4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
8 #include <linux/init.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
36 struct block_device bdev
;
37 struct inode vfs_inode
;
40 static const struct address_space_operations def_blk_aops
;
42 static inline struct bdev_inode
*BDEV_I(struct inode
*inode
)
44 return container_of(inode
, struct bdev_inode
, vfs_inode
);
47 struct block_device
*I_BDEV(struct inode
*inode
)
49 return &BDEV_I(inode
)->bdev
;
51 EXPORT_SYMBOL(I_BDEV
);
53 static void bdev_write_inode(struct block_device
*bdev
)
55 struct inode
*inode
= bdev
->bd_inode
;
58 spin_lock(&inode
->i_lock
);
59 while (inode
->i_state
& I_DIRTY
) {
60 spin_unlock(&inode
->i_lock
);
61 ret
= write_inode_now(inode
, true);
63 char name
[BDEVNAME_SIZE
];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev
, name
), ret
);
68 spin_lock(&inode
->i_lock
);
70 spin_unlock(&inode
->i_lock
);
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device
*bdev
)
76 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
78 if (mapping
->nrpages
== 0 && mapping
->nrshadows
== 0)
82 truncate_inode_pages(mapping
, 0);
84 EXPORT_SYMBOL(kill_bdev
);
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device
*bdev
)
89 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
91 if (mapping
->nrpages
== 0)
95 lru_add_drain_all(); /* make sure all lru add caches are flushed */
96 invalidate_mapping_pages(mapping
, 0, -1);
97 /* 99% of the time, we don't need to flush the cleancache on the bdev.
98 * But, for the strange corners, lets be cautious
100 cleancache_invalidate_inode(mapping
);
102 EXPORT_SYMBOL(invalidate_bdev
);
104 int set_blocksize(struct block_device
*bdev
, int size
)
106 /* Size must be a power of two, and between 512 and PAGE_SIZE */
107 if (size
> PAGE_SIZE
|| size
< 512 || !is_power_of_2(size
))
110 /* Size cannot be smaller than the size supported by the device */
111 if (size
< bdev_logical_block_size(bdev
))
114 /* Don't change the size if it is same as current */
115 if (bdev
->bd_block_size
!= size
) {
117 bdev
->bd_block_size
= size
;
118 bdev
->bd_inode
->i_blkbits
= blksize_bits(size
);
124 EXPORT_SYMBOL(set_blocksize
);
126 int sb_set_blocksize(struct super_block
*sb
, int size
)
128 if (set_blocksize(sb
->s_bdev
, size
))
130 /* If we get here, we know size is power of two
131 * and it's value is between 512 and PAGE_SIZE */
132 sb
->s_blocksize
= size
;
133 sb
->s_blocksize_bits
= blksize_bits(size
);
134 return sb
->s_blocksize
;
137 EXPORT_SYMBOL(sb_set_blocksize
);
139 int sb_min_blocksize(struct super_block
*sb
, int size
)
141 int minsize
= bdev_logical_block_size(sb
->s_bdev
);
144 return sb_set_blocksize(sb
, size
);
147 EXPORT_SYMBOL(sb_min_blocksize
);
150 blkdev_get_block(struct inode
*inode
, sector_t iblock
,
151 struct buffer_head
*bh
, int create
)
153 bh
->b_bdev
= I_BDEV(inode
);
154 bh
->b_blocknr
= iblock
;
155 set_buffer_mapped(bh
);
160 blkdev_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
, loff_t offset
)
162 struct file
*file
= iocb
->ki_filp
;
163 struct inode
*inode
= file
->f_mapping
->host
;
166 return dax_do_io(iocb
, inode
, iter
, offset
, blkdev_get_block
,
167 NULL
, DIO_SKIP_DIO_COUNT
);
168 return __blockdev_direct_IO(iocb
, inode
, I_BDEV(inode
), iter
, offset
,
169 blkdev_get_block
, NULL
, NULL
,
173 int __sync_blockdev(struct block_device
*bdev
, int wait
)
178 return filemap_flush(bdev
->bd_inode
->i_mapping
);
179 return filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
183 * Write out and wait upon all the dirty data associated with a block
184 * device via its mapping. Does not take the superblock lock.
186 int sync_blockdev(struct block_device
*bdev
)
188 return __sync_blockdev(bdev
, 1);
190 EXPORT_SYMBOL(sync_blockdev
);
193 * Write out and wait upon all dirty data associated with this
194 * device. Filesystem data as well as the underlying block
195 * device. Takes the superblock lock.
197 int fsync_bdev(struct block_device
*bdev
)
199 struct super_block
*sb
= get_super(bdev
);
201 int res
= sync_filesystem(sb
);
205 return sync_blockdev(bdev
);
207 EXPORT_SYMBOL(fsync_bdev
);
210 * freeze_bdev -- lock a filesystem and force it into a consistent state
211 * @bdev: blockdevice to lock
213 * If a superblock is found on this device, we take the s_umount semaphore
214 * on it to make sure nobody unmounts until the snapshot creation is done.
215 * The reference counter (bd_fsfreeze_count) guarantees that only the last
216 * unfreeze process can unfreeze the frozen filesystem actually when multiple
217 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
218 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
221 struct super_block
*freeze_bdev(struct block_device
*bdev
)
223 struct super_block
*sb
;
226 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
227 if (++bdev
->bd_fsfreeze_count
> 1) {
229 * We don't even need to grab a reference - the first call
230 * to freeze_bdev grab an active reference and only the last
231 * thaw_bdev drops it.
233 sb
= get_super(bdev
);
235 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
239 sb
= get_active_super(bdev
);
242 if (sb
->s_op
->freeze_super
)
243 error
= sb
->s_op
->freeze_super(sb
);
245 error
= freeze_super(sb
);
247 deactivate_super(sb
);
248 bdev
->bd_fsfreeze_count
--;
249 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
250 return ERR_PTR(error
);
252 deactivate_super(sb
);
255 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
256 return sb
; /* thaw_bdev releases s->s_umount */
258 EXPORT_SYMBOL(freeze_bdev
);
261 * thaw_bdev -- unlock filesystem
262 * @bdev: blockdevice to unlock
263 * @sb: associated superblock
265 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
267 int thaw_bdev(struct block_device
*bdev
, struct super_block
*sb
)
271 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
272 if (!bdev
->bd_fsfreeze_count
)
276 if (--bdev
->bd_fsfreeze_count
> 0)
282 if (sb
->s_op
->thaw_super
)
283 error
= sb
->s_op
->thaw_super(sb
);
285 error
= thaw_super(sb
);
287 bdev
->bd_fsfreeze_count
++;
288 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
292 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
295 EXPORT_SYMBOL(thaw_bdev
);
297 static int blkdev_writepage(struct page
*page
, struct writeback_control
*wbc
)
299 return block_write_full_page(page
, blkdev_get_block
, wbc
);
302 static int blkdev_readpage(struct file
* file
, struct page
* page
)
304 return block_read_full_page(page
, blkdev_get_block
);
307 static int blkdev_readpages(struct file
*file
, struct address_space
*mapping
,
308 struct list_head
*pages
, unsigned nr_pages
)
310 return mpage_readpages(mapping
, pages
, nr_pages
, blkdev_get_block
);
313 static int blkdev_write_begin(struct file
*file
, struct address_space
*mapping
,
314 loff_t pos
, unsigned len
, unsigned flags
,
315 struct page
**pagep
, void **fsdata
)
317 return block_write_begin(mapping
, pos
, len
, flags
, pagep
,
321 static int blkdev_write_end(struct file
*file
, struct address_space
*mapping
,
322 loff_t pos
, unsigned len
, unsigned copied
,
323 struct page
*page
, void *fsdata
)
326 ret
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
329 page_cache_release(page
);
336 * for a block special file file_inode(file)->i_size is zero
337 * so we compute the size by hand (just as in block_read/write above)
339 static loff_t
block_llseek(struct file
*file
, loff_t offset
, int whence
)
341 struct inode
*bd_inode
= file
->f_mapping
->host
;
344 mutex_lock(&bd_inode
->i_mutex
);
345 retval
= fixed_size_llseek(file
, offset
, whence
, i_size_read(bd_inode
));
346 mutex_unlock(&bd_inode
->i_mutex
);
350 int blkdev_fsync(struct file
*filp
, loff_t start
, loff_t end
, int datasync
)
352 struct inode
*bd_inode
= filp
->f_mapping
->host
;
353 struct block_device
*bdev
= I_BDEV(bd_inode
);
356 error
= filemap_write_and_wait_range(filp
->f_mapping
, start
, end
);
361 * There is no need to serialise calls to blkdev_issue_flush with
362 * i_mutex and doing so causes performance issues with concurrent
363 * O_SYNC writers to a block device.
365 error
= blkdev_issue_flush(bdev
, GFP_KERNEL
, NULL
);
366 if (error
== -EOPNOTSUPP
)
371 EXPORT_SYMBOL(blkdev_fsync
);
374 * bdev_read_page() - Start reading a page from a block device
375 * @bdev: The device to read the page from
376 * @sector: The offset on the device to read the page to (need not be aligned)
377 * @page: The page to read
379 * On entry, the page should be locked. It will be unlocked when the page
380 * has been read. If the block driver implements rw_page synchronously,
381 * that will be true on exit from this function, but it need not be.
383 * Errors returned by this function are usually "soft", eg out of memory, or
384 * queue full; callers should try a different route to read this page rather
385 * than propagate an error back up the stack.
387 * Return: negative errno if an error occurs, 0 if submission was successful.
389 int bdev_read_page(struct block_device
*bdev
, sector_t sector
,
392 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
393 int result
= -EOPNOTSUPP
;
395 if (!ops
->rw_page
|| bdev_get_integrity(bdev
))
398 result
= blk_queue_enter(bdev
->bd_queue
, GFP_KERNEL
);
401 result
= ops
->rw_page(bdev
, sector
+ get_start_sect(bdev
), page
, READ
);
402 blk_queue_exit(bdev
->bd_queue
);
405 EXPORT_SYMBOL_GPL(bdev_read_page
);
408 * bdev_write_page() - Start writing a page to a block device
409 * @bdev: The device to write the page to
410 * @sector: The offset on the device to write the page to (need not be aligned)
411 * @page: The page to write
412 * @wbc: The writeback_control for the write
414 * On entry, the page should be locked and not currently under writeback.
415 * On exit, if the write started successfully, the page will be unlocked and
416 * under writeback. If the write failed already (eg the driver failed to
417 * queue the page to the device), the page will still be locked. If the
418 * caller is a ->writepage implementation, it will need to unlock the page.
420 * Errors returned by this function are usually "soft", eg out of memory, or
421 * queue full; callers should try a different route to write this page rather
422 * than propagate an error back up the stack.
424 * Return: negative errno if an error occurs, 0 if submission was successful.
426 int bdev_write_page(struct block_device
*bdev
, sector_t sector
,
427 struct page
*page
, struct writeback_control
*wbc
)
430 int rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
;
431 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
433 if (!ops
->rw_page
|| bdev_get_integrity(bdev
))
435 result
= blk_queue_enter(bdev
->bd_queue
, GFP_KERNEL
);
439 set_page_writeback(page
);
440 result
= ops
->rw_page(bdev
, sector
+ get_start_sect(bdev
), page
, rw
);
442 end_page_writeback(page
);
445 blk_queue_exit(bdev
->bd_queue
);
448 EXPORT_SYMBOL_GPL(bdev_write_page
);
451 * bdev_direct_access() - Get the address for directly-accessibly memory
452 * @bdev: The device containing the memory
453 * @sector: The offset within the device
454 * @addr: Where to put the address of the memory
455 * @pfn: The Page Frame Number for the memory
456 * @size: The number of bytes requested
458 * If a block device is made up of directly addressable memory, this function
459 * will tell the caller the PFN and the address of the memory. The address
460 * may be directly dereferenced within the kernel without the need to call
461 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
464 * Return: negative errno if an error occurs, otherwise the number of bytes
465 * accessible at this address.
467 long bdev_direct_access(struct block_device
*bdev
, sector_t sector
,
468 void __pmem
**addr
, unsigned long *pfn
, long size
)
471 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
474 * The device driver is allowed to sleep, in order to make the
475 * memory directly accessible.
481 if (!ops
->direct_access
)
483 if ((sector
+ DIV_ROUND_UP(size
, 512)) >
484 part_nr_sects_read(bdev
->bd_part
))
486 sector
+= get_start_sect(bdev
);
487 if (sector
% (PAGE_SIZE
/ 512))
489 avail
= ops
->direct_access(bdev
, sector
, addr
, pfn
);
492 return min(avail
, size
);
494 EXPORT_SYMBOL_GPL(bdev_direct_access
);
500 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(bdev_lock
);
501 static struct kmem_cache
* bdev_cachep __read_mostly
;
503 static struct inode
*bdev_alloc_inode(struct super_block
*sb
)
505 struct bdev_inode
*ei
= kmem_cache_alloc(bdev_cachep
, GFP_KERNEL
);
508 return &ei
->vfs_inode
;
511 static void bdev_i_callback(struct rcu_head
*head
)
513 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
514 struct bdev_inode
*bdi
= BDEV_I(inode
);
516 kmem_cache_free(bdev_cachep
, bdi
);
519 static void bdev_destroy_inode(struct inode
*inode
)
521 call_rcu(&inode
->i_rcu
, bdev_i_callback
);
524 static void init_once(void *foo
)
526 struct bdev_inode
*ei
= (struct bdev_inode
*) foo
;
527 struct block_device
*bdev
= &ei
->bdev
;
529 memset(bdev
, 0, sizeof(*bdev
));
530 mutex_init(&bdev
->bd_mutex
);
531 INIT_LIST_HEAD(&bdev
->bd_inodes
);
532 INIT_LIST_HEAD(&bdev
->bd_list
);
534 INIT_LIST_HEAD(&bdev
->bd_holder_disks
);
536 inode_init_once(&ei
->vfs_inode
);
537 /* Initialize mutex for freeze. */
538 mutex_init(&bdev
->bd_fsfreeze_mutex
);
541 static inline void __bd_forget(struct inode
*inode
)
543 list_del_init(&inode
->i_devices
);
544 inode
->i_bdev
= NULL
;
545 inode
->i_mapping
= &inode
->i_data
;
548 static void bdev_evict_inode(struct inode
*inode
)
550 struct block_device
*bdev
= &BDEV_I(inode
)->bdev
;
552 truncate_inode_pages_final(&inode
->i_data
);
553 invalidate_inode_buffers(inode
); /* is it needed here? */
555 spin_lock(&bdev_lock
);
556 while ( (p
= bdev
->bd_inodes
.next
) != &bdev
->bd_inodes
) {
557 __bd_forget(list_entry(p
, struct inode
, i_devices
));
559 list_del_init(&bdev
->bd_list
);
560 spin_unlock(&bdev_lock
);
563 static const struct super_operations bdev_sops
= {
564 .statfs
= simple_statfs
,
565 .alloc_inode
= bdev_alloc_inode
,
566 .destroy_inode
= bdev_destroy_inode
,
567 .drop_inode
= generic_delete_inode
,
568 .evict_inode
= bdev_evict_inode
,
571 static struct dentry
*bd_mount(struct file_system_type
*fs_type
,
572 int flags
, const char *dev_name
, void *data
)
574 return mount_pseudo(fs_type
, "bdev:", &bdev_sops
, NULL
, BDEVFS_MAGIC
);
577 static struct file_system_type bd_type
= {
580 .kill_sb
= kill_anon_super
,
583 struct super_block
*blockdev_superblock __read_mostly
;
584 EXPORT_SYMBOL_GPL(blockdev_superblock
);
586 void __init
bdev_cache_init(void)
589 static struct vfsmount
*bd_mnt
;
591 bdev_cachep
= kmem_cache_create("bdev_cache", sizeof(struct bdev_inode
),
592 0, (SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
|
593 SLAB_MEM_SPREAD
|SLAB_PANIC
),
595 err
= register_filesystem(&bd_type
);
597 panic("Cannot register bdev pseudo-fs");
598 bd_mnt
= kern_mount(&bd_type
);
600 panic("Cannot create bdev pseudo-fs");
601 blockdev_superblock
= bd_mnt
->mnt_sb
; /* For writeback */
605 * Most likely _very_ bad one - but then it's hardly critical for small
606 * /dev and can be fixed when somebody will need really large one.
607 * Keep in mind that it will be fed through icache hash function too.
609 static inline unsigned long hash(dev_t dev
)
611 return MAJOR(dev
)+MINOR(dev
);
614 static int bdev_test(struct inode
*inode
, void *data
)
616 return BDEV_I(inode
)->bdev
.bd_dev
== *(dev_t
*)data
;
619 static int bdev_set(struct inode
*inode
, void *data
)
621 BDEV_I(inode
)->bdev
.bd_dev
= *(dev_t
*)data
;
625 static LIST_HEAD(all_bdevs
);
627 struct block_device
*bdget(dev_t dev
)
629 struct block_device
*bdev
;
632 inode
= iget5_locked(blockdev_superblock
, hash(dev
),
633 bdev_test
, bdev_set
, &dev
);
638 bdev
= &BDEV_I(inode
)->bdev
;
640 if (inode
->i_state
& I_NEW
) {
641 bdev
->bd_contains
= NULL
;
642 bdev
->bd_super
= NULL
;
643 bdev
->bd_inode
= inode
;
644 bdev
->bd_block_size
= (1 << inode
->i_blkbits
);
645 bdev
->bd_part_count
= 0;
646 bdev
->bd_invalidated
= 0;
647 inode
->i_mode
= S_IFBLK
;
649 inode
->i_bdev
= bdev
;
650 inode
->i_data
.a_ops
= &def_blk_aops
;
651 mapping_set_gfp_mask(&inode
->i_data
, GFP_USER
);
652 spin_lock(&bdev_lock
);
653 list_add(&bdev
->bd_list
, &all_bdevs
);
654 spin_unlock(&bdev_lock
);
655 unlock_new_inode(inode
);
660 EXPORT_SYMBOL(bdget
);
663 * bdgrab -- Grab a reference to an already referenced block device
664 * @bdev: Block device to grab a reference to.
666 struct block_device
*bdgrab(struct block_device
*bdev
)
668 ihold(bdev
->bd_inode
);
671 EXPORT_SYMBOL(bdgrab
);
673 long nr_blockdev_pages(void)
675 struct block_device
*bdev
;
677 spin_lock(&bdev_lock
);
678 list_for_each_entry(bdev
, &all_bdevs
, bd_list
) {
679 ret
+= bdev
->bd_inode
->i_mapping
->nrpages
;
681 spin_unlock(&bdev_lock
);
685 void bdput(struct block_device
*bdev
)
687 iput(bdev
->bd_inode
);
690 EXPORT_SYMBOL(bdput
);
692 static struct block_device
*bd_acquire(struct inode
*inode
)
694 struct block_device
*bdev
;
696 spin_lock(&bdev_lock
);
697 bdev
= inode
->i_bdev
;
699 ihold(bdev
->bd_inode
);
700 spin_unlock(&bdev_lock
);
703 spin_unlock(&bdev_lock
);
705 bdev
= bdget(inode
->i_rdev
);
707 spin_lock(&bdev_lock
);
708 if (!inode
->i_bdev
) {
710 * We take an additional reference to bd_inode,
711 * and it's released in clear_inode() of inode.
712 * So, we can access it via ->i_mapping always
715 ihold(bdev
->bd_inode
);
716 inode
->i_bdev
= bdev
;
717 inode
->i_mapping
= bdev
->bd_inode
->i_mapping
;
718 list_add(&inode
->i_devices
, &bdev
->bd_inodes
);
720 spin_unlock(&bdev_lock
);
725 /* Call when you free inode */
727 void bd_forget(struct inode
*inode
)
729 struct block_device
*bdev
= NULL
;
731 spin_lock(&bdev_lock
);
732 if (!sb_is_blkdev_sb(inode
->i_sb
))
733 bdev
= inode
->i_bdev
;
735 spin_unlock(&bdev_lock
);
738 iput(bdev
->bd_inode
);
742 * bd_may_claim - test whether a block device can be claimed
743 * @bdev: block device of interest
744 * @whole: whole block device containing @bdev, may equal @bdev
745 * @holder: holder trying to claim @bdev
747 * Test whether @bdev can be claimed by @holder.
750 * spin_lock(&bdev_lock).
753 * %true if @bdev can be claimed, %false otherwise.
755 static bool bd_may_claim(struct block_device
*bdev
, struct block_device
*whole
,
758 if (bdev
->bd_holder
== holder
)
759 return true; /* already a holder */
760 else if (bdev
->bd_holder
!= NULL
)
761 return false; /* held by someone else */
762 else if (whole
== bdev
)
763 return true; /* is a whole device which isn't held */
765 else if (whole
->bd_holder
== bd_may_claim
)
766 return true; /* is a partition of a device that is being partitioned */
767 else if (whole
->bd_holder
!= NULL
)
768 return false; /* is a partition of a held device */
770 return true; /* is a partition of an un-held device */
774 * bd_prepare_to_claim - prepare to claim a block device
775 * @bdev: block device of interest
776 * @whole: the whole device containing @bdev, may equal @bdev
777 * @holder: holder trying to claim @bdev
779 * Prepare to claim @bdev. This function fails if @bdev is already
780 * claimed by another holder and waits if another claiming is in
781 * progress. This function doesn't actually claim. On successful
782 * return, the caller has ownership of bd_claiming and bd_holder[s].
785 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
789 * 0 if @bdev can be claimed, -EBUSY otherwise.
791 static int bd_prepare_to_claim(struct block_device
*bdev
,
792 struct block_device
*whole
, void *holder
)
795 /* if someone else claimed, fail */
796 if (!bd_may_claim(bdev
, whole
, holder
))
799 /* if claiming is already in progress, wait for it to finish */
800 if (whole
->bd_claiming
) {
801 wait_queue_head_t
*wq
= bit_waitqueue(&whole
->bd_claiming
, 0);
804 prepare_to_wait(wq
, &wait
, TASK_UNINTERRUPTIBLE
);
805 spin_unlock(&bdev_lock
);
807 finish_wait(wq
, &wait
);
808 spin_lock(&bdev_lock
);
817 * bd_start_claiming - start claiming a block device
818 * @bdev: block device of interest
819 * @holder: holder trying to claim @bdev
821 * @bdev is about to be opened exclusively. Check @bdev can be opened
822 * exclusively and mark that an exclusive open is in progress. Each
823 * successful call to this function must be matched with a call to
824 * either bd_finish_claiming() or bd_abort_claiming() (which do not
827 * This function is used to gain exclusive access to the block device
828 * without actually causing other exclusive open attempts to fail. It
829 * should be used when the open sequence itself requires exclusive
830 * access but may subsequently fail.
836 * Pointer to the block device containing @bdev on success, ERR_PTR()
839 static struct block_device
*bd_start_claiming(struct block_device
*bdev
,
842 struct gendisk
*disk
;
843 struct block_device
*whole
;
849 * @bdev might not have been initialized properly yet, look up
850 * and grab the outer block device the hard way.
852 disk
= get_gendisk(bdev
->bd_dev
, &partno
);
854 return ERR_PTR(-ENXIO
);
857 * Normally, @bdev should equal what's returned from bdget_disk()
858 * if partno is 0; however, some drivers (floppy) use multiple
859 * bdev's for the same physical device and @bdev may be one of the
860 * aliases. Keep @bdev if partno is 0. This means claimer
861 * tracking is broken for those devices but it has always been that
865 whole
= bdget_disk(disk
, 0);
867 whole
= bdgrab(bdev
);
869 module_put(disk
->fops
->owner
);
872 return ERR_PTR(-ENOMEM
);
874 /* prepare to claim, if successful, mark claiming in progress */
875 spin_lock(&bdev_lock
);
877 err
= bd_prepare_to_claim(bdev
, whole
, holder
);
879 whole
->bd_claiming
= holder
;
880 spin_unlock(&bdev_lock
);
883 spin_unlock(&bdev_lock
);
890 struct bd_holder_disk
{
891 struct list_head list
;
892 struct gendisk
*disk
;
896 static struct bd_holder_disk
*bd_find_holder_disk(struct block_device
*bdev
,
897 struct gendisk
*disk
)
899 struct bd_holder_disk
*holder
;
901 list_for_each_entry(holder
, &bdev
->bd_holder_disks
, list
)
902 if (holder
->disk
== disk
)
907 static int add_symlink(struct kobject
*from
, struct kobject
*to
)
909 return sysfs_create_link(from
, to
, kobject_name(to
));
912 static void del_symlink(struct kobject
*from
, struct kobject
*to
)
914 sysfs_remove_link(from
, kobject_name(to
));
918 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
919 * @bdev: the claimed slave bdev
920 * @disk: the holding disk
922 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
924 * This functions creates the following sysfs symlinks.
926 * - from "slaves" directory of the holder @disk to the claimed @bdev
927 * - from "holders" directory of the @bdev to the holder @disk
929 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
930 * passed to bd_link_disk_holder(), then:
932 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
933 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
935 * The caller must have claimed @bdev before calling this function and
936 * ensure that both @bdev and @disk are valid during the creation and
937 * lifetime of these symlinks.
943 * 0 on success, -errno on failure.
945 int bd_link_disk_holder(struct block_device
*bdev
, struct gendisk
*disk
)
947 struct bd_holder_disk
*holder
;
950 mutex_lock(&bdev
->bd_mutex
);
952 WARN_ON_ONCE(!bdev
->bd_holder
);
954 /* FIXME: remove the following once add_disk() handles errors */
955 if (WARN_ON(!disk
->slave_dir
|| !bdev
->bd_part
->holder_dir
))
958 holder
= bd_find_holder_disk(bdev
, disk
);
964 holder
= kzalloc(sizeof(*holder
), GFP_KERNEL
);
970 INIT_LIST_HEAD(&holder
->list
);
974 ret
= add_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
978 ret
= add_symlink(bdev
->bd_part
->holder_dir
, &disk_to_dev(disk
)->kobj
);
982 * bdev could be deleted beneath us which would implicitly destroy
983 * the holder directory. Hold on to it.
985 kobject_get(bdev
->bd_part
->holder_dir
);
987 list_add(&holder
->list
, &bdev
->bd_holder_disks
);
991 del_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
995 mutex_unlock(&bdev
->bd_mutex
);
998 EXPORT_SYMBOL_GPL(bd_link_disk_holder
);
1001 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1002 * @bdev: the calimed slave bdev
1003 * @disk: the holding disk
1005 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1010 void bd_unlink_disk_holder(struct block_device
*bdev
, struct gendisk
*disk
)
1012 struct bd_holder_disk
*holder
;
1014 mutex_lock(&bdev
->bd_mutex
);
1016 holder
= bd_find_holder_disk(bdev
, disk
);
1018 if (!WARN_ON_ONCE(holder
== NULL
) && !--holder
->refcnt
) {
1019 del_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
1020 del_symlink(bdev
->bd_part
->holder_dir
,
1021 &disk_to_dev(disk
)->kobj
);
1022 kobject_put(bdev
->bd_part
->holder_dir
);
1023 list_del_init(&holder
->list
);
1027 mutex_unlock(&bdev
->bd_mutex
);
1029 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder
);
1033 * flush_disk - invalidates all buffer-cache entries on a disk
1035 * @bdev: struct block device to be flushed
1036 * @kill_dirty: flag to guide handling of dirty inodes
1038 * Invalidates all buffer-cache entries on a disk. It should be called
1039 * when a disk has been changed -- either by a media change or online
1042 static void flush_disk(struct block_device
*bdev
, bool kill_dirty
)
1044 if (__invalidate_device(bdev
, kill_dirty
)) {
1045 char name
[BDEVNAME_SIZE
] = "";
1048 disk_name(bdev
->bd_disk
, 0, name
);
1049 printk(KERN_WARNING
"VFS: busy inodes on changed media or "
1050 "resized disk %s\n", name
);
1055 if (disk_part_scan_enabled(bdev
->bd_disk
))
1056 bdev
->bd_invalidated
= 1;
1060 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1061 * @disk: struct gendisk to check
1062 * @bdev: struct bdev to adjust.
1064 * This routine checks to see if the bdev size does not match the disk size
1065 * and adjusts it if it differs.
1067 void check_disk_size_change(struct gendisk
*disk
, struct block_device
*bdev
)
1069 loff_t disk_size
, bdev_size
;
1071 disk_size
= (loff_t
)get_capacity(disk
) << 9;
1072 bdev_size
= i_size_read(bdev
->bd_inode
);
1073 if (disk_size
!= bdev_size
) {
1074 char name
[BDEVNAME_SIZE
];
1076 disk_name(disk
, 0, name
);
1078 "%s: detected capacity change from %lld to %lld\n",
1079 name
, bdev_size
, disk_size
);
1080 i_size_write(bdev
->bd_inode
, disk_size
);
1081 flush_disk(bdev
, false);
1084 EXPORT_SYMBOL(check_disk_size_change
);
1087 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1088 * @disk: struct gendisk to be revalidated
1090 * This routine is a wrapper for lower-level driver's revalidate_disk
1091 * call-backs. It is used to do common pre and post operations needed
1092 * for all revalidate_disk operations.
1094 int revalidate_disk(struct gendisk
*disk
)
1096 struct block_device
*bdev
;
1099 if (disk
->fops
->revalidate_disk
)
1100 ret
= disk
->fops
->revalidate_disk(disk
);
1101 blk_integrity_revalidate(disk
);
1102 bdev
= bdget_disk(disk
, 0);
1106 mutex_lock(&bdev
->bd_mutex
);
1107 check_disk_size_change(disk
, bdev
);
1108 bdev
->bd_invalidated
= 0;
1109 mutex_unlock(&bdev
->bd_mutex
);
1113 EXPORT_SYMBOL(revalidate_disk
);
1116 * This routine checks whether a removable media has been changed,
1117 * and invalidates all buffer-cache-entries in that case. This
1118 * is a relatively slow routine, so we have to try to minimize using
1119 * it. Thus it is called only upon a 'mount' or 'open'. This
1120 * is the best way of combining speed and utility, I think.
1121 * People changing diskettes in the middle of an operation deserve
1124 int check_disk_change(struct block_device
*bdev
)
1126 struct gendisk
*disk
= bdev
->bd_disk
;
1127 const struct block_device_operations
*bdops
= disk
->fops
;
1128 unsigned int events
;
1130 events
= disk_clear_events(disk
, DISK_EVENT_MEDIA_CHANGE
|
1131 DISK_EVENT_EJECT_REQUEST
);
1132 if (!(events
& DISK_EVENT_MEDIA_CHANGE
))
1135 flush_disk(bdev
, true);
1136 if (bdops
->revalidate_disk
)
1137 bdops
->revalidate_disk(bdev
->bd_disk
);
1141 EXPORT_SYMBOL(check_disk_change
);
1143 void bd_set_size(struct block_device
*bdev
, loff_t size
)
1145 unsigned bsize
= bdev_logical_block_size(bdev
);
1147 mutex_lock(&bdev
->bd_inode
->i_mutex
);
1148 i_size_write(bdev
->bd_inode
, size
);
1149 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
1150 while (bsize
< PAGE_CACHE_SIZE
) {
1155 bdev
->bd_block_size
= bsize
;
1156 bdev
->bd_inode
->i_blkbits
= blksize_bits(bsize
);
1158 EXPORT_SYMBOL(bd_set_size
);
1160 static void __blkdev_put(struct block_device
*bdev
, fmode_t mode
, int for_part
);
1165 * mutex_lock(part->bd_mutex)
1166 * mutex_lock_nested(whole->bd_mutex, 1)
1169 static int __blkdev_get(struct block_device
*bdev
, fmode_t mode
, int for_part
)
1171 struct gendisk
*disk
;
1172 struct module
*owner
;
1177 if (mode
& FMODE_READ
)
1179 if (mode
& FMODE_WRITE
)
1182 * hooks: /n/, see "layering violations".
1185 ret
= devcgroup_inode_permission(bdev
->bd_inode
, perm
);
1195 disk
= get_gendisk(bdev
->bd_dev
, &partno
);
1198 owner
= disk
->fops
->owner
;
1200 disk_block_events(disk
);
1201 mutex_lock_nested(&bdev
->bd_mutex
, for_part
);
1202 if (!bdev
->bd_openers
) {
1203 bdev
->bd_disk
= disk
;
1204 bdev
->bd_queue
= disk
->queue
;
1205 bdev
->bd_contains
= bdev
;
1206 bdev
->bd_inode
->i_flags
= disk
->fops
->direct_access
? S_DAX
: 0;
1209 bdev
->bd_part
= disk_get_part(disk
, partno
);
1214 if (disk
->fops
->open
) {
1215 ret
= disk
->fops
->open(bdev
, mode
);
1216 if (ret
== -ERESTARTSYS
) {
1217 /* Lost a race with 'disk' being
1218 * deleted, try again.
1221 disk_put_part(bdev
->bd_part
);
1222 bdev
->bd_part
= NULL
;
1223 bdev
->bd_disk
= NULL
;
1224 bdev
->bd_queue
= NULL
;
1225 mutex_unlock(&bdev
->bd_mutex
);
1226 disk_unblock_events(disk
);
1234 bd_set_size(bdev
,(loff_t
)get_capacity(disk
)<<9);
1237 * If the device is invalidated, rescan partition
1238 * if open succeeded or failed with -ENOMEDIUM.
1239 * The latter is necessary to prevent ghost
1240 * partitions on a removed medium.
1242 if (bdev
->bd_invalidated
) {
1244 rescan_partitions(disk
, bdev
);
1245 else if (ret
== -ENOMEDIUM
)
1246 invalidate_partitions(disk
, bdev
);
1251 struct block_device
*whole
;
1252 whole
= bdget_disk(disk
, 0);
1257 ret
= __blkdev_get(whole
, mode
, 1);
1260 bdev
->bd_contains
= whole
;
1261 bdev
->bd_part
= disk_get_part(disk
, partno
);
1262 if (!(disk
->flags
& GENHD_FL_UP
) ||
1263 !bdev
->bd_part
|| !bdev
->bd_part
->nr_sects
) {
1267 bd_set_size(bdev
, (loff_t
)bdev
->bd_part
->nr_sects
<< 9);
1269 * If the partition is not aligned on a page
1270 * boundary, we can't do dax I/O to it.
1272 if ((bdev
->bd_part
->start_sect
% (PAGE_SIZE
/ 512)) ||
1273 (bdev
->bd_part
->nr_sects
% (PAGE_SIZE
/ 512)))
1274 bdev
->bd_inode
->i_flags
&= ~S_DAX
;
1277 if (bdev
->bd_contains
== bdev
) {
1279 if (bdev
->bd_disk
->fops
->open
)
1280 ret
= bdev
->bd_disk
->fops
->open(bdev
, mode
);
1281 /* the same as first opener case, read comment there */
1282 if (bdev
->bd_invalidated
) {
1284 rescan_partitions(bdev
->bd_disk
, bdev
);
1285 else if (ret
== -ENOMEDIUM
)
1286 invalidate_partitions(bdev
->bd_disk
, bdev
);
1289 goto out_unlock_bdev
;
1291 /* only one opener holds refs to the module and disk */
1297 bdev
->bd_part_count
++;
1298 mutex_unlock(&bdev
->bd_mutex
);
1299 disk_unblock_events(disk
);
1303 disk_put_part(bdev
->bd_part
);
1304 bdev
->bd_disk
= NULL
;
1305 bdev
->bd_part
= NULL
;
1306 bdev
->bd_queue
= NULL
;
1307 if (bdev
!= bdev
->bd_contains
)
1308 __blkdev_put(bdev
->bd_contains
, mode
, 1);
1309 bdev
->bd_contains
= NULL
;
1311 mutex_unlock(&bdev
->bd_mutex
);
1312 disk_unblock_events(disk
);
1322 * blkdev_get - open a block device
1323 * @bdev: block_device to open
1324 * @mode: FMODE_* mask
1325 * @holder: exclusive holder identifier
1327 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1328 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1329 * @holder is invalid. Exclusive opens may nest for the same @holder.
1331 * On success, the reference count of @bdev is unchanged. On failure,
1338 * 0 on success, -errno on failure.
1340 int blkdev_get(struct block_device
*bdev
, fmode_t mode
, void *holder
)
1342 struct block_device
*whole
= NULL
;
1345 WARN_ON_ONCE((mode
& FMODE_EXCL
) && !holder
);
1347 if ((mode
& FMODE_EXCL
) && holder
) {
1348 whole
= bd_start_claiming(bdev
, holder
);
1349 if (IS_ERR(whole
)) {
1351 return PTR_ERR(whole
);
1355 res
= __blkdev_get(bdev
, mode
, 0);
1358 struct gendisk
*disk
= whole
->bd_disk
;
1360 /* finish claiming */
1361 mutex_lock(&bdev
->bd_mutex
);
1362 spin_lock(&bdev_lock
);
1365 BUG_ON(!bd_may_claim(bdev
, whole
, holder
));
1367 * Note that for a whole device bd_holders
1368 * will be incremented twice, and bd_holder
1369 * will be set to bd_may_claim before being
1372 whole
->bd_holders
++;
1373 whole
->bd_holder
= bd_may_claim
;
1375 bdev
->bd_holder
= holder
;
1378 /* tell others that we're done */
1379 BUG_ON(whole
->bd_claiming
!= holder
);
1380 whole
->bd_claiming
= NULL
;
1381 wake_up_bit(&whole
->bd_claiming
, 0);
1383 spin_unlock(&bdev_lock
);
1386 * Block event polling for write claims if requested. Any
1387 * write holder makes the write_holder state stick until
1388 * all are released. This is good enough and tracking
1389 * individual writeable reference is too fragile given the
1390 * way @mode is used in blkdev_get/put().
1392 if (!res
&& (mode
& FMODE_WRITE
) && !bdev
->bd_write_holder
&&
1393 (disk
->flags
& GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE
)) {
1394 bdev
->bd_write_holder
= true;
1395 disk_block_events(disk
);
1398 mutex_unlock(&bdev
->bd_mutex
);
1404 EXPORT_SYMBOL(blkdev_get
);
1407 * blkdev_get_by_path - open a block device by name
1408 * @path: path to the block device to open
1409 * @mode: FMODE_* mask
1410 * @holder: exclusive holder identifier
1412 * Open the blockdevice described by the device file at @path. @mode
1413 * and @holder are identical to blkdev_get().
1415 * On success, the returned block_device has reference count of one.
1421 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1423 struct block_device
*blkdev_get_by_path(const char *path
, fmode_t mode
,
1426 struct block_device
*bdev
;
1429 bdev
= lookup_bdev(path
);
1433 err
= blkdev_get(bdev
, mode
, holder
);
1435 return ERR_PTR(err
);
1437 if ((mode
& FMODE_WRITE
) && bdev_read_only(bdev
)) {
1438 blkdev_put(bdev
, mode
);
1439 return ERR_PTR(-EACCES
);
1444 EXPORT_SYMBOL(blkdev_get_by_path
);
1447 * blkdev_get_by_dev - open a block device by device number
1448 * @dev: device number of block device to open
1449 * @mode: FMODE_* mask
1450 * @holder: exclusive holder identifier
1452 * Open the blockdevice described by device number @dev. @mode and
1453 * @holder are identical to blkdev_get().
1455 * Use it ONLY if you really do not have anything better - i.e. when
1456 * you are behind a truly sucky interface and all you are given is a
1457 * device number. _Never_ to be used for internal purposes. If you
1458 * ever need it - reconsider your API.
1460 * On success, the returned block_device has reference count of one.
1466 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1468 struct block_device
*blkdev_get_by_dev(dev_t dev
, fmode_t mode
, void *holder
)
1470 struct block_device
*bdev
;
1475 return ERR_PTR(-ENOMEM
);
1477 err
= blkdev_get(bdev
, mode
, holder
);
1479 return ERR_PTR(err
);
1483 EXPORT_SYMBOL(blkdev_get_by_dev
);
1485 static int blkdev_open(struct inode
* inode
, struct file
* filp
)
1487 struct block_device
*bdev
;
1490 * Preserve backwards compatibility and allow large file access
1491 * even if userspace doesn't ask for it explicitly. Some mkfs
1492 * binary needs it. We might want to drop this workaround
1493 * during an unstable branch.
1495 filp
->f_flags
|= O_LARGEFILE
;
1497 if (filp
->f_flags
& O_NDELAY
)
1498 filp
->f_mode
|= FMODE_NDELAY
;
1499 if (filp
->f_flags
& O_EXCL
)
1500 filp
->f_mode
|= FMODE_EXCL
;
1501 if ((filp
->f_flags
& O_ACCMODE
) == 3)
1502 filp
->f_mode
|= FMODE_WRITE_IOCTL
;
1504 bdev
= bd_acquire(inode
);
1508 filp
->f_mapping
= bdev
->bd_inode
->i_mapping
;
1510 return blkdev_get(bdev
, filp
->f_mode
, filp
);
1513 static void __blkdev_put(struct block_device
*bdev
, fmode_t mode
, int for_part
)
1515 struct gendisk
*disk
= bdev
->bd_disk
;
1516 struct block_device
*victim
= NULL
;
1518 mutex_lock_nested(&bdev
->bd_mutex
, for_part
);
1520 bdev
->bd_part_count
--;
1522 if (!--bdev
->bd_openers
) {
1523 WARN_ON_ONCE(bdev
->bd_holders
);
1524 sync_blockdev(bdev
);
1527 bdev_write_inode(bdev
);
1529 * Detaching bdev inode from its wb in __destroy_inode()
1530 * is too late: the queue which embeds its bdi (along with
1531 * root wb) can be gone as soon as we put_disk() below.
1533 inode_detach_wb(bdev
->bd_inode
);
1535 if (bdev
->bd_contains
== bdev
) {
1536 if (disk
->fops
->release
)
1537 disk
->fops
->release(disk
, mode
);
1539 if (!bdev
->bd_openers
) {
1540 struct module
*owner
= disk
->fops
->owner
;
1542 disk_put_part(bdev
->bd_part
);
1543 bdev
->bd_part
= NULL
;
1544 bdev
->bd_disk
= NULL
;
1545 if (bdev
!= bdev
->bd_contains
)
1546 victim
= bdev
->bd_contains
;
1547 bdev
->bd_contains
= NULL
;
1552 mutex_unlock(&bdev
->bd_mutex
);
1555 __blkdev_put(victim
, mode
, 1);
1558 void blkdev_put(struct block_device
*bdev
, fmode_t mode
)
1560 mutex_lock(&bdev
->bd_mutex
);
1562 if (mode
& FMODE_EXCL
) {
1566 * Release a claim on the device. The holder fields
1567 * are protected with bdev_lock. bd_mutex is to
1568 * synchronize disk_holder unlinking.
1570 spin_lock(&bdev_lock
);
1572 WARN_ON_ONCE(--bdev
->bd_holders
< 0);
1573 WARN_ON_ONCE(--bdev
->bd_contains
->bd_holders
< 0);
1575 /* bd_contains might point to self, check in a separate step */
1576 if ((bdev_free
= !bdev
->bd_holders
))
1577 bdev
->bd_holder
= NULL
;
1578 if (!bdev
->bd_contains
->bd_holders
)
1579 bdev
->bd_contains
->bd_holder
= NULL
;
1581 spin_unlock(&bdev_lock
);
1584 * If this was the last claim, remove holder link and
1585 * unblock evpoll if it was a write holder.
1587 if (bdev_free
&& bdev
->bd_write_holder
) {
1588 disk_unblock_events(bdev
->bd_disk
);
1589 bdev
->bd_write_holder
= false;
1594 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1595 * event. This is to ensure detection of media removal commanded
1596 * from userland - e.g. eject(1).
1598 disk_flush_events(bdev
->bd_disk
, DISK_EVENT_MEDIA_CHANGE
);
1600 mutex_unlock(&bdev
->bd_mutex
);
1602 __blkdev_put(bdev
, mode
, 0);
1604 EXPORT_SYMBOL(blkdev_put
);
1606 static int blkdev_close(struct inode
* inode
, struct file
* filp
)
1608 struct block_device
*bdev
= I_BDEV(filp
->f_mapping
->host
);
1609 blkdev_put(bdev
, filp
->f_mode
);
1613 static long block_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1615 struct block_device
*bdev
= I_BDEV(file
->f_mapping
->host
);
1616 fmode_t mode
= file
->f_mode
;
1619 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1620 * to updated it before every ioctl.
1622 if (file
->f_flags
& O_NDELAY
)
1623 mode
|= FMODE_NDELAY
;
1625 mode
&= ~FMODE_NDELAY
;
1627 return blkdev_ioctl(bdev
, mode
, cmd
, arg
);
1631 * Write data to the block device. Only intended for the block device itself
1632 * and the raw driver which basically is a fake block device.
1634 * Does not take i_mutex for the write and thus is not for general purpose
1637 ssize_t
blkdev_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1639 struct file
*file
= iocb
->ki_filp
;
1640 struct inode
*bd_inode
= file
->f_mapping
->host
;
1641 loff_t size
= i_size_read(bd_inode
);
1642 struct blk_plug plug
;
1645 if (bdev_read_only(I_BDEV(bd_inode
)))
1648 if (!iov_iter_count(from
))
1651 if (iocb
->ki_pos
>= size
)
1654 iov_iter_truncate(from
, size
- iocb
->ki_pos
);
1656 blk_start_plug(&plug
);
1657 ret
= __generic_file_write_iter(iocb
, from
);
1660 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
1664 blk_finish_plug(&plug
);
1667 EXPORT_SYMBOL_GPL(blkdev_write_iter
);
1669 ssize_t
blkdev_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1671 struct file
*file
= iocb
->ki_filp
;
1672 struct inode
*bd_inode
= file
->f_mapping
->host
;
1673 loff_t size
= i_size_read(bd_inode
);
1674 loff_t pos
= iocb
->ki_pos
;
1680 iov_iter_truncate(to
, size
);
1681 return generic_file_read_iter(iocb
, to
);
1683 EXPORT_SYMBOL_GPL(blkdev_read_iter
);
1686 * Try to release a page associated with block device when the system
1687 * is under memory pressure.
1689 static int blkdev_releasepage(struct page
*page
, gfp_t wait
)
1691 struct super_block
*super
= BDEV_I(page
->mapping
->host
)->bdev
.bd_super
;
1693 if (super
&& super
->s_op
->bdev_try_to_free_page
)
1694 return super
->s_op
->bdev_try_to_free_page(super
, page
, wait
);
1696 return try_to_free_buffers(page
);
1699 static const struct address_space_operations def_blk_aops
= {
1700 .readpage
= blkdev_readpage
,
1701 .readpages
= blkdev_readpages
,
1702 .writepage
= blkdev_writepage
,
1703 .write_begin
= blkdev_write_begin
,
1704 .write_end
= blkdev_write_end
,
1705 .writepages
= generic_writepages
,
1706 .releasepage
= blkdev_releasepage
,
1707 .direct_IO
= blkdev_direct_IO
,
1708 .is_dirty_writeback
= buffer_check_dirty_writeback
,
1711 const struct file_operations def_blk_fops
= {
1712 .open
= blkdev_open
,
1713 .release
= blkdev_close
,
1714 .llseek
= block_llseek
,
1715 .read_iter
= blkdev_read_iter
,
1716 .write_iter
= blkdev_write_iter
,
1717 .mmap
= generic_file_mmap
,
1718 .fsync
= blkdev_fsync
,
1719 .unlocked_ioctl
= block_ioctl
,
1720 #ifdef CONFIG_COMPAT
1721 .compat_ioctl
= compat_blkdev_ioctl
,
1723 .splice_read
= generic_file_splice_read
,
1724 .splice_write
= iter_file_splice_write
,
1727 int ioctl_by_bdev(struct block_device
*bdev
, unsigned cmd
, unsigned long arg
)
1730 mm_segment_t old_fs
= get_fs();
1732 res
= blkdev_ioctl(bdev
, 0, cmd
, arg
);
1737 EXPORT_SYMBOL(ioctl_by_bdev
);
1740 * lookup_bdev - lookup a struct block_device by name
1741 * @pathname: special file representing the block device
1743 * Get a reference to the blockdevice at @pathname in the current
1744 * namespace if possible and return it. Return ERR_PTR(error)
1747 struct block_device
*lookup_bdev(const char *pathname
)
1749 struct block_device
*bdev
;
1750 struct inode
*inode
;
1754 if (!pathname
|| !*pathname
)
1755 return ERR_PTR(-EINVAL
);
1757 error
= kern_path(pathname
, LOOKUP_FOLLOW
, &path
);
1759 return ERR_PTR(error
);
1761 inode
= d_backing_inode(path
.dentry
);
1763 if (!S_ISBLK(inode
->i_mode
))
1766 if (path
.mnt
->mnt_flags
& MNT_NODEV
)
1769 bdev
= bd_acquire(inode
);
1776 bdev
= ERR_PTR(error
);
1779 EXPORT_SYMBOL(lookup_bdev
);
1781 int __invalidate_device(struct block_device
*bdev
, bool kill_dirty
)
1783 struct super_block
*sb
= get_super(bdev
);
1788 * no need to lock the super, get_super holds the
1789 * read mutex so the filesystem cannot go away
1790 * under us (->put_super runs with the write lock
1793 shrink_dcache_sb(sb
);
1794 res
= invalidate_inodes(sb
, kill_dirty
);
1797 invalidate_bdev(bdev
);
1800 EXPORT_SYMBOL(__invalidate_device
);
1802 void iterate_bdevs(void (*func
)(struct block_device
*, void *), void *arg
)
1804 struct inode
*inode
, *old_inode
= NULL
;
1806 spin_lock(&blockdev_superblock
->s_inode_list_lock
);
1807 list_for_each_entry(inode
, &blockdev_superblock
->s_inodes
, i_sb_list
) {
1808 struct address_space
*mapping
= inode
->i_mapping
;
1809 struct block_device
*bdev
;
1811 spin_lock(&inode
->i_lock
);
1812 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
) ||
1813 mapping
->nrpages
== 0) {
1814 spin_unlock(&inode
->i_lock
);
1818 spin_unlock(&inode
->i_lock
);
1819 spin_unlock(&blockdev_superblock
->s_inode_list_lock
);
1821 * We hold a reference to 'inode' so it couldn't have been
1822 * removed from s_inodes list while we dropped the
1823 * s_inode_list_lock We cannot iput the inode now as we can
1824 * be holding the last reference and we cannot iput it under
1825 * s_inode_list_lock. So we keep the reference and iput it
1830 bdev
= I_BDEV(inode
);
1832 mutex_lock(&bdev
->bd_mutex
);
1833 if (bdev
->bd_openers
)
1835 mutex_unlock(&bdev
->bd_mutex
);
1837 spin_lock(&blockdev_superblock
->s_inode_list_lock
);
1839 spin_unlock(&blockdev_superblock
->s_inode_list_lock
);