Linux 4.4.59
[linux/fpc-iii.git] / fs / block_dev.c
blob198aea66fe71c7d8cb24416be9332c41507173e7
1 /*
2 * linux/fs/block_dev.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
40 static const struct address_space_operations def_blk_aops;
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
44 return container_of(inode, struct bdev_inode, vfs_inode);
47 struct block_device *I_BDEV(struct inode *inode)
49 return &BDEV_I(inode)->bdev;
51 EXPORT_SYMBOL(I_BDEV);
53 static void bdev_write_inode(struct block_device *bdev)
55 struct inode *inode = bdev->bd_inode;
56 int ret;
58 spin_lock(&inode->i_lock);
59 while (inode->i_state & I_DIRTY) {
60 spin_unlock(&inode->i_lock);
61 ret = write_inode_now(inode, true);
62 if (ret) {
63 char name[BDEVNAME_SIZE];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev, name), ret);
68 spin_lock(&inode->i_lock);
70 spin_unlock(&inode->i_lock);
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device *bdev)
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
78 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79 return;
81 invalidate_bh_lrus();
82 truncate_inode_pages(mapping, 0);
84 EXPORT_SYMBOL(kill_bdev);
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device *bdev)
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
91 if (mapping->nrpages == 0)
92 return;
94 invalidate_bh_lrus();
95 lru_add_drain_all(); /* make sure all lru add caches are flushed */
96 invalidate_mapping_pages(mapping, 0, -1);
97 /* 99% of the time, we don't need to flush the cleancache on the bdev.
98 * But, for the strange corners, lets be cautious
100 cleancache_invalidate_inode(mapping);
102 EXPORT_SYMBOL(invalidate_bdev);
104 int set_blocksize(struct block_device *bdev, int size)
106 /* Size must be a power of two, and between 512 and PAGE_SIZE */
107 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
108 return -EINVAL;
110 /* Size cannot be smaller than the size supported by the device */
111 if (size < bdev_logical_block_size(bdev))
112 return -EINVAL;
114 /* Don't change the size if it is same as current */
115 if (bdev->bd_block_size != size) {
116 sync_blockdev(bdev);
117 bdev->bd_block_size = size;
118 bdev->bd_inode->i_blkbits = blksize_bits(size);
119 kill_bdev(bdev);
121 return 0;
124 EXPORT_SYMBOL(set_blocksize);
126 int sb_set_blocksize(struct super_block *sb, int size)
128 if (set_blocksize(sb->s_bdev, size))
129 return 0;
130 /* If we get here, we know size is power of two
131 * and it's value is between 512 and PAGE_SIZE */
132 sb->s_blocksize = size;
133 sb->s_blocksize_bits = blksize_bits(size);
134 return sb->s_blocksize;
137 EXPORT_SYMBOL(sb_set_blocksize);
139 int sb_min_blocksize(struct super_block *sb, int size)
141 int minsize = bdev_logical_block_size(sb->s_bdev);
142 if (size < minsize)
143 size = minsize;
144 return sb_set_blocksize(sb, size);
147 EXPORT_SYMBOL(sb_min_blocksize);
149 static int
150 blkdev_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh, int create)
153 bh->b_bdev = I_BDEV(inode);
154 bh->b_blocknr = iblock;
155 set_buffer_mapped(bh);
156 return 0;
159 static ssize_t
160 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
162 struct file *file = iocb->ki_filp;
163 struct inode *inode = file->f_mapping->host;
165 if (IS_DAX(inode))
166 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
167 NULL, DIO_SKIP_DIO_COUNT);
168 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
169 blkdev_get_block, NULL, NULL,
170 DIO_SKIP_DIO_COUNT);
173 int __sync_blockdev(struct block_device *bdev, int wait)
175 if (!bdev)
176 return 0;
177 if (!wait)
178 return filemap_flush(bdev->bd_inode->i_mapping);
179 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
183 * Write out and wait upon all the dirty data associated with a block
184 * device via its mapping. Does not take the superblock lock.
186 int sync_blockdev(struct block_device *bdev)
188 return __sync_blockdev(bdev, 1);
190 EXPORT_SYMBOL(sync_blockdev);
193 * Write out and wait upon all dirty data associated with this
194 * device. Filesystem data as well as the underlying block
195 * device. Takes the superblock lock.
197 int fsync_bdev(struct block_device *bdev)
199 struct super_block *sb = get_super(bdev);
200 if (sb) {
201 int res = sync_filesystem(sb);
202 drop_super(sb);
203 return res;
205 return sync_blockdev(bdev);
207 EXPORT_SYMBOL(fsync_bdev);
210 * freeze_bdev -- lock a filesystem and force it into a consistent state
211 * @bdev: blockdevice to lock
213 * If a superblock is found on this device, we take the s_umount semaphore
214 * on it to make sure nobody unmounts until the snapshot creation is done.
215 * The reference counter (bd_fsfreeze_count) guarantees that only the last
216 * unfreeze process can unfreeze the frozen filesystem actually when multiple
217 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
218 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
219 * actually.
221 struct super_block *freeze_bdev(struct block_device *bdev)
223 struct super_block *sb;
224 int error = 0;
226 mutex_lock(&bdev->bd_fsfreeze_mutex);
227 if (++bdev->bd_fsfreeze_count > 1) {
229 * We don't even need to grab a reference - the first call
230 * to freeze_bdev grab an active reference and only the last
231 * thaw_bdev drops it.
233 sb = get_super(bdev);
234 drop_super(sb);
235 mutex_unlock(&bdev->bd_fsfreeze_mutex);
236 return sb;
239 sb = get_active_super(bdev);
240 if (!sb)
241 goto out;
242 if (sb->s_op->freeze_super)
243 error = sb->s_op->freeze_super(sb);
244 else
245 error = freeze_super(sb);
246 if (error) {
247 deactivate_super(sb);
248 bdev->bd_fsfreeze_count--;
249 mutex_unlock(&bdev->bd_fsfreeze_mutex);
250 return ERR_PTR(error);
252 deactivate_super(sb);
253 out:
254 sync_blockdev(bdev);
255 mutex_unlock(&bdev->bd_fsfreeze_mutex);
256 return sb; /* thaw_bdev releases s->s_umount */
258 EXPORT_SYMBOL(freeze_bdev);
261 * thaw_bdev -- unlock filesystem
262 * @bdev: blockdevice to unlock
263 * @sb: associated superblock
265 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
267 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
269 int error = -EINVAL;
271 mutex_lock(&bdev->bd_fsfreeze_mutex);
272 if (!bdev->bd_fsfreeze_count)
273 goto out;
275 error = 0;
276 if (--bdev->bd_fsfreeze_count > 0)
277 goto out;
279 if (!sb)
280 goto out;
282 if (sb->s_op->thaw_super)
283 error = sb->s_op->thaw_super(sb);
284 else
285 error = thaw_super(sb);
286 if (error) {
287 bdev->bd_fsfreeze_count++;
288 mutex_unlock(&bdev->bd_fsfreeze_mutex);
289 return error;
291 out:
292 mutex_unlock(&bdev->bd_fsfreeze_mutex);
293 return 0;
295 EXPORT_SYMBOL(thaw_bdev);
297 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
299 return block_write_full_page(page, blkdev_get_block, wbc);
302 static int blkdev_readpage(struct file * file, struct page * page)
304 return block_read_full_page(page, blkdev_get_block);
307 static int blkdev_readpages(struct file *file, struct address_space *mapping,
308 struct list_head *pages, unsigned nr_pages)
310 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
313 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
314 loff_t pos, unsigned len, unsigned flags,
315 struct page **pagep, void **fsdata)
317 return block_write_begin(mapping, pos, len, flags, pagep,
318 blkdev_get_block);
321 static int blkdev_write_end(struct file *file, struct address_space *mapping,
322 loff_t pos, unsigned len, unsigned copied,
323 struct page *page, void *fsdata)
325 int ret;
326 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
328 unlock_page(page);
329 page_cache_release(page);
331 return ret;
335 * private llseek:
336 * for a block special file file_inode(file)->i_size is zero
337 * so we compute the size by hand (just as in block_read/write above)
339 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
341 struct inode *bd_inode = file->f_mapping->host;
342 loff_t retval;
344 mutex_lock(&bd_inode->i_mutex);
345 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
346 mutex_unlock(&bd_inode->i_mutex);
347 return retval;
350 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
352 struct inode *bd_inode = filp->f_mapping->host;
353 struct block_device *bdev = I_BDEV(bd_inode);
354 int error;
356 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
357 if (error)
358 return error;
361 * There is no need to serialise calls to blkdev_issue_flush with
362 * i_mutex and doing so causes performance issues with concurrent
363 * O_SYNC writers to a block device.
365 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
366 if (error == -EOPNOTSUPP)
367 error = 0;
369 return error;
371 EXPORT_SYMBOL(blkdev_fsync);
374 * bdev_read_page() - Start reading a page from a block device
375 * @bdev: The device to read the page from
376 * @sector: The offset on the device to read the page to (need not be aligned)
377 * @page: The page to read
379 * On entry, the page should be locked. It will be unlocked when the page
380 * has been read. If the block driver implements rw_page synchronously,
381 * that will be true on exit from this function, but it need not be.
383 * Errors returned by this function are usually "soft", eg out of memory, or
384 * queue full; callers should try a different route to read this page rather
385 * than propagate an error back up the stack.
387 * Return: negative errno if an error occurs, 0 if submission was successful.
389 int bdev_read_page(struct block_device *bdev, sector_t sector,
390 struct page *page)
392 const struct block_device_operations *ops = bdev->bd_disk->fops;
393 int result = -EOPNOTSUPP;
395 if (!ops->rw_page || bdev_get_integrity(bdev))
396 return result;
398 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
399 if (result)
400 return result;
401 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
402 blk_queue_exit(bdev->bd_queue);
403 return result;
405 EXPORT_SYMBOL_GPL(bdev_read_page);
408 * bdev_write_page() - Start writing a page to a block device
409 * @bdev: The device to write the page to
410 * @sector: The offset on the device to write the page to (need not be aligned)
411 * @page: The page to write
412 * @wbc: The writeback_control for the write
414 * On entry, the page should be locked and not currently under writeback.
415 * On exit, if the write started successfully, the page will be unlocked and
416 * under writeback. If the write failed already (eg the driver failed to
417 * queue the page to the device), the page will still be locked. If the
418 * caller is a ->writepage implementation, it will need to unlock the page.
420 * Errors returned by this function are usually "soft", eg out of memory, or
421 * queue full; callers should try a different route to write this page rather
422 * than propagate an error back up the stack.
424 * Return: negative errno if an error occurs, 0 if submission was successful.
426 int bdev_write_page(struct block_device *bdev, sector_t sector,
427 struct page *page, struct writeback_control *wbc)
429 int result;
430 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
431 const struct block_device_operations *ops = bdev->bd_disk->fops;
433 if (!ops->rw_page || bdev_get_integrity(bdev))
434 return -EOPNOTSUPP;
435 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
436 if (result)
437 return result;
439 set_page_writeback(page);
440 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
441 if (result)
442 end_page_writeback(page);
443 else
444 unlock_page(page);
445 blk_queue_exit(bdev->bd_queue);
446 return result;
448 EXPORT_SYMBOL_GPL(bdev_write_page);
451 * bdev_direct_access() - Get the address for directly-accessibly memory
452 * @bdev: The device containing the memory
453 * @sector: The offset within the device
454 * @addr: Where to put the address of the memory
455 * @pfn: The Page Frame Number for the memory
456 * @size: The number of bytes requested
458 * If a block device is made up of directly addressable memory, this function
459 * will tell the caller the PFN and the address of the memory. The address
460 * may be directly dereferenced within the kernel without the need to call
461 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
462 * page tables.
464 * Return: negative errno if an error occurs, otherwise the number of bytes
465 * accessible at this address.
467 long bdev_direct_access(struct block_device *bdev, sector_t sector,
468 void __pmem **addr, unsigned long *pfn, long size)
470 long avail;
471 const struct block_device_operations *ops = bdev->bd_disk->fops;
474 * The device driver is allowed to sleep, in order to make the
475 * memory directly accessible.
477 might_sleep();
479 if (size < 0)
480 return size;
481 if (!ops->direct_access)
482 return -EOPNOTSUPP;
483 if ((sector + DIV_ROUND_UP(size, 512)) >
484 part_nr_sects_read(bdev->bd_part))
485 return -ERANGE;
486 sector += get_start_sect(bdev);
487 if (sector % (PAGE_SIZE / 512))
488 return -EINVAL;
489 avail = ops->direct_access(bdev, sector, addr, pfn);
490 if (!avail)
491 return -ERANGE;
492 return min(avail, size);
494 EXPORT_SYMBOL_GPL(bdev_direct_access);
497 * pseudo-fs
500 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
501 static struct kmem_cache * bdev_cachep __read_mostly;
503 static struct inode *bdev_alloc_inode(struct super_block *sb)
505 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
506 if (!ei)
507 return NULL;
508 return &ei->vfs_inode;
511 static void bdev_i_callback(struct rcu_head *head)
513 struct inode *inode = container_of(head, struct inode, i_rcu);
514 struct bdev_inode *bdi = BDEV_I(inode);
516 kmem_cache_free(bdev_cachep, bdi);
519 static void bdev_destroy_inode(struct inode *inode)
521 call_rcu(&inode->i_rcu, bdev_i_callback);
524 static void init_once(void *foo)
526 struct bdev_inode *ei = (struct bdev_inode *) foo;
527 struct block_device *bdev = &ei->bdev;
529 memset(bdev, 0, sizeof(*bdev));
530 mutex_init(&bdev->bd_mutex);
531 INIT_LIST_HEAD(&bdev->bd_inodes);
532 INIT_LIST_HEAD(&bdev->bd_list);
533 #ifdef CONFIG_SYSFS
534 INIT_LIST_HEAD(&bdev->bd_holder_disks);
535 #endif
536 inode_init_once(&ei->vfs_inode);
537 /* Initialize mutex for freeze. */
538 mutex_init(&bdev->bd_fsfreeze_mutex);
541 static inline void __bd_forget(struct inode *inode)
543 list_del_init(&inode->i_devices);
544 inode->i_bdev = NULL;
545 inode->i_mapping = &inode->i_data;
548 static void bdev_evict_inode(struct inode *inode)
550 struct block_device *bdev = &BDEV_I(inode)->bdev;
551 struct list_head *p;
552 truncate_inode_pages_final(&inode->i_data);
553 invalidate_inode_buffers(inode); /* is it needed here? */
554 clear_inode(inode);
555 spin_lock(&bdev_lock);
556 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
557 __bd_forget(list_entry(p, struct inode, i_devices));
559 list_del_init(&bdev->bd_list);
560 spin_unlock(&bdev_lock);
563 static const struct super_operations bdev_sops = {
564 .statfs = simple_statfs,
565 .alloc_inode = bdev_alloc_inode,
566 .destroy_inode = bdev_destroy_inode,
567 .drop_inode = generic_delete_inode,
568 .evict_inode = bdev_evict_inode,
571 static struct dentry *bd_mount(struct file_system_type *fs_type,
572 int flags, const char *dev_name, void *data)
574 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
577 static struct file_system_type bd_type = {
578 .name = "bdev",
579 .mount = bd_mount,
580 .kill_sb = kill_anon_super,
583 struct super_block *blockdev_superblock __read_mostly;
584 EXPORT_SYMBOL_GPL(blockdev_superblock);
586 void __init bdev_cache_init(void)
588 int err;
589 static struct vfsmount *bd_mnt;
591 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
592 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
593 SLAB_MEM_SPREAD|SLAB_PANIC),
594 init_once);
595 err = register_filesystem(&bd_type);
596 if (err)
597 panic("Cannot register bdev pseudo-fs");
598 bd_mnt = kern_mount(&bd_type);
599 if (IS_ERR(bd_mnt))
600 panic("Cannot create bdev pseudo-fs");
601 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
605 * Most likely _very_ bad one - but then it's hardly critical for small
606 * /dev and can be fixed when somebody will need really large one.
607 * Keep in mind that it will be fed through icache hash function too.
609 static inline unsigned long hash(dev_t dev)
611 return MAJOR(dev)+MINOR(dev);
614 static int bdev_test(struct inode *inode, void *data)
616 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
619 static int bdev_set(struct inode *inode, void *data)
621 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
622 return 0;
625 static LIST_HEAD(all_bdevs);
627 struct block_device *bdget(dev_t dev)
629 struct block_device *bdev;
630 struct inode *inode;
632 inode = iget5_locked(blockdev_superblock, hash(dev),
633 bdev_test, bdev_set, &dev);
635 if (!inode)
636 return NULL;
638 bdev = &BDEV_I(inode)->bdev;
640 if (inode->i_state & I_NEW) {
641 bdev->bd_contains = NULL;
642 bdev->bd_super = NULL;
643 bdev->bd_inode = inode;
644 bdev->bd_block_size = (1 << inode->i_blkbits);
645 bdev->bd_part_count = 0;
646 bdev->bd_invalidated = 0;
647 inode->i_mode = S_IFBLK;
648 inode->i_rdev = dev;
649 inode->i_bdev = bdev;
650 inode->i_data.a_ops = &def_blk_aops;
651 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
652 spin_lock(&bdev_lock);
653 list_add(&bdev->bd_list, &all_bdevs);
654 spin_unlock(&bdev_lock);
655 unlock_new_inode(inode);
657 return bdev;
660 EXPORT_SYMBOL(bdget);
663 * bdgrab -- Grab a reference to an already referenced block device
664 * @bdev: Block device to grab a reference to.
666 struct block_device *bdgrab(struct block_device *bdev)
668 ihold(bdev->bd_inode);
669 return bdev;
671 EXPORT_SYMBOL(bdgrab);
673 long nr_blockdev_pages(void)
675 struct block_device *bdev;
676 long ret = 0;
677 spin_lock(&bdev_lock);
678 list_for_each_entry(bdev, &all_bdevs, bd_list) {
679 ret += bdev->bd_inode->i_mapping->nrpages;
681 spin_unlock(&bdev_lock);
682 return ret;
685 void bdput(struct block_device *bdev)
687 iput(bdev->bd_inode);
690 EXPORT_SYMBOL(bdput);
692 static struct block_device *bd_acquire(struct inode *inode)
694 struct block_device *bdev;
696 spin_lock(&bdev_lock);
697 bdev = inode->i_bdev;
698 if (bdev) {
699 ihold(bdev->bd_inode);
700 spin_unlock(&bdev_lock);
701 return bdev;
703 spin_unlock(&bdev_lock);
705 bdev = bdget(inode->i_rdev);
706 if (bdev) {
707 spin_lock(&bdev_lock);
708 if (!inode->i_bdev) {
710 * We take an additional reference to bd_inode,
711 * and it's released in clear_inode() of inode.
712 * So, we can access it via ->i_mapping always
713 * without igrab().
715 ihold(bdev->bd_inode);
716 inode->i_bdev = bdev;
717 inode->i_mapping = bdev->bd_inode->i_mapping;
718 list_add(&inode->i_devices, &bdev->bd_inodes);
720 spin_unlock(&bdev_lock);
722 return bdev;
725 /* Call when you free inode */
727 void bd_forget(struct inode *inode)
729 struct block_device *bdev = NULL;
731 spin_lock(&bdev_lock);
732 if (!sb_is_blkdev_sb(inode->i_sb))
733 bdev = inode->i_bdev;
734 __bd_forget(inode);
735 spin_unlock(&bdev_lock);
737 if (bdev)
738 iput(bdev->bd_inode);
742 * bd_may_claim - test whether a block device can be claimed
743 * @bdev: block device of interest
744 * @whole: whole block device containing @bdev, may equal @bdev
745 * @holder: holder trying to claim @bdev
747 * Test whether @bdev can be claimed by @holder.
749 * CONTEXT:
750 * spin_lock(&bdev_lock).
752 * RETURNS:
753 * %true if @bdev can be claimed, %false otherwise.
755 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
756 void *holder)
758 if (bdev->bd_holder == holder)
759 return true; /* already a holder */
760 else if (bdev->bd_holder != NULL)
761 return false; /* held by someone else */
762 else if (whole == bdev)
763 return true; /* is a whole device which isn't held */
765 else if (whole->bd_holder == bd_may_claim)
766 return true; /* is a partition of a device that is being partitioned */
767 else if (whole->bd_holder != NULL)
768 return false; /* is a partition of a held device */
769 else
770 return true; /* is a partition of an un-held device */
774 * bd_prepare_to_claim - prepare to claim a block device
775 * @bdev: block device of interest
776 * @whole: the whole device containing @bdev, may equal @bdev
777 * @holder: holder trying to claim @bdev
779 * Prepare to claim @bdev. This function fails if @bdev is already
780 * claimed by another holder and waits if another claiming is in
781 * progress. This function doesn't actually claim. On successful
782 * return, the caller has ownership of bd_claiming and bd_holder[s].
784 * CONTEXT:
785 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
786 * it multiple times.
788 * RETURNS:
789 * 0 if @bdev can be claimed, -EBUSY otherwise.
791 static int bd_prepare_to_claim(struct block_device *bdev,
792 struct block_device *whole, void *holder)
794 retry:
795 /* if someone else claimed, fail */
796 if (!bd_may_claim(bdev, whole, holder))
797 return -EBUSY;
799 /* if claiming is already in progress, wait for it to finish */
800 if (whole->bd_claiming) {
801 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
802 DEFINE_WAIT(wait);
804 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
805 spin_unlock(&bdev_lock);
806 schedule();
807 finish_wait(wq, &wait);
808 spin_lock(&bdev_lock);
809 goto retry;
812 /* yay, all mine */
813 return 0;
817 * bd_start_claiming - start claiming a block device
818 * @bdev: block device of interest
819 * @holder: holder trying to claim @bdev
821 * @bdev is about to be opened exclusively. Check @bdev can be opened
822 * exclusively and mark that an exclusive open is in progress. Each
823 * successful call to this function must be matched with a call to
824 * either bd_finish_claiming() or bd_abort_claiming() (which do not
825 * fail).
827 * This function is used to gain exclusive access to the block device
828 * without actually causing other exclusive open attempts to fail. It
829 * should be used when the open sequence itself requires exclusive
830 * access but may subsequently fail.
832 * CONTEXT:
833 * Might sleep.
835 * RETURNS:
836 * Pointer to the block device containing @bdev on success, ERR_PTR()
837 * value on failure.
839 static struct block_device *bd_start_claiming(struct block_device *bdev,
840 void *holder)
842 struct gendisk *disk;
843 struct block_device *whole;
844 int partno, err;
846 might_sleep();
849 * @bdev might not have been initialized properly yet, look up
850 * and grab the outer block device the hard way.
852 disk = get_gendisk(bdev->bd_dev, &partno);
853 if (!disk)
854 return ERR_PTR(-ENXIO);
857 * Normally, @bdev should equal what's returned from bdget_disk()
858 * if partno is 0; however, some drivers (floppy) use multiple
859 * bdev's for the same physical device and @bdev may be one of the
860 * aliases. Keep @bdev if partno is 0. This means claimer
861 * tracking is broken for those devices but it has always been that
862 * way.
864 if (partno)
865 whole = bdget_disk(disk, 0);
866 else
867 whole = bdgrab(bdev);
869 module_put(disk->fops->owner);
870 put_disk(disk);
871 if (!whole)
872 return ERR_PTR(-ENOMEM);
874 /* prepare to claim, if successful, mark claiming in progress */
875 spin_lock(&bdev_lock);
877 err = bd_prepare_to_claim(bdev, whole, holder);
878 if (err == 0) {
879 whole->bd_claiming = holder;
880 spin_unlock(&bdev_lock);
881 return whole;
882 } else {
883 spin_unlock(&bdev_lock);
884 bdput(whole);
885 return ERR_PTR(err);
889 #ifdef CONFIG_SYSFS
890 struct bd_holder_disk {
891 struct list_head list;
892 struct gendisk *disk;
893 int refcnt;
896 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
897 struct gendisk *disk)
899 struct bd_holder_disk *holder;
901 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
902 if (holder->disk == disk)
903 return holder;
904 return NULL;
907 static int add_symlink(struct kobject *from, struct kobject *to)
909 return sysfs_create_link(from, to, kobject_name(to));
912 static void del_symlink(struct kobject *from, struct kobject *to)
914 sysfs_remove_link(from, kobject_name(to));
918 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
919 * @bdev: the claimed slave bdev
920 * @disk: the holding disk
922 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
924 * This functions creates the following sysfs symlinks.
926 * - from "slaves" directory of the holder @disk to the claimed @bdev
927 * - from "holders" directory of the @bdev to the holder @disk
929 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
930 * passed to bd_link_disk_holder(), then:
932 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
933 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
935 * The caller must have claimed @bdev before calling this function and
936 * ensure that both @bdev and @disk are valid during the creation and
937 * lifetime of these symlinks.
939 * CONTEXT:
940 * Might sleep.
942 * RETURNS:
943 * 0 on success, -errno on failure.
945 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
947 struct bd_holder_disk *holder;
948 int ret = 0;
950 mutex_lock(&bdev->bd_mutex);
952 WARN_ON_ONCE(!bdev->bd_holder);
954 /* FIXME: remove the following once add_disk() handles errors */
955 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
956 goto out_unlock;
958 holder = bd_find_holder_disk(bdev, disk);
959 if (holder) {
960 holder->refcnt++;
961 goto out_unlock;
964 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
965 if (!holder) {
966 ret = -ENOMEM;
967 goto out_unlock;
970 INIT_LIST_HEAD(&holder->list);
971 holder->disk = disk;
972 holder->refcnt = 1;
974 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
975 if (ret)
976 goto out_free;
978 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
979 if (ret)
980 goto out_del;
982 * bdev could be deleted beneath us which would implicitly destroy
983 * the holder directory. Hold on to it.
985 kobject_get(bdev->bd_part->holder_dir);
987 list_add(&holder->list, &bdev->bd_holder_disks);
988 goto out_unlock;
990 out_del:
991 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
992 out_free:
993 kfree(holder);
994 out_unlock:
995 mutex_unlock(&bdev->bd_mutex);
996 return ret;
998 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1001 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1002 * @bdev: the calimed slave bdev
1003 * @disk: the holding disk
1005 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1007 * CONTEXT:
1008 * Might sleep.
1010 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1012 struct bd_holder_disk *holder;
1014 mutex_lock(&bdev->bd_mutex);
1016 holder = bd_find_holder_disk(bdev, disk);
1018 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1019 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1020 del_symlink(bdev->bd_part->holder_dir,
1021 &disk_to_dev(disk)->kobj);
1022 kobject_put(bdev->bd_part->holder_dir);
1023 list_del_init(&holder->list);
1024 kfree(holder);
1027 mutex_unlock(&bdev->bd_mutex);
1029 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1030 #endif
1033 * flush_disk - invalidates all buffer-cache entries on a disk
1035 * @bdev: struct block device to be flushed
1036 * @kill_dirty: flag to guide handling of dirty inodes
1038 * Invalidates all buffer-cache entries on a disk. It should be called
1039 * when a disk has been changed -- either by a media change or online
1040 * resize.
1042 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1044 if (__invalidate_device(bdev, kill_dirty)) {
1045 char name[BDEVNAME_SIZE] = "";
1047 if (bdev->bd_disk)
1048 disk_name(bdev->bd_disk, 0, name);
1049 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1050 "resized disk %s\n", name);
1053 if (!bdev->bd_disk)
1054 return;
1055 if (disk_part_scan_enabled(bdev->bd_disk))
1056 bdev->bd_invalidated = 1;
1060 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1061 * @disk: struct gendisk to check
1062 * @bdev: struct bdev to adjust.
1064 * This routine checks to see if the bdev size does not match the disk size
1065 * and adjusts it if it differs.
1067 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1069 loff_t disk_size, bdev_size;
1071 disk_size = (loff_t)get_capacity(disk) << 9;
1072 bdev_size = i_size_read(bdev->bd_inode);
1073 if (disk_size != bdev_size) {
1074 char name[BDEVNAME_SIZE];
1076 disk_name(disk, 0, name);
1077 printk(KERN_INFO
1078 "%s: detected capacity change from %lld to %lld\n",
1079 name, bdev_size, disk_size);
1080 i_size_write(bdev->bd_inode, disk_size);
1081 flush_disk(bdev, false);
1084 EXPORT_SYMBOL(check_disk_size_change);
1087 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1088 * @disk: struct gendisk to be revalidated
1090 * This routine is a wrapper for lower-level driver's revalidate_disk
1091 * call-backs. It is used to do common pre and post operations needed
1092 * for all revalidate_disk operations.
1094 int revalidate_disk(struct gendisk *disk)
1096 struct block_device *bdev;
1097 int ret = 0;
1099 if (disk->fops->revalidate_disk)
1100 ret = disk->fops->revalidate_disk(disk);
1101 blk_integrity_revalidate(disk);
1102 bdev = bdget_disk(disk, 0);
1103 if (!bdev)
1104 return ret;
1106 mutex_lock(&bdev->bd_mutex);
1107 check_disk_size_change(disk, bdev);
1108 bdev->bd_invalidated = 0;
1109 mutex_unlock(&bdev->bd_mutex);
1110 bdput(bdev);
1111 return ret;
1113 EXPORT_SYMBOL(revalidate_disk);
1116 * This routine checks whether a removable media has been changed,
1117 * and invalidates all buffer-cache-entries in that case. This
1118 * is a relatively slow routine, so we have to try to minimize using
1119 * it. Thus it is called only upon a 'mount' or 'open'. This
1120 * is the best way of combining speed and utility, I think.
1121 * People changing diskettes in the middle of an operation deserve
1122 * to lose :-)
1124 int check_disk_change(struct block_device *bdev)
1126 struct gendisk *disk = bdev->bd_disk;
1127 const struct block_device_operations *bdops = disk->fops;
1128 unsigned int events;
1130 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1131 DISK_EVENT_EJECT_REQUEST);
1132 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1133 return 0;
1135 flush_disk(bdev, true);
1136 if (bdops->revalidate_disk)
1137 bdops->revalidate_disk(bdev->bd_disk);
1138 return 1;
1141 EXPORT_SYMBOL(check_disk_change);
1143 void bd_set_size(struct block_device *bdev, loff_t size)
1145 unsigned bsize = bdev_logical_block_size(bdev);
1147 mutex_lock(&bdev->bd_inode->i_mutex);
1148 i_size_write(bdev->bd_inode, size);
1149 mutex_unlock(&bdev->bd_inode->i_mutex);
1150 while (bsize < PAGE_CACHE_SIZE) {
1151 if (size & bsize)
1152 break;
1153 bsize <<= 1;
1155 bdev->bd_block_size = bsize;
1156 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1158 EXPORT_SYMBOL(bd_set_size);
1160 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1163 * bd_mutex locking:
1165 * mutex_lock(part->bd_mutex)
1166 * mutex_lock_nested(whole->bd_mutex, 1)
1169 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1171 struct gendisk *disk;
1172 struct module *owner;
1173 int ret;
1174 int partno;
1175 int perm = 0;
1177 if (mode & FMODE_READ)
1178 perm |= MAY_READ;
1179 if (mode & FMODE_WRITE)
1180 perm |= MAY_WRITE;
1182 * hooks: /n/, see "layering violations".
1184 if (!for_part) {
1185 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1186 if (ret != 0) {
1187 bdput(bdev);
1188 return ret;
1192 restart:
1194 ret = -ENXIO;
1195 disk = get_gendisk(bdev->bd_dev, &partno);
1196 if (!disk)
1197 goto out;
1198 owner = disk->fops->owner;
1200 disk_block_events(disk);
1201 mutex_lock_nested(&bdev->bd_mutex, for_part);
1202 if (!bdev->bd_openers) {
1203 bdev->bd_disk = disk;
1204 bdev->bd_queue = disk->queue;
1205 bdev->bd_contains = bdev;
1206 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1207 if (!partno) {
1208 ret = -ENXIO;
1209 bdev->bd_part = disk_get_part(disk, partno);
1210 if (!bdev->bd_part)
1211 goto out_clear;
1213 ret = 0;
1214 if (disk->fops->open) {
1215 ret = disk->fops->open(bdev, mode);
1216 if (ret == -ERESTARTSYS) {
1217 /* Lost a race with 'disk' being
1218 * deleted, try again.
1219 * See md.c
1221 disk_put_part(bdev->bd_part);
1222 bdev->bd_part = NULL;
1223 bdev->bd_disk = NULL;
1224 bdev->bd_queue = NULL;
1225 mutex_unlock(&bdev->bd_mutex);
1226 disk_unblock_events(disk);
1227 put_disk(disk);
1228 module_put(owner);
1229 goto restart;
1233 if (!ret)
1234 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1237 * If the device is invalidated, rescan partition
1238 * if open succeeded or failed with -ENOMEDIUM.
1239 * The latter is necessary to prevent ghost
1240 * partitions on a removed medium.
1242 if (bdev->bd_invalidated) {
1243 if (!ret)
1244 rescan_partitions(disk, bdev);
1245 else if (ret == -ENOMEDIUM)
1246 invalidate_partitions(disk, bdev);
1248 if (ret)
1249 goto out_clear;
1250 } else {
1251 struct block_device *whole;
1252 whole = bdget_disk(disk, 0);
1253 ret = -ENOMEM;
1254 if (!whole)
1255 goto out_clear;
1256 BUG_ON(for_part);
1257 ret = __blkdev_get(whole, mode, 1);
1258 if (ret)
1259 goto out_clear;
1260 bdev->bd_contains = whole;
1261 bdev->bd_part = disk_get_part(disk, partno);
1262 if (!(disk->flags & GENHD_FL_UP) ||
1263 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1264 ret = -ENXIO;
1265 goto out_clear;
1267 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1269 * If the partition is not aligned on a page
1270 * boundary, we can't do dax I/O to it.
1272 if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) ||
1273 (bdev->bd_part->nr_sects % (PAGE_SIZE / 512)))
1274 bdev->bd_inode->i_flags &= ~S_DAX;
1276 } else {
1277 if (bdev->bd_contains == bdev) {
1278 ret = 0;
1279 if (bdev->bd_disk->fops->open)
1280 ret = bdev->bd_disk->fops->open(bdev, mode);
1281 /* the same as first opener case, read comment there */
1282 if (bdev->bd_invalidated) {
1283 if (!ret)
1284 rescan_partitions(bdev->bd_disk, bdev);
1285 else if (ret == -ENOMEDIUM)
1286 invalidate_partitions(bdev->bd_disk, bdev);
1288 if (ret)
1289 goto out_unlock_bdev;
1291 /* only one opener holds refs to the module and disk */
1292 put_disk(disk);
1293 module_put(owner);
1295 bdev->bd_openers++;
1296 if (for_part)
1297 bdev->bd_part_count++;
1298 mutex_unlock(&bdev->bd_mutex);
1299 disk_unblock_events(disk);
1300 return 0;
1302 out_clear:
1303 disk_put_part(bdev->bd_part);
1304 bdev->bd_disk = NULL;
1305 bdev->bd_part = NULL;
1306 bdev->bd_queue = NULL;
1307 if (bdev != bdev->bd_contains)
1308 __blkdev_put(bdev->bd_contains, mode, 1);
1309 bdev->bd_contains = NULL;
1310 out_unlock_bdev:
1311 mutex_unlock(&bdev->bd_mutex);
1312 disk_unblock_events(disk);
1313 put_disk(disk);
1314 module_put(owner);
1315 out:
1316 bdput(bdev);
1318 return ret;
1322 * blkdev_get - open a block device
1323 * @bdev: block_device to open
1324 * @mode: FMODE_* mask
1325 * @holder: exclusive holder identifier
1327 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1328 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1329 * @holder is invalid. Exclusive opens may nest for the same @holder.
1331 * On success, the reference count of @bdev is unchanged. On failure,
1332 * @bdev is put.
1334 * CONTEXT:
1335 * Might sleep.
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1340 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1342 struct block_device *whole = NULL;
1343 int res;
1345 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1347 if ((mode & FMODE_EXCL) && holder) {
1348 whole = bd_start_claiming(bdev, holder);
1349 if (IS_ERR(whole)) {
1350 bdput(bdev);
1351 return PTR_ERR(whole);
1355 res = __blkdev_get(bdev, mode, 0);
1357 if (whole) {
1358 struct gendisk *disk = whole->bd_disk;
1360 /* finish claiming */
1361 mutex_lock(&bdev->bd_mutex);
1362 spin_lock(&bdev_lock);
1364 if (!res) {
1365 BUG_ON(!bd_may_claim(bdev, whole, holder));
1367 * Note that for a whole device bd_holders
1368 * will be incremented twice, and bd_holder
1369 * will be set to bd_may_claim before being
1370 * set to holder
1372 whole->bd_holders++;
1373 whole->bd_holder = bd_may_claim;
1374 bdev->bd_holders++;
1375 bdev->bd_holder = holder;
1378 /* tell others that we're done */
1379 BUG_ON(whole->bd_claiming != holder);
1380 whole->bd_claiming = NULL;
1381 wake_up_bit(&whole->bd_claiming, 0);
1383 spin_unlock(&bdev_lock);
1386 * Block event polling for write claims if requested. Any
1387 * write holder makes the write_holder state stick until
1388 * all are released. This is good enough and tracking
1389 * individual writeable reference is too fragile given the
1390 * way @mode is used in blkdev_get/put().
1392 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1393 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1394 bdev->bd_write_holder = true;
1395 disk_block_events(disk);
1398 mutex_unlock(&bdev->bd_mutex);
1399 bdput(whole);
1402 return res;
1404 EXPORT_SYMBOL(blkdev_get);
1407 * blkdev_get_by_path - open a block device by name
1408 * @path: path to the block device to open
1409 * @mode: FMODE_* mask
1410 * @holder: exclusive holder identifier
1412 * Open the blockdevice described by the device file at @path. @mode
1413 * and @holder are identical to blkdev_get().
1415 * On success, the returned block_device has reference count of one.
1417 * CONTEXT:
1418 * Might sleep.
1420 * RETURNS:
1421 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1423 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1424 void *holder)
1426 struct block_device *bdev;
1427 int err;
1429 bdev = lookup_bdev(path);
1430 if (IS_ERR(bdev))
1431 return bdev;
1433 err = blkdev_get(bdev, mode, holder);
1434 if (err)
1435 return ERR_PTR(err);
1437 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1438 blkdev_put(bdev, mode);
1439 return ERR_PTR(-EACCES);
1442 return bdev;
1444 EXPORT_SYMBOL(blkdev_get_by_path);
1447 * blkdev_get_by_dev - open a block device by device number
1448 * @dev: device number of block device to open
1449 * @mode: FMODE_* mask
1450 * @holder: exclusive holder identifier
1452 * Open the blockdevice described by device number @dev. @mode and
1453 * @holder are identical to blkdev_get().
1455 * Use it ONLY if you really do not have anything better - i.e. when
1456 * you are behind a truly sucky interface and all you are given is a
1457 * device number. _Never_ to be used for internal purposes. If you
1458 * ever need it - reconsider your API.
1460 * On success, the returned block_device has reference count of one.
1462 * CONTEXT:
1463 * Might sleep.
1465 * RETURNS:
1466 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1468 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1470 struct block_device *bdev;
1471 int err;
1473 bdev = bdget(dev);
1474 if (!bdev)
1475 return ERR_PTR(-ENOMEM);
1477 err = blkdev_get(bdev, mode, holder);
1478 if (err)
1479 return ERR_PTR(err);
1481 return bdev;
1483 EXPORT_SYMBOL(blkdev_get_by_dev);
1485 static int blkdev_open(struct inode * inode, struct file * filp)
1487 struct block_device *bdev;
1490 * Preserve backwards compatibility and allow large file access
1491 * even if userspace doesn't ask for it explicitly. Some mkfs
1492 * binary needs it. We might want to drop this workaround
1493 * during an unstable branch.
1495 filp->f_flags |= O_LARGEFILE;
1497 if (filp->f_flags & O_NDELAY)
1498 filp->f_mode |= FMODE_NDELAY;
1499 if (filp->f_flags & O_EXCL)
1500 filp->f_mode |= FMODE_EXCL;
1501 if ((filp->f_flags & O_ACCMODE) == 3)
1502 filp->f_mode |= FMODE_WRITE_IOCTL;
1504 bdev = bd_acquire(inode);
1505 if (bdev == NULL)
1506 return -ENOMEM;
1508 filp->f_mapping = bdev->bd_inode->i_mapping;
1510 return blkdev_get(bdev, filp->f_mode, filp);
1513 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1515 struct gendisk *disk = bdev->bd_disk;
1516 struct block_device *victim = NULL;
1518 mutex_lock_nested(&bdev->bd_mutex, for_part);
1519 if (for_part)
1520 bdev->bd_part_count--;
1522 if (!--bdev->bd_openers) {
1523 WARN_ON_ONCE(bdev->bd_holders);
1524 sync_blockdev(bdev);
1525 kill_bdev(bdev);
1527 bdev_write_inode(bdev);
1529 * Detaching bdev inode from its wb in __destroy_inode()
1530 * is too late: the queue which embeds its bdi (along with
1531 * root wb) can be gone as soon as we put_disk() below.
1533 inode_detach_wb(bdev->bd_inode);
1535 if (bdev->bd_contains == bdev) {
1536 if (disk->fops->release)
1537 disk->fops->release(disk, mode);
1539 if (!bdev->bd_openers) {
1540 struct module *owner = disk->fops->owner;
1542 disk_put_part(bdev->bd_part);
1543 bdev->bd_part = NULL;
1544 bdev->bd_disk = NULL;
1545 if (bdev != bdev->bd_contains)
1546 victim = bdev->bd_contains;
1547 bdev->bd_contains = NULL;
1549 put_disk(disk);
1550 module_put(owner);
1552 mutex_unlock(&bdev->bd_mutex);
1553 bdput(bdev);
1554 if (victim)
1555 __blkdev_put(victim, mode, 1);
1558 void blkdev_put(struct block_device *bdev, fmode_t mode)
1560 mutex_lock(&bdev->bd_mutex);
1562 if (mode & FMODE_EXCL) {
1563 bool bdev_free;
1566 * Release a claim on the device. The holder fields
1567 * are protected with bdev_lock. bd_mutex is to
1568 * synchronize disk_holder unlinking.
1570 spin_lock(&bdev_lock);
1572 WARN_ON_ONCE(--bdev->bd_holders < 0);
1573 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1575 /* bd_contains might point to self, check in a separate step */
1576 if ((bdev_free = !bdev->bd_holders))
1577 bdev->bd_holder = NULL;
1578 if (!bdev->bd_contains->bd_holders)
1579 bdev->bd_contains->bd_holder = NULL;
1581 spin_unlock(&bdev_lock);
1584 * If this was the last claim, remove holder link and
1585 * unblock evpoll if it was a write holder.
1587 if (bdev_free && bdev->bd_write_holder) {
1588 disk_unblock_events(bdev->bd_disk);
1589 bdev->bd_write_holder = false;
1594 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1595 * event. This is to ensure detection of media removal commanded
1596 * from userland - e.g. eject(1).
1598 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1600 mutex_unlock(&bdev->bd_mutex);
1602 __blkdev_put(bdev, mode, 0);
1604 EXPORT_SYMBOL(blkdev_put);
1606 static int blkdev_close(struct inode * inode, struct file * filp)
1608 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1609 blkdev_put(bdev, filp->f_mode);
1610 return 0;
1613 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1615 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1616 fmode_t mode = file->f_mode;
1619 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1620 * to updated it before every ioctl.
1622 if (file->f_flags & O_NDELAY)
1623 mode |= FMODE_NDELAY;
1624 else
1625 mode &= ~FMODE_NDELAY;
1627 return blkdev_ioctl(bdev, mode, cmd, arg);
1631 * Write data to the block device. Only intended for the block device itself
1632 * and the raw driver which basically is a fake block device.
1634 * Does not take i_mutex for the write and thus is not for general purpose
1635 * use.
1637 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1639 struct file *file = iocb->ki_filp;
1640 struct inode *bd_inode = file->f_mapping->host;
1641 loff_t size = i_size_read(bd_inode);
1642 struct blk_plug plug;
1643 ssize_t ret;
1645 if (bdev_read_only(I_BDEV(bd_inode)))
1646 return -EPERM;
1648 if (!iov_iter_count(from))
1649 return 0;
1651 if (iocb->ki_pos >= size)
1652 return -ENOSPC;
1654 iov_iter_truncate(from, size - iocb->ki_pos);
1656 blk_start_plug(&plug);
1657 ret = __generic_file_write_iter(iocb, from);
1658 if (ret > 0) {
1659 ssize_t err;
1660 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1661 if (err < 0)
1662 ret = err;
1664 blk_finish_plug(&plug);
1665 return ret;
1667 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1669 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1671 struct file *file = iocb->ki_filp;
1672 struct inode *bd_inode = file->f_mapping->host;
1673 loff_t size = i_size_read(bd_inode);
1674 loff_t pos = iocb->ki_pos;
1676 if (pos >= size)
1677 return 0;
1679 size -= pos;
1680 iov_iter_truncate(to, size);
1681 return generic_file_read_iter(iocb, to);
1683 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1686 * Try to release a page associated with block device when the system
1687 * is under memory pressure.
1689 static int blkdev_releasepage(struct page *page, gfp_t wait)
1691 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1693 if (super && super->s_op->bdev_try_to_free_page)
1694 return super->s_op->bdev_try_to_free_page(super, page, wait);
1696 return try_to_free_buffers(page);
1699 static const struct address_space_operations def_blk_aops = {
1700 .readpage = blkdev_readpage,
1701 .readpages = blkdev_readpages,
1702 .writepage = blkdev_writepage,
1703 .write_begin = blkdev_write_begin,
1704 .write_end = blkdev_write_end,
1705 .writepages = generic_writepages,
1706 .releasepage = blkdev_releasepage,
1707 .direct_IO = blkdev_direct_IO,
1708 .is_dirty_writeback = buffer_check_dirty_writeback,
1711 const struct file_operations def_blk_fops = {
1712 .open = blkdev_open,
1713 .release = blkdev_close,
1714 .llseek = block_llseek,
1715 .read_iter = blkdev_read_iter,
1716 .write_iter = blkdev_write_iter,
1717 .mmap = generic_file_mmap,
1718 .fsync = blkdev_fsync,
1719 .unlocked_ioctl = block_ioctl,
1720 #ifdef CONFIG_COMPAT
1721 .compat_ioctl = compat_blkdev_ioctl,
1722 #endif
1723 .splice_read = generic_file_splice_read,
1724 .splice_write = iter_file_splice_write,
1727 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1729 int res;
1730 mm_segment_t old_fs = get_fs();
1731 set_fs(KERNEL_DS);
1732 res = blkdev_ioctl(bdev, 0, cmd, arg);
1733 set_fs(old_fs);
1734 return res;
1737 EXPORT_SYMBOL(ioctl_by_bdev);
1740 * lookup_bdev - lookup a struct block_device by name
1741 * @pathname: special file representing the block device
1743 * Get a reference to the blockdevice at @pathname in the current
1744 * namespace if possible and return it. Return ERR_PTR(error)
1745 * otherwise.
1747 struct block_device *lookup_bdev(const char *pathname)
1749 struct block_device *bdev;
1750 struct inode *inode;
1751 struct path path;
1752 int error;
1754 if (!pathname || !*pathname)
1755 return ERR_PTR(-EINVAL);
1757 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1758 if (error)
1759 return ERR_PTR(error);
1761 inode = d_backing_inode(path.dentry);
1762 error = -ENOTBLK;
1763 if (!S_ISBLK(inode->i_mode))
1764 goto fail;
1765 error = -EACCES;
1766 if (path.mnt->mnt_flags & MNT_NODEV)
1767 goto fail;
1768 error = -ENOMEM;
1769 bdev = bd_acquire(inode);
1770 if (!bdev)
1771 goto fail;
1772 out:
1773 path_put(&path);
1774 return bdev;
1775 fail:
1776 bdev = ERR_PTR(error);
1777 goto out;
1779 EXPORT_SYMBOL(lookup_bdev);
1781 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1783 struct super_block *sb = get_super(bdev);
1784 int res = 0;
1786 if (sb) {
1788 * no need to lock the super, get_super holds the
1789 * read mutex so the filesystem cannot go away
1790 * under us (->put_super runs with the write lock
1791 * hold).
1793 shrink_dcache_sb(sb);
1794 res = invalidate_inodes(sb, kill_dirty);
1795 drop_super(sb);
1797 invalidate_bdev(bdev);
1798 return res;
1800 EXPORT_SYMBOL(__invalidate_device);
1802 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1804 struct inode *inode, *old_inode = NULL;
1806 spin_lock(&blockdev_superblock->s_inode_list_lock);
1807 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1808 struct address_space *mapping = inode->i_mapping;
1809 struct block_device *bdev;
1811 spin_lock(&inode->i_lock);
1812 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1813 mapping->nrpages == 0) {
1814 spin_unlock(&inode->i_lock);
1815 continue;
1817 __iget(inode);
1818 spin_unlock(&inode->i_lock);
1819 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1821 * We hold a reference to 'inode' so it couldn't have been
1822 * removed from s_inodes list while we dropped the
1823 * s_inode_list_lock We cannot iput the inode now as we can
1824 * be holding the last reference and we cannot iput it under
1825 * s_inode_list_lock. So we keep the reference and iput it
1826 * later.
1828 iput(old_inode);
1829 old_inode = inode;
1830 bdev = I_BDEV(inode);
1832 mutex_lock(&bdev->bd_mutex);
1833 if (bdev->bd_openers)
1834 func(bdev, arg);
1835 mutex_unlock(&bdev->bd_mutex);
1837 spin_lock(&blockdev_superblock->s_inode_list_lock);
1839 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1840 iput(old_inode);