 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1320 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1321 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1324 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1325 struct mm_struct *mm)
1327 const struct cred *cred;
1328 unsigned int i, len;
1330 /* first copy the parameters from user space */
1331 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1333 len = mm->arg_end - mm->arg_start;
1334 if (len >= ELF_PRARGSZ)
1335 len = ELF_PRARGSZ-1;
1336 if (copy_from_user(&psinfo->pr_psargs,
1337 (const char __user *)mm->arg_start, len))
1338 return -EFAULT;
1339 for(i = 0; i < len; i++)
1340 if (psinfo->pr_psargs[i] == 0)
1341 psinfo->pr_psargs[i] = ' ';
1342 psinfo->pr_psargs[len] = 0;
1344 rcu_read_lock();
1345 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1346 rcu_read_unlock();
1347 psinfo->pr_pid = task_pid_vnr(p);
1348 psinfo->pr_pgrp = task_pgrp_vnr(p);
1349 psinfo->pr_sid = task_session_vnr(p);
1351 i = p->state ? ffz(~p->state) + 1 : 0;
1352 psinfo->pr_state = i;
1353 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1354 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1355 psinfo->pr_nice = task_nice(p);
1356 psinfo->pr_flag = p->flags;
1357 rcu_read_lock();
1358 cred = __task_cred(p);
1359 SET_UID(psinfo->pr_uid, cred->uid);
1360 SET_GID(psinfo->pr_gid, cred->gid);
1361 rcu_read_unlock();
1362 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1364 return 0;
1367 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1369 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1370 int i = 0;
1372 i += 2;
1373 while (auxv[i - 2] != AT_NULL);
1374 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1377 #ifdef CORE_DUMP_USE_REGSET
1378 #include <linux/regset.h>
1380 struct elf_thread_core_info {
1381 struct elf_thread_core_info *next;
1382 struct task_struct *task;
1383 struct elf_prstatus prstatus;
1384 struct memelfnote notes[0];
1387 struct elf_note_info {
1388 struct elf_thread_core_info *thread;
1389 struct memelfnote psinfo;
1390 struct memelfnote auxv;
1391 size_t size;
1392 int thread_notes;
1396 * When a regset has a writeback hook, we call it on each thread before
1397 * dumping user memory. On register window machines, this makes sure the
1398 * user memory backing the register data is up to date before we read it.
1400 static void do_thread_regset_writeback(struct task_struct *task,
1401 const struct user_regset *regset)
1403 if (regset->writeback)
1404 regset->writeback(task, regset, 1);
1407 #ifndef PR_REG_SIZE
1408 #define PR_REG_SIZE(S) sizeof(S)
1409 #endif
1411 #ifndef PRSTATUS_SIZE
1412 #define PRSTATUS_SIZE(S) sizeof(S)
1413 #endif
1415 #ifndef PR_REG_PTR
1416 #define PR_REG_PTR(S) (&((S)->pr_reg))
1417 #endif
1419 #ifndef SET_PR_FPVALID
1420 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1421 #endif
1423 static int fill_thread_core_info(struct elf_thread_core_info *t,
1424 const struct user_regset_view *view,
1425 long signr, size_t *total)
1427 unsigned int i;
1430 * NT_PRSTATUS is the one special case, because the regset data
1431 * goes into the pr_reg field inside the note contents, rather
1432 * than being the whole note contents. We fill the reset in here.
1433 * We assume that regset 0 is NT_PRSTATUS.
1435 fill_prstatus(&t->prstatus, t->task, signr);
1436 (void) view->regsets[0].get(t->task, &view->regsets[0],
1437 0, PR_REG_SIZE(t->prstatus.pr_reg),
1438 PR_REG_PTR(&t->prstatus), NULL);
1440 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1441 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1442 *total += notesize(&t->notes[0]);
1444 do_thread_regset_writeback(t->task, &view->regsets[0]);
1447 * Each other regset might generate a note too. For each regset
1448 * that has no core_note_type or is inactive, we leave t->notes[i]
1449 * all zero and we'll know to skip writing it later.
1451 for (i = 1; i < view->n; ++i) {
1452 const struct user_regset *regset = &view->regsets[i];
1453 do_thread_regset_writeback(t->task, regset);
1454 if (regset->core_note_type && regset->get &&
1455 (!regset->active || regset->active(t->task, regset))) {
1456 int ret;
1457 size_t size = regset->n * regset->size;
1458 void *data = kmalloc(size, GFP_KERNEL);
1459 if (unlikely(!data))
1460 return 0;
1461 ret = regset->get(t->task, regset,
1462 0, size, data, NULL);
1463 if (unlikely(ret))
1464 kfree(data);
1465 else {
1466 if (regset->core_note_type != NT_PRFPREG)
1467 fill_note(&t->notes[i], "LINUX",
1468 regset->core_note_type,
1469 size, data);
1470 else {
1471 SET_PR_FPVALID(&t->prstatus, 1);
1472 fill_note(&t->notes[i], "CORE",
1473 NT_PRFPREG, size, data);
1475 *total += notesize(&t->notes[i]);
1480 return 1;
1483 static int fill_note_info(struct elfhdr *elf, int phdrs,
1484 struct elf_note_info *info,
1485 long signr, struct pt_regs *regs)
1487 struct task_struct *dump_task = current;
1488 const struct user_regset_view *view = task_user_regset_view(dump_task);
1489 struct elf_thread_core_info *t;
1490 struct elf_prpsinfo *psinfo;
1491 struct core_thread *ct;
1492 unsigned int i;
1494 info->size = 0;
1495 info->thread = NULL;
1497 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1498 if (psinfo == NULL)
1499 return 0;
1501 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1504 * Figure out how many notes we're going to need for each thread.
1506 info->thread_notes = 0;
1507 for (i = 0; i < view->n; ++i)
1508 if (view->regsets[i].core_note_type != 0)
1509 ++info->thread_notes;
1512 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1513 * since it is our one special case.
1515 if (unlikely(info->thread_notes == 0) ||
1516 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1517 WARN_ON(1);
1518 return 0;
1522 * Initialize the ELF file header.
1524 fill_elf_header(elf, phdrs,
1525 view->e_machine, view->e_flags, view->ei_osabi);
1528 * Allocate a structure for each thread.
1530 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1531 t = kzalloc(offsetof(struct elf_thread_core_info,
1532 notes[info->thread_notes]),
1533 GFP_KERNEL);
1534 if (unlikely(!t))
1535 return 0;
1537 t->task = ct->task;
1538 if (ct->task == dump_task || !info->thread) {
1539 t->next = info->thread;
1540 info->thread = t;
1541 } else {
1543 * Make sure to keep the original task at
1544 * the head of the list.
1546 t->next = info->thread->next;
1547 info->thread->next = t;
1552 * Now fill in each thread's information.
1554 for (t = info->thread; t != NULL; t = t->next)
1555 if (!fill_thread_core_info(t, view, signr, &info->size))
1556 return 0;
1559 * Fill in the two process-wide notes.
1561 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1562 info->size += notesize(&info->psinfo);
1564 fill_auxv_note(&info->auxv, current->mm);
1565 info->size += notesize(&info->auxv);
1567 return 1;
1570 static size_t get_note_info_size(struct elf_note_info *info)
1572 return info->size;
1576 * Write all the notes for each thread. When writing the first thread, the
1577 * process-wide notes are interleaved after the first thread-specific note.
1579 static int write_note_info(struct elf_note_info *info,
1580 struct file *file, loff_t *foffset)
1582 bool first = 1;
1583 struct elf_thread_core_info *t = info->thread;
1585 do {
1586 int i;
1588 if (!writenote(&t->notes[0], file, foffset))
1589 return 0;
1591 if (first && !writenote(&info->psinfo, file, foffset))
1592 return 0;
1593 if (first && !writenote(&info->auxv, file, foffset))
1594 return 0;
1596 for (i = 1; i < info->thread_notes; ++i)
1597 if (t->notes[i].data &&
1598 !writenote(&t->notes[i], file, foffset))
1599 return 0;
1601 first = 0;
1602 t = t->next;
1603 } while (t);
1605 return 1;
1608 static void free_note_info(struct elf_note_info *info)
1610 struct elf_thread_core_info *threads = info->thread;
1611 while (threads) {
1612 unsigned int i;
1613 struct elf_thread_core_info *t = threads;
1614 threads = t->next;
1615 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1616 for (i = 1; i < info->thread_notes; ++i)
1617 kfree(t->notes[i].data);
1618 kfree(t);
1620 kfree(info->psinfo.data);
1623 #else
1625 /* Here is the structure in which status of each thread is captured. */
1626 struct elf_thread_status
1628 struct list_head list;
1629 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1630 elf_fpregset_t fpu; /* NT_PRFPREG */
1631 struct task_struct *thread;
1632 #ifdef ELF_CORE_COPY_XFPREGS
1633 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1634 #endif
1635 struct memelfnote notes[3];
1636 int num_notes;
1640 * In order to add the specific thread information for the elf file format,
1641 * we need to keep a linked list of every threads pr_status and then create
1642 * a single section for them in the final core file.
1644 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1646 int sz = 0;
1647 struct task_struct *p = t->thread;
1648 t->num_notes = 0;
1650 fill_prstatus(&t->prstatus, p, signr);
1651 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1653 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1654 &(t->prstatus));
1655 t->num_notes++;
1656 sz += notesize(&t->notes[0]);
1658 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1659 &t->fpu))) {
1660 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1661 &(t->fpu));
1662 t->num_notes++;
1663 sz += notesize(&t->notes[1]);
1666 #ifdef ELF_CORE_COPY_XFPREGS
1667 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1668 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1669 sizeof(t->xfpu), &t->xfpu);
1670 t->num_notes++;
1671 sz += notesize(&t->notes[2]);
1673 #endif
1674 return sz;
1677 struct elf_note_info {
1678 struct memelfnote *notes;
1679 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1680 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1681 struct list_head thread_list;
1682 elf_fpregset_t *fpu;
1683 #ifdef ELF_CORE_COPY_XFPREGS
1684 elf_fpxregset_t *xfpu;
1685 #endif
1686 int thread_status_size;
1687 int numnote;
1690 static int elf_note_info_init(struct elf_note_info *info)
1692 memset(info, 0, sizeof(*info));
1693 INIT_LIST_HEAD(&info->thread_list);
1695 /* Allocate space for six ELF notes */
1696 info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1697 if (!info->notes)
1698 return 0;
1699 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1700 if (!info->psinfo)
1701 return 0;
1702 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1703 if (!info->prstatus)
1704 return 0;
1705 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1706 if (!info->fpu)
1707 return 0;
1708 #ifdef ELF_CORE_COPY_XFPREGS
1709 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1710 if (!info->xfpu)
1711 return 0;
1712 #endif
1713 return 1;
1716 static int fill_note_info(struct elfhdr *elf, int phdrs,
1717 struct elf_note_info *info,
1718 long signr, struct pt_regs *regs)
1720 struct list_head *t;
1722 if (!elf_note_info_init(info))
1723 return 0;
1725 if (signr) {
1726 struct core_thread *ct;
1727 struct elf_thread_status *ets;
1729 for (ct = current->mm->core_state->dumper.next;
1730 ct; ct = ct->next) {
1731 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1732 if (!ets)
1733 return 0;
1735 ets->thread = ct->task;
1736 list_add(&ets->list, &info->thread_list);
1739 list_for_each(t, &info->thread_list) {
1740 int sz;
1742 ets = list_entry(t, struct elf_thread_status, list);
1743 sz = elf_dump_thread_status(signr, ets);
1744 info->thread_status_size += sz;
1747 /* now collect the dump for the current */
1748 memset(info->prstatus, 0, sizeof(*info->prstatus));
1749 fill_prstatus(info->prstatus, current, signr);
1750 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1752 /* Set up header */
1753 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1756 * Set up the notes in similar form to SVR4 core dumps made
1757 * with info from their /proc.
1760 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1761 sizeof(*info->prstatus), info->prstatus);
1762 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1763 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1764 sizeof(*info->psinfo), info->psinfo);
1766 info->numnote = 2;
1768 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1770 /* Try to dump the FPU. */
1771 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1772 info->fpu);
1773 if (info->prstatus->pr_fpvalid)
1774 fill_note(info->notes + info->numnote++,
1775 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1776 #ifdef ELF_CORE_COPY_XFPREGS
1777 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1778 fill_note(info->notes + info->numnote++,
1779 "LINUX", ELF_CORE_XFPREG_TYPE,
1780 sizeof(*info->xfpu), info->xfpu);
1781 #endif
1783 return 1;
1786 static size_t get_note_info_size(struct elf_note_info *info)
1788 int sz = 0;
1789 int i;
1791 for (i = 0; i < info->numnote; i++)
1792 sz += notesize(info->notes + i);
1794 sz += info->thread_status_size;
1796 return sz;
1799 static int write_note_info(struct elf_note_info *info,
1800 struct file *file, loff_t *foffset)
1802 int i;
1803 struct list_head *t;
1805 for (i = 0; i < info->numnote; i++)
1806 if (!writenote(info->notes + i, file, foffset))
1807 return 0;
1809 /* write out the thread status notes section */
1810 list_for_each(t, &info->thread_list) {
1811 struct elf_thread_status *tmp =
1812 list_entry(t, struct elf_thread_status, list);
1814 for (i = 0; i < tmp->num_notes; i++)
1815 if (!writenote(&tmp->notes[i], file, foffset))
1816 return 0;
1819 return 1;
1822 static void free_note_info(struct elf_note_info *info)
1824 while (!list_empty(&info->thread_list)) {
1825 struct list_head *tmp = info->thread_list.next;
1826 list_del(tmp);
1827 kfree(list_entry(tmp, struct elf_thread_status, list));
1830 kfree(info->prstatus);
1831 kfree(info->psinfo);
1832 kfree(info->notes);
1833 kfree(info->fpu);
1834 #ifdef ELF_CORE_COPY_XFPREGS
1835 kfree(info->xfpu);
1836 #endif
1839 #endif
1841 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1842 struct vm_area_struct *gate_vma)
1844 struct vm_area_struct *ret = tsk->mm->mmap;
1846 if (ret)
1847 return ret;
1848 return gate_vma;
1851 * Helper function for iterating across a vma list. It ensures that the caller
1852 * will visit `gate_vma' prior to terminating the search.
1854 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1855 struct vm_area_struct *gate_vma)
1857 struct vm_area_struct *ret;
1859 ret = this_vma->vm_next;
1860 if (ret)
1861 return ret;
1862 if (this_vma == gate_vma)
1863 return NULL;
1864 return gate_vma;
1867 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1868 elf_addr_t e_shoff, int segs)
1870 elf->e_shoff = e_shoff;
1871 elf->e_shentsize = sizeof(*shdr4extnum);
1872 elf->e_shnum = 1;
1873 elf->e_shstrndx = SHN_UNDEF;
1875 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1877 shdr4extnum->sh_type = SHT_NULL;
1878 shdr4extnum->sh_size = elf->e_shnum;
1879 shdr4extnum->sh_link = elf->e_shstrndx;
1880 shdr4extnum->sh_info = segs;
1883 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1884 unsigned long mm_flags)
1886 struct vm_area_struct *vma;
1887 size_t size = 0;
1889 for (vma = first_vma(current, gate_vma); vma != NULL;
1890 vma = next_vma(vma, gate_vma))
1891 size += vma_dump_size(vma, mm_flags);
1892 return size;
1896 * Actual dumper
1898 * This is a two-pass process; first we find the offsets of the bits,
1899 * and then they are actually written out. If we run out of core limit
1900 * we just truncate.
1902 static int elf_core_dump(struct coredump_params *cprm)
1904 int has_dumped = 0;
1905 mm_segment_t fs;
1906 int segs;
1907 size_t size = 0;
1908 struct vm_area_struct *vma, *gate_vma;
1909 struct elfhdr *elf = NULL;
1910 loff_t offset = 0, dataoff, foffset;
1911 struct elf_note_info info;
1912 struct elf_phdr *phdr4note = NULL;
1913 struct elf_shdr *shdr4extnum = NULL;
1914 Elf_Half e_phnum;
1915 elf_addr_t e_shoff;
1918 * We no longer stop all VM operations.
1920 * This is because those proceses that could possibly change map_count
1921 * or the mmap / vma pages are now blocked in do_exit on current
1922 * finishing this core dump.
1924 * Only ptrace can touch these memory addresses, but it doesn't change
1925 * the map_count or the pages allocated. So no possibility of crashing
1926 * exists while dumping the mm->vm_next areas to the core file.
1929 /* alloc memory for large data structures: too large to be on stack */
1930 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1931 if (!elf)
1932 goto out;
1934 * The number of segs are recored into ELF header as 16bit value.
1935 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1937 segs = current->mm->map_count;
1938 segs += elf_core_extra_phdrs();
1940 gate_vma = get_gate_vma(current->mm);
1941 if (gate_vma != NULL)
1942 segs++;
1944 /* for notes section */
1945 segs++;
1947 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1948 * this, kernel supports extended numbering. Have a look at
1949 * include/linux/elf.h for further information. */
1950 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1953 * Collect all the non-memory information about the process for the
1954 * notes. This also sets up the file header.
1956 if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs))
1957 goto cleanup;
1959 has_dumped = 1;
1960 current->flags |= PF_DUMPCORE;
1962 fs = get_fs();
1963 set_fs(KERNEL_DS);
1965 offset += sizeof(*elf); /* Elf header */
1966 offset += segs * sizeof(struct elf_phdr); /* Program headers */
1967 foffset = offset;
1969 /* Write notes phdr entry */
1971 size_t sz = get_note_info_size(&info);
1973 sz += elf_coredump_extra_notes_size();
1975 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1976 if (!phdr4note)
1977 goto end_coredump;
1979 fill_elf_note_phdr(phdr4note, sz, offset);
1980 offset += sz;
1983 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1985 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
1986 offset += elf_core_extra_data_size();
1987 e_shoff = offset;
1989 if (e_phnum == PN_XNUM) {
1990 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
1991 if (!shdr4extnum)
1992 goto end_coredump;
1993 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
1996 offset = dataoff;
1998 size += sizeof(*elf);
1999 if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2000 goto end_coredump;
2002 size += sizeof(*phdr4note);
2003 if (size > cprm->limit
2004 || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2005 goto end_coredump;
2007 /* Write program headers for segments dump */
2008 for (vma = first_vma(current, gate_vma); vma != NULL;
2009 vma = next_vma(vma, gate_vma)) {
2010 struct elf_phdr phdr;
2012 phdr.p_type = PT_LOAD;
2013 phdr.p_offset = offset;
2014 phdr.p_vaddr = vma->vm_start;
2015 phdr.p_paddr = 0;
2016 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2017 phdr.p_memsz = vma->vm_end - vma->vm_start;
2018 offset += phdr.p_filesz;
2019 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2020 if (vma->vm_flags & VM_WRITE)
2021 phdr.p_flags |= PF_W;
2022 if (vma->vm_flags & VM_EXEC)
2023 phdr.p_flags |= PF_X;
2024 phdr.p_align = ELF_EXEC_PAGESIZE;
2026 size += sizeof(phdr);
2027 if (size > cprm->limit
2028 || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2029 goto end_coredump;
2032 if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2033 goto end_coredump;
2035 /* write out the notes section */
2036 if (!write_note_info(&info, cprm->file, &foffset))
2037 goto end_coredump;
2039 if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2040 goto end_coredump;
2042 /* Align to page */
2043 if (!dump_seek(cprm->file, dataoff - foffset))
2044 goto end_coredump;
2046 for (vma = first_vma(current, gate_vma); vma != NULL;
2047 vma = next_vma(vma, gate_vma)) {
2048 unsigned long addr;
2049 unsigned long end;
2051 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2053 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2054 struct page *page;
2055 int stop;
2057 page = get_dump_page(addr);
2058 if (page) {
2059 void *kaddr = kmap(page);
2060 stop = ((size += PAGE_SIZE) > cprm->limit) ||
2061 !dump_write(cprm->file, kaddr,
2062 PAGE_SIZE);
2063 kunmap(page);
2064 page_cache_release(page);
2065 } else
2066 stop = !dump_seek(cprm->file, PAGE_SIZE);
2067 if (stop)
2068 goto end_coredump;
2072 if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2073 goto end_coredump;
2075 if (e_phnum == PN_XNUM) {
2076 size += sizeof(*shdr4extnum);
2077 if (size > cprm->limit
2078 || !dump_write(cprm->file, shdr4extnum,
2079 sizeof(*shdr4extnum)))
2080 goto end_coredump;
2083 end_coredump:
2084 set_fs(fs);
2086 cleanup:
2087 free_note_info(&info);
2088 kfree(shdr4extnum);
2089 kfree(phdr4note);
2090 kfree(elf);
2091 out:
2092 return has_dumped;
2095 #endif /* CONFIG_ELF_CORE */
2097 static int __init init_elf_binfmt(void)
2099 register_binfmt(&elf_format);
2100 return 0;
2103 static void __exit exit_elf_binfmt(void)
2105 /* Remove the COFF and ELF loaders. */
2106 unregister_binfmt(&elf_format);
2109 core_initcall(init_elf_binfmt);
2110 module_exit(exit_elf_binfmt);
2111 MODULE_LICENSE("GPL");