1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
26 struct follow_page_context
{
27 struct dev_pagemap
*pgmap
;
28 unsigned int page_mask
;
31 static void hpage_pincount_add(struct page
*page
, int refs
)
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page
), page
);
34 VM_BUG_ON_PAGE(page
!= compound_head(page
), page
);
36 atomic_add(refs
, compound_pincount_ptr(page
));
39 static void hpage_pincount_sub(struct page
*page
, int refs
)
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page
), page
);
42 VM_BUG_ON_PAGE(page
!= compound_head(page
), page
);
44 atomic_sub(refs
, compound_pincount_ptr(page
));
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
51 static inline struct page
*try_get_compound_head(struct page
*page
, int refs
)
53 struct page
*head
= compound_head(page
);
55 if (WARN_ON_ONCE(page_ref_count(head
) < 0))
57 if (unlikely(!page_cache_add_speculative(head
, refs
)))
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
81 static __maybe_unused
struct page
*try_grab_compound_head(struct page
*page
,
86 return try_get_compound_head(page
, refs
);
87 else if (flags
& FOLL_PIN
) {
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
94 if (unlikely(flags
& FOLL_LONGTERM
) &&
95 is_migrate_cma_page(page
))
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
106 if (!hpage_pincount_available(page
))
107 refs
*= GUP_PIN_COUNTING_BIAS
;
109 page
= try_get_compound_head(page
, refs
);
113 if (hpage_pincount_available(page
))
114 hpage_pincount_add(page
, refs
);
116 mod_node_page_state(page_pgdat(page
), NR_FOLL_PIN_ACQUIRED
,
127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129 * This might not do anything at all, depending on the flags argument.
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134 * @page: pointer to page to be grabbed
135 * @flags: gup flags: these are the FOLL_* flag values.
137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
140 * FOLL_GET: page's refcount will be incremented by 1.
141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143 * Return: true for success, or if no action was required (if neither FOLL_PIN
144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145 * FOLL_PIN was set, but the page could not be grabbed.
147 bool __must_check
try_grab_page(struct page
*page
, unsigned int flags
)
149 WARN_ON_ONCE((flags
& (FOLL_GET
| FOLL_PIN
)) == (FOLL_GET
| FOLL_PIN
));
151 if (flags
& FOLL_GET
)
152 return try_get_page(page
);
153 else if (flags
& FOLL_PIN
) {
156 page
= compound_head(page
);
158 if (WARN_ON_ONCE(page_ref_count(page
) <= 0))
161 if (hpage_pincount_available(page
))
162 hpage_pincount_add(page
, 1);
164 refs
= GUP_PIN_COUNTING_BIAS
;
167 * Similar to try_grab_compound_head(): even if using the
168 * hpage_pincount_add/_sub() routines, be sure to
169 * *also* increment the normal page refcount field at least
170 * once, so that the page really is pinned.
172 page_ref_add(page
, refs
);
174 mod_node_page_state(page_pgdat(page
), NR_FOLL_PIN_ACQUIRED
, 1);
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page
*page
)
185 if (!page_is_devmap_managed(page
))
188 if (hpage_pincount_available(page
))
189 hpage_pincount_sub(page
, 1);
191 refs
= GUP_PIN_COUNTING_BIAS
;
193 count
= page_ref_sub_return(page
, refs
);
195 mod_node_page_state(page_pgdat(page
), NR_FOLL_PIN_RELEASED
, 1);
197 * devmap page refcounts are 1-based, rather than 0-based: if
198 * refcount is 1, then the page is free and the refcount is
199 * stable because nobody holds a reference on the page.
202 free_devmap_managed_page(page
);
209 static bool __unpin_devmap_managed_user_page(struct page
*page
)
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
216 * unpin_user_page() - release a dma-pinned page
217 * @page: pointer to page to be released
219 * Pages that were pinned via pin_user_pages*() must be released via either
220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221 * that such pages can be separately tracked and uniquely handled. In
222 * particular, interactions with RDMA and filesystems need special handling.
224 void unpin_user_page(struct page
*page
)
228 page
= compound_head(page
);
231 * For devmap managed pages we need to catch refcount transition from
232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 * page is free and we need to inform the device driver through
234 * callback. See include/linux/memremap.h and HMM for details.
236 if (__unpin_devmap_managed_user_page(page
))
239 if (hpage_pincount_available(page
))
240 hpage_pincount_sub(page
, 1);
242 refs
= GUP_PIN_COUNTING_BIAS
;
244 if (page_ref_sub_and_test(page
, refs
))
247 mod_node_page_state(page_pgdat(page
), NR_FOLL_PIN_RELEASED
, 1);
249 EXPORT_SYMBOL(unpin_user_page
);
252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253 * @pages: array of pages to be maybe marked dirty, and definitely released.
254 * @npages: number of pages in the @pages array.
255 * @make_dirty: whether to mark the pages dirty
257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258 * variants called on that page.
260 * For each page in the @pages array, make that page (or its head page, if a
261 * compound page) dirty, if @make_dirty is true, and if the page was previously
262 * listed as clean. In any case, releases all pages using unpin_user_page(),
263 * possibly via unpin_user_pages(), for the non-dirty case.
265 * Please see the unpin_user_page() documentation for details.
267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268 * required, then the caller should a) verify that this is really correct,
269 * because _lock() is usually required, and b) hand code it:
270 * set_page_dirty_lock(), unpin_user_page().
273 void unpin_user_pages_dirty_lock(struct page
**pages
, unsigned long npages
,
279 * TODO: this can be optimized for huge pages: if a series of pages is
280 * physically contiguous and part of the same compound page, then a
281 * single operation to the head page should suffice.
285 unpin_user_pages(pages
, npages
);
289 for (index
= 0; index
< npages
; index
++) {
290 struct page
*page
= compound_head(pages
[index
]);
292 * Checking PageDirty at this point may race with
293 * clear_page_dirty_for_io(), but that's OK. Two key
296 * 1) This code sees the page as already dirty, so it
297 * skips the call to set_page_dirty(). That could happen
298 * because clear_page_dirty_for_io() called
299 * page_mkclean(), followed by set_page_dirty().
300 * However, now the page is going to get written back,
301 * which meets the original intention of setting it
302 * dirty, so all is well: clear_page_dirty_for_io() goes
303 * on to call TestClearPageDirty(), and write the page
306 * 2) This code sees the page as clean, so it calls
307 * set_page_dirty(). The page stays dirty, despite being
308 * written back, so it gets written back again in the
309 * next writeback cycle. This is harmless.
311 if (!PageDirty(page
))
312 set_page_dirty_lock(page
);
313 unpin_user_page(page
);
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock
);
319 * unpin_user_pages() - release an array of gup-pinned pages.
320 * @pages: array of pages to be marked dirty and released.
321 * @npages: number of pages in the @pages array.
323 * For each page in the @pages array, release the page using unpin_user_page().
325 * Please see the unpin_user_page() documentation for details.
327 void unpin_user_pages(struct page
**pages
, unsigned long npages
)
332 * TODO: this can be optimized for huge pages: if a series of pages is
333 * physically contiguous and part of the same compound page, then a
334 * single operation to the head page should suffice.
336 for (index
= 0; index
< npages
; index
++)
337 unpin_user_page(pages
[index
]);
339 EXPORT_SYMBOL(unpin_user_pages
);
342 static struct page
*no_page_table(struct vm_area_struct
*vma
,
346 * When core dumping an enormous anonymous area that nobody
347 * has touched so far, we don't want to allocate unnecessary pages or
348 * page tables. Return error instead of NULL to skip handle_mm_fault,
349 * then get_dump_page() will return NULL to leave a hole in the dump.
350 * But we can only make this optimization where a hole would surely
351 * be zero-filled if handle_mm_fault() actually did handle it.
353 if ((flags
& FOLL_DUMP
) &&
354 (vma_is_anonymous(vma
) || !vma
->vm_ops
->fault
))
355 return ERR_PTR(-EFAULT
);
359 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
360 pte_t
*pte
, unsigned int flags
)
362 /* No page to get reference */
363 if (flags
& FOLL_GET
)
366 if (flags
& FOLL_TOUCH
) {
369 if (flags
& FOLL_WRITE
)
370 entry
= pte_mkdirty(entry
);
371 entry
= pte_mkyoung(entry
);
373 if (!pte_same(*pte
, entry
)) {
374 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
375 update_mmu_cache(vma
, address
, pte
);
379 /* Proper page table entry exists, but no corresponding struct page */
384 * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
385 * but only after we've gone through a COW cycle and they are dirty.
387 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
389 return pte_write(pte
) || ((flags
& FOLL_COW
) && pte_dirty(pte
));
393 * A (separate) COW fault might break the page the other way and
394 * get_user_pages() would return the page from what is now the wrong
395 * VM. So we need to force a COW break at GUP time even for reads.
397 static inline bool should_force_cow_break(struct vm_area_struct
*vma
, unsigned int flags
)
399 return is_cow_mapping(vma
->vm_flags
) && (flags
& (FOLL_GET
| FOLL_PIN
));
402 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
403 unsigned long address
, pmd_t
*pmd
, unsigned int flags
,
404 struct dev_pagemap
**pgmap
)
406 struct mm_struct
*mm
= vma
->vm_mm
;
412 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
413 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
414 (FOLL_PIN
| FOLL_GET
)))
415 return ERR_PTR(-EINVAL
);
417 if (unlikely(pmd_bad(*pmd
)))
418 return no_page_table(vma
, flags
);
420 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
422 if (!pte_present(pte
)) {
425 * KSM's break_ksm() relies upon recognizing a ksm page
426 * even while it is being migrated, so for that case we
427 * need migration_entry_wait().
429 if (likely(!(flags
& FOLL_MIGRATION
)))
433 entry
= pte_to_swp_entry(pte
);
434 if (!is_migration_entry(entry
))
436 pte_unmap_unlock(ptep
, ptl
);
437 migration_entry_wait(mm
, pmd
, address
);
440 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
442 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
443 pte_unmap_unlock(ptep
, ptl
);
447 page
= vm_normal_page(vma
, address
, pte
);
448 if (!page
&& pte_devmap(pte
) && (flags
& (FOLL_GET
| FOLL_PIN
))) {
450 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
451 * case since they are only valid while holding the pgmap
454 *pgmap
= get_dev_pagemap(pte_pfn(pte
), *pgmap
);
456 page
= pte_page(pte
);
459 } else if (unlikely(!page
)) {
460 if (flags
& FOLL_DUMP
) {
461 /* Avoid special (like zero) pages in core dumps */
462 page
= ERR_PTR(-EFAULT
);
466 if (is_zero_pfn(pte_pfn(pte
))) {
467 page
= pte_page(pte
);
469 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
475 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
477 pte_unmap_unlock(ptep
, ptl
);
479 ret
= split_huge_page(page
);
487 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
488 if (unlikely(!try_grab_page(page
, flags
))) {
489 page
= ERR_PTR(-ENOMEM
);
493 * We need to make the page accessible if and only if we are going
494 * to access its content (the FOLL_PIN case). Please see
495 * Documentation/core-api/pin_user_pages.rst for details.
497 if (flags
& FOLL_PIN
) {
498 ret
= arch_make_page_accessible(page
);
500 unpin_user_page(page
);
505 if (flags
& FOLL_TOUCH
) {
506 if ((flags
& FOLL_WRITE
) &&
507 !pte_dirty(pte
) && !PageDirty(page
))
508 set_page_dirty(page
);
510 * pte_mkyoung() would be more correct here, but atomic care
511 * is needed to avoid losing the dirty bit: it is easier to use
512 * mark_page_accessed().
514 mark_page_accessed(page
);
516 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
517 /* Do not mlock pte-mapped THP */
518 if (PageTransCompound(page
))
522 * The preliminary mapping check is mainly to avoid the
523 * pointless overhead of lock_page on the ZERO_PAGE
524 * which might bounce very badly if there is contention.
526 * If the page is already locked, we don't need to
527 * handle it now - vmscan will handle it later if and
528 * when it attempts to reclaim the page.
530 if (page
->mapping
&& trylock_page(page
)) {
531 lru_add_drain(); /* push cached pages to LRU */
533 * Because we lock page here, and migration is
534 * blocked by the pte's page reference, and we
535 * know the page is still mapped, we don't even
536 * need to check for file-cache page truncation.
538 mlock_vma_page(page
);
543 pte_unmap_unlock(ptep
, ptl
);
546 pte_unmap_unlock(ptep
, ptl
);
549 return no_page_table(vma
, flags
);
552 static struct page
*follow_pmd_mask(struct vm_area_struct
*vma
,
553 unsigned long address
, pud_t
*pudp
,
555 struct follow_page_context
*ctx
)
560 struct mm_struct
*mm
= vma
->vm_mm
;
562 pmd
= pmd_offset(pudp
, address
);
564 * The READ_ONCE() will stabilize the pmdval in a register or
565 * on the stack so that it will stop changing under the code.
567 pmdval
= READ_ONCE(*pmd
);
568 if (pmd_none(pmdval
))
569 return no_page_table(vma
, flags
);
570 if (pmd_huge(pmdval
) && is_vm_hugetlb_page(vma
)) {
571 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
574 return no_page_table(vma
, flags
);
576 if (is_hugepd(__hugepd(pmd_val(pmdval
)))) {
577 page
= follow_huge_pd(vma
, address
,
578 __hugepd(pmd_val(pmdval
)), flags
,
582 return no_page_table(vma
, flags
);
585 if (!pmd_present(pmdval
)) {
586 if (likely(!(flags
& FOLL_MIGRATION
)))
587 return no_page_table(vma
, flags
);
588 VM_BUG_ON(thp_migration_supported() &&
589 !is_pmd_migration_entry(pmdval
));
590 if (is_pmd_migration_entry(pmdval
))
591 pmd_migration_entry_wait(mm
, pmd
);
592 pmdval
= READ_ONCE(*pmd
);
594 * MADV_DONTNEED may convert the pmd to null because
595 * mmap_lock is held in read mode
597 if (pmd_none(pmdval
))
598 return no_page_table(vma
, flags
);
601 if (pmd_devmap(pmdval
)) {
602 ptl
= pmd_lock(mm
, pmd
);
603 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
608 if (likely(!pmd_trans_huge(pmdval
)))
609 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
611 if ((flags
& FOLL_NUMA
) && pmd_protnone(pmdval
))
612 return no_page_table(vma
, flags
);
615 ptl
= pmd_lock(mm
, pmd
);
616 if (unlikely(pmd_none(*pmd
))) {
618 return no_page_table(vma
, flags
);
620 if (unlikely(!pmd_present(*pmd
))) {
622 if (likely(!(flags
& FOLL_MIGRATION
)))
623 return no_page_table(vma
, flags
);
624 pmd_migration_entry_wait(mm
, pmd
);
627 if (unlikely(!pmd_trans_huge(*pmd
))) {
629 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
631 if (flags
& (FOLL_SPLIT
| FOLL_SPLIT_PMD
)) {
633 page
= pmd_page(*pmd
);
634 if (is_huge_zero_page(page
)) {
637 split_huge_pmd(vma
, pmd
, address
);
638 if (pmd_trans_unstable(pmd
))
640 } else if (flags
& FOLL_SPLIT
) {
641 if (unlikely(!try_get_page(page
))) {
643 return ERR_PTR(-ENOMEM
);
647 ret
= split_huge_page(page
);
651 return no_page_table(vma
, flags
);
652 } else { /* flags & FOLL_SPLIT_PMD */
654 split_huge_pmd(vma
, pmd
, address
);
655 ret
= pte_alloc(mm
, pmd
) ? -ENOMEM
: 0;
658 return ret
? ERR_PTR(ret
) :
659 follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
661 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
663 ctx
->page_mask
= HPAGE_PMD_NR
- 1;
667 static struct page
*follow_pud_mask(struct vm_area_struct
*vma
,
668 unsigned long address
, p4d_t
*p4dp
,
670 struct follow_page_context
*ctx
)
675 struct mm_struct
*mm
= vma
->vm_mm
;
677 pud
= pud_offset(p4dp
, address
);
679 return no_page_table(vma
, flags
);
680 if (pud_huge(*pud
) && is_vm_hugetlb_page(vma
)) {
681 page
= follow_huge_pud(mm
, address
, pud
, flags
);
684 return no_page_table(vma
, flags
);
686 if (is_hugepd(__hugepd(pud_val(*pud
)))) {
687 page
= follow_huge_pd(vma
, address
,
688 __hugepd(pud_val(*pud
)), flags
,
692 return no_page_table(vma
, flags
);
694 if (pud_devmap(*pud
)) {
695 ptl
= pud_lock(mm
, pud
);
696 page
= follow_devmap_pud(vma
, address
, pud
, flags
, &ctx
->pgmap
);
701 if (unlikely(pud_bad(*pud
)))
702 return no_page_table(vma
, flags
);
704 return follow_pmd_mask(vma
, address
, pud
, flags
, ctx
);
707 static struct page
*follow_p4d_mask(struct vm_area_struct
*vma
,
708 unsigned long address
, pgd_t
*pgdp
,
710 struct follow_page_context
*ctx
)
715 p4d
= p4d_offset(pgdp
, address
);
717 return no_page_table(vma
, flags
);
718 BUILD_BUG_ON(p4d_huge(*p4d
));
719 if (unlikely(p4d_bad(*p4d
)))
720 return no_page_table(vma
, flags
);
722 if (is_hugepd(__hugepd(p4d_val(*p4d
)))) {
723 page
= follow_huge_pd(vma
, address
,
724 __hugepd(p4d_val(*p4d
)), flags
,
728 return no_page_table(vma
, flags
);
730 return follow_pud_mask(vma
, address
, p4d
, flags
, ctx
);
734 * follow_page_mask - look up a page descriptor from a user-virtual address
735 * @vma: vm_area_struct mapping @address
736 * @address: virtual address to look up
737 * @flags: flags modifying lookup behaviour
738 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
739 * pointer to output page_mask
741 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
743 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
744 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
746 * On output, the @ctx->page_mask is set according to the size of the page.
748 * Return: the mapped (struct page *), %NULL if no mapping exists, or
749 * an error pointer if there is a mapping to something not represented
750 * by a page descriptor (see also vm_normal_page()).
752 static struct page
*follow_page_mask(struct vm_area_struct
*vma
,
753 unsigned long address
, unsigned int flags
,
754 struct follow_page_context
*ctx
)
758 struct mm_struct
*mm
= vma
->vm_mm
;
762 /* make this handle hugepd */
763 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
765 WARN_ON_ONCE(flags
& (FOLL_GET
| FOLL_PIN
));
769 pgd
= pgd_offset(mm
, address
);
771 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
772 return no_page_table(vma
, flags
);
774 if (pgd_huge(*pgd
)) {
775 page
= follow_huge_pgd(mm
, address
, pgd
, flags
);
778 return no_page_table(vma
, flags
);
780 if (is_hugepd(__hugepd(pgd_val(*pgd
)))) {
781 page
= follow_huge_pd(vma
, address
,
782 __hugepd(pgd_val(*pgd
)), flags
,
786 return no_page_table(vma
, flags
);
789 return follow_p4d_mask(vma
, address
, pgd
, flags
, ctx
);
792 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
793 unsigned int foll_flags
)
795 struct follow_page_context ctx
= { NULL
};
798 page
= follow_page_mask(vma
, address
, foll_flags
, &ctx
);
800 put_dev_pagemap(ctx
.pgmap
);
804 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
805 unsigned int gup_flags
, struct vm_area_struct
**vma
,
815 /* user gate pages are read-only */
816 if (gup_flags
& FOLL_WRITE
)
818 if (address
> TASK_SIZE
)
819 pgd
= pgd_offset_k(address
);
821 pgd
= pgd_offset_gate(mm
, address
);
824 p4d
= p4d_offset(pgd
, address
);
827 pud
= pud_offset(p4d
, address
);
830 pmd
= pmd_offset(pud
, address
);
831 if (!pmd_present(*pmd
))
833 VM_BUG_ON(pmd_trans_huge(*pmd
));
834 pte
= pte_offset_map(pmd
, address
);
837 *vma
= get_gate_vma(mm
);
840 *page
= vm_normal_page(*vma
, address
, *pte
);
842 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
844 *page
= pte_page(*pte
);
846 if (unlikely(!try_get_page(*page
))) {
858 * mmap_lock must be held on entry. If @locked != NULL and *@flags
859 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
860 * is, *@locked will be set to 0 and -EBUSY returned.
862 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
863 unsigned long address
, unsigned int *flags
, int *locked
)
865 unsigned int fault_flags
= 0;
868 /* mlock all present pages, but do not fault in new pages */
869 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
871 if (*flags
& FOLL_WRITE
)
872 fault_flags
|= FAULT_FLAG_WRITE
;
873 if (*flags
& FOLL_REMOTE
)
874 fault_flags
|= FAULT_FLAG_REMOTE
;
876 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
877 if (*flags
& FOLL_NOWAIT
)
878 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
879 if (*flags
& FOLL_TRIED
) {
881 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
884 fault_flags
|= FAULT_FLAG_TRIED
;
887 ret
= handle_mm_fault(vma
, address
, fault_flags
);
888 if (ret
& VM_FAULT_ERROR
) {
889 int err
= vm_fault_to_errno(ret
, *flags
);
897 if (ret
& VM_FAULT_MAJOR
)
903 if (ret
& VM_FAULT_RETRY
) {
904 if (locked
&& !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
910 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
911 * necessary, even if maybe_mkwrite decided not to set pte_write. We
912 * can thus safely do subsequent page lookups as if they were reads.
913 * But only do so when looping for pte_write is futile: in some cases
914 * userspace may also be wanting to write to the gotten user page,
915 * which a read fault here might prevent (a readonly page might get
916 * reCOWed by userspace write).
918 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
923 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
925 vm_flags_t vm_flags
= vma
->vm_flags
;
926 int write
= (gup_flags
& FOLL_WRITE
);
927 int foreign
= (gup_flags
& FOLL_REMOTE
);
929 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
932 if (gup_flags
& FOLL_ANON
&& !vma_is_anonymous(vma
))
936 if (!(vm_flags
& VM_WRITE
)) {
937 if (!(gup_flags
& FOLL_FORCE
))
940 * We used to let the write,force case do COW in a
941 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
942 * set a breakpoint in a read-only mapping of an
943 * executable, without corrupting the file (yet only
944 * when that file had been opened for writing!).
945 * Anon pages in shared mappings are surprising: now
948 if (!is_cow_mapping(vm_flags
))
951 } else if (!(vm_flags
& VM_READ
)) {
952 if (!(gup_flags
& FOLL_FORCE
))
955 * Is there actually any vma we can reach here which does not
956 * have VM_MAYREAD set?
958 if (!(vm_flags
& VM_MAYREAD
))
962 * gups are always data accesses, not instruction
963 * fetches, so execute=false here
965 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
971 * __get_user_pages() - pin user pages in memory
972 * @tsk: task_struct of target task
973 * @mm: mm_struct of target mm
974 * @start: starting user address
975 * @nr_pages: number of pages from start to pin
976 * @gup_flags: flags modifying pin behaviour
977 * @pages: array that receives pointers to the pages pinned.
978 * Should be at least nr_pages long. Or NULL, if caller
979 * only intends to ensure the pages are faulted in.
980 * @vmas: array of pointers to vmas corresponding to each page.
981 * Or NULL if the caller does not require them.
982 * @locked: whether we're still with the mmap_lock held
984 * Returns either number of pages pinned (which may be less than the
985 * number requested), or an error. Details about the return value:
987 * -- If nr_pages is 0, returns 0.
988 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
989 * -- If nr_pages is >0, and some pages were pinned, returns the number of
990 * pages pinned. Again, this may be less than nr_pages.
991 * -- 0 return value is possible when the fault would need to be retried.
993 * The caller is responsible for releasing returned @pages, via put_page().
995 * @vmas are valid only as long as mmap_lock is held.
997 * Must be called with mmap_lock held. It may be released. See below.
999 * __get_user_pages walks a process's page tables and takes a reference to
1000 * each struct page that each user address corresponds to at a given
1001 * instant. That is, it takes the page that would be accessed if a user
1002 * thread accesses the given user virtual address at that instant.
1004 * This does not guarantee that the page exists in the user mappings when
1005 * __get_user_pages returns, and there may even be a completely different
1006 * page there in some cases (eg. if mmapped pagecache has been invalidated
1007 * and subsequently re faulted). However it does guarantee that the page
1008 * won't be freed completely. And mostly callers simply care that the page
1009 * contains data that was valid *at some point in time*. Typically, an IO
1010 * or similar operation cannot guarantee anything stronger anyway because
1011 * locks can't be held over the syscall boundary.
1013 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1014 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1015 * appropriate) must be called after the page is finished with, and
1016 * before put_page is called.
1018 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1019 * released by an up_read(). That can happen if @gup_flags does not
1022 * A caller using such a combination of @locked and @gup_flags
1023 * must therefore hold the mmap_lock for reading only, and recognize
1024 * when it's been released. Otherwise, it must be held for either
1025 * reading or writing and will not be released.
1027 * In most cases, get_user_pages or get_user_pages_fast should be used
1028 * instead of __get_user_pages. __get_user_pages should be used only if
1029 * you need some special @gup_flags.
1031 static long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1032 unsigned long start
, unsigned long nr_pages
,
1033 unsigned int gup_flags
, struct page
**pages
,
1034 struct vm_area_struct
**vmas
, int *locked
)
1036 long ret
= 0, i
= 0;
1037 struct vm_area_struct
*vma
= NULL
;
1038 struct follow_page_context ctx
= { NULL
};
1043 start
= untagged_addr(start
);
1045 VM_BUG_ON(!!pages
!= !!(gup_flags
& (FOLL_GET
| FOLL_PIN
)));
1048 * If FOLL_FORCE is set then do not force a full fault as the hinting
1049 * fault information is unrelated to the reference behaviour of a task
1050 * using the address space
1052 if (!(gup_flags
& FOLL_FORCE
))
1053 gup_flags
|= FOLL_NUMA
;
1057 unsigned int foll_flags
= gup_flags
;
1058 unsigned int page_increm
;
1060 /* first iteration or cross vma bound */
1061 if (!vma
|| start
>= vma
->vm_end
) {
1062 vma
= find_extend_vma(mm
, start
);
1063 if (!vma
&& in_gate_area(mm
, start
)) {
1064 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
1066 pages
? &pages
[i
] : NULL
);
1073 if (!vma
|| check_vma_flags(vma
, gup_flags
)) {
1077 if (is_vm_hugetlb_page(vma
)) {
1078 if (should_force_cow_break(vma
, foll_flags
))
1079 foll_flags
|= FOLL_WRITE
;
1080 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1081 &start
, &nr_pages
, i
,
1082 foll_flags
, locked
);
1083 if (locked
&& *locked
== 0) {
1085 * We've got a VM_FAULT_RETRY
1086 * and we've lost mmap_lock.
1087 * We must stop here.
1089 BUG_ON(gup_flags
& FOLL_NOWAIT
);
1097 if (should_force_cow_break(vma
, foll_flags
))
1098 foll_flags
|= FOLL_WRITE
;
1102 * If we have a pending SIGKILL, don't keep faulting pages and
1103 * potentially allocating memory.
1105 if (fatal_signal_pending(current
)) {
1111 page
= follow_page_mask(vma
, start
, foll_flags
, &ctx
);
1113 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
1129 } else if (PTR_ERR(page
) == -EEXIST
) {
1131 * Proper page table entry exists, but no corresponding
1135 } else if (IS_ERR(page
)) {
1136 ret
= PTR_ERR(page
);
1141 flush_anon_page(vma
, page
, start
);
1142 flush_dcache_page(page
);
1150 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & ctx
.page_mask
);
1151 if (page_increm
> nr_pages
)
1152 page_increm
= nr_pages
;
1154 start
+= page_increm
* PAGE_SIZE
;
1155 nr_pages
-= page_increm
;
1159 put_dev_pagemap(ctx
.pgmap
);
1163 static bool vma_permits_fault(struct vm_area_struct
*vma
,
1164 unsigned int fault_flags
)
1166 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
1167 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
1168 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
1170 if (!(vm_flags
& vma
->vm_flags
))
1174 * The architecture might have a hardware protection
1175 * mechanism other than read/write that can deny access.
1177 * gup always represents data access, not instruction
1178 * fetches, so execute=false here:
1180 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
1187 * fixup_user_fault() - manually resolve a user page fault
1188 * @tsk: the task_struct to use for page fault accounting, or
1189 * NULL if faults are not to be recorded.
1190 * @mm: mm_struct of target mm
1191 * @address: user address
1192 * @fault_flags:flags to pass down to handle_mm_fault()
1193 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1194 * does not allow retry. If NULL, the caller must guarantee
1195 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1197 * This is meant to be called in the specific scenario where for locking reasons
1198 * we try to access user memory in atomic context (within a pagefault_disable()
1199 * section), this returns -EFAULT, and we want to resolve the user fault before
1202 * Typically this is meant to be used by the futex code.
1204 * The main difference with get_user_pages() is that this function will
1205 * unconditionally call handle_mm_fault() which will in turn perform all the
1206 * necessary SW fixup of the dirty and young bits in the PTE, while
1207 * get_user_pages() only guarantees to update these in the struct page.
1209 * This is important for some architectures where those bits also gate the
1210 * access permission to the page because they are maintained in software. On
1211 * such architectures, gup() will not be enough to make a subsequent access
1214 * This function will not return with an unlocked mmap_lock. So it has not the
1215 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1217 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1218 unsigned long address
, unsigned int fault_flags
,
1221 struct vm_area_struct
*vma
;
1222 vm_fault_t ret
, major
= 0;
1224 address
= untagged_addr(address
);
1227 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1230 vma
= find_extend_vma(mm
, address
);
1231 if (!vma
|| address
< vma
->vm_start
)
1234 if (!vma_permits_fault(vma
, fault_flags
))
1237 if ((fault_flags
& FAULT_FLAG_KILLABLE
) &&
1238 fatal_signal_pending(current
))
1241 ret
= handle_mm_fault(vma
, address
, fault_flags
);
1242 major
|= ret
& VM_FAULT_MAJOR
;
1243 if (ret
& VM_FAULT_ERROR
) {
1244 int err
= vm_fault_to_errno(ret
, 0);
1251 if (ret
& VM_FAULT_RETRY
) {
1254 fault_flags
|= FAULT_FLAG_TRIED
;
1266 EXPORT_SYMBOL_GPL(fixup_user_fault
);
1269 * Please note that this function, unlike __get_user_pages will not
1270 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1272 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
1273 struct mm_struct
*mm
,
1274 unsigned long start
,
1275 unsigned long nr_pages
,
1276 struct page
**pages
,
1277 struct vm_area_struct
**vmas
,
1281 long ret
, pages_done
;
1285 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1287 /* check caller initialized locked */
1288 BUG_ON(*locked
!= 1);
1292 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1293 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1294 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1295 * for FOLL_GET, not for the newer FOLL_PIN.
1297 * FOLL_PIN always expects pages to be non-null, but no need to assert
1298 * that here, as any failures will be obvious enough.
1300 if (pages
&& !(flags
& FOLL_PIN
))
1304 lock_dropped
= false;
1306 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
1309 /* VM_FAULT_RETRY couldn't trigger, bypass */
1312 /* VM_FAULT_RETRY cannot return errors */
1315 BUG_ON(ret
>= nr_pages
);
1326 * VM_FAULT_RETRY didn't trigger or it was a
1334 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1335 * For the prefault case (!pages) we only update counts.
1339 start
+= ret
<< PAGE_SHIFT
;
1340 lock_dropped
= true;
1344 * Repeat on the address that fired VM_FAULT_RETRY
1345 * with both FAULT_FLAG_ALLOW_RETRY and
1346 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1347 * by fatal signals, so we need to check it before we
1348 * start trying again otherwise it can loop forever.
1351 if (fatal_signal_pending(current
)) {
1353 pages_done
= -EINTR
;
1357 ret
= mmap_read_lock_killable(mm
);
1366 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
1367 pages
, NULL
, locked
);
1369 /* Continue to retry until we succeeded */
1387 if (lock_dropped
&& *locked
) {
1389 * We must let the caller know we temporarily dropped the lock
1390 * and so the critical section protected by it was lost.
1392 mmap_read_unlock(mm
);
1399 * populate_vma_page_range() - populate a range of pages in the vma.
1401 * @start: start address
1403 * @locked: whether the mmap_lock is still held
1405 * This takes care of mlocking the pages too if VM_LOCKED is set.
1407 * return 0 on success, negative error code on error.
1409 * vma->vm_mm->mmap_lock must be held.
1411 * If @locked is NULL, it may be held for read or write and will
1414 * If @locked is non-NULL, it must held for read only and may be
1415 * released. If it's released, *@locked will be set to 0.
1417 long populate_vma_page_range(struct vm_area_struct
*vma
,
1418 unsigned long start
, unsigned long end
, int *locked
)
1420 struct mm_struct
*mm
= vma
->vm_mm
;
1421 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1424 VM_BUG_ON(start
& ~PAGE_MASK
);
1425 VM_BUG_ON(end
& ~PAGE_MASK
);
1426 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1427 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1428 mmap_assert_locked(mm
);
1430 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
1431 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1432 gup_flags
&= ~FOLL_POPULATE
;
1434 * We want to touch writable mappings with a write fault in order
1435 * to break COW, except for shared mappings because these don't COW
1436 * and we would not want to dirty them for nothing.
1438 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1439 gup_flags
|= FOLL_WRITE
;
1442 * We want mlock to succeed for regions that have any permissions
1443 * other than PROT_NONE.
1445 if (vma_is_accessible(vma
))
1446 gup_flags
|= FOLL_FORCE
;
1449 * We made sure addr is within a VMA, so the following will
1450 * not result in a stack expansion that recurses back here.
1452 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
1453 NULL
, NULL
, locked
);
1457 * __mm_populate - populate and/or mlock pages within a range of address space.
1459 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1460 * flags. VMAs must be already marked with the desired vm_flags, and
1461 * mmap_lock must not be held.
1463 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1465 struct mm_struct
*mm
= current
->mm
;
1466 unsigned long end
, nstart
, nend
;
1467 struct vm_area_struct
*vma
= NULL
;
1473 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
1475 * We want to fault in pages for [nstart; end) address range.
1476 * Find first corresponding VMA.
1481 vma
= find_vma(mm
, nstart
);
1482 } else if (nstart
>= vma
->vm_end
)
1484 if (!vma
|| vma
->vm_start
>= end
)
1487 * Set [nstart; nend) to intersection of desired address
1488 * range with the first VMA. Also, skip undesirable VMA types.
1490 nend
= min(end
, vma
->vm_end
);
1491 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1493 if (nstart
< vma
->vm_start
)
1494 nstart
= vma
->vm_start
;
1496 * Now fault in a range of pages. populate_vma_page_range()
1497 * double checks the vma flags, so that it won't mlock pages
1498 * if the vma was already munlocked.
1500 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1502 if (ignore_errors
) {
1504 continue; /* continue at next VMA */
1508 nend
= nstart
+ ret
* PAGE_SIZE
;
1512 mmap_read_unlock(mm
);
1513 return ret
; /* 0 or negative error code */
1517 * get_dump_page() - pin user page in memory while writing it to core dump
1518 * @addr: user address
1520 * Returns struct page pointer of user page pinned for dump,
1521 * to be freed afterwards by put_page().
1523 * Returns NULL on any kind of failure - a hole must then be inserted into
1524 * the corefile, to preserve alignment with its headers; and also returns
1525 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1526 * allowing a hole to be left in the corefile to save diskspace.
1528 * Called without mmap_lock, but after all other threads have been killed.
1530 #ifdef CONFIG_ELF_CORE
1531 struct page
*get_dump_page(unsigned long addr
)
1533 struct vm_area_struct
*vma
;
1536 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1537 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1540 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1543 #endif /* CONFIG_ELF_CORE */
1544 #else /* CONFIG_MMU */
1545 static long __get_user_pages_locked(struct task_struct
*tsk
,
1546 struct mm_struct
*mm
, unsigned long start
,
1547 unsigned long nr_pages
, struct page
**pages
,
1548 struct vm_area_struct
**vmas
, int *locked
,
1549 unsigned int foll_flags
)
1551 struct vm_area_struct
*vma
;
1552 unsigned long vm_flags
;
1555 /* calculate required read or write permissions.
1556 * If FOLL_FORCE is set, we only require the "MAY" flags.
1558 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
1559 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1560 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
1561 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1563 for (i
= 0; i
< nr_pages
; i
++) {
1564 vma
= find_vma(mm
, start
);
1566 goto finish_or_fault
;
1568 /* protect what we can, including chardevs */
1569 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1570 !(vm_flags
& vma
->vm_flags
))
1571 goto finish_or_fault
;
1574 pages
[i
] = virt_to_page(start
);
1580 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
1586 return i
? : -EFAULT
;
1588 #endif /* !CONFIG_MMU */
1590 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1591 static bool check_dax_vmas(struct vm_area_struct
**vmas
, long nr_pages
)
1594 struct vm_area_struct
*vma_prev
= NULL
;
1596 for (i
= 0; i
< nr_pages
; i
++) {
1597 struct vm_area_struct
*vma
= vmas
[i
];
1599 if (vma
== vma_prev
)
1604 if (vma_is_fsdax(vma
))
1611 static struct page
*new_non_cma_page(struct page
*page
, unsigned long private)
1614 * We want to make sure we allocate the new page from the same node
1615 * as the source page.
1617 int nid
= page_to_nid(page
);
1619 * Trying to allocate a page for migration. Ignore allocation
1620 * failure warnings. We don't force __GFP_THISNODE here because
1621 * this node here is the node where we have CMA reservation and
1622 * in some case these nodes will have really less non movable
1623 * allocation memory.
1625 gfp_t gfp_mask
= GFP_USER
| __GFP_NOWARN
;
1627 if (PageHighMem(page
))
1628 gfp_mask
|= __GFP_HIGHMEM
;
1630 #ifdef CONFIG_HUGETLB_PAGE
1631 if (PageHuge(page
)) {
1632 struct hstate
*h
= page_hstate(page
);
1634 * We don't want to dequeue from the pool because pool pages will
1635 * mostly be from the CMA region.
1637 return alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1640 if (PageTransHuge(page
)) {
1643 * ignore allocation failure warnings
1645 gfp_t thp_gfpmask
= GFP_TRANSHUGE
| __GFP_NOWARN
;
1648 * Remove the movable mask so that we don't allocate from
1651 thp_gfpmask
&= ~__GFP_MOVABLE
;
1652 thp
= __alloc_pages_node(nid
, thp_gfpmask
, HPAGE_PMD_ORDER
);
1655 prep_transhuge_page(thp
);
1659 return __alloc_pages_node(nid
, gfp_mask
, 0);
1662 static long check_and_migrate_cma_pages(struct task_struct
*tsk
,
1663 struct mm_struct
*mm
,
1664 unsigned long start
,
1665 unsigned long nr_pages
,
1666 struct page
**pages
,
1667 struct vm_area_struct
**vmas
,
1668 unsigned int gup_flags
)
1672 bool drain_allow
= true;
1673 bool migrate_allow
= true;
1674 LIST_HEAD(cma_page_list
);
1675 long ret
= nr_pages
;
1678 for (i
= 0; i
< nr_pages
;) {
1680 struct page
*head
= compound_head(pages
[i
]);
1683 * gup may start from a tail page. Advance step by the left
1686 step
= compound_nr(head
) - (pages
[i
] - head
);
1688 * If we get a page from the CMA zone, since we are going to
1689 * be pinning these entries, we might as well move them out
1690 * of the CMA zone if possible.
1692 if (is_migrate_cma_page(head
)) {
1694 isolate_huge_page(head
, &cma_page_list
);
1696 if (!PageLRU(head
) && drain_allow
) {
1697 lru_add_drain_all();
1698 drain_allow
= false;
1701 if (!isolate_lru_page(head
)) {
1702 list_add_tail(&head
->lru
, &cma_page_list
);
1703 mod_node_page_state(page_pgdat(head
),
1705 page_is_file_lru(head
),
1706 hpage_nr_pages(head
));
1714 if (!list_empty(&cma_page_list
)) {
1716 * drop the above get_user_pages reference.
1718 for (i
= 0; i
< nr_pages
; i
++)
1721 if (migrate_pages(&cma_page_list
, new_non_cma_page
,
1722 NULL
, 0, MIGRATE_SYNC
, MR_CONTIG_RANGE
)) {
1724 * some of the pages failed migration. Do get_user_pages
1725 * without migration.
1727 migrate_allow
= false;
1729 if (!list_empty(&cma_page_list
))
1730 putback_movable_pages(&cma_page_list
);
1733 * We did migrate all the pages, Try to get the page references
1734 * again migrating any new CMA pages which we failed to isolate
1737 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
,
1741 if ((ret
> 0) && migrate_allow
) {
1751 static long check_and_migrate_cma_pages(struct task_struct
*tsk
,
1752 struct mm_struct
*mm
,
1753 unsigned long start
,
1754 unsigned long nr_pages
,
1755 struct page
**pages
,
1756 struct vm_area_struct
**vmas
,
1757 unsigned int gup_flags
)
1761 #endif /* CONFIG_CMA */
1764 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1765 * allows us to process the FOLL_LONGTERM flag.
1767 static long __gup_longterm_locked(struct task_struct
*tsk
,
1768 struct mm_struct
*mm
,
1769 unsigned long start
,
1770 unsigned long nr_pages
,
1771 struct page
**pages
,
1772 struct vm_area_struct
**vmas
,
1773 unsigned int gup_flags
)
1775 struct vm_area_struct
**vmas_tmp
= vmas
;
1776 unsigned long flags
= 0;
1779 if (gup_flags
& FOLL_LONGTERM
) {
1784 vmas_tmp
= kcalloc(nr_pages
,
1785 sizeof(struct vm_area_struct
*),
1790 flags
= memalloc_nocma_save();
1793 rc
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
,
1794 vmas_tmp
, NULL
, gup_flags
);
1796 if (gup_flags
& FOLL_LONGTERM
) {
1797 memalloc_nocma_restore(flags
);
1801 if (check_dax_vmas(vmas_tmp
, rc
)) {
1802 for (i
= 0; i
< rc
; i
++)
1808 rc
= check_and_migrate_cma_pages(tsk
, mm
, start
, rc
, pages
,
1809 vmas_tmp
, gup_flags
);
1813 if (vmas_tmp
!= vmas
)
1817 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1818 static __always_inline
long __gup_longterm_locked(struct task_struct
*tsk
,
1819 struct mm_struct
*mm
,
1820 unsigned long start
,
1821 unsigned long nr_pages
,
1822 struct page
**pages
,
1823 struct vm_area_struct
**vmas
,
1826 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, vmas
,
1829 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1832 static long __get_user_pages_remote(struct task_struct
*tsk
,
1833 struct mm_struct
*mm
,
1834 unsigned long start
, unsigned long nr_pages
,
1835 unsigned int gup_flags
, struct page
**pages
,
1836 struct vm_area_struct
**vmas
, int *locked
)
1839 * Parts of FOLL_LONGTERM behavior are incompatible with
1840 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1841 * vmas. However, this only comes up if locked is set, and there are
1842 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1843 * allow what we can.
1845 if (gup_flags
& FOLL_LONGTERM
) {
1846 if (WARN_ON_ONCE(locked
))
1849 * This will check the vmas (even if our vmas arg is NULL)
1850 * and return -ENOTSUPP if DAX isn't allowed in this case:
1852 return __gup_longterm_locked(tsk
, mm
, start
, nr_pages
, pages
,
1853 vmas
, gup_flags
| FOLL_TOUCH
|
1857 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, vmas
,
1859 gup_flags
| FOLL_TOUCH
| FOLL_REMOTE
);
1863 * get_user_pages_remote() - pin user pages in memory
1864 * @tsk: the task_struct to use for page fault accounting, or
1865 * NULL if faults are not to be recorded.
1866 * @mm: mm_struct of target mm
1867 * @start: starting user address
1868 * @nr_pages: number of pages from start to pin
1869 * @gup_flags: flags modifying lookup behaviour
1870 * @pages: array that receives pointers to the pages pinned.
1871 * Should be at least nr_pages long. Or NULL, if caller
1872 * only intends to ensure the pages are faulted in.
1873 * @vmas: array of pointers to vmas corresponding to each page.
1874 * Or NULL if the caller does not require them.
1875 * @locked: pointer to lock flag indicating whether lock is held and
1876 * subsequently whether VM_FAULT_RETRY functionality can be
1877 * utilised. Lock must initially be held.
1879 * Returns either number of pages pinned (which may be less than the
1880 * number requested), or an error. Details about the return value:
1882 * -- If nr_pages is 0, returns 0.
1883 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1884 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1885 * pages pinned. Again, this may be less than nr_pages.
1887 * The caller is responsible for releasing returned @pages, via put_page().
1889 * @vmas are valid only as long as mmap_lock is held.
1891 * Must be called with mmap_lock held for read or write.
1893 * get_user_pages_remote walks a process's page tables and takes a reference
1894 * to each struct page that each user address corresponds to at a given
1895 * instant. That is, it takes the page that would be accessed if a user
1896 * thread accesses the given user virtual address at that instant.
1898 * This does not guarantee that the page exists in the user mappings when
1899 * get_user_pages_remote returns, and there may even be a completely different
1900 * page there in some cases (eg. if mmapped pagecache has been invalidated
1901 * and subsequently re faulted). However it does guarantee that the page
1902 * won't be freed completely. And mostly callers simply care that the page
1903 * contains data that was valid *at some point in time*. Typically, an IO
1904 * or similar operation cannot guarantee anything stronger anyway because
1905 * locks can't be held over the syscall boundary.
1907 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1908 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1909 * be called after the page is finished with, and before put_page is called.
1911 * get_user_pages_remote is typically used for fewer-copy IO operations,
1912 * to get a handle on the memory by some means other than accesses
1913 * via the user virtual addresses. The pages may be submitted for
1914 * DMA to devices or accessed via their kernel linear mapping (via the
1915 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1917 * See also get_user_pages_fast, for performance critical applications.
1919 * get_user_pages_remote should be phased out in favor of
1920 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1921 * should use get_user_pages_remote because it cannot pass
1922 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1924 long get_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
1925 unsigned long start
, unsigned long nr_pages
,
1926 unsigned int gup_flags
, struct page
**pages
,
1927 struct vm_area_struct
**vmas
, int *locked
)
1930 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1931 * never directly by the caller, so enforce that with an assertion:
1933 if (WARN_ON_ONCE(gup_flags
& FOLL_PIN
))
1936 return __get_user_pages_remote(tsk
, mm
, start
, nr_pages
, gup_flags
,
1937 pages
, vmas
, locked
);
1939 EXPORT_SYMBOL(get_user_pages_remote
);
1941 #else /* CONFIG_MMU */
1942 long get_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
1943 unsigned long start
, unsigned long nr_pages
,
1944 unsigned int gup_flags
, struct page
**pages
,
1945 struct vm_area_struct
**vmas
, int *locked
)
1950 static long __get_user_pages_remote(struct task_struct
*tsk
,
1951 struct mm_struct
*mm
,
1952 unsigned long start
, unsigned long nr_pages
,
1953 unsigned int gup_flags
, struct page
**pages
,
1954 struct vm_area_struct
**vmas
, int *locked
)
1958 #endif /* !CONFIG_MMU */
1961 * get_user_pages() - pin user pages in memory
1962 * @start: starting user address
1963 * @nr_pages: number of pages from start to pin
1964 * @gup_flags: flags modifying lookup behaviour
1965 * @pages: array that receives pointers to the pages pinned.
1966 * Should be at least nr_pages long. Or NULL, if caller
1967 * only intends to ensure the pages are faulted in.
1968 * @vmas: array of pointers to vmas corresponding to each page.
1969 * Or NULL if the caller does not require them.
1971 * This is the same as get_user_pages_remote(), just with a
1972 * less-flexible calling convention where we assume that the task
1973 * and mm being operated on are the current task's and don't allow
1974 * passing of a locked parameter. We also obviously don't pass
1975 * FOLL_REMOTE in here.
1977 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
1978 unsigned int gup_flags
, struct page
**pages
,
1979 struct vm_area_struct
**vmas
)
1982 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1983 * never directly by the caller, so enforce that with an assertion:
1985 if (WARN_ON_ONCE(gup_flags
& FOLL_PIN
))
1988 return __gup_longterm_locked(current
, current
->mm
, start
, nr_pages
,
1989 pages
, vmas
, gup_flags
| FOLL_TOUCH
);
1991 EXPORT_SYMBOL(get_user_pages
);
1994 * get_user_pages_locked() is suitable to replace the form:
1996 * mmap_read_lock(mm);
1998 * get_user_pages(tsk, mm, ..., pages, NULL);
1999 * mmap_read_unlock(mm);
2004 * mmap_read_lock(mm);
2006 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
2008 * mmap_read_unlock(mm);
2010 * @start: starting user address
2011 * @nr_pages: number of pages from start to pin
2012 * @gup_flags: flags modifying lookup behaviour
2013 * @pages: array that receives pointers to the pages pinned.
2014 * Should be at least nr_pages long. Or NULL, if caller
2015 * only intends to ensure the pages are faulted in.
2016 * @locked: pointer to lock flag indicating whether lock is held and
2017 * subsequently whether VM_FAULT_RETRY functionality can be
2018 * utilised. Lock must initially be held.
2020 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2021 * paths better by using either get_user_pages_locked() or
2022 * get_user_pages_unlocked().
2025 long get_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
2026 unsigned int gup_flags
, struct page
**pages
,
2030 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2031 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2032 * vmas. As there are no users of this flag in this call we simply
2033 * disallow this option for now.
2035 if (WARN_ON_ONCE(gup_flags
& FOLL_LONGTERM
))
2038 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2039 * never directly by the caller, so enforce that:
2041 if (WARN_ON_ONCE(gup_flags
& FOLL_PIN
))
2044 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
2045 pages
, NULL
, locked
,
2046 gup_flags
| FOLL_TOUCH
);
2048 EXPORT_SYMBOL(get_user_pages_locked
);
2051 * get_user_pages_unlocked() is suitable to replace the form:
2053 * mmap_read_lock(mm);
2054 * get_user_pages(tsk, mm, ..., pages, NULL);
2055 * mmap_read_unlock(mm);
2059 * get_user_pages_unlocked(tsk, mm, ..., pages);
2061 * It is functionally equivalent to get_user_pages_fast so
2062 * get_user_pages_fast should be used instead if specific gup_flags
2063 * (e.g. FOLL_FORCE) are not required.
2065 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
2066 struct page
**pages
, unsigned int gup_flags
)
2068 struct mm_struct
*mm
= current
->mm
;
2073 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2074 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2075 * vmas. As there are no users of this flag in this call we simply
2076 * disallow this option for now.
2078 if (WARN_ON_ONCE(gup_flags
& FOLL_LONGTERM
))
2082 ret
= __get_user_pages_locked(current
, mm
, start
, nr_pages
, pages
, NULL
,
2083 &locked
, gup_flags
| FOLL_TOUCH
);
2085 mmap_read_unlock(mm
);
2088 EXPORT_SYMBOL(get_user_pages_unlocked
);
2093 * get_user_pages_fast attempts to pin user pages by walking the page
2094 * tables directly and avoids taking locks. Thus the walker needs to be
2095 * protected from page table pages being freed from under it, and should
2096 * block any THP splits.
2098 * One way to achieve this is to have the walker disable interrupts, and
2099 * rely on IPIs from the TLB flushing code blocking before the page table
2100 * pages are freed. This is unsuitable for architectures that do not need
2101 * to broadcast an IPI when invalidating TLBs.
2103 * Another way to achieve this is to batch up page table containing pages
2104 * belonging to more than one mm_user, then rcu_sched a callback to free those
2105 * pages. Disabling interrupts will allow the fast_gup walker to both block
2106 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2107 * (which is a relatively rare event). The code below adopts this strategy.
2109 * Before activating this code, please be aware that the following assumptions
2110 * are currently made:
2112 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2113 * free pages containing page tables or TLB flushing requires IPI broadcast.
2115 * *) ptes can be read atomically by the architecture.
2117 * *) access_ok is sufficient to validate userspace address ranges.
2119 * The last two assumptions can be relaxed by the addition of helper functions.
2121 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2123 #ifdef CONFIG_HAVE_FAST_GUP
2125 static void put_compound_head(struct page
*page
, int refs
, unsigned int flags
)
2127 if (flags
& FOLL_PIN
) {
2128 mod_node_page_state(page_pgdat(page
), NR_FOLL_PIN_RELEASED
,
2131 if (hpage_pincount_available(page
))
2132 hpage_pincount_sub(page
, refs
);
2134 refs
*= GUP_PIN_COUNTING_BIAS
;
2137 VM_BUG_ON_PAGE(page_ref_count(page
) < refs
, page
);
2139 * Calling put_page() for each ref is unnecessarily slow. Only the last
2140 * ref needs a put_page().
2143 page_ref_sub(page
, refs
- 1);
2147 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2150 * WARNING: only to be used in the get_user_pages_fast() implementation.
2152 * With get_user_pages_fast(), we walk down the pagetables without taking any
2153 * locks. For this we would like to load the pointers atomically, but sometimes
2154 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2155 * we do have is the guarantee that a PTE will only either go from not present
2156 * to present, or present to not present or both -- it will not switch to a
2157 * completely different present page without a TLB flush in between; something
2158 * that we are blocking by holding interrupts off.
2160 * Setting ptes from not present to present goes:
2162 * ptep->pte_high = h;
2164 * ptep->pte_low = l;
2166 * And present to not present goes:
2168 * ptep->pte_low = 0;
2170 * ptep->pte_high = 0;
2172 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2173 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2174 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2175 * picked up a changed pte high. We might have gotten rubbish values from
2176 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2177 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2178 * operates on present ptes we're safe.
2180 static inline pte_t
gup_get_pte(pte_t
*ptep
)
2185 pte
.pte_low
= ptep
->pte_low
;
2187 pte
.pte_high
= ptep
->pte_high
;
2189 } while (unlikely(pte
.pte_low
!= ptep
->pte_low
));
2193 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2195 * We require that the PTE can be read atomically.
2197 static inline pte_t
gup_get_pte(pte_t
*ptep
)
2199 return ptep_get(ptep
);
2201 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2203 static void __maybe_unused
undo_dev_pagemap(int *nr
, int nr_start
,
2205 struct page
**pages
)
2207 while ((*nr
) - nr_start
) {
2208 struct page
*page
= pages
[--(*nr
)];
2210 ClearPageReferenced(page
);
2211 if (flags
& FOLL_PIN
)
2212 unpin_user_page(page
);
2218 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2219 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
2220 unsigned int flags
, struct page
**pages
, int *nr
)
2222 struct dev_pagemap
*pgmap
= NULL
;
2223 int nr_start
= *nr
, ret
= 0;
2226 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
2228 pte_t pte
= gup_get_pte(ptep
);
2229 struct page
*head
, *page
;
2232 * Similar to the PMD case below, NUMA hinting must take slow
2233 * path using the pte_protnone check.
2235 if (pte_protnone(pte
))
2238 if (!pte_access_permitted(pte
, flags
& FOLL_WRITE
))
2241 if (pte_devmap(pte
)) {
2242 if (unlikely(flags
& FOLL_LONGTERM
))
2245 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
2246 if (unlikely(!pgmap
)) {
2247 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2250 } else if (pte_special(pte
))
2253 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
2254 page
= pte_page(pte
);
2256 head
= try_grab_compound_head(page
, 1, flags
);
2260 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
2261 put_compound_head(head
, 1, flags
);
2265 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
2268 * We need to make the page accessible if and only if we are
2269 * going to access its content (the FOLL_PIN case). Please
2270 * see Documentation/core-api/pin_user_pages.rst for
2273 if (flags
& FOLL_PIN
) {
2274 ret
= arch_make_page_accessible(page
);
2276 unpin_user_page(page
);
2280 SetPageReferenced(page
);
2284 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
2290 put_dev_pagemap(pgmap
);
2297 * If we can't determine whether or not a pte is special, then fail immediately
2298 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2301 * For a futex to be placed on a THP tail page, get_futex_key requires a
2302 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2303 * useful to have gup_huge_pmd even if we can't operate on ptes.
2305 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
2306 unsigned int flags
, struct page
**pages
, int *nr
)
2310 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2312 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2313 static int __gup_device_huge(unsigned long pfn
, unsigned long addr
,
2314 unsigned long end
, unsigned int flags
,
2315 struct page
**pages
, int *nr
)
2318 struct dev_pagemap
*pgmap
= NULL
;
2321 struct page
*page
= pfn_to_page(pfn
);
2323 pgmap
= get_dev_pagemap(pfn
, pgmap
);
2324 if (unlikely(!pgmap
)) {
2325 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2328 SetPageReferenced(page
);
2330 if (unlikely(!try_grab_page(page
, flags
))) {
2331 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2336 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2339 put_dev_pagemap(pgmap
);
2343 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
2344 unsigned long end
, unsigned int flags
,
2345 struct page
**pages
, int *nr
)
2347 unsigned long fault_pfn
;
2350 fault_pfn
= pmd_pfn(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
2351 if (!__gup_device_huge(fault_pfn
, addr
, end
, flags
, pages
, nr
))
2354 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
2355 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2361 static int __gup_device_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
2362 unsigned long end
, unsigned int flags
,
2363 struct page
**pages
, int *nr
)
2365 unsigned long fault_pfn
;
2368 fault_pfn
= pud_pfn(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
2369 if (!__gup_device_huge(fault_pfn
, addr
, end
, flags
, pages
, nr
))
2372 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
2373 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2379 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
2380 unsigned long end
, unsigned int flags
,
2381 struct page
**pages
, int *nr
)
2387 static int __gup_device_huge_pud(pud_t pud
, pud_t
*pudp
, unsigned long addr
,
2388 unsigned long end
, unsigned int flags
,
2389 struct page
**pages
, int *nr
)
2396 static int record_subpages(struct page
*page
, unsigned long addr
,
2397 unsigned long end
, struct page
**pages
)
2401 for (nr
= 0; addr
!= end
; addr
+= PAGE_SIZE
)
2402 pages
[nr
++] = page
++;
2407 #ifdef CONFIG_ARCH_HAS_HUGEPD
2408 static unsigned long hugepte_addr_end(unsigned long addr
, unsigned long end
,
2411 unsigned long __boundary
= (addr
+ sz
) & ~(sz
-1);
2412 return (__boundary
- 1 < end
- 1) ? __boundary
: end
;
2415 static int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
2416 unsigned long end
, unsigned int flags
,
2417 struct page
**pages
, int *nr
)
2419 unsigned long pte_end
;
2420 struct page
*head
, *page
;
2424 pte_end
= (addr
+ sz
) & ~(sz
-1);
2428 pte
= huge_ptep_get(ptep
);
2430 if (!pte_access_permitted(pte
, flags
& FOLL_WRITE
))
2433 /* hugepages are never "special" */
2434 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
2436 head
= pte_page(pte
);
2437 page
= head
+ ((addr
& (sz
-1)) >> PAGE_SHIFT
);
2438 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2440 head
= try_grab_compound_head(head
, refs
, flags
);
2444 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
2445 put_compound_head(head
, refs
, flags
);
2450 SetPageReferenced(head
);
2454 static int gup_huge_pd(hugepd_t hugepd
, unsigned long addr
,
2455 unsigned int pdshift
, unsigned long end
, unsigned int flags
,
2456 struct page
**pages
, int *nr
)
2459 unsigned long sz
= 1UL << hugepd_shift(hugepd
);
2462 ptep
= hugepte_offset(hugepd
, addr
, pdshift
);
2464 next
= hugepte_addr_end(addr
, end
, sz
);
2465 if (!gup_hugepte(ptep
, sz
, addr
, end
, flags
, pages
, nr
))
2467 } while (ptep
++, addr
= next
, addr
!= end
);
2472 static inline int gup_huge_pd(hugepd_t hugepd
, unsigned long addr
,
2473 unsigned int pdshift
, unsigned long end
, unsigned int flags
,
2474 struct page
**pages
, int *nr
)
2478 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2480 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
2481 unsigned long end
, unsigned int flags
,
2482 struct page
**pages
, int *nr
)
2484 struct page
*head
, *page
;
2487 if (!pmd_access_permitted(orig
, flags
& FOLL_WRITE
))
2490 if (pmd_devmap(orig
)) {
2491 if (unlikely(flags
& FOLL_LONGTERM
))
2493 return __gup_device_huge_pmd(orig
, pmdp
, addr
, end
, flags
,
2497 page
= pmd_page(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
2498 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2500 head
= try_grab_compound_head(pmd_page(orig
), refs
, flags
);
2504 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
2505 put_compound_head(head
, refs
, flags
);
2510 SetPageReferenced(head
);
2514 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
2515 unsigned long end
, unsigned int flags
,
2516 struct page
**pages
, int *nr
)
2518 struct page
*head
, *page
;
2521 if (!pud_access_permitted(orig
, flags
& FOLL_WRITE
))
2524 if (pud_devmap(orig
)) {
2525 if (unlikely(flags
& FOLL_LONGTERM
))
2527 return __gup_device_huge_pud(orig
, pudp
, addr
, end
, flags
,
2531 page
= pud_page(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
2532 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2534 head
= try_grab_compound_head(pud_page(orig
), refs
, flags
);
2538 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
2539 put_compound_head(head
, refs
, flags
);
2544 SetPageReferenced(head
);
2548 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
2549 unsigned long end
, unsigned int flags
,
2550 struct page
**pages
, int *nr
)
2553 struct page
*head
, *page
;
2555 if (!pgd_access_permitted(orig
, flags
& FOLL_WRITE
))
2558 BUILD_BUG_ON(pgd_devmap(orig
));
2560 page
= pgd_page(orig
) + ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
2561 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2563 head
= try_grab_compound_head(pgd_page(orig
), refs
, flags
);
2567 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
2568 put_compound_head(head
, refs
, flags
);
2573 SetPageReferenced(head
);
2577 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
2578 unsigned int flags
, struct page
**pages
, int *nr
)
2583 pmdp
= pmd_offset(&pud
, addr
);
2585 pmd_t pmd
= READ_ONCE(*pmdp
);
2587 next
= pmd_addr_end(addr
, end
);
2588 if (!pmd_present(pmd
))
2591 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
) ||
2594 * NUMA hinting faults need to be handled in the GUP
2595 * slowpath for accounting purposes and so that they
2596 * can be serialised against THP migration.
2598 if (pmd_protnone(pmd
))
2601 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, flags
,
2605 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
2607 * architecture have different format for hugetlbfs
2608 * pmd format and THP pmd format
2610 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
2611 PMD_SHIFT
, next
, flags
, pages
, nr
))
2613 } else if (!gup_pte_range(pmd
, addr
, next
, flags
, pages
, nr
))
2615 } while (pmdp
++, addr
= next
, addr
!= end
);
2620 static int gup_pud_range(p4d_t p4d
, unsigned long addr
, unsigned long end
,
2621 unsigned int flags
, struct page
**pages
, int *nr
)
2626 pudp
= pud_offset(&p4d
, addr
);
2628 pud_t pud
= READ_ONCE(*pudp
);
2630 next
= pud_addr_end(addr
, end
);
2631 if (unlikely(!pud_present(pud
)))
2633 if (unlikely(pud_huge(pud
))) {
2634 if (!gup_huge_pud(pud
, pudp
, addr
, next
, flags
,
2637 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
2638 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
2639 PUD_SHIFT
, next
, flags
, pages
, nr
))
2641 } else if (!gup_pmd_range(pud
, addr
, next
, flags
, pages
, nr
))
2643 } while (pudp
++, addr
= next
, addr
!= end
);
2648 static int gup_p4d_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
2649 unsigned int flags
, struct page
**pages
, int *nr
)
2654 p4dp
= p4d_offset(&pgd
, addr
);
2656 p4d_t p4d
= READ_ONCE(*p4dp
);
2658 next
= p4d_addr_end(addr
, end
);
2661 BUILD_BUG_ON(p4d_huge(p4d
));
2662 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d
))))) {
2663 if (!gup_huge_pd(__hugepd(p4d_val(p4d
)), addr
,
2664 P4D_SHIFT
, next
, flags
, pages
, nr
))
2666 } else if (!gup_pud_range(p4d
, addr
, next
, flags
, pages
, nr
))
2668 } while (p4dp
++, addr
= next
, addr
!= end
);
2673 static void gup_pgd_range(unsigned long addr
, unsigned long end
,
2674 unsigned int flags
, struct page
**pages
, int *nr
)
2679 pgdp
= pgd_offset(current
->mm
, addr
);
2681 pgd_t pgd
= READ_ONCE(*pgdp
);
2683 next
= pgd_addr_end(addr
, end
);
2686 if (unlikely(pgd_huge(pgd
))) {
2687 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, flags
,
2690 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
2691 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
2692 PGDIR_SHIFT
, next
, flags
, pages
, nr
))
2694 } else if (!gup_p4d_range(pgd
, addr
, next
, flags
, pages
, nr
))
2696 } while (pgdp
++, addr
= next
, addr
!= end
);
2699 static inline void gup_pgd_range(unsigned long addr
, unsigned long end
,
2700 unsigned int flags
, struct page
**pages
, int *nr
)
2703 #endif /* CONFIG_HAVE_FAST_GUP */
2705 #ifndef gup_fast_permitted
2707 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2708 * we need to fall back to the slow version:
2710 static bool gup_fast_permitted(unsigned long start
, unsigned long end
)
2716 static int __gup_longterm_unlocked(unsigned long start
, int nr_pages
,
2717 unsigned int gup_flags
, struct page
**pages
)
2722 * FIXME: FOLL_LONGTERM does not work with
2723 * get_user_pages_unlocked() (see comments in that function)
2725 if (gup_flags
& FOLL_LONGTERM
) {
2726 mmap_read_lock(current
->mm
);
2727 ret
= __gup_longterm_locked(current
, current
->mm
,
2729 pages
, NULL
, gup_flags
);
2730 mmap_read_unlock(current
->mm
);
2732 ret
= get_user_pages_unlocked(start
, nr_pages
,
2739 static int internal_get_user_pages_fast(unsigned long start
, int nr_pages
,
2740 unsigned int gup_flags
,
2741 struct page
**pages
)
2743 unsigned long addr
, len
, end
;
2744 unsigned long flags
;
2745 int nr_pinned
= 0, ret
= 0;
2747 if (WARN_ON_ONCE(gup_flags
& ~(FOLL_WRITE
| FOLL_LONGTERM
|
2748 FOLL_FORCE
| FOLL_PIN
| FOLL_GET
|
2752 if (!(gup_flags
& FOLL_FAST_ONLY
))
2753 might_lock_read(¤t
->mm
->mmap_lock
);
2755 start
= untagged_addr(start
) & PAGE_MASK
;
2757 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
2762 if (unlikely(!access_ok((void __user
*)start
, len
)))
2766 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2767 * because get_user_pages() may need to cause an early COW in
2768 * order to avoid confusing the normal COW routines. So only
2769 * targets that are already writable are safe to do by just
2770 * looking at the page tables.
2772 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here,
2773 * because there is no slow path to fall back on. But you'd
2774 * better be careful about possible COW pages - you'll get _a_
2775 * COW page, but not necessarily the one you intended to get
2776 * depending on what COW event happens after this. COW may break
2777 * the page copy in a random direction.
2779 * Disable interrupts. The nested form is used, in order to allow
2780 * full, general purpose use of this routine.
2782 * With interrupts disabled, we block page table pages from being
2783 * freed from under us. See struct mmu_table_batch comments in
2784 * include/asm-generic/tlb.h for more details.
2786 * We do not adopt an rcu_read_lock(.) here as we also want to
2787 * block IPIs that come from THPs splitting.
2789 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP
) && gup_fast_permitted(start
, end
)) {
2790 unsigned long fast_flags
= gup_flags
;
2791 if (!(gup_flags
& FOLL_FAST_ONLY
))
2792 fast_flags
|= FOLL_WRITE
;
2794 local_irq_save(flags
);
2795 gup_pgd_range(addr
, end
, fast_flags
, pages
, &nr_pinned
);
2796 local_irq_restore(flags
);
2800 if (nr_pinned
< nr_pages
&& !(gup_flags
& FOLL_FAST_ONLY
)) {
2801 /* Try to get the remaining pages with get_user_pages */
2802 start
+= nr_pinned
<< PAGE_SHIFT
;
2805 ret
= __gup_longterm_unlocked(start
, nr_pages
- nr_pinned
,
2808 /* Have to be a bit careful with return values */
2809 if (nr_pinned
> 0) {
2820 * get_user_pages_fast_only() - pin user pages in memory
2821 * @start: starting user address
2822 * @nr_pages: number of pages from start to pin
2823 * @gup_flags: flags modifying pin behaviour
2824 * @pages: array that receives pointers to the pages pinned.
2825 * Should be at least nr_pages long.
2827 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2829 * Note a difference with get_user_pages_fast: this always returns the
2830 * number of pages pinned, 0 if no pages were pinned.
2832 * If the architecture does not support this function, simply return with no
2835 * Careful, careful! COW breaking can go either way, so a non-write
2836 * access can get ambiguous page results. If you call this function without
2837 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2839 int get_user_pages_fast_only(unsigned long start
, int nr_pages
,
2840 unsigned int gup_flags
, struct page
**pages
)
2844 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2845 * because gup fast is always a "pin with a +1 page refcount" request.
2847 * FOLL_FAST_ONLY is required in order to match the API description of
2848 * this routine: no fall back to regular ("slow") GUP.
2850 gup_flags
|= FOLL_GET
| FOLL_FAST_ONLY
;
2852 nr_pinned
= internal_get_user_pages_fast(start
, nr_pages
, gup_flags
,
2856 * As specified in the API description above, this routine is not
2857 * allowed to return negative values. However, the common core
2858 * routine internal_get_user_pages_fast() *can* return -errno.
2859 * Therefore, correct for that here:
2866 EXPORT_SYMBOL_GPL(get_user_pages_fast_only
);
2869 * get_user_pages_fast() - pin user pages in memory
2870 * @start: starting user address
2871 * @nr_pages: number of pages from start to pin
2872 * @gup_flags: flags modifying pin behaviour
2873 * @pages: array that receives pointers to the pages pinned.
2874 * Should be at least nr_pages long.
2876 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2877 * If not successful, it will fall back to taking the lock and
2878 * calling get_user_pages().
2880 * Returns number of pages pinned. This may be fewer than the number requested.
2881 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2884 int get_user_pages_fast(unsigned long start
, int nr_pages
,
2885 unsigned int gup_flags
, struct page
**pages
)
2888 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2889 * never directly by the caller, so enforce that:
2891 if (WARN_ON_ONCE(gup_flags
& FOLL_PIN
))
2895 * The caller may or may not have explicitly set FOLL_GET; either way is
2896 * OK. However, internally (within mm/gup.c), gup fast variants must set
2897 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2900 gup_flags
|= FOLL_GET
;
2901 return internal_get_user_pages_fast(start
, nr_pages
, gup_flags
, pages
);
2903 EXPORT_SYMBOL_GPL(get_user_pages_fast
);
2906 * pin_user_pages_fast() - pin user pages in memory without taking locks
2908 * @start: starting user address
2909 * @nr_pages: number of pages from start to pin
2910 * @gup_flags: flags modifying pin behaviour
2911 * @pages: array that receives pointers to the pages pinned.
2912 * Should be at least nr_pages long.
2914 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2915 * get_user_pages_fast() for documentation on the function arguments, because
2916 * the arguments here are identical.
2918 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2919 * see Documentation/core-api/pin_user_pages.rst for further details.
2921 int pin_user_pages_fast(unsigned long start
, int nr_pages
,
2922 unsigned int gup_flags
, struct page
**pages
)
2924 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2925 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
2928 gup_flags
|= FOLL_PIN
;
2929 return internal_get_user_pages_fast(start
, nr_pages
, gup_flags
, pages
);
2931 EXPORT_SYMBOL_GPL(pin_user_pages_fast
);
2934 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2935 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2937 * The API rules are the same, too: no negative values may be returned.
2939 int pin_user_pages_fast_only(unsigned long start
, int nr_pages
,
2940 unsigned int gup_flags
, struct page
**pages
)
2945 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2946 * rules require returning 0, rather than -errno:
2948 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
2951 * FOLL_FAST_ONLY is required in order to match the API description of
2952 * this routine: no fall back to regular ("slow") GUP.
2954 gup_flags
|= (FOLL_PIN
| FOLL_FAST_ONLY
);
2955 nr_pinned
= internal_get_user_pages_fast(start
, nr_pages
, gup_flags
,
2958 * This routine is not allowed to return negative values. However,
2959 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2960 * correct for that here:
2967 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only
);
2970 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2972 * @tsk: the task_struct to use for page fault accounting, or
2973 * NULL if faults are not to be recorded.
2974 * @mm: mm_struct of target mm
2975 * @start: starting user address
2976 * @nr_pages: number of pages from start to pin
2977 * @gup_flags: flags modifying lookup behaviour
2978 * @pages: array that receives pointers to the pages pinned.
2979 * Should be at least nr_pages long. Or NULL, if caller
2980 * only intends to ensure the pages are faulted in.
2981 * @vmas: array of pointers to vmas corresponding to each page.
2982 * Or NULL if the caller does not require them.
2983 * @locked: pointer to lock flag indicating whether lock is held and
2984 * subsequently whether VM_FAULT_RETRY functionality can be
2985 * utilised. Lock must initially be held.
2987 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2988 * get_user_pages_remote() for documentation on the function arguments, because
2989 * the arguments here are identical.
2991 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2992 * see Documentation/core-api/pin_user_pages.rst for details.
2994 long pin_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
2995 unsigned long start
, unsigned long nr_pages
,
2996 unsigned int gup_flags
, struct page
**pages
,
2997 struct vm_area_struct
**vmas
, int *locked
)
2999 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3000 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
3003 gup_flags
|= FOLL_PIN
;
3004 return __get_user_pages_remote(tsk
, mm
, start
, nr_pages
, gup_flags
,
3005 pages
, vmas
, locked
);
3007 EXPORT_SYMBOL(pin_user_pages_remote
);
3010 * pin_user_pages() - pin user pages in memory for use by other devices
3012 * @start: starting user address
3013 * @nr_pages: number of pages from start to pin
3014 * @gup_flags: flags modifying lookup behaviour
3015 * @pages: array that receives pointers to the pages pinned.
3016 * Should be at least nr_pages long. Or NULL, if caller
3017 * only intends to ensure the pages are faulted in.
3018 * @vmas: array of pointers to vmas corresponding to each page.
3019 * Or NULL if the caller does not require them.
3021 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3024 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3025 * see Documentation/core-api/pin_user_pages.rst for details.
3027 long pin_user_pages(unsigned long start
, unsigned long nr_pages
,
3028 unsigned int gup_flags
, struct page
**pages
,
3029 struct vm_area_struct
**vmas
)
3031 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3032 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
3035 gup_flags
|= FOLL_PIN
;
3036 return __gup_longterm_locked(current
, current
->mm
, start
, nr_pages
,
3037 pages
, vmas
, gup_flags
);
3039 EXPORT_SYMBOL(pin_user_pages
);
3042 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3043 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3044 * FOLL_PIN and rejects FOLL_GET.
3046 long pin_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
3047 struct page
**pages
, unsigned int gup_flags
)
3049 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3050 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
3053 gup_flags
|= FOLL_PIN
;
3054 return get_user_pages_unlocked(start
, nr_pages
, pages
, gup_flags
);
3056 EXPORT_SYMBOL(pin_user_pages_unlocked
);
3059 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3060 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3063 long pin_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
3064 unsigned int gup_flags
, struct page
**pages
,
3068 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3069 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3070 * vmas. As there are no users of this flag in this call we simply
3071 * disallow this option for now.
3073 if (WARN_ON_ONCE(gup_flags
& FOLL_LONGTERM
))
3076 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3077 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
3080 gup_flags
|= FOLL_PIN
;
3081 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
3082 pages
, NULL
, locked
,
3083 gup_flags
| FOLL_TOUCH
);
3085 EXPORT_SYMBOL(pin_user_pages_locked
);