2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args
{
60 struct btrfs_root
*root
;
63 static const struct inode_operations btrfs_dir_inode_operations
;
64 static const struct inode_operations btrfs_symlink_inode_operations
;
65 static const struct inode_operations btrfs_dir_ro_inode_operations
;
66 static const struct inode_operations btrfs_special_inode_operations
;
67 static const struct inode_operations btrfs_file_inode_operations
;
68 static const struct address_space_operations btrfs_aops
;
69 static const struct address_space_operations btrfs_symlink_aops
;
70 static const struct file_operations btrfs_dir_file_operations
;
71 static struct extent_io_ops btrfs_extent_io_ops
;
73 static struct kmem_cache
*btrfs_inode_cachep
;
74 struct kmem_cache
*btrfs_trans_handle_cachep
;
75 struct kmem_cache
*btrfs_transaction_cachep
;
76 struct kmem_cache
*btrfs_path_cachep
;
77 struct kmem_cache
*btrfs_free_space_cachep
;
80 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
81 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
82 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
83 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
84 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
85 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
86 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
87 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
90 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
91 static int btrfs_truncate(struct inode
*inode
);
92 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
93 static noinline
int cow_file_range(struct inode
*inode
,
94 struct page
*locked_page
,
95 u64 start
, u64 end
, int *page_started
,
96 unsigned long *nr_written
, int unlock
);
97 static noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
, struct inode
*inode
);
100 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
101 struct inode
*inode
, struct inode
*dir
,
102 const struct qstr
*qstr
)
106 err
= btrfs_init_acl(trans
, inode
, dir
);
108 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
117 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
118 struct btrfs_root
*root
, struct inode
*inode
,
119 u64 start
, size_t size
, size_t compressed_size
,
121 struct page
**compressed_pages
)
123 struct btrfs_key key
;
124 struct btrfs_path
*path
;
125 struct extent_buffer
*leaf
;
126 struct page
*page
= NULL
;
129 struct btrfs_file_extent_item
*ei
;
132 size_t cur_size
= size
;
134 unsigned long offset
;
136 if (compressed_size
&& compressed_pages
)
137 cur_size
= compressed_size
;
139 path
= btrfs_alloc_path();
143 path
->leave_spinning
= 1;
145 key
.objectid
= btrfs_ino(inode
);
147 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
148 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
150 inode_add_bytes(inode
, size
);
151 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
158 leaf
= path
->nodes
[0];
159 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
160 struct btrfs_file_extent_item
);
161 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
162 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
163 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
164 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
165 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
166 ptr
= btrfs_file_extent_inline_start(ei
);
168 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
171 while (compressed_size
> 0) {
172 cpage
= compressed_pages
[i
];
173 cur_size
= min_t(unsigned long, compressed_size
,
176 kaddr
= kmap_atomic(cpage
, KM_USER0
);
177 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
178 kunmap_atomic(kaddr
, KM_USER0
);
182 compressed_size
-= cur_size
;
184 btrfs_set_file_extent_compression(leaf
, ei
,
187 page
= find_get_page(inode
->i_mapping
,
188 start
>> PAGE_CACHE_SHIFT
);
189 btrfs_set_file_extent_compression(leaf
, ei
, 0);
190 kaddr
= kmap_atomic(page
, KM_USER0
);
191 offset
= start
& (PAGE_CACHE_SIZE
- 1);
192 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
193 kunmap_atomic(kaddr
, KM_USER0
);
194 page_cache_release(page
);
196 btrfs_mark_buffer_dirty(leaf
);
197 btrfs_free_path(path
);
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
208 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
209 btrfs_update_inode(trans
, root
, inode
);
213 btrfs_free_path(path
);
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
223 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
224 struct btrfs_root
*root
,
225 struct inode
*inode
, u64 start
, u64 end
,
226 size_t compressed_size
, int compress_type
,
227 struct page
**compressed_pages
)
229 u64 isize
= i_size_read(inode
);
230 u64 actual_end
= min(end
+ 1, isize
);
231 u64 inline_len
= actual_end
- start
;
232 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
233 ~((u64
)root
->sectorsize
- 1);
235 u64 data_len
= inline_len
;
239 data_len
= compressed_size
;
242 actual_end
>= PAGE_CACHE_SIZE
||
243 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
245 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
247 data_len
> root
->fs_info
->max_inline
) {
251 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
255 if (isize
> actual_end
)
256 inline_len
= min_t(u64
, isize
, actual_end
);
257 ret
= insert_inline_extent(trans
, root
, inode
, start
,
258 inline_len
, compressed_size
,
259 compress_type
, compressed_pages
);
261 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
262 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
266 struct async_extent
{
271 unsigned long nr_pages
;
273 struct list_head list
;
278 struct btrfs_root
*root
;
279 struct page
*locked_page
;
282 struct list_head extents
;
283 struct btrfs_work work
;
286 static noinline
int add_async_extent(struct async_cow
*cow
,
287 u64 start
, u64 ram_size
,
290 unsigned long nr_pages
,
293 struct async_extent
*async_extent
;
295 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
296 BUG_ON(!async_extent
);
297 async_extent
->start
= start
;
298 async_extent
->ram_size
= ram_size
;
299 async_extent
->compressed_size
= compressed_size
;
300 async_extent
->pages
= pages
;
301 async_extent
->nr_pages
= nr_pages
;
302 async_extent
->compress_type
= compress_type
;
303 list_add_tail(&async_extent
->list
, &cow
->extents
);
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
323 static noinline
int compress_file_range(struct inode
*inode
,
324 struct page
*locked_page
,
326 struct async_cow
*async_cow
,
329 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
330 struct btrfs_trans_handle
*trans
;
332 u64 blocksize
= root
->sectorsize
;
334 u64 isize
= i_size_read(inode
);
336 struct page
**pages
= NULL
;
337 unsigned long nr_pages
;
338 unsigned long nr_pages_ret
= 0;
339 unsigned long total_compressed
= 0;
340 unsigned long total_in
= 0;
341 unsigned long max_compressed
= 128 * 1024;
342 unsigned long max_uncompressed
= 128 * 1024;
345 int compress_type
= root
->fs_info
->compress_type
;
347 /* if this is a small write inside eof, kick off a defragbot */
348 if (end
<= BTRFS_I(inode
)->disk_i_size
&& (end
- start
+ 1) < 16 * 1024)
349 btrfs_add_inode_defrag(NULL
, inode
);
351 actual_end
= min_t(u64
, isize
, end
+ 1);
354 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
355 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
358 * we don't want to send crud past the end of i_size through
359 * compression, that's just a waste of CPU time. So, if the
360 * end of the file is before the start of our current
361 * requested range of bytes, we bail out to the uncompressed
362 * cleanup code that can deal with all of this.
364 * It isn't really the fastest way to fix things, but this is a
365 * very uncommon corner.
367 if (actual_end
<= start
)
368 goto cleanup_and_bail_uncompressed
;
370 total_compressed
= actual_end
- start
;
372 /* we want to make sure that amount of ram required to uncompress
373 * an extent is reasonable, so we limit the total size in ram
374 * of a compressed extent to 128k. This is a crucial number
375 * because it also controls how easily we can spread reads across
376 * cpus for decompression.
378 * We also want to make sure the amount of IO required to do
379 * a random read is reasonably small, so we limit the size of
380 * a compressed extent to 128k.
382 total_compressed
= min(total_compressed
, max_uncompressed
);
383 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
384 num_bytes
= max(blocksize
, num_bytes
);
389 * we do compression for mount -o compress and when the
390 * inode has not been flagged as nocompress. This flag can
391 * change at any time if we discover bad compression ratios.
393 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
394 (btrfs_test_opt(root
, COMPRESS
) ||
395 (BTRFS_I(inode
)->force_compress
) ||
396 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
398 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
400 /* just bail out to the uncompressed code */
404 if (BTRFS_I(inode
)->force_compress
)
405 compress_type
= BTRFS_I(inode
)->force_compress
;
407 ret
= btrfs_compress_pages(compress_type
,
408 inode
->i_mapping
, start
,
409 total_compressed
, pages
,
410 nr_pages
, &nr_pages_ret
,
416 unsigned long offset
= total_compressed
&
417 (PAGE_CACHE_SIZE
- 1);
418 struct page
*page
= pages
[nr_pages_ret
- 1];
421 /* zero the tail end of the last page, we might be
422 * sending it down to disk
425 kaddr
= kmap_atomic(page
, KM_USER0
);
426 memset(kaddr
+ offset
, 0,
427 PAGE_CACHE_SIZE
- offset
);
428 kunmap_atomic(kaddr
, KM_USER0
);
435 trans
= btrfs_join_transaction(root
);
436 BUG_ON(IS_ERR(trans
));
437 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
439 /* lets try to make an inline extent */
440 if (ret
|| total_in
< (actual_end
- start
)) {
441 /* we didn't compress the entire range, try
442 * to make an uncompressed inline extent.
444 ret
= cow_file_range_inline(trans
, root
, inode
,
445 start
, end
, 0, 0, NULL
);
447 /* try making a compressed inline extent */
448 ret
= cow_file_range_inline(trans
, root
, inode
,
451 compress_type
, pages
);
455 * inline extent creation worked, we don't need
456 * to create any more async work items. Unlock
457 * and free up our temp pages.
459 extent_clear_unlock_delalloc(inode
,
460 &BTRFS_I(inode
)->io_tree
,
462 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
463 EXTENT_CLEAR_DELALLOC
|
464 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
466 btrfs_end_transaction(trans
, root
);
469 btrfs_end_transaction(trans
, root
);
474 * we aren't doing an inline extent round the compressed size
475 * up to a block size boundary so the allocator does sane
478 total_compressed
= (total_compressed
+ blocksize
- 1) &
482 * one last check to make sure the compression is really a
483 * win, compare the page count read with the blocks on disk
485 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
486 ~(PAGE_CACHE_SIZE
- 1);
487 if (total_compressed
>= total_in
) {
490 num_bytes
= total_in
;
493 if (!will_compress
&& pages
) {
495 * the compression code ran but failed to make things smaller,
496 * free any pages it allocated and our page pointer array
498 for (i
= 0; i
< nr_pages_ret
; i
++) {
499 WARN_ON(pages
[i
]->mapping
);
500 page_cache_release(pages
[i
]);
504 total_compressed
= 0;
507 /* flag the file so we don't compress in the future */
508 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
509 !(BTRFS_I(inode
)->force_compress
)) {
510 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
516 /* the async work queues will take care of doing actual
517 * allocation on disk for these compressed pages,
518 * and will submit them to the elevator.
520 add_async_extent(async_cow
, start
, num_bytes
,
521 total_compressed
, pages
, nr_pages_ret
,
524 if (start
+ num_bytes
< end
) {
531 cleanup_and_bail_uncompressed
:
533 * No compression, but we still need to write the pages in
534 * the file we've been given so far. redirty the locked
535 * page if it corresponds to our extent and set things up
536 * for the async work queue to run cow_file_range to do
537 * the normal delalloc dance
539 if (page_offset(locked_page
) >= start
&&
540 page_offset(locked_page
) <= end
) {
541 __set_page_dirty_nobuffers(locked_page
);
542 /* unlocked later on in the async handlers */
544 add_async_extent(async_cow
, start
, end
- start
+ 1,
545 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
553 for (i
= 0; i
< nr_pages_ret
; i
++) {
554 WARN_ON(pages
[i
]->mapping
);
555 page_cache_release(pages
[i
]);
563 * phase two of compressed writeback. This is the ordered portion
564 * of the code, which only gets called in the order the work was
565 * queued. We walk all the async extents created by compress_file_range
566 * and send them down to the disk.
568 static noinline
int submit_compressed_extents(struct inode
*inode
,
569 struct async_cow
*async_cow
)
571 struct async_extent
*async_extent
;
573 struct btrfs_trans_handle
*trans
;
574 struct btrfs_key ins
;
575 struct extent_map
*em
;
576 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
577 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
578 struct extent_io_tree
*io_tree
;
581 if (list_empty(&async_cow
->extents
))
585 while (!list_empty(&async_cow
->extents
)) {
586 async_extent
= list_entry(async_cow
->extents
.next
,
587 struct async_extent
, list
);
588 list_del(&async_extent
->list
);
590 io_tree
= &BTRFS_I(inode
)->io_tree
;
593 /* did the compression code fall back to uncompressed IO? */
594 if (!async_extent
->pages
) {
595 int page_started
= 0;
596 unsigned long nr_written
= 0;
598 lock_extent(io_tree
, async_extent
->start
,
599 async_extent
->start
+
600 async_extent
->ram_size
- 1, GFP_NOFS
);
602 /* allocate blocks */
603 ret
= cow_file_range(inode
, async_cow
->locked_page
,
605 async_extent
->start
+
606 async_extent
->ram_size
- 1,
607 &page_started
, &nr_written
, 0);
610 * if page_started, cow_file_range inserted an
611 * inline extent and took care of all the unlocking
612 * and IO for us. Otherwise, we need to submit
613 * all those pages down to the drive.
615 if (!page_started
&& !ret
)
616 extent_write_locked_range(io_tree
,
617 inode
, async_extent
->start
,
618 async_extent
->start
+
619 async_extent
->ram_size
- 1,
627 lock_extent(io_tree
, async_extent
->start
,
628 async_extent
->start
+ async_extent
->ram_size
- 1,
631 trans
= btrfs_join_transaction(root
);
632 BUG_ON(IS_ERR(trans
));
633 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
634 ret
= btrfs_reserve_extent(trans
, root
,
635 async_extent
->compressed_size
,
636 async_extent
->compressed_size
,
639 btrfs_end_transaction(trans
, root
);
643 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
644 WARN_ON(async_extent
->pages
[i
]->mapping
);
645 page_cache_release(async_extent
->pages
[i
]);
647 kfree(async_extent
->pages
);
648 async_extent
->nr_pages
= 0;
649 async_extent
->pages
= NULL
;
650 unlock_extent(io_tree
, async_extent
->start
,
651 async_extent
->start
+
652 async_extent
->ram_size
- 1, GFP_NOFS
);
657 * here we're doing allocation and writeback of the
660 btrfs_drop_extent_cache(inode
, async_extent
->start
,
661 async_extent
->start
+
662 async_extent
->ram_size
- 1, 0);
664 em
= alloc_extent_map();
666 em
->start
= async_extent
->start
;
667 em
->len
= async_extent
->ram_size
;
668 em
->orig_start
= em
->start
;
670 em
->block_start
= ins
.objectid
;
671 em
->block_len
= ins
.offset
;
672 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
673 em
->compress_type
= async_extent
->compress_type
;
674 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
675 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
678 write_lock(&em_tree
->lock
);
679 ret
= add_extent_mapping(em_tree
, em
);
680 write_unlock(&em_tree
->lock
);
681 if (ret
!= -EEXIST
) {
685 btrfs_drop_extent_cache(inode
, async_extent
->start
,
686 async_extent
->start
+
687 async_extent
->ram_size
- 1, 0);
690 ret
= btrfs_add_ordered_extent_compress(inode
,
693 async_extent
->ram_size
,
695 BTRFS_ORDERED_COMPRESSED
,
696 async_extent
->compress_type
);
700 * clear dirty, set writeback and unlock the pages.
702 extent_clear_unlock_delalloc(inode
,
703 &BTRFS_I(inode
)->io_tree
,
705 async_extent
->start
+
706 async_extent
->ram_size
- 1,
707 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
708 EXTENT_CLEAR_UNLOCK
|
709 EXTENT_CLEAR_DELALLOC
|
710 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
712 ret
= btrfs_submit_compressed_write(inode
,
714 async_extent
->ram_size
,
716 ins
.offset
, async_extent
->pages
,
717 async_extent
->nr_pages
);
720 alloc_hint
= ins
.objectid
+ ins
.offset
;
728 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
731 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
732 struct extent_map
*em
;
735 read_lock(&em_tree
->lock
);
736 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
739 * if block start isn't an actual block number then find the
740 * first block in this inode and use that as a hint. If that
741 * block is also bogus then just don't worry about it.
743 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
745 em
= search_extent_mapping(em_tree
, 0, 0);
746 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
747 alloc_hint
= em
->block_start
;
751 alloc_hint
= em
->block_start
;
755 read_unlock(&em_tree
->lock
);
761 * when extent_io.c finds a delayed allocation range in the file,
762 * the call backs end up in this code. The basic idea is to
763 * allocate extents on disk for the range, and create ordered data structs
764 * in ram to track those extents.
766 * locked_page is the page that writepage had locked already. We use
767 * it to make sure we don't do extra locks or unlocks.
769 * *page_started is set to one if we unlock locked_page and do everything
770 * required to start IO on it. It may be clean and already done with
773 static noinline
int cow_file_range(struct inode
*inode
,
774 struct page
*locked_page
,
775 u64 start
, u64 end
, int *page_started
,
776 unsigned long *nr_written
,
779 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
780 struct btrfs_trans_handle
*trans
;
783 unsigned long ram_size
;
786 u64 blocksize
= root
->sectorsize
;
787 struct btrfs_key ins
;
788 struct extent_map
*em
;
789 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
792 BUG_ON(btrfs_is_free_space_inode(root
, inode
));
793 trans
= btrfs_join_transaction(root
);
794 BUG_ON(IS_ERR(trans
));
795 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
797 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
798 num_bytes
= max(blocksize
, num_bytes
);
799 disk_num_bytes
= num_bytes
;
802 /* if this is a small write inside eof, kick off defrag */
803 if (end
<= BTRFS_I(inode
)->disk_i_size
&& num_bytes
< 64 * 1024)
804 btrfs_add_inode_defrag(trans
, inode
);
807 /* lets try to make an inline extent */
808 ret
= cow_file_range_inline(trans
, root
, inode
,
809 start
, end
, 0, 0, NULL
);
811 extent_clear_unlock_delalloc(inode
,
812 &BTRFS_I(inode
)->io_tree
,
814 EXTENT_CLEAR_UNLOCK_PAGE
|
815 EXTENT_CLEAR_UNLOCK
|
816 EXTENT_CLEAR_DELALLOC
|
818 EXTENT_SET_WRITEBACK
|
819 EXTENT_END_WRITEBACK
);
821 *nr_written
= *nr_written
+
822 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
829 BUG_ON(disk_num_bytes
>
830 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
832 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
833 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
835 while (disk_num_bytes
> 0) {
838 cur_alloc_size
= disk_num_bytes
;
839 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
840 root
->sectorsize
, 0, alloc_hint
,
844 em
= alloc_extent_map();
847 em
->orig_start
= em
->start
;
848 ram_size
= ins
.offset
;
849 em
->len
= ins
.offset
;
851 em
->block_start
= ins
.objectid
;
852 em
->block_len
= ins
.offset
;
853 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
854 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
857 write_lock(&em_tree
->lock
);
858 ret
= add_extent_mapping(em_tree
, em
);
859 write_unlock(&em_tree
->lock
);
860 if (ret
!= -EEXIST
) {
864 btrfs_drop_extent_cache(inode
, start
,
865 start
+ ram_size
- 1, 0);
868 cur_alloc_size
= ins
.offset
;
869 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
870 ram_size
, cur_alloc_size
, 0);
873 if (root
->root_key
.objectid
==
874 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
875 ret
= btrfs_reloc_clone_csums(inode
, start
,
880 if (disk_num_bytes
< cur_alloc_size
)
883 /* we're not doing compressed IO, don't unlock the first
884 * page (which the caller expects to stay locked), don't
885 * clear any dirty bits and don't set any writeback bits
887 * Do set the Private2 bit so we know this page was properly
888 * setup for writepage
890 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
891 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
894 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
895 start
, start
+ ram_size
- 1,
897 disk_num_bytes
-= cur_alloc_size
;
898 num_bytes
-= cur_alloc_size
;
899 alloc_hint
= ins
.objectid
+ ins
.offset
;
900 start
+= cur_alloc_size
;
904 btrfs_end_transaction(trans
, root
);
910 * work queue call back to started compression on a file and pages
912 static noinline
void async_cow_start(struct btrfs_work
*work
)
914 struct async_cow
*async_cow
;
916 async_cow
= container_of(work
, struct async_cow
, work
);
918 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
919 async_cow
->start
, async_cow
->end
, async_cow
,
922 async_cow
->inode
= NULL
;
926 * work queue call back to submit previously compressed pages
928 static noinline
void async_cow_submit(struct btrfs_work
*work
)
930 struct async_cow
*async_cow
;
931 struct btrfs_root
*root
;
932 unsigned long nr_pages
;
934 async_cow
= container_of(work
, struct async_cow
, work
);
936 root
= async_cow
->root
;
937 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
940 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
942 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
944 waitqueue_active(&root
->fs_info
->async_submit_wait
))
945 wake_up(&root
->fs_info
->async_submit_wait
);
947 if (async_cow
->inode
)
948 submit_compressed_extents(async_cow
->inode
, async_cow
);
951 static noinline
void async_cow_free(struct btrfs_work
*work
)
953 struct async_cow
*async_cow
;
954 async_cow
= container_of(work
, struct async_cow
, work
);
958 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
959 u64 start
, u64 end
, int *page_started
,
960 unsigned long *nr_written
)
962 struct async_cow
*async_cow
;
963 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
964 unsigned long nr_pages
;
966 int limit
= 10 * 1024 * 1042;
968 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
969 1, 0, NULL
, GFP_NOFS
);
970 while (start
< end
) {
971 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
973 async_cow
->inode
= inode
;
974 async_cow
->root
= root
;
975 async_cow
->locked_page
= locked_page
;
976 async_cow
->start
= start
;
978 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
981 cur_end
= min(end
, start
+ 512 * 1024 - 1);
983 async_cow
->end
= cur_end
;
984 INIT_LIST_HEAD(&async_cow
->extents
);
986 async_cow
->work
.func
= async_cow_start
;
987 async_cow
->work
.ordered_func
= async_cow_submit
;
988 async_cow
->work
.ordered_free
= async_cow_free
;
989 async_cow
->work
.flags
= 0;
991 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
993 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
995 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
998 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
999 wait_event(root
->fs_info
->async_submit_wait
,
1000 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1004 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1005 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1006 wait_event(root
->fs_info
->async_submit_wait
,
1007 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1011 *nr_written
+= nr_pages
;
1012 start
= cur_end
+ 1;
1018 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1019 u64 bytenr
, u64 num_bytes
)
1022 struct btrfs_ordered_sum
*sums
;
1025 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1026 bytenr
+ num_bytes
- 1, &list
, 0);
1027 if (ret
== 0 && list_empty(&list
))
1030 while (!list_empty(&list
)) {
1031 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1032 list_del(&sums
->list
);
1039 * when nowcow writeback call back. This checks for snapshots or COW copies
1040 * of the extents that exist in the file, and COWs the file as required.
1042 * If no cow copies or snapshots exist, we write directly to the existing
1045 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1046 struct page
*locked_page
,
1047 u64 start
, u64 end
, int *page_started
, int force
,
1048 unsigned long *nr_written
)
1050 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1051 struct btrfs_trans_handle
*trans
;
1052 struct extent_buffer
*leaf
;
1053 struct btrfs_path
*path
;
1054 struct btrfs_file_extent_item
*fi
;
1055 struct btrfs_key found_key
;
1068 u64 ino
= btrfs_ino(inode
);
1070 path
= btrfs_alloc_path();
1074 nolock
= btrfs_is_free_space_inode(root
, inode
);
1077 trans
= btrfs_join_transaction_nolock(root
);
1079 trans
= btrfs_join_transaction(root
);
1081 BUG_ON(IS_ERR(trans
));
1082 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1084 cow_start
= (u64
)-1;
1087 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1090 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1091 leaf
= path
->nodes
[0];
1092 btrfs_item_key_to_cpu(leaf
, &found_key
,
1093 path
->slots
[0] - 1);
1094 if (found_key
.objectid
== ino
&&
1095 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1100 leaf
= path
->nodes
[0];
1101 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1102 ret
= btrfs_next_leaf(root
, path
);
1107 leaf
= path
->nodes
[0];
1113 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1115 if (found_key
.objectid
> ino
||
1116 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1117 found_key
.offset
> end
)
1120 if (found_key
.offset
> cur_offset
) {
1121 extent_end
= found_key
.offset
;
1126 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1127 struct btrfs_file_extent_item
);
1128 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1130 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1131 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1132 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1133 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1134 extent_end
= found_key
.offset
+
1135 btrfs_file_extent_num_bytes(leaf
, fi
);
1136 if (extent_end
<= start
) {
1140 if (disk_bytenr
== 0)
1142 if (btrfs_file_extent_compression(leaf
, fi
) ||
1143 btrfs_file_extent_encryption(leaf
, fi
) ||
1144 btrfs_file_extent_other_encoding(leaf
, fi
))
1146 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1148 if (btrfs_extent_readonly(root
, disk_bytenr
))
1150 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1152 extent_offset
, disk_bytenr
))
1154 disk_bytenr
+= extent_offset
;
1155 disk_bytenr
+= cur_offset
- found_key
.offset
;
1156 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1158 * force cow if csum exists in the range.
1159 * this ensure that csum for a given extent are
1160 * either valid or do not exist.
1162 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1165 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1166 extent_end
= found_key
.offset
+
1167 btrfs_file_extent_inline_len(leaf
, fi
);
1168 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1173 if (extent_end
<= start
) {
1178 if (cow_start
== (u64
)-1)
1179 cow_start
= cur_offset
;
1180 cur_offset
= extent_end
;
1181 if (cur_offset
> end
)
1187 btrfs_release_path(path
);
1188 if (cow_start
!= (u64
)-1) {
1189 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1190 found_key
.offset
- 1, page_started
,
1193 cow_start
= (u64
)-1;
1196 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1197 struct extent_map
*em
;
1198 struct extent_map_tree
*em_tree
;
1199 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1200 em
= alloc_extent_map();
1202 em
->start
= cur_offset
;
1203 em
->orig_start
= em
->start
;
1204 em
->len
= num_bytes
;
1205 em
->block_len
= num_bytes
;
1206 em
->block_start
= disk_bytenr
;
1207 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1208 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1210 write_lock(&em_tree
->lock
);
1211 ret
= add_extent_mapping(em_tree
, em
);
1212 write_unlock(&em_tree
->lock
);
1213 if (ret
!= -EEXIST
) {
1214 free_extent_map(em
);
1217 btrfs_drop_extent_cache(inode
, em
->start
,
1218 em
->start
+ em
->len
- 1, 0);
1220 type
= BTRFS_ORDERED_PREALLOC
;
1222 type
= BTRFS_ORDERED_NOCOW
;
1225 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1226 num_bytes
, num_bytes
, type
);
1229 if (root
->root_key
.objectid
==
1230 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1231 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1236 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1237 cur_offset
, cur_offset
+ num_bytes
- 1,
1238 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1239 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1240 EXTENT_SET_PRIVATE2
);
1241 cur_offset
= extent_end
;
1242 if (cur_offset
> end
)
1245 btrfs_release_path(path
);
1247 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1248 cow_start
= cur_offset
;
1249 if (cow_start
!= (u64
)-1) {
1250 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1251 page_started
, nr_written
, 1);
1256 ret
= btrfs_end_transaction_nolock(trans
, root
);
1259 ret
= btrfs_end_transaction(trans
, root
);
1262 btrfs_free_path(path
);
1267 * extent_io.c call back to do delayed allocation processing
1269 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1270 u64 start
, u64 end
, int *page_started
,
1271 unsigned long *nr_written
)
1274 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1276 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1277 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1278 page_started
, 1, nr_written
);
1279 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1280 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1281 page_started
, 0, nr_written
);
1282 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1283 !(BTRFS_I(inode
)->force_compress
) &&
1284 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))
1285 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1286 page_started
, nr_written
, 1);
1288 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1289 page_started
, nr_written
);
1293 static void btrfs_split_extent_hook(struct inode
*inode
,
1294 struct extent_state
*orig
, u64 split
)
1296 /* not delalloc, ignore it */
1297 if (!(orig
->state
& EXTENT_DELALLOC
))
1300 spin_lock(&BTRFS_I(inode
)->lock
);
1301 BTRFS_I(inode
)->outstanding_extents
++;
1302 spin_unlock(&BTRFS_I(inode
)->lock
);
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1311 static void btrfs_merge_extent_hook(struct inode
*inode
,
1312 struct extent_state
*new,
1313 struct extent_state
*other
)
1315 /* not delalloc, ignore it */
1316 if (!(other
->state
& EXTENT_DELALLOC
))
1319 spin_lock(&BTRFS_I(inode
)->lock
);
1320 BTRFS_I(inode
)->outstanding_extents
--;
1321 spin_unlock(&BTRFS_I(inode
)->lock
);
1325 * extent_io.c set_bit_hook, used to track delayed allocation
1326 * bytes in this file, and to maintain the list of inodes that
1327 * have pending delalloc work to be done.
1329 static void btrfs_set_bit_hook(struct inode
*inode
,
1330 struct extent_state
*state
, int *bits
)
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1338 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1339 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1340 u64 len
= state
->end
+ 1 - state
->start
;
1341 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1343 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1344 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1346 spin_lock(&BTRFS_I(inode
)->lock
);
1347 BTRFS_I(inode
)->outstanding_extents
++;
1348 spin_unlock(&BTRFS_I(inode
)->lock
);
1351 spin_lock(&root
->fs_info
->delalloc_lock
);
1352 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1353 root
->fs_info
->delalloc_bytes
+= len
;
1354 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1355 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1356 &root
->fs_info
->delalloc_inodes
);
1358 spin_unlock(&root
->fs_info
->delalloc_lock
);
1363 * extent_io.c clear_bit_hook, see set_bit_hook for why
1365 static void btrfs_clear_bit_hook(struct inode
*inode
,
1366 struct extent_state
*state
, int *bits
)
1369 * set_bit and clear bit hooks normally require _irqsave/restore
1370 * but in this case, we are only testing for the DELALLOC
1371 * bit, which is only set or cleared with irqs on
1373 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1374 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1375 u64 len
= state
->end
+ 1 - state
->start
;
1376 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1378 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1379 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1380 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1381 spin_lock(&BTRFS_I(inode
)->lock
);
1382 BTRFS_I(inode
)->outstanding_extents
--;
1383 spin_unlock(&BTRFS_I(inode
)->lock
);
1386 if (*bits
& EXTENT_DO_ACCOUNTING
)
1387 btrfs_delalloc_release_metadata(inode
, len
);
1389 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1391 btrfs_free_reserved_data_space(inode
, len
);
1393 spin_lock(&root
->fs_info
->delalloc_lock
);
1394 root
->fs_info
->delalloc_bytes
-= len
;
1395 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1397 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1398 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1399 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1401 spin_unlock(&root
->fs_info
->delalloc_lock
);
1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407 * we don't create bios that span stripes or chunks
1409 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1410 size_t size
, struct bio
*bio
,
1411 unsigned long bio_flags
)
1413 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1414 struct btrfs_mapping_tree
*map_tree
;
1415 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1420 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1423 length
= bio
->bi_size
;
1424 map_tree
= &root
->fs_info
->mapping_tree
;
1425 map_length
= length
;
1426 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1427 &map_length
, NULL
, 0);
1429 if (map_length
< length
+ size
)
1435 * in order to insert checksums into the metadata in large chunks,
1436 * we wait until bio submission time. All the pages in the bio are
1437 * checksummed and sums are attached onto the ordered extent record.
1439 * At IO completion time the cums attached on the ordered extent record
1440 * are inserted into the btree
1442 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1443 struct bio
*bio
, int mirror_num
,
1444 unsigned long bio_flags
,
1447 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1450 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1456 * in order to insert checksums into the metadata in large chunks,
1457 * we wait until bio submission time. All the pages in the bio are
1458 * checksummed and sums are attached onto the ordered extent record.
1460 * At IO completion time the cums attached on the ordered extent record
1461 * are inserted into the btree
1463 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1464 int mirror_num
, unsigned long bio_flags
,
1467 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1468 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1472 * extent_io.c submission hook. This does the right thing for csum calculation
1473 * on write, or reading the csums from the tree before a read
1475 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1476 int mirror_num
, unsigned long bio_flags
,
1479 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1483 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1485 if (btrfs_is_free_space_inode(root
, inode
))
1486 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1488 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1491 if (!(rw
& REQ_WRITE
)) {
1492 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1493 return btrfs_submit_compressed_read(inode
, bio
,
1494 mirror_num
, bio_flags
);
1495 } else if (!skip_sum
) {
1496 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1501 } else if (!skip_sum
) {
1502 /* csum items have already been cloned */
1503 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1505 /* we're doing a write, do the async checksumming */
1506 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1507 inode
, rw
, bio
, mirror_num
,
1508 bio_flags
, bio_offset
,
1509 __btrfs_submit_bio_start
,
1510 __btrfs_submit_bio_done
);
1514 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1518 * given a list of ordered sums record them in the inode. This happens
1519 * at IO completion time based on sums calculated at bio submission time.
1521 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1522 struct inode
*inode
, u64 file_offset
,
1523 struct list_head
*list
)
1525 struct btrfs_ordered_sum
*sum
;
1527 list_for_each_entry(sum
, list
, list
) {
1528 btrfs_csum_file_blocks(trans
,
1529 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1534 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1535 struct extent_state
**cached_state
)
1537 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1539 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1540 cached_state
, GFP_NOFS
);
1543 /* see btrfs_writepage_start_hook for details on why this is required */
1544 struct btrfs_writepage_fixup
{
1546 struct btrfs_work work
;
1549 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1551 struct btrfs_writepage_fixup
*fixup
;
1552 struct btrfs_ordered_extent
*ordered
;
1553 struct extent_state
*cached_state
= NULL
;
1555 struct inode
*inode
;
1559 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1563 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1564 ClearPageChecked(page
);
1568 inode
= page
->mapping
->host
;
1569 page_start
= page_offset(page
);
1570 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1572 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1573 &cached_state
, GFP_NOFS
);
1575 /* already ordered? We're done */
1576 if (PagePrivate2(page
))
1579 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1581 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1582 page_end
, &cached_state
, GFP_NOFS
);
1584 btrfs_start_ordered_extent(inode
, ordered
, 1);
1589 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1590 ClearPageChecked(page
);
1592 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1593 &cached_state
, GFP_NOFS
);
1596 page_cache_release(page
);
1601 * There are a few paths in the higher layers of the kernel that directly
1602 * set the page dirty bit without asking the filesystem if it is a
1603 * good idea. This causes problems because we want to make sure COW
1604 * properly happens and the data=ordered rules are followed.
1606 * In our case any range that doesn't have the ORDERED bit set
1607 * hasn't been properly setup for IO. We kick off an async process
1608 * to fix it up. The async helper will wait for ordered extents, set
1609 * the delalloc bit and make it safe to write the page.
1611 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1613 struct inode
*inode
= page
->mapping
->host
;
1614 struct btrfs_writepage_fixup
*fixup
;
1615 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1617 /* this page is properly in the ordered list */
1618 if (TestClearPagePrivate2(page
))
1621 if (PageChecked(page
))
1624 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1628 SetPageChecked(page
);
1629 page_cache_get(page
);
1630 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1632 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1636 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1637 struct inode
*inode
, u64 file_pos
,
1638 u64 disk_bytenr
, u64 disk_num_bytes
,
1639 u64 num_bytes
, u64 ram_bytes
,
1640 u8 compression
, u8 encryption
,
1641 u16 other_encoding
, int extent_type
)
1643 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1644 struct btrfs_file_extent_item
*fi
;
1645 struct btrfs_path
*path
;
1646 struct extent_buffer
*leaf
;
1647 struct btrfs_key ins
;
1651 path
= btrfs_alloc_path();
1655 path
->leave_spinning
= 1;
1658 * we may be replacing one extent in the tree with another.
1659 * The new extent is pinned in the extent map, and we don't want
1660 * to drop it from the cache until it is completely in the btree.
1662 * So, tell btrfs_drop_extents to leave this extent in the cache.
1663 * the caller is expected to unpin it and allow it to be merged
1666 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1670 ins
.objectid
= btrfs_ino(inode
);
1671 ins
.offset
= file_pos
;
1672 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1673 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1675 leaf
= path
->nodes
[0];
1676 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1677 struct btrfs_file_extent_item
);
1678 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1679 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1680 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1681 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1682 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1683 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1684 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1685 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1686 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1687 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1689 btrfs_unlock_up_safe(path
, 1);
1690 btrfs_set_lock_blocking(leaf
);
1692 btrfs_mark_buffer_dirty(leaf
);
1694 inode_add_bytes(inode
, num_bytes
);
1696 ins
.objectid
= disk_bytenr
;
1697 ins
.offset
= disk_num_bytes
;
1698 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1699 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1700 root
->root_key
.objectid
,
1701 btrfs_ino(inode
), file_pos
, &ins
);
1703 btrfs_free_path(path
);
1709 * helper function for btrfs_finish_ordered_io, this
1710 * just reads in some of the csum leaves to prime them into ram
1711 * before we start the transaction. It limits the amount of btree
1712 * reads required while inside the transaction.
1714 /* as ordered data IO finishes, this gets called so we can finish
1715 * an ordered extent if the range of bytes in the file it covers are
1718 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1720 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1721 struct btrfs_trans_handle
*trans
= NULL
;
1722 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1723 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1724 struct extent_state
*cached_state
= NULL
;
1725 int compress_type
= 0;
1729 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1733 BUG_ON(!ordered_extent
);
1735 nolock
= btrfs_is_free_space_inode(root
, inode
);
1737 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1738 BUG_ON(!list_empty(&ordered_extent
->list
));
1739 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1742 trans
= btrfs_join_transaction_nolock(root
);
1744 trans
= btrfs_join_transaction(root
);
1745 BUG_ON(IS_ERR(trans
));
1746 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1747 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1753 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1754 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1755 0, &cached_state
, GFP_NOFS
);
1758 trans
= btrfs_join_transaction_nolock(root
);
1760 trans
= btrfs_join_transaction(root
);
1761 BUG_ON(IS_ERR(trans
));
1762 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1764 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1765 compress_type
= ordered_extent
->compress_type
;
1766 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1767 BUG_ON(compress_type
);
1768 ret
= btrfs_mark_extent_written(trans
, inode
,
1769 ordered_extent
->file_offset
,
1770 ordered_extent
->file_offset
+
1771 ordered_extent
->len
);
1774 BUG_ON(root
== root
->fs_info
->tree_root
);
1775 ret
= insert_reserved_file_extent(trans
, inode
,
1776 ordered_extent
->file_offset
,
1777 ordered_extent
->start
,
1778 ordered_extent
->disk_len
,
1779 ordered_extent
->len
,
1780 ordered_extent
->len
,
1781 compress_type
, 0, 0,
1782 BTRFS_FILE_EXTENT_REG
);
1783 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1784 ordered_extent
->file_offset
,
1785 ordered_extent
->len
);
1788 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1789 ordered_extent
->file_offset
+
1790 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1792 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1793 &ordered_extent
->list
);
1795 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1796 if (!ret
|| !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1797 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1802 if (root
!= root
->fs_info
->tree_root
)
1803 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1806 btrfs_end_transaction_nolock(trans
, root
);
1808 btrfs_end_transaction(trans
, root
);
1812 btrfs_put_ordered_extent(ordered_extent
);
1813 /* once for the tree */
1814 btrfs_put_ordered_extent(ordered_extent
);
1819 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1820 struct extent_state
*state
, int uptodate
)
1822 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
1824 ClearPagePrivate2(page
);
1825 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1829 * when reads are done, we need to check csums to verify the data is correct
1830 * if there's a match, we allow the bio to finish. If not, the code in
1831 * extent_io.c will try to find good copies for us.
1833 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1834 struct extent_state
*state
)
1836 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1837 struct inode
*inode
= page
->mapping
->host
;
1838 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1840 u64
private = ~(u32
)0;
1842 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1845 if (PageChecked(page
)) {
1846 ClearPageChecked(page
);
1850 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1853 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1854 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1855 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1860 if (state
&& state
->start
== start
) {
1861 private = state
->private;
1864 ret
= get_state_private(io_tree
, start
, &private);
1866 kaddr
= kmap_atomic(page
, KM_USER0
);
1870 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1871 btrfs_csum_final(csum
, (char *)&csum
);
1872 if (csum
!= private)
1875 kunmap_atomic(kaddr
, KM_USER0
);
1880 printk_ratelimited(KERN_INFO
"btrfs csum failed ino %llu off %llu csum %u "
1882 (unsigned long long)btrfs_ino(page
->mapping
->host
),
1883 (unsigned long long)start
, csum
,
1884 (unsigned long long)private);
1885 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1886 flush_dcache_page(page
);
1887 kunmap_atomic(kaddr
, KM_USER0
);
1893 struct delayed_iput
{
1894 struct list_head list
;
1895 struct inode
*inode
;
1898 void btrfs_add_delayed_iput(struct inode
*inode
)
1900 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
1901 struct delayed_iput
*delayed
;
1903 if (atomic_add_unless(&inode
->i_count
, -1, 1))
1906 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
1907 delayed
->inode
= inode
;
1909 spin_lock(&fs_info
->delayed_iput_lock
);
1910 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
1911 spin_unlock(&fs_info
->delayed_iput_lock
);
1914 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
1917 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1918 struct delayed_iput
*delayed
;
1921 spin_lock(&fs_info
->delayed_iput_lock
);
1922 empty
= list_empty(&fs_info
->delayed_iputs
);
1923 spin_unlock(&fs_info
->delayed_iput_lock
);
1927 down_read(&root
->fs_info
->cleanup_work_sem
);
1928 spin_lock(&fs_info
->delayed_iput_lock
);
1929 list_splice_init(&fs_info
->delayed_iputs
, &list
);
1930 spin_unlock(&fs_info
->delayed_iput_lock
);
1932 while (!list_empty(&list
)) {
1933 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
1934 list_del(&delayed
->list
);
1935 iput(delayed
->inode
);
1938 up_read(&root
->fs_info
->cleanup_work_sem
);
1941 enum btrfs_orphan_cleanup_state
{
1942 ORPHAN_CLEANUP_STARTED
= 1,
1943 ORPHAN_CLEANUP_DONE
= 2,
1947 * This is called in transaction commmit time. If there are no orphan
1948 * files in the subvolume, it removes orphan item and frees block_rsv
1951 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
1952 struct btrfs_root
*root
)
1956 if (!list_empty(&root
->orphan_list
) ||
1957 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
1960 if (root
->orphan_item_inserted
&&
1961 btrfs_root_refs(&root
->root_item
) > 0) {
1962 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
1963 root
->root_key
.objectid
);
1965 root
->orphan_item_inserted
= 0;
1968 if (root
->orphan_block_rsv
) {
1969 WARN_ON(root
->orphan_block_rsv
->size
> 0);
1970 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
1971 root
->orphan_block_rsv
= NULL
;
1976 * This creates an orphan entry for the given inode in case something goes
1977 * wrong in the middle of an unlink/truncate.
1979 * NOTE: caller of this function should reserve 5 units of metadata for
1982 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1984 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1985 struct btrfs_block_rsv
*block_rsv
= NULL
;
1990 if (!root
->orphan_block_rsv
) {
1991 block_rsv
= btrfs_alloc_block_rsv(root
);
1996 spin_lock(&root
->orphan_lock
);
1997 if (!root
->orphan_block_rsv
) {
1998 root
->orphan_block_rsv
= block_rsv
;
1999 } else if (block_rsv
) {
2000 btrfs_free_block_rsv(root
, block_rsv
);
2004 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2005 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2008 * For proper ENOSPC handling, we should do orphan
2009 * cleanup when mounting. But this introduces backward
2010 * compatibility issue.
2012 if (!xchg(&root
->orphan_item_inserted
, 1))
2020 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2021 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2024 spin_unlock(&root
->orphan_lock
);
2026 /* grab metadata reservation from transaction handle */
2028 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2032 /* insert an orphan item to track this unlinked/truncated file */
2034 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2035 BUG_ON(ret
&& ret
!= -EEXIST
);
2038 /* insert an orphan item to track subvolume contains orphan files */
2040 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2041 root
->root_key
.objectid
);
2048 * We have done the truncate/delete so we can go ahead and remove the orphan
2049 * item for this particular inode.
2051 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2053 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2054 int delete_item
= 0;
2055 int release_rsv
= 0;
2058 spin_lock(&root
->orphan_lock
);
2059 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2060 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2064 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2065 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2068 spin_unlock(&root
->orphan_lock
);
2070 if (trans
&& delete_item
) {
2071 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
2076 btrfs_orphan_release_metadata(inode
);
2082 * this cleans up any orphans that may be left on the list from the last use
2085 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2087 struct btrfs_path
*path
;
2088 struct extent_buffer
*leaf
;
2089 struct btrfs_key key
, found_key
;
2090 struct btrfs_trans_handle
*trans
;
2091 struct inode
*inode
;
2092 u64 last_objectid
= 0;
2093 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2095 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2098 path
= btrfs_alloc_path();
2105 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2106 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2107 key
.offset
= (u64
)-1;
2110 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2115 * if ret == 0 means we found what we were searching for, which
2116 * is weird, but possible, so only screw with path if we didn't
2117 * find the key and see if we have stuff that matches
2121 if (path
->slots
[0] == 0)
2126 /* pull out the item */
2127 leaf
= path
->nodes
[0];
2128 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2130 /* make sure the item matches what we want */
2131 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2133 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2136 /* release the path since we're done with it */
2137 btrfs_release_path(path
);
2140 * this is where we are basically btrfs_lookup, without the
2141 * crossing root thing. we store the inode number in the
2142 * offset of the orphan item.
2145 if (found_key
.offset
== last_objectid
) {
2146 printk(KERN_ERR
"btrfs: Error removing orphan entry, "
2147 "stopping orphan cleanup\n");
2152 last_objectid
= found_key
.offset
;
2154 found_key
.objectid
= found_key
.offset
;
2155 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2156 found_key
.offset
= 0;
2157 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2158 ret
= PTR_RET(inode
);
2159 if (ret
&& ret
!= -ESTALE
)
2162 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
2163 struct btrfs_root
*dead_root
;
2164 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2165 int is_dead_root
= 0;
2168 * this is an orphan in the tree root. Currently these
2169 * could come from 2 sources:
2170 * a) a snapshot deletion in progress
2171 * b) a free space cache inode
2172 * We need to distinguish those two, as the snapshot
2173 * orphan must not get deleted.
2174 * find_dead_roots already ran before us, so if this
2175 * is a snapshot deletion, we should find the root
2176 * in the dead_roots list
2178 spin_lock(&fs_info
->trans_lock
);
2179 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
2181 if (dead_root
->root_key
.objectid
==
2182 found_key
.objectid
) {
2187 spin_unlock(&fs_info
->trans_lock
);
2189 /* prevent this orphan from being found again */
2190 key
.offset
= found_key
.objectid
- 1;
2195 * Inode is already gone but the orphan item is still there,
2196 * kill the orphan item.
2198 if (ret
== -ESTALE
) {
2199 trans
= btrfs_start_transaction(root
, 1);
2200 if (IS_ERR(trans
)) {
2201 ret
= PTR_ERR(trans
);
2204 ret
= btrfs_del_orphan_item(trans
, root
,
2205 found_key
.objectid
);
2207 btrfs_end_transaction(trans
, root
);
2212 * add this inode to the orphan list so btrfs_orphan_del does
2213 * the proper thing when we hit it
2215 spin_lock(&root
->orphan_lock
);
2216 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2217 spin_unlock(&root
->orphan_lock
);
2219 /* if we have links, this was a truncate, lets do that */
2220 if (inode
->i_nlink
) {
2221 if (!S_ISREG(inode
->i_mode
)) {
2228 * Need to hold the imutex for reservation purposes, not
2229 * a huge deal here but I have a WARN_ON in
2230 * btrfs_delalloc_reserve_space to catch offenders.
2232 mutex_lock(&inode
->i_mutex
);
2233 ret
= btrfs_truncate(inode
);
2234 mutex_unlock(&inode
->i_mutex
);
2239 /* this will do delete_inode and everything for us */
2244 /* release the path since we're done with it */
2245 btrfs_release_path(path
);
2247 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2249 if (root
->orphan_block_rsv
)
2250 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2253 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2254 trans
= btrfs_join_transaction(root
);
2256 btrfs_end_transaction(trans
, root
);
2260 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2262 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2266 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2267 btrfs_free_path(path
);
2272 * very simple check to peek ahead in the leaf looking for xattrs. If we
2273 * don't find any xattrs, we know there can't be any acls.
2275 * slot is the slot the inode is in, objectid is the objectid of the inode
2277 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2278 int slot
, u64 objectid
)
2280 u32 nritems
= btrfs_header_nritems(leaf
);
2281 struct btrfs_key found_key
;
2285 while (slot
< nritems
) {
2286 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2288 /* we found a different objectid, there must not be acls */
2289 if (found_key
.objectid
!= objectid
)
2292 /* we found an xattr, assume we've got an acl */
2293 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2297 * we found a key greater than an xattr key, there can't
2298 * be any acls later on
2300 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2307 * it goes inode, inode backrefs, xattrs, extents,
2308 * so if there are a ton of hard links to an inode there can
2309 * be a lot of backrefs. Don't waste time searching too hard,
2310 * this is just an optimization
2315 /* we hit the end of the leaf before we found an xattr or
2316 * something larger than an xattr. We have to assume the inode
2323 * read an inode from the btree into the in-memory inode
2325 static void btrfs_read_locked_inode(struct inode
*inode
)
2327 struct btrfs_path
*path
;
2328 struct extent_buffer
*leaf
;
2329 struct btrfs_inode_item
*inode_item
;
2330 struct btrfs_timespec
*tspec
;
2331 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2332 struct btrfs_key location
;
2336 bool filled
= false;
2338 ret
= btrfs_fill_inode(inode
, &rdev
);
2342 path
= btrfs_alloc_path();
2346 path
->leave_spinning
= 1;
2347 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2349 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2353 leaf
= path
->nodes
[0];
2358 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2359 struct btrfs_inode_item
);
2360 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2361 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
2362 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2363 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2364 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2366 tspec
= btrfs_inode_atime(inode_item
);
2367 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2368 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2370 tspec
= btrfs_inode_mtime(inode_item
);
2371 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2372 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2374 tspec
= btrfs_inode_ctime(inode_item
);
2375 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2376 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2378 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2379 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2380 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2381 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2383 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2385 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2386 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2389 * try to precache a NULL acl entry for files that don't have
2390 * any xattrs or acls
2392 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
2395 cache_no_acl(inode
);
2397 btrfs_free_path(path
);
2399 switch (inode
->i_mode
& S_IFMT
) {
2401 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2402 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2403 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2404 inode
->i_fop
= &btrfs_file_operations
;
2405 inode
->i_op
= &btrfs_file_inode_operations
;
2408 inode
->i_fop
= &btrfs_dir_file_operations
;
2409 if (root
== root
->fs_info
->tree_root
)
2410 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2412 inode
->i_op
= &btrfs_dir_inode_operations
;
2415 inode
->i_op
= &btrfs_symlink_inode_operations
;
2416 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2417 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2420 inode
->i_op
= &btrfs_special_inode_operations
;
2421 init_special_inode(inode
, inode
->i_mode
, rdev
);
2425 btrfs_update_iflags(inode
);
2429 btrfs_free_path(path
);
2430 make_bad_inode(inode
);
2434 * given a leaf and an inode, copy the inode fields into the leaf
2436 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2437 struct extent_buffer
*leaf
,
2438 struct btrfs_inode_item
*item
,
2439 struct inode
*inode
)
2441 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2442 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2443 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2444 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2445 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2447 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2448 inode
->i_atime
.tv_sec
);
2449 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2450 inode
->i_atime
.tv_nsec
);
2452 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2453 inode
->i_mtime
.tv_sec
);
2454 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2455 inode
->i_mtime
.tv_nsec
);
2457 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2458 inode
->i_ctime
.tv_sec
);
2459 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2460 inode
->i_ctime
.tv_nsec
);
2462 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2463 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2464 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2465 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2466 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2467 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2468 btrfs_set_inode_block_group(leaf
, item
, 0);
2472 * copy everything in the in-memory inode into the btree.
2474 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
2475 struct btrfs_root
*root
, struct inode
*inode
)
2477 struct btrfs_inode_item
*inode_item
;
2478 struct btrfs_path
*path
;
2479 struct extent_buffer
*leaf
;
2482 path
= btrfs_alloc_path();
2486 path
->leave_spinning
= 1;
2487 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
2495 btrfs_unlock_up_safe(path
, 1);
2496 leaf
= path
->nodes
[0];
2497 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2498 struct btrfs_inode_item
);
2500 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2501 btrfs_mark_buffer_dirty(leaf
);
2502 btrfs_set_inode_last_trans(trans
, inode
);
2505 btrfs_free_path(path
);
2510 * copy everything in the in-memory inode into the btree.
2512 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2513 struct btrfs_root
*root
, struct inode
*inode
)
2518 * If the inode is a free space inode, we can deadlock during commit
2519 * if we put it into the delayed code.
2521 * The data relocation inode should also be directly updated
2524 if (!btrfs_is_free_space_inode(root
, inode
)
2525 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
2526 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
2528 btrfs_set_inode_last_trans(trans
, inode
);
2532 return btrfs_update_inode_item(trans
, root
, inode
);
2535 static noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
2536 struct btrfs_root
*root
, struct inode
*inode
)
2540 ret
= btrfs_update_inode(trans
, root
, inode
);
2542 return btrfs_update_inode_item(trans
, root
, inode
);
2547 * unlink helper that gets used here in inode.c and in the tree logging
2548 * recovery code. It remove a link in a directory with a given name, and
2549 * also drops the back refs in the inode to the directory
2551 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2552 struct btrfs_root
*root
,
2553 struct inode
*dir
, struct inode
*inode
,
2554 const char *name
, int name_len
)
2556 struct btrfs_path
*path
;
2558 struct extent_buffer
*leaf
;
2559 struct btrfs_dir_item
*di
;
2560 struct btrfs_key key
;
2562 u64 ino
= btrfs_ino(inode
);
2563 u64 dir_ino
= btrfs_ino(dir
);
2565 path
= btrfs_alloc_path();
2571 path
->leave_spinning
= 1;
2572 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2573 name
, name_len
, -1);
2582 leaf
= path
->nodes
[0];
2583 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2584 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2587 btrfs_release_path(path
);
2589 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
2592 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2593 "inode %llu parent %llu\n", name_len
, name
,
2594 (unsigned long long)ino
, (unsigned long long)dir_ino
);
2598 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2602 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2604 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2606 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2611 btrfs_free_path(path
);
2615 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2616 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2617 btrfs_update_inode(trans
, root
, dir
);
2622 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2623 struct btrfs_root
*root
,
2624 struct inode
*dir
, struct inode
*inode
,
2625 const char *name
, int name_len
)
2628 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2630 btrfs_drop_nlink(inode
);
2631 ret
= btrfs_update_inode(trans
, root
, inode
);
2637 /* helper to check if there is any shared block in the path */
2638 static int check_path_shared(struct btrfs_root
*root
,
2639 struct btrfs_path
*path
)
2641 struct extent_buffer
*eb
;
2645 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2648 if (!path
->nodes
[level
])
2650 eb
= path
->nodes
[level
];
2651 if (!btrfs_block_can_be_shared(root
, eb
))
2653 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2662 * helper to start transaction for unlink and rmdir.
2664 * unlink and rmdir are special in btrfs, they do not always free space.
2665 * so in enospc case, we should make sure they will free space before
2666 * allowing them to use the global metadata reservation.
2668 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2669 struct dentry
*dentry
)
2671 struct btrfs_trans_handle
*trans
;
2672 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2673 struct btrfs_path
*path
;
2674 struct btrfs_inode_ref
*ref
;
2675 struct btrfs_dir_item
*di
;
2676 struct inode
*inode
= dentry
->d_inode
;
2681 u64 ino
= btrfs_ino(inode
);
2682 u64 dir_ino
= btrfs_ino(dir
);
2685 * 1 for the possible orphan item
2686 * 1 for the dir item
2687 * 1 for the dir index
2688 * 1 for the inode ref
2689 * 1 for the inode ref in the tree log
2690 * 2 for the dir entries in the log
2693 trans
= btrfs_start_transaction(root
, 8);
2694 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2697 if (ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2698 return ERR_PTR(-ENOSPC
);
2700 /* check if there is someone else holds reference */
2701 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2702 return ERR_PTR(-ENOSPC
);
2704 if (atomic_read(&inode
->i_count
) > 2)
2705 return ERR_PTR(-ENOSPC
);
2707 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2708 return ERR_PTR(-ENOSPC
);
2710 path
= btrfs_alloc_path();
2712 root
->fs_info
->enospc_unlink
= 0;
2713 return ERR_PTR(-ENOMEM
);
2716 /* 1 for the orphan item */
2717 trans
= btrfs_start_transaction(root
, 1);
2718 if (IS_ERR(trans
)) {
2719 btrfs_free_path(path
);
2720 root
->fs_info
->enospc_unlink
= 0;
2724 path
->skip_locking
= 1;
2725 path
->search_commit_root
= 1;
2727 ret
= btrfs_lookup_inode(trans
, root
, path
,
2728 &BTRFS_I(dir
)->location
, 0);
2734 if (check_path_shared(root
, path
))
2739 btrfs_release_path(path
);
2741 ret
= btrfs_lookup_inode(trans
, root
, path
,
2742 &BTRFS_I(inode
)->location
, 0);
2748 if (check_path_shared(root
, path
))
2753 btrfs_release_path(path
);
2755 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2756 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2763 if (check_path_shared(root
, path
))
2765 btrfs_release_path(path
);
2773 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2774 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2780 if (check_path_shared(root
, path
))
2786 btrfs_release_path(path
);
2788 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2789 dentry
->d_name
.name
, dentry
->d_name
.len
,
2796 if (check_path_shared(root
, path
))
2798 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2799 btrfs_release_path(path
);
2802 * This is a commit root search, if we can lookup inode item and other
2803 * relative items in the commit root, it means the transaction of
2804 * dir/file creation has been committed, and the dir index item that we
2805 * delay to insert has also been inserted into the commit root. So
2806 * we needn't worry about the delayed insertion of the dir index item
2809 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir_ino
, index
,
2810 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2815 BUG_ON(ret
== -ENOENT
);
2816 if (check_path_shared(root
, path
))
2821 btrfs_free_path(path
);
2822 /* Migrate the orphan reservation over */
2824 err
= btrfs_block_rsv_migrate(trans
->block_rsv
,
2825 &root
->fs_info
->global_block_rsv
,
2826 trans
->bytes_reserved
);
2829 btrfs_end_transaction(trans
, root
);
2830 root
->fs_info
->enospc_unlink
= 0;
2831 return ERR_PTR(err
);
2834 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2838 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2839 struct btrfs_root
*root
)
2841 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2842 btrfs_block_rsv_release(root
, trans
->block_rsv
,
2843 trans
->bytes_reserved
);
2844 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2845 BUG_ON(!root
->fs_info
->enospc_unlink
);
2846 root
->fs_info
->enospc_unlink
= 0;
2848 btrfs_end_transaction_throttle(trans
, root
);
2851 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2853 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2854 struct btrfs_trans_handle
*trans
;
2855 struct inode
*inode
= dentry
->d_inode
;
2857 unsigned long nr
= 0;
2859 trans
= __unlink_start_trans(dir
, dentry
);
2861 return PTR_ERR(trans
);
2863 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2865 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2866 dentry
->d_name
.name
, dentry
->d_name
.len
);
2870 if (inode
->i_nlink
== 0) {
2871 ret
= btrfs_orphan_add(trans
, inode
);
2877 nr
= trans
->blocks_used
;
2878 __unlink_end_trans(trans
, root
);
2879 btrfs_btree_balance_dirty(root
, nr
);
2883 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2884 struct btrfs_root
*root
,
2885 struct inode
*dir
, u64 objectid
,
2886 const char *name
, int name_len
)
2888 struct btrfs_path
*path
;
2889 struct extent_buffer
*leaf
;
2890 struct btrfs_dir_item
*di
;
2891 struct btrfs_key key
;
2894 u64 dir_ino
= btrfs_ino(dir
);
2896 path
= btrfs_alloc_path();
2900 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2901 name
, name_len
, -1);
2902 BUG_ON(IS_ERR_OR_NULL(di
));
2904 leaf
= path
->nodes
[0];
2905 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2906 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2907 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2909 btrfs_release_path(path
);
2911 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2912 objectid
, root
->root_key
.objectid
,
2913 dir_ino
, &index
, name
, name_len
);
2915 BUG_ON(ret
!= -ENOENT
);
2916 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
2918 BUG_ON(IS_ERR_OR_NULL(di
));
2920 leaf
= path
->nodes
[0];
2921 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2922 btrfs_release_path(path
);
2925 btrfs_release_path(path
);
2927 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2930 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2931 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2932 ret
= btrfs_update_inode(trans
, root
, dir
);
2935 btrfs_free_path(path
);
2939 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2941 struct inode
*inode
= dentry
->d_inode
;
2943 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2944 struct btrfs_trans_handle
*trans
;
2945 unsigned long nr
= 0;
2947 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2948 btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
2951 trans
= __unlink_start_trans(dir
, dentry
);
2953 return PTR_ERR(trans
);
2955 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
2956 err
= btrfs_unlink_subvol(trans
, root
, dir
,
2957 BTRFS_I(inode
)->location
.objectid
,
2958 dentry
->d_name
.name
,
2959 dentry
->d_name
.len
);
2963 err
= btrfs_orphan_add(trans
, inode
);
2967 /* now the directory is empty */
2968 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2969 dentry
->d_name
.name
, dentry
->d_name
.len
);
2971 btrfs_i_size_write(inode
, 0);
2973 nr
= trans
->blocks_used
;
2974 __unlink_end_trans(trans
, root
);
2975 btrfs_btree_balance_dirty(root
, nr
);
2981 * this can truncate away extent items, csum items and directory items.
2982 * It starts at a high offset and removes keys until it can't find
2983 * any higher than new_size
2985 * csum items that cross the new i_size are truncated to the new size
2988 * min_type is the minimum key type to truncate down to. If set to 0, this
2989 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2991 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2992 struct btrfs_root
*root
,
2993 struct inode
*inode
,
2994 u64 new_size
, u32 min_type
)
2996 struct btrfs_path
*path
;
2997 struct extent_buffer
*leaf
;
2998 struct btrfs_file_extent_item
*fi
;
2999 struct btrfs_key key
;
3000 struct btrfs_key found_key
;
3001 u64 extent_start
= 0;
3002 u64 extent_num_bytes
= 0;
3003 u64 extent_offset
= 0;
3005 u64 mask
= root
->sectorsize
- 1;
3006 u32 found_type
= (u8
)-1;
3009 int pending_del_nr
= 0;
3010 int pending_del_slot
= 0;
3011 int extent_type
= -1;
3015 u64 ino
= btrfs_ino(inode
);
3017 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3019 path
= btrfs_alloc_path();
3024 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3025 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3028 * This function is also used to drop the items in the log tree before
3029 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3030 * it is used to drop the loged items. So we shouldn't kill the delayed
3033 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3034 btrfs_kill_delayed_inode_items(inode
);
3037 key
.offset
= (u64
)-1;
3041 path
->leave_spinning
= 1;
3042 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3049 /* there are no items in the tree for us to truncate, we're
3052 if (path
->slots
[0] == 0)
3059 leaf
= path
->nodes
[0];
3060 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3061 found_type
= btrfs_key_type(&found_key
);
3064 if (found_key
.objectid
!= ino
)
3067 if (found_type
< min_type
)
3070 item_end
= found_key
.offset
;
3071 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3072 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3073 struct btrfs_file_extent_item
);
3074 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3075 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3076 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3077 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3079 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3081 btrfs_file_extent_num_bytes(leaf
, fi
);
3082 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3083 item_end
+= btrfs_file_extent_inline_len(leaf
,
3088 if (found_type
> min_type
) {
3091 if (item_end
< new_size
)
3093 if (found_key
.offset
>= new_size
)
3099 /* FIXME, shrink the extent if the ref count is only 1 */
3100 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3103 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3105 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3106 if (!del_item
&& !encoding
) {
3107 u64 orig_num_bytes
=
3108 btrfs_file_extent_num_bytes(leaf
, fi
);
3109 extent_num_bytes
= new_size
-
3110 found_key
.offset
+ root
->sectorsize
- 1;
3111 extent_num_bytes
= extent_num_bytes
&
3112 ~((u64
)root
->sectorsize
- 1);
3113 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3115 num_dec
= (orig_num_bytes
-
3117 if (root
->ref_cows
&& extent_start
!= 0)
3118 inode_sub_bytes(inode
, num_dec
);
3119 btrfs_mark_buffer_dirty(leaf
);
3122 btrfs_file_extent_disk_num_bytes(leaf
,
3124 extent_offset
= found_key
.offset
-
3125 btrfs_file_extent_offset(leaf
, fi
);
3127 /* FIXME blocksize != 4096 */
3128 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3129 if (extent_start
!= 0) {
3132 inode_sub_bytes(inode
, num_dec
);
3135 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3137 * we can't truncate inline items that have had
3141 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3142 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3143 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3144 u32 size
= new_size
- found_key
.offset
;
3146 if (root
->ref_cows
) {
3147 inode_sub_bytes(inode
, item_end
+ 1 -
3151 btrfs_file_extent_calc_inline_size(size
);
3152 ret
= btrfs_truncate_item(trans
, root
, path
,
3154 } else if (root
->ref_cows
) {
3155 inode_sub_bytes(inode
, item_end
+ 1 -
3161 if (!pending_del_nr
) {
3162 /* no pending yet, add ourselves */
3163 pending_del_slot
= path
->slots
[0];
3165 } else if (pending_del_nr
&&
3166 path
->slots
[0] + 1 == pending_del_slot
) {
3167 /* hop on the pending chunk */
3169 pending_del_slot
= path
->slots
[0];
3176 if (found_extent
&& (root
->ref_cows
||
3177 root
== root
->fs_info
->tree_root
)) {
3178 btrfs_set_path_blocking(path
);
3179 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3180 extent_num_bytes
, 0,
3181 btrfs_header_owner(leaf
),
3182 ino
, extent_offset
);
3186 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3189 if (path
->slots
[0] == 0 ||
3190 path
->slots
[0] != pending_del_slot
) {
3191 if (root
->ref_cows
&&
3192 BTRFS_I(inode
)->location
.objectid
!=
3193 BTRFS_FREE_INO_OBJECTID
) {
3197 if (pending_del_nr
) {
3198 ret
= btrfs_del_items(trans
, root
, path
,
3204 btrfs_release_path(path
);
3211 if (pending_del_nr
) {
3212 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3216 btrfs_free_path(path
);
3221 * taken from block_truncate_page, but does cow as it zeros out
3222 * any bytes left in the last page in the file.
3224 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3226 struct inode
*inode
= mapping
->host
;
3227 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3228 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3229 struct btrfs_ordered_extent
*ordered
;
3230 struct extent_state
*cached_state
= NULL
;
3232 u32 blocksize
= root
->sectorsize
;
3233 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3234 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3236 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
3241 if ((offset
& (blocksize
- 1)) == 0)
3243 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3249 page
= find_or_create_page(mapping
, index
, mask
);
3251 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3255 page_start
= page_offset(page
);
3256 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3258 if (!PageUptodate(page
)) {
3259 ret
= btrfs_readpage(NULL
, page
);
3261 if (page
->mapping
!= mapping
) {
3263 page_cache_release(page
);
3266 if (!PageUptodate(page
)) {
3271 wait_on_page_writeback(page
);
3273 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3275 set_page_extent_mapped(page
);
3277 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3279 unlock_extent_cached(io_tree
, page_start
, page_end
,
3280 &cached_state
, GFP_NOFS
);
3282 page_cache_release(page
);
3283 btrfs_start_ordered_extent(inode
, ordered
, 1);
3284 btrfs_put_ordered_extent(ordered
);
3288 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3289 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3290 0, 0, &cached_state
, GFP_NOFS
);
3292 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3295 unlock_extent_cached(io_tree
, page_start
, page_end
,
3296 &cached_state
, GFP_NOFS
);
3301 if (offset
!= PAGE_CACHE_SIZE
) {
3303 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3304 flush_dcache_page(page
);
3307 ClearPageChecked(page
);
3308 set_page_dirty(page
);
3309 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3314 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3316 page_cache_release(page
);
3322 * This function puts in dummy file extents for the area we're creating a hole
3323 * for. So if we are truncating this file to a larger size we need to insert
3324 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3325 * the range between oldsize and size
3327 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3329 struct btrfs_trans_handle
*trans
;
3330 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3331 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3332 struct extent_map
*em
= NULL
;
3333 struct extent_state
*cached_state
= NULL
;
3334 u64 mask
= root
->sectorsize
- 1;
3335 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3336 u64 block_end
= (size
+ mask
) & ~mask
;
3342 if (size
<= hole_start
)
3346 struct btrfs_ordered_extent
*ordered
;
3347 btrfs_wait_ordered_range(inode
, hole_start
,
3348 block_end
- hole_start
);
3349 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3350 &cached_state
, GFP_NOFS
);
3351 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3354 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3355 &cached_state
, GFP_NOFS
);
3356 btrfs_put_ordered_extent(ordered
);
3359 cur_offset
= hole_start
;
3361 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3362 block_end
- cur_offset
, 0);
3363 BUG_ON(IS_ERR_OR_NULL(em
));
3364 last_byte
= min(extent_map_end(em
), block_end
);
3365 last_byte
= (last_byte
+ mask
) & ~mask
;
3366 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3368 hole_size
= last_byte
- cur_offset
;
3370 trans
= btrfs_start_transaction(root
, 3);
3371 if (IS_ERR(trans
)) {
3372 err
= PTR_ERR(trans
);
3376 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3377 cur_offset
+ hole_size
,
3380 btrfs_update_inode(trans
, root
, inode
);
3381 btrfs_end_transaction(trans
, root
);
3385 err
= btrfs_insert_file_extent(trans
, root
,
3386 btrfs_ino(inode
), cur_offset
, 0,
3387 0, hole_size
, 0, hole_size
,
3390 btrfs_update_inode(trans
, root
, inode
);
3391 btrfs_end_transaction(trans
, root
);
3395 btrfs_drop_extent_cache(inode
, hole_start
,
3398 btrfs_update_inode(trans
, root
, inode
);
3399 btrfs_end_transaction(trans
, root
);
3401 free_extent_map(em
);
3403 cur_offset
= last_byte
;
3404 if (cur_offset
>= block_end
)
3408 free_extent_map(em
);
3409 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3414 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3416 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3417 struct btrfs_trans_handle
*trans
;
3418 loff_t oldsize
= i_size_read(inode
);
3421 if (newsize
== oldsize
)
3424 if (newsize
> oldsize
) {
3425 truncate_pagecache(inode
, oldsize
, newsize
);
3426 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3430 trans
= btrfs_start_transaction(root
, 1);
3432 return PTR_ERR(trans
);
3434 i_size_write(inode
, newsize
);
3435 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3436 ret
= btrfs_update_inode(trans
, root
, inode
);
3437 btrfs_end_transaction_throttle(trans
, root
);
3441 * We're truncating a file that used to have good data down to
3442 * zero. Make sure it gets into the ordered flush list so that
3443 * any new writes get down to disk quickly.
3446 BTRFS_I(inode
)->ordered_data_close
= 1;
3448 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3449 truncate_setsize(inode
, newsize
);
3450 ret
= btrfs_truncate(inode
);
3456 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3458 struct inode
*inode
= dentry
->d_inode
;
3459 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3462 if (btrfs_root_readonly(root
))
3465 err
= inode_change_ok(inode
, attr
);
3469 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3470 err
= btrfs_setsize(inode
, attr
->ia_size
);
3475 if (attr
->ia_valid
) {
3476 setattr_copy(inode
, attr
);
3477 err
= btrfs_dirty_inode(inode
);
3479 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
3480 err
= btrfs_acl_chmod(inode
);
3486 void btrfs_evict_inode(struct inode
*inode
)
3488 struct btrfs_trans_handle
*trans
;
3489 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3490 struct btrfs_block_rsv
*rsv
, *global_rsv
;
3491 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
3495 trace_btrfs_inode_evict(inode
);
3497 truncate_inode_pages(&inode
->i_data
, 0);
3498 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3499 btrfs_is_free_space_inode(root
, inode
)))
3502 if (is_bad_inode(inode
)) {
3503 btrfs_orphan_del(NULL
, inode
);
3506 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3507 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3509 if (root
->fs_info
->log_root_recovering
) {
3510 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3514 if (inode
->i_nlink
> 0) {
3515 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3519 rsv
= btrfs_alloc_block_rsv(root
);
3521 btrfs_orphan_del(NULL
, inode
);
3524 rsv
->size
= min_size
;
3525 global_rsv
= &root
->fs_info
->global_block_rsv
;
3527 btrfs_i_size_write(inode
, 0);
3530 * This is a bit simpler than btrfs_truncate since
3532 * 1) We've already reserved our space for our orphan item in the
3534 * 2) We're going to delete the inode item, so we don't need to update
3537 * So we just need to reserve some slack space in case we add bytes when
3538 * doing the truncate.
3541 ret
= btrfs_block_rsv_refill_noflush(root
, rsv
, min_size
);
3544 * Try and steal from the global reserve since we will
3545 * likely not use this space anyway, we want to try as
3546 * hard as possible to get this to work.
3549 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
3552 printk(KERN_WARNING
"Could not get space for a "
3553 "delete, will truncate on mount %d\n", ret
);
3554 btrfs_orphan_del(NULL
, inode
);
3555 btrfs_free_block_rsv(root
, rsv
);
3559 trans
= btrfs_start_transaction(root
, 0);
3560 if (IS_ERR(trans
)) {
3561 btrfs_orphan_del(NULL
, inode
);
3562 btrfs_free_block_rsv(root
, rsv
);
3566 trans
->block_rsv
= rsv
;
3568 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3572 nr
= trans
->blocks_used
;
3573 btrfs_end_transaction(trans
, root
);
3575 btrfs_btree_balance_dirty(root
, nr
);
3578 btrfs_free_block_rsv(root
, rsv
);
3581 trans
->block_rsv
= root
->orphan_block_rsv
;
3582 ret
= btrfs_orphan_del(trans
, inode
);
3586 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3587 if (!(root
== root
->fs_info
->tree_root
||
3588 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
3589 btrfs_return_ino(root
, btrfs_ino(inode
));
3591 nr
= trans
->blocks_used
;
3592 btrfs_end_transaction(trans
, root
);
3593 btrfs_btree_balance_dirty(root
, nr
);
3595 end_writeback(inode
);
3600 * this returns the key found in the dir entry in the location pointer.
3601 * If no dir entries were found, location->objectid is 0.
3603 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3604 struct btrfs_key
*location
)
3606 const char *name
= dentry
->d_name
.name
;
3607 int namelen
= dentry
->d_name
.len
;
3608 struct btrfs_dir_item
*di
;
3609 struct btrfs_path
*path
;
3610 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3613 path
= btrfs_alloc_path();
3617 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
3622 if (IS_ERR_OR_NULL(di
))
3625 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3627 btrfs_free_path(path
);
3630 location
->objectid
= 0;
3635 * when we hit a tree root in a directory, the btrfs part of the inode
3636 * needs to be changed to reflect the root directory of the tree root. This
3637 * is kind of like crossing a mount point.
3639 static int fixup_tree_root_location(struct btrfs_root
*root
,
3641 struct dentry
*dentry
,
3642 struct btrfs_key
*location
,
3643 struct btrfs_root
**sub_root
)
3645 struct btrfs_path
*path
;
3646 struct btrfs_root
*new_root
;
3647 struct btrfs_root_ref
*ref
;
3648 struct extent_buffer
*leaf
;
3652 path
= btrfs_alloc_path();
3659 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3660 BTRFS_I(dir
)->root
->root_key
.objectid
,
3661 location
->objectid
);
3668 leaf
= path
->nodes
[0];
3669 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3670 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
3671 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3674 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3675 (unsigned long)(ref
+ 1),
3676 dentry
->d_name
.len
);
3680 btrfs_release_path(path
);
3682 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3683 if (IS_ERR(new_root
)) {
3684 err
= PTR_ERR(new_root
);
3688 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3693 *sub_root
= new_root
;
3694 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3695 location
->type
= BTRFS_INODE_ITEM_KEY
;
3696 location
->offset
= 0;
3699 btrfs_free_path(path
);
3703 static void inode_tree_add(struct inode
*inode
)
3705 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3706 struct btrfs_inode
*entry
;
3708 struct rb_node
*parent
;
3709 u64 ino
= btrfs_ino(inode
);
3711 p
= &root
->inode_tree
.rb_node
;
3714 if (inode_unhashed(inode
))
3717 spin_lock(&root
->inode_lock
);
3720 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3722 if (ino
< btrfs_ino(&entry
->vfs_inode
))
3723 p
= &parent
->rb_left
;
3724 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
3725 p
= &parent
->rb_right
;
3727 WARN_ON(!(entry
->vfs_inode
.i_state
&
3728 (I_WILL_FREE
| I_FREEING
)));
3729 rb_erase(parent
, &root
->inode_tree
);
3730 RB_CLEAR_NODE(parent
);
3731 spin_unlock(&root
->inode_lock
);
3735 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3736 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3737 spin_unlock(&root
->inode_lock
);
3740 static void inode_tree_del(struct inode
*inode
)
3742 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3745 spin_lock(&root
->inode_lock
);
3746 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3747 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3748 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3749 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3751 spin_unlock(&root
->inode_lock
);
3754 * Free space cache has inodes in the tree root, but the tree root has a
3755 * root_refs of 0, so this could end up dropping the tree root as a
3756 * snapshot, so we need the extra !root->fs_info->tree_root check to
3757 * make sure we don't drop it.
3759 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3760 root
!= root
->fs_info
->tree_root
) {
3761 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3762 spin_lock(&root
->inode_lock
);
3763 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3764 spin_unlock(&root
->inode_lock
);
3766 btrfs_add_dead_root(root
);
3770 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3772 struct rb_node
*node
;
3773 struct rb_node
*prev
;
3774 struct btrfs_inode
*entry
;
3775 struct inode
*inode
;
3778 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3780 spin_lock(&root
->inode_lock
);
3782 node
= root
->inode_tree
.rb_node
;
3786 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3788 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
3789 node
= node
->rb_left
;
3790 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
3791 node
= node
->rb_right
;
3797 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3798 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
3802 prev
= rb_next(prev
);
3806 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3807 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
3808 inode
= igrab(&entry
->vfs_inode
);
3810 spin_unlock(&root
->inode_lock
);
3811 if (atomic_read(&inode
->i_count
) > 1)
3812 d_prune_aliases(inode
);
3814 * btrfs_drop_inode will have it removed from
3815 * the inode cache when its usage count
3820 spin_lock(&root
->inode_lock
);
3824 if (cond_resched_lock(&root
->inode_lock
))
3827 node
= rb_next(node
);
3829 spin_unlock(&root
->inode_lock
);
3833 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3835 struct btrfs_iget_args
*args
= p
;
3836 inode
->i_ino
= args
->ino
;
3837 BTRFS_I(inode
)->root
= args
->root
;
3838 btrfs_set_inode_space_info(args
->root
, inode
);
3842 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3844 struct btrfs_iget_args
*args
= opaque
;
3845 return args
->ino
== btrfs_ino(inode
) &&
3846 args
->root
== BTRFS_I(inode
)->root
;
3849 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3851 struct btrfs_root
*root
)
3853 struct inode
*inode
;
3854 struct btrfs_iget_args args
;
3855 args
.ino
= objectid
;
3858 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3859 btrfs_init_locked_inode
,
3864 /* Get an inode object given its location and corresponding root.
3865 * Returns in *is_new if the inode was read from disk
3867 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3868 struct btrfs_root
*root
, int *new)
3870 struct inode
*inode
;
3872 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3874 return ERR_PTR(-ENOMEM
);
3876 if (inode
->i_state
& I_NEW
) {
3877 BTRFS_I(inode
)->root
= root
;
3878 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3879 btrfs_read_locked_inode(inode
);
3880 if (!is_bad_inode(inode
)) {
3881 inode_tree_add(inode
);
3882 unlock_new_inode(inode
);
3886 unlock_new_inode(inode
);
3888 inode
= ERR_PTR(-ESTALE
);
3895 static struct inode
*new_simple_dir(struct super_block
*s
,
3896 struct btrfs_key
*key
,
3897 struct btrfs_root
*root
)
3899 struct inode
*inode
= new_inode(s
);
3902 return ERR_PTR(-ENOMEM
);
3904 BTRFS_I(inode
)->root
= root
;
3905 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
3906 BTRFS_I(inode
)->dummy_inode
= 1;
3908 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
3909 inode
->i_op
= &simple_dir_inode_operations
;
3910 inode
->i_fop
= &simple_dir_operations
;
3911 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
3912 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3917 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3919 struct inode
*inode
;
3920 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3921 struct btrfs_root
*sub_root
= root
;
3922 struct btrfs_key location
;
3926 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3927 return ERR_PTR(-ENAMETOOLONG
);
3929 if (unlikely(d_need_lookup(dentry
))) {
3930 memcpy(&location
, dentry
->d_fsdata
, sizeof(struct btrfs_key
));
3931 kfree(dentry
->d_fsdata
);
3932 dentry
->d_fsdata
= NULL
;
3933 /* This thing is hashed, drop it for now */
3936 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3940 return ERR_PTR(ret
);
3942 if (location
.objectid
== 0)
3945 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
3946 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
3950 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
3952 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
3953 ret
= fixup_tree_root_location(root
, dir
, dentry
,
3954 &location
, &sub_root
);
3957 inode
= ERR_PTR(ret
);
3959 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
3961 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
3963 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
3965 if (!IS_ERR(inode
) && root
!= sub_root
) {
3966 down_read(&root
->fs_info
->cleanup_work_sem
);
3967 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
3968 ret
= btrfs_orphan_cleanup(sub_root
);
3969 up_read(&root
->fs_info
->cleanup_work_sem
);
3971 inode
= ERR_PTR(ret
);
3977 static int btrfs_dentry_delete(const struct dentry
*dentry
)
3979 struct btrfs_root
*root
;
3981 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
3982 dentry
= dentry
->d_parent
;
3984 if (dentry
->d_inode
) {
3985 root
= BTRFS_I(dentry
->d_inode
)->root
;
3986 if (btrfs_root_refs(&root
->root_item
) == 0)
3992 static void btrfs_dentry_release(struct dentry
*dentry
)
3994 if (dentry
->d_fsdata
)
3995 kfree(dentry
->d_fsdata
);
3998 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3999 struct nameidata
*nd
)
4003 ret
= d_splice_alias(btrfs_lookup_dentry(dir
, dentry
), dentry
);
4004 if (unlikely(d_need_lookup(dentry
))) {
4005 spin_lock(&dentry
->d_lock
);
4006 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
4007 spin_unlock(&dentry
->d_lock
);
4012 unsigned char btrfs_filetype_table
[] = {
4013 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4016 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4019 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4020 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4021 struct btrfs_item
*item
;
4022 struct btrfs_dir_item
*di
;
4023 struct btrfs_key key
;
4024 struct btrfs_key found_key
;
4025 struct btrfs_path
*path
;
4026 struct list_head ins_list
;
4027 struct list_head del_list
;
4030 struct extent_buffer
*leaf
;
4032 unsigned char d_type
;
4037 int key_type
= BTRFS_DIR_INDEX_KEY
;
4041 int is_curr
= 0; /* filp->f_pos points to the current index? */
4043 /* FIXME, use a real flag for deciding about the key type */
4044 if (root
->fs_info
->tree_root
== root
)
4045 key_type
= BTRFS_DIR_ITEM_KEY
;
4047 /* special case for "." */
4048 if (filp
->f_pos
== 0) {
4049 over
= filldir(dirent
, ".", 1,
4050 filp
->f_pos
, btrfs_ino(inode
), DT_DIR
);
4055 /* special case for .., just use the back ref */
4056 if (filp
->f_pos
== 1) {
4057 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4058 over
= filldir(dirent
, "..", 2,
4059 filp
->f_pos
, pino
, DT_DIR
);
4064 path
= btrfs_alloc_path();
4070 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4071 INIT_LIST_HEAD(&ins_list
);
4072 INIT_LIST_HEAD(&del_list
);
4073 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
4076 btrfs_set_key_type(&key
, key_type
);
4077 key
.offset
= filp
->f_pos
;
4078 key
.objectid
= btrfs_ino(inode
);
4080 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4085 leaf
= path
->nodes
[0];
4086 slot
= path
->slots
[0];
4087 if (slot
>= btrfs_header_nritems(leaf
)) {
4088 ret
= btrfs_next_leaf(root
, path
);
4096 item
= btrfs_item_nr(leaf
, slot
);
4097 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4099 if (found_key
.objectid
!= key
.objectid
)
4101 if (btrfs_key_type(&found_key
) != key_type
)
4103 if (found_key
.offset
< filp
->f_pos
)
4105 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
4106 btrfs_should_delete_dir_index(&del_list
,
4110 filp
->f_pos
= found_key
.offset
;
4113 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4115 di_total
= btrfs_item_size(leaf
, item
);
4117 while (di_cur
< di_total
) {
4118 struct btrfs_key location
;
4121 if (verify_dir_item(root
, leaf
, di
))
4124 name_len
= btrfs_dir_name_len(leaf
, di
);
4125 if (name_len
<= sizeof(tmp_name
)) {
4126 name_ptr
= tmp_name
;
4128 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4134 read_extent_buffer(leaf
, name_ptr
,
4135 (unsigned long)(di
+ 1), name_len
);
4137 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4138 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4142 q
.hash
= full_name_hash(q
.name
, q
.len
);
4143 tmp
= d_lookup(filp
->f_dentry
, &q
);
4145 struct btrfs_key
*newkey
;
4147 newkey
= kzalloc(sizeof(struct btrfs_key
),
4151 tmp
= d_alloc(filp
->f_dentry
, &q
);
4157 memcpy(newkey
, &location
,
4158 sizeof(struct btrfs_key
));
4159 tmp
->d_fsdata
= newkey
;
4160 tmp
->d_flags
|= DCACHE_NEED_LOOKUP
;
4167 /* is this a reference to our own snapshot? If so
4170 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4171 location
.objectid
== root
->root_key
.objectid
) {
4175 over
= filldir(dirent
, name_ptr
, name_len
,
4176 found_key
.offset
, location
.objectid
,
4180 if (name_ptr
!= tmp_name
)
4185 di_len
= btrfs_dir_name_len(leaf
, di
) +
4186 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4188 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4194 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4197 ret
= btrfs_readdir_delayed_dir_index(filp
, dirent
, filldir
,
4203 /* Reached end of directory/root. Bump pos past the last item. */
4204 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4206 * 32-bit glibc will use getdents64, but then strtol -
4207 * so the last number we can serve is this.
4209 filp
->f_pos
= 0x7fffffff;
4215 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4216 btrfs_put_delayed_items(&ins_list
, &del_list
);
4217 btrfs_free_path(path
);
4221 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4223 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4224 struct btrfs_trans_handle
*trans
;
4226 bool nolock
= false;
4228 if (BTRFS_I(inode
)->dummy_inode
)
4231 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(root
, inode
))
4234 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4236 trans
= btrfs_join_transaction_nolock(root
);
4238 trans
= btrfs_join_transaction(root
);
4240 return PTR_ERR(trans
);
4242 ret
= btrfs_end_transaction_nolock(trans
, root
);
4244 ret
= btrfs_commit_transaction(trans
, root
);
4250 * This is somewhat expensive, updating the tree every time the
4251 * inode changes. But, it is most likely to find the inode in cache.
4252 * FIXME, needs more benchmarking...there are no reasons other than performance
4253 * to keep or drop this code.
4255 int btrfs_dirty_inode(struct inode
*inode
)
4257 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4258 struct btrfs_trans_handle
*trans
;
4261 if (BTRFS_I(inode
)->dummy_inode
)
4264 trans
= btrfs_join_transaction(root
);
4266 return PTR_ERR(trans
);
4268 ret
= btrfs_update_inode(trans
, root
, inode
);
4269 if (ret
&& ret
== -ENOSPC
) {
4270 /* whoops, lets try again with the full transaction */
4271 btrfs_end_transaction(trans
, root
);
4272 trans
= btrfs_start_transaction(root
, 1);
4274 return PTR_ERR(trans
);
4276 ret
= btrfs_update_inode(trans
, root
, inode
);
4278 btrfs_end_transaction(trans
, root
);
4279 if (BTRFS_I(inode
)->delayed_node
)
4280 btrfs_balance_delayed_items(root
);
4286 * This is a copy of file_update_time. We need this so we can return error on
4287 * ENOSPC for updating the inode in the case of file write and mmap writes.
4289 int btrfs_update_time(struct file
*file
)
4291 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4292 struct timespec now
;
4294 enum { S_MTIME
= 1, S_CTIME
= 2, S_VERSION
= 4 } sync_it
= 0;
4296 /* First try to exhaust all avenues to not sync */
4297 if (IS_NOCMTIME(inode
))
4300 now
= current_fs_time(inode
->i_sb
);
4301 if (!timespec_equal(&inode
->i_mtime
, &now
))
4304 if (!timespec_equal(&inode
->i_ctime
, &now
))
4307 if (IS_I_VERSION(inode
))
4308 sync_it
|= S_VERSION
;
4313 /* Finally allowed to write? Takes lock. */
4314 if (mnt_want_write_file(file
))
4317 /* Only change inode inside the lock region */
4318 if (sync_it
& S_VERSION
)
4319 inode_inc_iversion(inode
);
4320 if (sync_it
& S_CTIME
)
4321 inode
->i_ctime
= now
;
4322 if (sync_it
& S_MTIME
)
4323 inode
->i_mtime
= now
;
4324 ret
= btrfs_dirty_inode(inode
);
4326 mark_inode_dirty_sync(inode
);
4327 mnt_drop_write(file
->f_path
.mnt
);
4332 * find the highest existing sequence number in a directory
4333 * and then set the in-memory index_cnt variable to reflect
4334 * free sequence numbers
4336 static int btrfs_set_inode_index_count(struct inode
*inode
)
4338 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4339 struct btrfs_key key
, found_key
;
4340 struct btrfs_path
*path
;
4341 struct extent_buffer
*leaf
;
4344 key
.objectid
= btrfs_ino(inode
);
4345 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4346 key
.offset
= (u64
)-1;
4348 path
= btrfs_alloc_path();
4352 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4355 /* FIXME: we should be able to handle this */
4361 * MAGIC NUMBER EXPLANATION:
4362 * since we search a directory based on f_pos we have to start at 2
4363 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4364 * else has to start at 2
4366 if (path
->slots
[0] == 0) {
4367 BTRFS_I(inode
)->index_cnt
= 2;
4373 leaf
= path
->nodes
[0];
4374 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4376 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4377 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4378 BTRFS_I(inode
)->index_cnt
= 2;
4382 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4384 btrfs_free_path(path
);
4389 * helper to find a free sequence number in a given directory. This current
4390 * code is very simple, later versions will do smarter things in the btree
4392 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4396 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4397 ret
= btrfs_inode_delayed_dir_index_count(dir
);
4399 ret
= btrfs_set_inode_index_count(dir
);
4405 *index
= BTRFS_I(dir
)->index_cnt
;
4406 BTRFS_I(dir
)->index_cnt
++;
4411 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4412 struct btrfs_root
*root
,
4414 const char *name
, int name_len
,
4415 u64 ref_objectid
, u64 objectid
, int mode
,
4418 struct inode
*inode
;
4419 struct btrfs_inode_item
*inode_item
;
4420 struct btrfs_key
*location
;
4421 struct btrfs_path
*path
;
4422 struct btrfs_inode_ref
*ref
;
4423 struct btrfs_key key
[2];
4429 path
= btrfs_alloc_path();
4431 return ERR_PTR(-ENOMEM
);
4433 inode
= new_inode(root
->fs_info
->sb
);
4435 btrfs_free_path(path
);
4436 return ERR_PTR(-ENOMEM
);
4440 * we have to initialize this early, so we can reclaim the inode
4441 * number if we fail afterwards in this function.
4443 inode
->i_ino
= objectid
;
4446 trace_btrfs_inode_request(dir
);
4448 ret
= btrfs_set_inode_index(dir
, index
);
4450 btrfs_free_path(path
);
4452 return ERR_PTR(ret
);
4456 * index_cnt is ignored for everything but a dir,
4457 * btrfs_get_inode_index_count has an explanation for the magic
4460 BTRFS_I(inode
)->index_cnt
= 2;
4461 BTRFS_I(inode
)->root
= root
;
4462 BTRFS_I(inode
)->generation
= trans
->transid
;
4463 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4464 btrfs_set_inode_space_info(root
, inode
);
4471 key
[0].objectid
= objectid
;
4472 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4475 key
[1].objectid
= objectid
;
4476 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4477 key
[1].offset
= ref_objectid
;
4479 sizes
[0] = sizeof(struct btrfs_inode_item
);
4480 sizes
[1] = name_len
+ sizeof(*ref
);
4482 path
->leave_spinning
= 1;
4483 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4487 inode_init_owner(inode
, dir
, mode
);
4488 inode_set_bytes(inode
, 0);
4489 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4490 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4491 struct btrfs_inode_item
);
4492 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4494 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4495 struct btrfs_inode_ref
);
4496 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4497 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4498 ptr
= (unsigned long)(ref
+ 1);
4499 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4501 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4502 btrfs_free_path(path
);
4504 location
= &BTRFS_I(inode
)->location
;
4505 location
->objectid
= objectid
;
4506 location
->offset
= 0;
4507 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4509 btrfs_inherit_iflags(inode
, dir
);
4511 if (S_ISREG(mode
)) {
4512 if (btrfs_test_opt(root
, NODATASUM
))
4513 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4514 if (btrfs_test_opt(root
, NODATACOW
) ||
4515 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4516 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4519 insert_inode_hash(inode
);
4520 inode_tree_add(inode
);
4522 trace_btrfs_inode_new(inode
);
4523 btrfs_set_inode_last_trans(trans
, inode
);
4528 BTRFS_I(dir
)->index_cnt
--;
4529 btrfs_free_path(path
);
4531 return ERR_PTR(ret
);
4534 static inline u8
btrfs_inode_type(struct inode
*inode
)
4536 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4540 * utility function to add 'inode' into 'parent_inode' with
4541 * a give name and a given sequence number.
4542 * if 'add_backref' is true, also insert a backref from the
4543 * inode to the parent directory.
4545 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4546 struct inode
*parent_inode
, struct inode
*inode
,
4547 const char *name
, int name_len
, int add_backref
, u64 index
)
4550 struct btrfs_key key
;
4551 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4552 u64 ino
= btrfs_ino(inode
);
4553 u64 parent_ino
= btrfs_ino(parent_inode
);
4555 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4556 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4559 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4563 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4564 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4565 key
.objectid
, root
->root_key
.objectid
,
4566 parent_ino
, index
, name
, name_len
);
4567 } else if (add_backref
) {
4568 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
4573 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4575 btrfs_inode_type(inode
), index
);
4578 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4580 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4581 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4586 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4587 struct inode
*dir
, struct dentry
*dentry
,
4588 struct inode
*inode
, int backref
, u64 index
)
4590 int err
= btrfs_add_link(trans
, dir
, inode
,
4591 dentry
->d_name
.name
, dentry
->d_name
.len
,
4598 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4599 int mode
, dev_t rdev
)
4601 struct btrfs_trans_handle
*trans
;
4602 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4603 struct inode
*inode
= NULL
;
4607 unsigned long nr
= 0;
4610 if (!new_valid_dev(rdev
))
4614 * 2 for inode item and ref
4616 * 1 for xattr if selinux is on
4618 trans
= btrfs_start_transaction(root
, 5);
4620 return PTR_ERR(trans
);
4622 err
= btrfs_find_free_ino(root
, &objectid
);
4626 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4627 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4629 if (IS_ERR(inode
)) {
4630 err
= PTR_ERR(inode
);
4634 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4641 * If the active LSM wants to access the inode during
4642 * d_instantiate it needs these. Smack checks to see
4643 * if the filesystem supports xattrs by looking at the
4647 inode
->i_op
= &btrfs_special_inode_operations
;
4648 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4652 init_special_inode(inode
, inode
->i_mode
, rdev
);
4653 btrfs_update_inode(trans
, root
, inode
);
4654 d_instantiate(dentry
, inode
);
4657 nr
= trans
->blocks_used
;
4658 btrfs_end_transaction_throttle(trans
, root
);
4659 btrfs_btree_balance_dirty(root
, nr
);
4661 inode_dec_link_count(inode
);
4667 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4668 int mode
, struct nameidata
*nd
)
4670 struct btrfs_trans_handle
*trans
;
4671 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4672 struct inode
*inode
= NULL
;
4675 unsigned long nr
= 0;
4680 * 2 for inode item and ref
4682 * 1 for xattr if selinux is on
4684 trans
= btrfs_start_transaction(root
, 5);
4686 return PTR_ERR(trans
);
4688 err
= btrfs_find_free_ino(root
, &objectid
);
4692 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4693 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4695 if (IS_ERR(inode
)) {
4696 err
= PTR_ERR(inode
);
4700 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4707 * If the active LSM wants to access the inode during
4708 * d_instantiate it needs these. Smack checks to see
4709 * if the filesystem supports xattrs by looking at the
4712 inode
->i_fop
= &btrfs_file_operations
;
4713 inode
->i_op
= &btrfs_file_inode_operations
;
4715 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4719 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4720 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4721 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4722 d_instantiate(dentry
, inode
);
4725 nr
= trans
->blocks_used
;
4726 btrfs_end_transaction_throttle(trans
, root
);
4728 inode_dec_link_count(inode
);
4731 btrfs_btree_balance_dirty(root
, nr
);
4735 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4736 struct dentry
*dentry
)
4738 struct btrfs_trans_handle
*trans
;
4739 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4740 struct inode
*inode
= old_dentry
->d_inode
;
4742 unsigned long nr
= 0;
4746 /* do not allow sys_link's with other subvols of the same device */
4747 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4750 if (inode
->i_nlink
== ~0U)
4753 err
= btrfs_set_inode_index(dir
, &index
);
4758 * 2 items for inode and inode ref
4759 * 2 items for dir items
4760 * 1 item for parent inode
4762 trans
= btrfs_start_transaction(root
, 5);
4763 if (IS_ERR(trans
)) {
4764 err
= PTR_ERR(trans
);
4768 btrfs_inc_nlink(inode
);
4769 inode
->i_ctime
= CURRENT_TIME
;
4772 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4777 struct dentry
*parent
= dentry
->d_parent
;
4778 err
= btrfs_update_inode(trans
, root
, inode
);
4780 d_instantiate(dentry
, inode
);
4781 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4784 nr
= trans
->blocks_used
;
4785 btrfs_end_transaction_throttle(trans
, root
);
4788 inode_dec_link_count(inode
);
4791 btrfs_btree_balance_dirty(root
, nr
);
4795 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4797 struct inode
*inode
= NULL
;
4798 struct btrfs_trans_handle
*trans
;
4799 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4801 int drop_on_err
= 0;
4804 unsigned long nr
= 1;
4807 * 2 items for inode and ref
4808 * 2 items for dir items
4809 * 1 for xattr if selinux is on
4811 trans
= btrfs_start_transaction(root
, 5);
4813 return PTR_ERR(trans
);
4815 err
= btrfs_find_free_ino(root
, &objectid
);
4819 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4820 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4821 S_IFDIR
| mode
, &index
);
4822 if (IS_ERR(inode
)) {
4823 err
= PTR_ERR(inode
);
4829 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4833 inode
->i_op
= &btrfs_dir_inode_operations
;
4834 inode
->i_fop
= &btrfs_dir_file_operations
;
4836 btrfs_i_size_write(inode
, 0);
4837 err
= btrfs_update_inode(trans
, root
, inode
);
4841 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4842 dentry
->d_name
.len
, 0, index
);
4846 d_instantiate(dentry
, inode
);
4850 nr
= trans
->blocks_used
;
4851 btrfs_end_transaction_throttle(trans
, root
);
4854 btrfs_btree_balance_dirty(root
, nr
);
4858 /* helper for btfs_get_extent. Given an existing extent in the tree,
4859 * and an extent that you want to insert, deal with overlap and insert
4860 * the new extent into the tree.
4862 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4863 struct extent_map
*existing
,
4864 struct extent_map
*em
,
4865 u64 map_start
, u64 map_len
)
4869 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4870 start_diff
= map_start
- em
->start
;
4871 em
->start
= map_start
;
4873 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4874 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4875 em
->block_start
+= start_diff
;
4876 em
->block_len
-= start_diff
;
4878 return add_extent_mapping(em_tree
, em
);
4881 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4882 struct inode
*inode
, struct page
*page
,
4883 size_t pg_offset
, u64 extent_offset
,
4884 struct btrfs_file_extent_item
*item
)
4887 struct extent_buffer
*leaf
= path
->nodes
[0];
4890 unsigned long inline_size
;
4894 WARN_ON(pg_offset
!= 0);
4895 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4896 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4897 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4898 btrfs_item_nr(leaf
, path
->slots
[0]));
4899 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4902 ptr
= btrfs_file_extent_inline_start(item
);
4904 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4906 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4907 ret
= btrfs_decompress(compress_type
, tmp
, page
,
4908 extent_offset
, inline_size
, max_size
);
4910 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4911 unsigned long copy_size
= min_t(u64
,
4912 PAGE_CACHE_SIZE
- pg_offset
,
4913 max_size
- extent_offset
);
4914 memset(kaddr
+ pg_offset
, 0, copy_size
);
4915 kunmap_atomic(kaddr
, KM_USER0
);
4922 * a bit scary, this does extent mapping from logical file offset to the disk.
4923 * the ugly parts come from merging extents from the disk with the in-ram
4924 * representation. This gets more complex because of the data=ordered code,
4925 * where the in-ram extents might be locked pending data=ordered completion.
4927 * This also copies inline extents directly into the page.
4930 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4931 size_t pg_offset
, u64 start
, u64 len
,
4937 u64 extent_start
= 0;
4939 u64 objectid
= btrfs_ino(inode
);
4941 struct btrfs_path
*path
= NULL
;
4942 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4943 struct btrfs_file_extent_item
*item
;
4944 struct extent_buffer
*leaf
;
4945 struct btrfs_key found_key
;
4946 struct extent_map
*em
= NULL
;
4947 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4948 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4949 struct btrfs_trans_handle
*trans
= NULL
;
4953 read_lock(&em_tree
->lock
);
4954 em
= lookup_extent_mapping(em_tree
, start
, len
);
4956 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4957 read_unlock(&em_tree
->lock
);
4960 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4961 free_extent_map(em
);
4962 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4963 free_extent_map(em
);
4967 em
= alloc_extent_map();
4972 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4973 em
->start
= EXTENT_MAP_HOLE
;
4974 em
->orig_start
= EXTENT_MAP_HOLE
;
4976 em
->block_len
= (u64
)-1;
4979 path
= btrfs_alloc_path();
4985 * Chances are we'll be called again, so go ahead and do
4991 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4992 objectid
, start
, trans
!= NULL
);
4999 if (path
->slots
[0] == 0)
5004 leaf
= path
->nodes
[0];
5005 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5006 struct btrfs_file_extent_item
);
5007 /* are we inside the extent that was found? */
5008 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5009 found_type
= btrfs_key_type(&found_key
);
5010 if (found_key
.objectid
!= objectid
||
5011 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5015 found_type
= btrfs_file_extent_type(leaf
, item
);
5016 extent_start
= found_key
.offset
;
5017 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5018 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5019 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5020 extent_end
= extent_start
+
5021 btrfs_file_extent_num_bytes(leaf
, item
);
5022 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5024 size
= btrfs_file_extent_inline_len(leaf
, item
);
5025 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5026 ~((u64
)root
->sectorsize
- 1);
5029 if (start
>= extent_end
) {
5031 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5032 ret
= btrfs_next_leaf(root
, path
);
5039 leaf
= path
->nodes
[0];
5041 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5042 if (found_key
.objectid
!= objectid
||
5043 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5045 if (start
+ len
<= found_key
.offset
)
5048 em
->len
= found_key
.offset
- start
;
5052 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5053 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5054 em
->start
= extent_start
;
5055 em
->len
= extent_end
- extent_start
;
5056 em
->orig_start
= extent_start
-
5057 btrfs_file_extent_offset(leaf
, item
);
5058 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5060 em
->block_start
= EXTENT_MAP_HOLE
;
5063 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5064 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5065 em
->compress_type
= compress_type
;
5066 em
->block_start
= bytenr
;
5067 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5070 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5071 em
->block_start
= bytenr
;
5072 em
->block_len
= em
->len
;
5073 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5074 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5077 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5081 size_t extent_offset
;
5084 em
->block_start
= EXTENT_MAP_INLINE
;
5085 if (!page
|| create
) {
5086 em
->start
= extent_start
;
5087 em
->len
= extent_end
- extent_start
;
5091 size
= btrfs_file_extent_inline_len(leaf
, item
);
5092 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5093 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5094 size
- extent_offset
);
5095 em
->start
= extent_start
+ extent_offset
;
5096 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5097 ~((u64
)root
->sectorsize
- 1);
5098 em
->orig_start
= EXTENT_MAP_INLINE
;
5099 if (compress_type
) {
5100 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5101 em
->compress_type
= compress_type
;
5103 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5104 if (create
== 0 && !PageUptodate(page
)) {
5105 if (btrfs_file_extent_compression(leaf
, item
) !=
5106 BTRFS_COMPRESS_NONE
) {
5107 ret
= uncompress_inline(path
, inode
, page
,
5109 extent_offset
, item
);
5113 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5115 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5116 memset(map
+ pg_offset
+ copy_size
, 0,
5117 PAGE_CACHE_SIZE
- pg_offset
-
5122 flush_dcache_page(page
);
5123 } else if (create
&& PageUptodate(page
)) {
5127 free_extent_map(em
);
5130 btrfs_release_path(path
);
5131 trans
= btrfs_join_transaction(root
);
5134 return ERR_CAST(trans
);
5138 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5141 btrfs_mark_buffer_dirty(leaf
);
5143 set_extent_uptodate(io_tree
, em
->start
,
5144 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5147 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5154 em
->block_start
= EXTENT_MAP_HOLE
;
5155 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5157 btrfs_release_path(path
);
5158 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5159 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5160 "[%llu %llu]\n", (unsigned long long)em
->start
,
5161 (unsigned long long)em
->len
,
5162 (unsigned long long)start
,
5163 (unsigned long long)len
);
5169 write_lock(&em_tree
->lock
);
5170 ret
= add_extent_mapping(em_tree
, em
);
5171 /* it is possible that someone inserted the extent into the tree
5172 * while we had the lock dropped. It is also possible that
5173 * an overlapping map exists in the tree
5175 if (ret
== -EEXIST
) {
5176 struct extent_map
*existing
;
5180 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5181 if (existing
&& (existing
->start
> start
||
5182 existing
->start
+ existing
->len
<= start
)) {
5183 free_extent_map(existing
);
5187 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5190 err
= merge_extent_mapping(em_tree
, existing
,
5193 free_extent_map(existing
);
5195 free_extent_map(em
);
5200 free_extent_map(em
);
5204 free_extent_map(em
);
5209 write_unlock(&em_tree
->lock
);
5212 trace_btrfs_get_extent(root
, em
);
5215 btrfs_free_path(path
);
5217 ret
= btrfs_end_transaction(trans
, root
);
5222 free_extent_map(em
);
5223 return ERR_PTR(err
);
5228 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5229 size_t pg_offset
, u64 start
, u64 len
,
5232 struct extent_map
*em
;
5233 struct extent_map
*hole_em
= NULL
;
5234 u64 range_start
= start
;
5240 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5245 * if our em maps to a hole, there might
5246 * actually be delalloc bytes behind it
5248 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5254 /* check to see if we've wrapped (len == -1 or similar) */
5263 /* ok, we didn't find anything, lets look for delalloc */
5264 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5265 end
, len
, EXTENT_DELALLOC
, 1);
5266 found_end
= range_start
+ found
;
5267 if (found_end
< range_start
)
5268 found_end
= (u64
)-1;
5271 * we didn't find anything useful, return
5272 * the original results from get_extent()
5274 if (range_start
> end
|| found_end
<= start
) {
5280 /* adjust the range_start to make sure it doesn't
5281 * go backwards from the start they passed in
5283 range_start
= max(start
,range_start
);
5284 found
= found_end
- range_start
;
5287 u64 hole_start
= start
;
5290 em
= alloc_extent_map();
5296 * when btrfs_get_extent can't find anything it
5297 * returns one huge hole
5299 * make sure what it found really fits our range, and
5300 * adjust to make sure it is based on the start from
5304 u64 calc_end
= extent_map_end(hole_em
);
5306 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5307 free_extent_map(hole_em
);
5310 hole_start
= max(hole_em
->start
, start
);
5311 hole_len
= calc_end
- hole_start
;
5315 if (hole_em
&& range_start
> hole_start
) {
5316 /* our hole starts before our delalloc, so we
5317 * have to return just the parts of the hole
5318 * that go until the delalloc starts
5320 em
->len
= min(hole_len
,
5321 range_start
- hole_start
);
5322 em
->start
= hole_start
;
5323 em
->orig_start
= hole_start
;
5325 * don't adjust block start at all,
5326 * it is fixed at EXTENT_MAP_HOLE
5328 em
->block_start
= hole_em
->block_start
;
5329 em
->block_len
= hole_len
;
5331 em
->start
= range_start
;
5333 em
->orig_start
= range_start
;
5334 em
->block_start
= EXTENT_MAP_DELALLOC
;
5335 em
->block_len
= found
;
5337 } else if (hole_em
) {
5342 free_extent_map(hole_em
);
5344 free_extent_map(em
);
5345 return ERR_PTR(err
);
5350 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5351 struct extent_map
*em
,
5354 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5355 struct btrfs_trans_handle
*trans
;
5356 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5357 struct btrfs_key ins
;
5360 bool insert
= false;
5363 * Ok if the extent map we looked up is a hole and is for the exact
5364 * range we want, there is no reason to allocate a new one, however if
5365 * it is not right then we need to free this one and drop the cache for
5368 if (em
->block_start
!= EXTENT_MAP_HOLE
|| em
->start
!= start
||
5370 free_extent_map(em
);
5373 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5376 trans
= btrfs_join_transaction(root
);
5378 return ERR_CAST(trans
);
5380 if (start
<= BTRFS_I(inode
)->disk_i_size
&& len
< 64 * 1024)
5381 btrfs_add_inode_defrag(trans
, inode
);
5383 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5385 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5386 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5387 alloc_hint
, (u64
)-1, &ins
, 1);
5394 em
= alloc_extent_map();
5396 em
= ERR_PTR(-ENOMEM
);
5402 em
->orig_start
= em
->start
;
5403 em
->len
= ins
.offset
;
5405 em
->block_start
= ins
.objectid
;
5406 em
->block_len
= ins
.offset
;
5407 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5410 * We need to do this because if we're using the original em we searched
5411 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5414 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5417 write_lock(&em_tree
->lock
);
5418 ret
= add_extent_mapping(em_tree
, em
);
5419 write_unlock(&em_tree
->lock
);
5422 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5425 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5426 ins
.offset
, ins
.offset
, 0);
5428 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5432 btrfs_end_transaction(trans
, root
);
5437 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5438 * block must be cow'd
5440 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5441 struct inode
*inode
, u64 offset
, u64 len
)
5443 struct btrfs_path
*path
;
5445 struct extent_buffer
*leaf
;
5446 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5447 struct btrfs_file_extent_item
*fi
;
5448 struct btrfs_key key
;
5456 path
= btrfs_alloc_path();
5460 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
5465 slot
= path
->slots
[0];
5468 /* can't find the item, must cow */
5475 leaf
= path
->nodes
[0];
5476 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5477 if (key
.objectid
!= btrfs_ino(inode
) ||
5478 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5479 /* not our file or wrong item type, must cow */
5483 if (key
.offset
> offset
) {
5484 /* Wrong offset, must cow */
5488 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5489 found_type
= btrfs_file_extent_type(leaf
, fi
);
5490 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5491 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5492 /* not a regular extent, must cow */
5495 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5496 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5498 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5499 if (extent_end
< offset
+ len
) {
5500 /* extent doesn't include our full range, must cow */
5504 if (btrfs_extent_readonly(root
, disk_bytenr
))
5508 * look for other files referencing this extent, if we
5509 * find any we must cow
5511 if (btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
5512 key
.offset
- backref_offset
, disk_bytenr
))
5516 * adjust disk_bytenr and num_bytes to cover just the bytes
5517 * in this extent we are about to write. If there
5518 * are any csums in that range we have to cow in order
5519 * to keep the csums correct
5521 disk_bytenr
+= backref_offset
;
5522 disk_bytenr
+= offset
- key
.offset
;
5523 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5524 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5527 * all of the above have passed, it is safe to overwrite this extent
5532 btrfs_free_path(path
);
5536 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5537 struct buffer_head
*bh_result
, int create
)
5539 struct extent_map
*em
;
5540 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5541 u64 start
= iblock
<< inode
->i_blkbits
;
5542 u64 len
= bh_result
->b_size
;
5543 struct btrfs_trans_handle
*trans
;
5545 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5550 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5551 * io. INLINE is special, and we could probably kludge it in here, but
5552 * it's still buffered so for safety lets just fall back to the generic
5555 * For COMPRESSED we _have_ to read the entire extent in so we can
5556 * decompress it, so there will be buffering required no matter what we
5557 * do, so go ahead and fallback to buffered.
5559 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5560 * to buffered IO. Don't blame me, this is the price we pay for using
5563 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5564 em
->block_start
== EXTENT_MAP_INLINE
) {
5565 free_extent_map(em
);
5569 /* Just a good old fashioned hole, return */
5570 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5571 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5572 free_extent_map(em
);
5573 /* DIO will do one hole at a time, so just unlock a sector */
5574 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5575 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5580 * We don't allocate a new extent in the following cases
5582 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5584 * 2) The extent is marked as PREALLOC. We're good to go here and can
5585 * just use the extent.
5589 len
= em
->len
- (start
- em
->start
);
5593 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5594 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5595 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5600 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5601 type
= BTRFS_ORDERED_PREALLOC
;
5603 type
= BTRFS_ORDERED_NOCOW
;
5604 len
= min(len
, em
->len
- (start
- em
->start
));
5605 block_start
= em
->block_start
+ (start
- em
->start
);
5608 * we're not going to log anything, but we do need
5609 * to make sure the current transaction stays open
5610 * while we look for nocow cross refs
5612 trans
= btrfs_join_transaction(root
);
5616 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5617 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5618 block_start
, len
, len
, type
);
5619 btrfs_end_transaction(trans
, root
);
5621 free_extent_map(em
);
5626 btrfs_end_transaction(trans
, root
);
5630 * this will cow the extent, reset the len in case we changed
5633 len
= bh_result
->b_size
;
5634 em
= btrfs_new_extent_direct(inode
, em
, start
, len
);
5637 len
= min(len
, em
->len
- (start
- em
->start
));
5639 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5640 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5643 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5645 bh_result
->b_size
= len
;
5646 bh_result
->b_bdev
= em
->bdev
;
5647 set_buffer_mapped(bh_result
);
5648 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5649 set_buffer_new(bh_result
);
5651 free_extent_map(em
);
5656 struct btrfs_dio_private
{
5657 struct inode
*inode
;
5664 /* number of bios pending for this dio */
5665 atomic_t pending_bios
;
5670 struct bio
*orig_bio
;
5673 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5675 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5676 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5677 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5678 struct inode
*inode
= dip
->inode
;
5679 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5681 u32
*private = dip
->csums
;
5683 start
= dip
->logical_offset
;
5685 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5686 struct page
*page
= bvec
->bv_page
;
5689 unsigned long flags
;
5691 local_irq_save(flags
);
5692 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5693 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5694 csum
, bvec
->bv_len
);
5695 btrfs_csum_final(csum
, (char *)&csum
);
5696 kunmap_atomic(kaddr
, KM_IRQ0
);
5697 local_irq_restore(flags
);
5699 flush_dcache_page(bvec
->bv_page
);
5700 if (csum
!= *private) {
5701 printk(KERN_ERR
"btrfs csum failed ino %llu off"
5702 " %llu csum %u private %u\n",
5703 (unsigned long long)btrfs_ino(inode
),
5704 (unsigned long long)start
,
5710 start
+= bvec
->bv_len
;
5713 } while (bvec
<= bvec_end
);
5715 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5716 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5717 bio
->bi_private
= dip
->private;
5722 /* If we had a csum failure make sure to clear the uptodate flag */
5724 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5725 dio_end_io(bio
, err
);
5728 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5730 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5731 struct inode
*inode
= dip
->inode
;
5732 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5733 struct btrfs_trans_handle
*trans
;
5734 struct btrfs_ordered_extent
*ordered
= NULL
;
5735 struct extent_state
*cached_state
= NULL
;
5736 u64 ordered_offset
= dip
->logical_offset
;
5737 u64 ordered_bytes
= dip
->bytes
;
5743 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5751 trans
= btrfs_join_transaction(root
);
5752 if (IS_ERR(trans
)) {
5756 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5758 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5759 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5761 err
= btrfs_update_inode_fallback(trans
, root
, inode
);
5765 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5766 ordered
->file_offset
+ ordered
->len
- 1, 0,
5767 &cached_state
, GFP_NOFS
);
5769 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5770 ret
= btrfs_mark_extent_written(trans
, inode
,
5771 ordered
->file_offset
,
5772 ordered
->file_offset
+
5779 ret
= insert_reserved_file_extent(trans
, inode
,
5780 ordered
->file_offset
,
5786 BTRFS_FILE_EXTENT_REG
);
5787 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5788 ordered
->file_offset
, ordered
->len
);
5796 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5797 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5798 if (!ret
|| !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
))
5799 btrfs_update_inode_fallback(trans
, root
, inode
);
5802 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5803 ordered
->file_offset
+ ordered
->len
- 1,
5804 &cached_state
, GFP_NOFS
);
5806 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5807 btrfs_end_transaction(trans
, root
);
5808 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5809 btrfs_put_ordered_extent(ordered
);
5810 btrfs_put_ordered_extent(ordered
);
5814 * our bio might span multiple ordered extents. If we haven't
5815 * completed the accounting for the whole dio, go back and try again
5817 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5818 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5823 bio
->bi_private
= dip
->private;
5828 /* If we had an error make sure to clear the uptodate flag */
5830 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5831 dio_end_io(bio
, err
);
5834 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5835 struct bio
*bio
, int mirror_num
,
5836 unsigned long bio_flags
, u64 offset
)
5839 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5840 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5845 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5847 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5850 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
5851 "sector %#Lx len %u err no %d\n",
5852 (unsigned long long)btrfs_ino(dip
->inode
), bio
->bi_rw
,
5853 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5857 * before atomic variable goto zero, we must make sure
5858 * dip->errors is perceived to be set.
5860 smp_mb__before_atomic_dec();
5863 /* if there are more bios still pending for this dio, just exit */
5864 if (!atomic_dec_and_test(&dip
->pending_bios
))
5868 bio_io_error(dip
->orig_bio
);
5870 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5871 bio_endio(dip
->orig_bio
, 0);
5877 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5878 u64 first_sector
, gfp_t gfp_flags
)
5880 int nr_vecs
= bio_get_nr_vecs(bdev
);
5881 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5884 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5885 int rw
, u64 file_offset
, int skip_sum
,
5886 u32
*csums
, int async_submit
)
5888 int write
= rw
& REQ_WRITE
;
5889 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5893 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5900 if (write
&& async_submit
) {
5901 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5902 inode
, rw
, bio
, 0, 0,
5904 __btrfs_submit_bio_start_direct_io
,
5905 __btrfs_submit_bio_done
);
5909 * If we aren't doing async submit, calculate the csum of the
5912 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
5915 } else if (!skip_sum
) {
5916 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5917 file_offset
, csums
);
5923 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
5929 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5932 struct inode
*inode
= dip
->inode
;
5933 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5934 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5936 struct bio
*orig_bio
= dip
->orig_bio
;
5937 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5938 u64 start_sector
= orig_bio
->bi_sector
;
5939 u64 file_offset
= dip
->logical_offset
;
5943 u32
*csums
= dip
->csums
;
5945 int async_submit
= 0;
5946 int write
= rw
& REQ_WRITE
;
5948 map_length
= orig_bio
->bi_size
;
5949 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5950 &map_length
, NULL
, 0);
5956 if (map_length
>= orig_bio
->bi_size
) {
5962 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5965 bio
->bi_private
= dip
;
5966 bio
->bi_end_io
= btrfs_end_dio_bio
;
5967 atomic_inc(&dip
->pending_bios
);
5969 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
5970 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
5971 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5972 bvec
->bv_offset
) < bvec
->bv_len
)) {
5974 * inc the count before we submit the bio so
5975 * we know the end IO handler won't happen before
5976 * we inc the count. Otherwise, the dip might get freed
5977 * before we're done setting it up
5979 atomic_inc(&dip
->pending_bios
);
5980 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
5981 file_offset
, skip_sum
,
5982 csums
, async_submit
);
5985 atomic_dec(&dip
->pending_bios
);
5989 /* Write's use the ordered csums */
5990 if (!write
&& !skip_sum
)
5991 csums
= csums
+ nr_pages
;
5992 start_sector
+= submit_len
>> 9;
5993 file_offset
+= submit_len
;
5998 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
5999 start_sector
, GFP_NOFS
);
6002 bio
->bi_private
= dip
;
6003 bio
->bi_end_io
= btrfs_end_dio_bio
;
6005 map_length
= orig_bio
->bi_size
;
6006 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6007 &map_length
, NULL
, 0);
6013 submit_len
+= bvec
->bv_len
;
6020 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6021 csums
, async_submit
);
6029 * before atomic variable goto zero, we must
6030 * make sure dip->errors is perceived to be set.
6032 smp_mb__before_atomic_dec();
6033 if (atomic_dec_and_test(&dip
->pending_bios
))
6034 bio_io_error(dip
->orig_bio
);
6036 /* bio_end_io() will handle error, so we needn't return it */
6040 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6043 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6044 struct btrfs_dio_private
*dip
;
6045 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6047 int write
= rw
& REQ_WRITE
;
6050 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6052 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6059 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6060 if (!write
&& !skip_sum
) {
6061 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
6069 dip
->private = bio
->bi_private
;
6071 dip
->logical_offset
= file_offset
;
6075 dip
->bytes
+= bvec
->bv_len
;
6077 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6079 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6080 bio
->bi_private
= dip
;
6082 dip
->orig_bio
= bio
;
6083 atomic_set(&dip
->pending_bios
, 0);
6086 bio
->bi_end_io
= btrfs_endio_direct_write
;
6088 bio
->bi_end_io
= btrfs_endio_direct_read
;
6090 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6095 * If this is a write, we need to clean up the reserved space and kill
6096 * the ordered extent.
6099 struct btrfs_ordered_extent
*ordered
;
6100 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6101 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6102 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6103 btrfs_free_reserved_extent(root
, ordered
->start
,
6105 btrfs_put_ordered_extent(ordered
);
6106 btrfs_put_ordered_extent(ordered
);
6108 bio_endio(bio
, ret
);
6111 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6112 const struct iovec
*iov
, loff_t offset
,
6113 unsigned long nr_segs
)
6119 unsigned blocksize_mask
= root
->sectorsize
- 1;
6120 ssize_t retval
= -EINVAL
;
6121 loff_t end
= offset
;
6123 if (offset
& blocksize_mask
)
6126 /* Check the memory alignment. Blocks cannot straddle pages */
6127 for (seg
= 0; seg
< nr_segs
; seg
++) {
6128 addr
= (unsigned long)iov
[seg
].iov_base
;
6129 size
= iov
[seg
].iov_len
;
6131 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6134 /* If this is a write we don't need to check anymore */
6139 * Check to make sure we don't have duplicate iov_base's in this
6140 * iovec, if so return EINVAL, otherwise we'll get csum errors
6141 * when reading back.
6143 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6144 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6152 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6153 const struct iovec
*iov
, loff_t offset
,
6154 unsigned long nr_segs
)
6156 struct file
*file
= iocb
->ki_filp
;
6157 struct inode
*inode
= file
->f_mapping
->host
;
6158 struct btrfs_ordered_extent
*ordered
;
6159 struct extent_state
*cached_state
= NULL
;
6160 u64 lockstart
, lockend
;
6162 int writing
= rw
& WRITE
;
6164 size_t count
= iov_length(iov
, nr_segs
);
6166 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6172 lockend
= offset
+ count
- 1;
6175 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6181 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6182 0, &cached_state
, GFP_NOFS
);
6184 * We're concerned with the entire range that we're going to be
6185 * doing DIO to, so we need to make sure theres no ordered
6186 * extents in this range.
6188 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6189 lockend
- lockstart
+ 1);
6192 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6193 &cached_state
, GFP_NOFS
);
6194 btrfs_start_ordered_extent(inode
, ordered
, 1);
6195 btrfs_put_ordered_extent(ordered
);
6200 * we don't use btrfs_set_extent_delalloc because we don't want
6201 * the dirty or uptodate bits
6204 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6205 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6206 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6209 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6210 lockend
, EXTENT_LOCKED
| write_bits
,
6211 1, 0, &cached_state
, GFP_NOFS
);
6216 free_extent_state(cached_state
);
6217 cached_state
= NULL
;
6219 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6220 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6221 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6222 btrfs_submit_direct
, 0);
6224 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6225 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6226 offset
+ iov_length(iov
, nr_segs
) - 1,
6227 EXTENT_LOCKED
| write_bits
, 1, 0,
6228 &cached_state
, GFP_NOFS
);
6229 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6231 * We're falling back to buffered, unlock the section we didn't
6234 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6235 offset
+ iov_length(iov
, nr_segs
) - 1,
6236 EXTENT_LOCKED
| write_bits
, 1, 0,
6237 &cached_state
, GFP_NOFS
);
6240 free_extent_state(cached_state
);
6244 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6245 __u64 start
, __u64 len
)
6247 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6250 int btrfs_readpage(struct file
*file
, struct page
*page
)
6252 struct extent_io_tree
*tree
;
6253 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6254 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
6257 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6259 struct extent_io_tree
*tree
;
6262 if (current
->flags
& PF_MEMALLOC
) {
6263 redirty_page_for_writepage(wbc
, page
);
6267 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6268 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6271 int btrfs_writepages(struct address_space
*mapping
,
6272 struct writeback_control
*wbc
)
6274 struct extent_io_tree
*tree
;
6276 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6277 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6281 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6282 struct list_head
*pages
, unsigned nr_pages
)
6284 struct extent_io_tree
*tree
;
6285 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6286 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6289 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6291 struct extent_io_tree
*tree
;
6292 struct extent_map_tree
*map
;
6295 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6296 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6297 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6299 ClearPagePrivate(page
);
6300 set_page_private(page
, 0);
6301 page_cache_release(page
);
6306 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6308 if (PageWriteback(page
) || PageDirty(page
))
6310 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6313 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6315 struct extent_io_tree
*tree
;
6316 struct btrfs_ordered_extent
*ordered
;
6317 struct extent_state
*cached_state
= NULL
;
6318 u64 page_start
= page_offset(page
);
6319 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6323 * we have the page locked, so new writeback can't start,
6324 * and the dirty bit won't be cleared while we are here.
6326 * Wait for IO on this page so that we can safely clear
6327 * the PagePrivate2 bit and do ordered accounting
6329 wait_on_page_writeback(page
);
6331 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6333 btrfs_releasepage(page
, GFP_NOFS
);
6336 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6338 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6342 * IO on this page will never be started, so we need
6343 * to account for any ordered extents now
6345 clear_extent_bit(tree
, page_start
, page_end
,
6346 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6347 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6348 &cached_state
, GFP_NOFS
);
6350 * whoever cleared the private bit is responsible
6351 * for the finish_ordered_io
6353 if (TestClearPagePrivate2(page
)) {
6354 btrfs_finish_ordered_io(page
->mapping
->host
,
6355 page_start
, page_end
);
6357 btrfs_put_ordered_extent(ordered
);
6358 cached_state
= NULL
;
6359 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6362 clear_extent_bit(tree
, page_start
, page_end
,
6363 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6364 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6365 __btrfs_releasepage(page
, GFP_NOFS
);
6367 ClearPageChecked(page
);
6368 if (PagePrivate(page
)) {
6369 ClearPagePrivate(page
);
6370 set_page_private(page
, 0);
6371 page_cache_release(page
);
6376 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6377 * called from a page fault handler when a page is first dirtied. Hence we must
6378 * be careful to check for EOF conditions here. We set the page up correctly
6379 * for a written page which means we get ENOSPC checking when writing into
6380 * holes and correct delalloc and unwritten extent mapping on filesystems that
6381 * support these features.
6383 * We are not allowed to take the i_mutex here so we have to play games to
6384 * protect against truncate races as the page could now be beyond EOF. Because
6385 * vmtruncate() writes the inode size before removing pages, once we have the
6386 * page lock we can determine safely if the page is beyond EOF. If it is not
6387 * beyond EOF, then the page is guaranteed safe against truncation until we
6390 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6392 struct page
*page
= vmf
->page
;
6393 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6394 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6395 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6396 struct btrfs_ordered_extent
*ordered
;
6397 struct extent_state
*cached_state
= NULL
;
6399 unsigned long zero_start
;
6405 /* Need this to keep space reservations serialized */
6406 mutex_lock(&inode
->i_mutex
);
6407 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6408 mutex_unlock(&inode
->i_mutex
);
6410 ret
= btrfs_update_time(vma
->vm_file
);
6414 else /* -ENOSPC, -EIO, etc */
6415 ret
= VM_FAULT_SIGBUS
;
6419 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6422 size
= i_size_read(inode
);
6423 page_start
= page_offset(page
);
6424 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6426 if ((page
->mapping
!= inode
->i_mapping
) ||
6427 (page_start
>= size
)) {
6428 /* page got truncated out from underneath us */
6431 wait_on_page_writeback(page
);
6433 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6435 set_page_extent_mapped(page
);
6438 * we can't set the delalloc bits if there are pending ordered
6439 * extents. Drop our locks and wait for them to finish
6441 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6443 unlock_extent_cached(io_tree
, page_start
, page_end
,
6444 &cached_state
, GFP_NOFS
);
6446 btrfs_start_ordered_extent(inode
, ordered
, 1);
6447 btrfs_put_ordered_extent(ordered
);
6452 * XXX - page_mkwrite gets called every time the page is dirtied, even
6453 * if it was already dirty, so for space accounting reasons we need to
6454 * clear any delalloc bits for the range we are fixing to save. There
6455 * is probably a better way to do this, but for now keep consistent with
6456 * prepare_pages in the normal write path.
6458 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6459 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6460 0, 0, &cached_state
, GFP_NOFS
);
6462 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6465 unlock_extent_cached(io_tree
, page_start
, page_end
,
6466 &cached_state
, GFP_NOFS
);
6467 ret
= VM_FAULT_SIGBUS
;
6472 /* page is wholly or partially inside EOF */
6473 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6474 zero_start
= size
& ~PAGE_CACHE_MASK
;
6476 zero_start
= PAGE_CACHE_SIZE
;
6478 if (zero_start
!= PAGE_CACHE_SIZE
) {
6480 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6481 flush_dcache_page(page
);
6484 ClearPageChecked(page
);
6485 set_page_dirty(page
);
6486 SetPageUptodate(page
);
6488 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6489 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6491 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6495 return VM_FAULT_LOCKED
;
6497 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6502 static int btrfs_truncate(struct inode
*inode
)
6504 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6505 struct btrfs_block_rsv
*rsv
;
6508 struct btrfs_trans_handle
*trans
;
6510 u64 mask
= root
->sectorsize
- 1;
6511 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
6513 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6517 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6518 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6521 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6522 * 3 things going on here
6524 * 1) We need to reserve space for our orphan item and the space to
6525 * delete our orphan item. Lord knows we don't want to have a dangling
6526 * orphan item because we didn't reserve space to remove it.
6528 * 2) We need to reserve space to update our inode.
6530 * 3) We need to have something to cache all the space that is going to
6531 * be free'd up by the truncate operation, but also have some slack
6532 * space reserved in case it uses space during the truncate (thank you
6533 * very much snapshotting).
6535 * And we need these to all be seperate. The fact is we can use alot of
6536 * space doing the truncate, and we have no earthly idea how much space
6537 * we will use, so we need the truncate reservation to be seperate so it
6538 * doesn't end up using space reserved for updating the inode or
6539 * removing the orphan item. We also need to be able to stop the
6540 * transaction and start a new one, which means we need to be able to
6541 * update the inode several times, and we have no idea of knowing how
6542 * many times that will be, so we can't just reserve 1 item for the
6543 * entirety of the opration, so that has to be done seperately as well.
6544 * Then there is the orphan item, which does indeed need to be held on
6545 * to for the whole operation, and we need nobody to touch this reserved
6546 * space except the orphan code.
6548 * So that leaves us with
6550 * 1) root->orphan_block_rsv - for the orphan deletion.
6551 * 2) rsv - for the truncate reservation, which we will steal from the
6552 * transaction reservation.
6553 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6554 * updating the inode.
6556 rsv
= btrfs_alloc_block_rsv(root
);
6559 rsv
->size
= min_size
;
6562 * 1 for the truncate slack space
6563 * 1 for the orphan item we're going to add
6564 * 1 for the orphan item deletion
6565 * 1 for updating the inode.
6567 trans
= btrfs_start_transaction(root
, 4);
6568 if (IS_ERR(trans
)) {
6569 err
= PTR_ERR(trans
);
6573 /* Migrate the slack space for the truncate to our reserve */
6574 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
6578 ret
= btrfs_orphan_add(trans
, inode
);
6580 btrfs_end_transaction(trans
, root
);
6585 * setattr is responsible for setting the ordered_data_close flag,
6586 * but that is only tested during the last file release. That
6587 * could happen well after the next commit, leaving a great big
6588 * window where new writes may get lost if someone chooses to write
6589 * to this file after truncating to zero
6591 * The inode doesn't have any dirty data here, and so if we commit
6592 * this is a noop. If someone immediately starts writing to the inode
6593 * it is very likely we'll catch some of their writes in this
6594 * transaction, and the commit will find this file on the ordered
6595 * data list with good things to send down.
6597 * This is a best effort solution, there is still a window where
6598 * using truncate to replace the contents of the file will
6599 * end up with a zero length file after a crash.
6601 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6602 btrfs_add_ordered_operation(trans
, root
, inode
);
6605 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
);
6608 * This can only happen with the original transaction we
6609 * started above, every other time we shouldn't have a
6610 * transaction started yet.
6619 /* Just need the 1 for updating the inode */
6620 trans
= btrfs_start_transaction(root
, 1);
6621 if (IS_ERR(trans
)) {
6622 ret
= err
= PTR_ERR(trans
);
6628 trans
->block_rsv
= rsv
;
6630 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6632 BTRFS_EXTENT_DATA_KEY
);
6633 if (ret
!= -EAGAIN
) {
6638 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6639 ret
= btrfs_update_inode(trans
, root
, inode
);
6645 nr
= trans
->blocks_used
;
6646 btrfs_end_transaction(trans
, root
);
6648 btrfs_btree_balance_dirty(root
, nr
);
6651 if (ret
== 0 && inode
->i_nlink
> 0) {
6652 trans
->block_rsv
= root
->orphan_block_rsv
;
6653 ret
= btrfs_orphan_del(trans
, inode
);
6656 } else if (ret
&& inode
->i_nlink
> 0) {
6658 * Failed to do the truncate, remove us from the in memory
6661 ret
= btrfs_orphan_del(NULL
, inode
);
6665 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6666 ret
= btrfs_update_inode(trans
, root
, inode
);
6670 nr
= trans
->blocks_used
;
6671 ret
= btrfs_end_transaction_throttle(trans
, root
);
6672 btrfs_btree_balance_dirty(root
, nr
);
6676 btrfs_free_block_rsv(root
, rsv
);
6685 * create a new subvolume directory/inode (helper for the ioctl).
6687 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6688 struct btrfs_root
*new_root
, u64 new_dirid
)
6690 struct inode
*inode
;
6694 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6695 new_dirid
, S_IFDIR
| 0700, &index
);
6697 return PTR_ERR(inode
);
6698 inode
->i_op
= &btrfs_dir_inode_operations
;
6699 inode
->i_fop
= &btrfs_dir_file_operations
;
6701 set_nlink(inode
, 1);
6702 btrfs_i_size_write(inode
, 0);
6704 err
= btrfs_update_inode(trans
, new_root
, inode
);
6711 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6713 struct btrfs_inode
*ei
;
6714 struct inode
*inode
;
6716 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6721 ei
->space_info
= NULL
;
6725 ei
->last_sub_trans
= 0;
6726 ei
->logged_trans
= 0;
6727 ei
->delalloc_bytes
= 0;
6728 ei
->disk_i_size
= 0;
6731 ei
->index_cnt
= (u64
)-1;
6732 ei
->last_unlink_trans
= 0;
6734 spin_lock_init(&ei
->lock
);
6735 ei
->outstanding_extents
= 0;
6736 ei
->reserved_extents
= 0;
6738 ei
->ordered_data_close
= 0;
6739 ei
->orphan_meta_reserved
= 0;
6740 ei
->dummy_inode
= 0;
6742 ei
->delalloc_meta_reserved
= 0;
6743 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6745 ei
->delayed_node
= NULL
;
6747 inode
= &ei
->vfs_inode
;
6748 extent_map_tree_init(&ei
->extent_tree
);
6749 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
6750 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
6751 mutex_init(&ei
->log_mutex
);
6752 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6753 INIT_LIST_HEAD(&ei
->i_orphan
);
6754 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6755 INIT_LIST_HEAD(&ei
->ordered_operations
);
6756 RB_CLEAR_NODE(&ei
->rb_node
);
6761 static void btrfs_i_callback(struct rcu_head
*head
)
6763 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6764 INIT_LIST_HEAD(&inode
->i_dentry
);
6765 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6768 void btrfs_destroy_inode(struct inode
*inode
)
6770 struct btrfs_ordered_extent
*ordered
;
6771 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6773 WARN_ON(!list_empty(&inode
->i_dentry
));
6774 WARN_ON(inode
->i_data
.nrpages
);
6775 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
6776 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
6777 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
6778 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
6781 * This can happen where we create an inode, but somebody else also
6782 * created the same inode and we need to destroy the one we already
6789 * Make sure we're properly removed from the ordered operation
6793 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6794 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6795 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6796 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6799 spin_lock(&root
->orphan_lock
);
6800 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6801 printk(KERN_INFO
"BTRFS: inode %llu still on the orphan list\n",
6802 (unsigned long long)btrfs_ino(inode
));
6803 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6805 spin_unlock(&root
->orphan_lock
);
6808 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6812 printk(KERN_ERR
"btrfs found ordered "
6813 "extent %llu %llu on inode cleanup\n",
6814 (unsigned long long)ordered
->file_offset
,
6815 (unsigned long long)ordered
->len
);
6816 btrfs_remove_ordered_extent(inode
, ordered
);
6817 btrfs_put_ordered_extent(ordered
);
6818 btrfs_put_ordered_extent(ordered
);
6821 inode_tree_del(inode
);
6822 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6824 btrfs_remove_delayed_node(inode
);
6825 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6828 int btrfs_drop_inode(struct inode
*inode
)
6830 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6832 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6833 !btrfs_is_free_space_inode(root
, inode
))
6836 return generic_drop_inode(inode
);
6839 static void init_once(void *foo
)
6841 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6843 inode_init_once(&ei
->vfs_inode
);
6846 void btrfs_destroy_cachep(void)
6848 if (btrfs_inode_cachep
)
6849 kmem_cache_destroy(btrfs_inode_cachep
);
6850 if (btrfs_trans_handle_cachep
)
6851 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6852 if (btrfs_transaction_cachep
)
6853 kmem_cache_destroy(btrfs_transaction_cachep
);
6854 if (btrfs_path_cachep
)
6855 kmem_cache_destroy(btrfs_path_cachep
);
6856 if (btrfs_free_space_cachep
)
6857 kmem_cache_destroy(btrfs_free_space_cachep
);
6860 int btrfs_init_cachep(void)
6862 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6863 sizeof(struct btrfs_inode
), 0,
6864 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6865 if (!btrfs_inode_cachep
)
6868 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6869 sizeof(struct btrfs_trans_handle
), 0,
6870 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6871 if (!btrfs_trans_handle_cachep
)
6874 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6875 sizeof(struct btrfs_transaction
), 0,
6876 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6877 if (!btrfs_transaction_cachep
)
6880 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6881 sizeof(struct btrfs_path
), 0,
6882 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6883 if (!btrfs_path_cachep
)
6886 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space_cache",
6887 sizeof(struct btrfs_free_space
), 0,
6888 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6889 if (!btrfs_free_space_cachep
)
6894 btrfs_destroy_cachep();
6898 static int btrfs_getattr(struct vfsmount
*mnt
,
6899 struct dentry
*dentry
, struct kstat
*stat
)
6901 struct inode
*inode
= dentry
->d_inode
;
6902 u32 blocksize
= inode
->i_sb
->s_blocksize
;
6904 generic_fillattr(inode
, stat
);
6905 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
6906 stat
->blksize
= PAGE_CACHE_SIZE
;
6907 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
6908 ALIGN(BTRFS_I(inode
)->delalloc_bytes
, blocksize
)) >> 9;
6913 * If a file is moved, it will inherit the cow and compression flags of the new
6916 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
6918 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
6919 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
6921 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
6922 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
6924 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
6926 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
)
6927 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
6929 b_inode
->flags
&= ~BTRFS_INODE_COMPRESS
;
6932 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6933 struct inode
*new_dir
, struct dentry
*new_dentry
)
6935 struct btrfs_trans_handle
*trans
;
6936 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6937 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6938 struct inode
*new_inode
= new_dentry
->d_inode
;
6939 struct inode
*old_inode
= old_dentry
->d_inode
;
6940 struct timespec ctime
= CURRENT_TIME
;
6944 u64 old_ino
= btrfs_ino(old_inode
);
6946 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6949 /* we only allow rename subvolume link between subvolumes */
6950 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6953 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6954 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
6957 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6958 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6961 * we're using rename to replace one file with another.
6962 * and the replacement file is large. Start IO on it now so
6963 * we don't add too much work to the end of the transaction
6965 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
6966 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
6967 filemap_flush(old_inode
->i_mapping
);
6969 /* close the racy window with snapshot create/destroy ioctl */
6970 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6971 down_read(&root
->fs_info
->subvol_sem
);
6973 * We want to reserve the absolute worst case amount of items. So if
6974 * both inodes are subvols and we need to unlink them then that would
6975 * require 4 item modifications, but if they are both normal inodes it
6976 * would require 5 item modifications, so we'll assume their normal
6977 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6978 * should cover the worst case number of items we'll modify.
6980 trans
= btrfs_start_transaction(root
, 20);
6981 if (IS_ERR(trans
)) {
6982 ret
= PTR_ERR(trans
);
6987 btrfs_record_root_in_trans(trans
, dest
);
6989 ret
= btrfs_set_inode_index(new_dir
, &index
);
6993 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6994 /* force full log commit if subvolume involved. */
6995 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
6997 ret
= btrfs_insert_inode_ref(trans
, dest
,
6998 new_dentry
->d_name
.name
,
6999 new_dentry
->d_name
.len
,
7001 btrfs_ino(new_dir
), index
);
7005 * this is an ugly little race, but the rename is required
7006 * to make sure that if we crash, the inode is either at the
7007 * old name or the new one. pinning the log transaction lets
7008 * us make sure we don't allow a log commit to come in after
7009 * we unlink the name but before we add the new name back in.
7011 btrfs_pin_log_trans(root
);
7014 * make sure the inode gets flushed if it is replacing
7017 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
7018 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7020 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7021 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7022 old_inode
->i_ctime
= ctime
;
7024 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7025 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7027 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7028 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7029 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7030 old_dentry
->d_name
.name
,
7031 old_dentry
->d_name
.len
);
7033 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7034 old_dentry
->d_inode
,
7035 old_dentry
->d_name
.name
,
7036 old_dentry
->d_name
.len
);
7038 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7043 new_inode
->i_ctime
= CURRENT_TIME
;
7044 if (unlikely(btrfs_ino(new_inode
) ==
7045 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7046 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7047 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7049 new_dentry
->d_name
.name
,
7050 new_dentry
->d_name
.len
);
7051 BUG_ON(new_inode
->i_nlink
== 0);
7053 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7054 new_dentry
->d_inode
,
7055 new_dentry
->d_name
.name
,
7056 new_dentry
->d_name
.len
);
7059 if (new_inode
->i_nlink
== 0) {
7060 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7065 fixup_inode_flags(new_dir
, old_inode
);
7067 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7068 new_dentry
->d_name
.name
,
7069 new_dentry
->d_name
.len
, 0, index
);
7072 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7073 struct dentry
*parent
= new_dentry
->d_parent
;
7074 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7075 btrfs_end_log_trans(root
);
7078 btrfs_end_transaction_throttle(trans
, root
);
7080 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7081 up_read(&root
->fs_info
->subvol_sem
);
7087 * some fairly slow code that needs optimization. This walks the list
7088 * of all the inodes with pending delalloc and forces them to disk.
7090 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7092 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7093 struct btrfs_inode
*binode
;
7094 struct inode
*inode
;
7096 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7099 spin_lock(&root
->fs_info
->delalloc_lock
);
7100 while (!list_empty(head
)) {
7101 binode
= list_entry(head
->next
, struct btrfs_inode
,
7103 inode
= igrab(&binode
->vfs_inode
);
7105 list_del_init(&binode
->delalloc_inodes
);
7106 spin_unlock(&root
->fs_info
->delalloc_lock
);
7108 filemap_flush(inode
->i_mapping
);
7110 btrfs_add_delayed_iput(inode
);
7115 spin_lock(&root
->fs_info
->delalloc_lock
);
7117 spin_unlock(&root
->fs_info
->delalloc_lock
);
7119 /* the filemap_flush will queue IO into the worker threads, but
7120 * we have to make sure the IO is actually started and that
7121 * ordered extents get created before we return
7123 atomic_inc(&root
->fs_info
->async_submit_draining
);
7124 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7125 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7126 wait_event(root
->fs_info
->async_submit_wait
,
7127 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7128 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7130 atomic_dec(&root
->fs_info
->async_submit_draining
);
7134 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7135 const char *symname
)
7137 struct btrfs_trans_handle
*trans
;
7138 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7139 struct btrfs_path
*path
;
7140 struct btrfs_key key
;
7141 struct inode
*inode
= NULL
;
7149 struct btrfs_file_extent_item
*ei
;
7150 struct extent_buffer
*leaf
;
7151 unsigned long nr
= 0;
7153 name_len
= strlen(symname
) + 1;
7154 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7155 return -ENAMETOOLONG
;
7158 * 2 items for inode item and ref
7159 * 2 items for dir items
7160 * 1 item for xattr if selinux is on
7162 trans
= btrfs_start_transaction(root
, 5);
7164 return PTR_ERR(trans
);
7166 err
= btrfs_find_free_ino(root
, &objectid
);
7170 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7171 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
7172 S_IFLNK
|S_IRWXUGO
, &index
);
7173 if (IS_ERR(inode
)) {
7174 err
= PTR_ERR(inode
);
7178 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7185 * If the active LSM wants to access the inode during
7186 * d_instantiate it needs these. Smack checks to see
7187 * if the filesystem supports xattrs by looking at the
7190 inode
->i_fop
= &btrfs_file_operations
;
7191 inode
->i_op
= &btrfs_file_inode_operations
;
7193 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7197 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7198 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7199 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7204 path
= btrfs_alloc_path();
7210 key
.objectid
= btrfs_ino(inode
);
7212 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7213 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7214 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7218 btrfs_free_path(path
);
7221 leaf
= path
->nodes
[0];
7222 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7223 struct btrfs_file_extent_item
);
7224 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7225 btrfs_set_file_extent_type(leaf
, ei
,
7226 BTRFS_FILE_EXTENT_INLINE
);
7227 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7228 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7229 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7230 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7232 ptr
= btrfs_file_extent_inline_start(ei
);
7233 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7234 btrfs_mark_buffer_dirty(leaf
);
7235 btrfs_free_path(path
);
7237 inode
->i_op
= &btrfs_symlink_inode_operations
;
7238 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7239 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7240 inode_set_bytes(inode
, name_len
);
7241 btrfs_i_size_write(inode
, name_len
- 1);
7242 err
= btrfs_update_inode(trans
, root
, inode
);
7248 d_instantiate(dentry
, inode
);
7249 nr
= trans
->blocks_used
;
7250 btrfs_end_transaction_throttle(trans
, root
);
7252 inode_dec_link_count(inode
);
7255 btrfs_btree_balance_dirty(root
, nr
);
7259 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7260 u64 start
, u64 num_bytes
, u64 min_size
,
7261 loff_t actual_len
, u64
*alloc_hint
,
7262 struct btrfs_trans_handle
*trans
)
7264 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7265 struct btrfs_key ins
;
7266 u64 cur_offset
= start
;
7269 bool own_trans
= true;
7273 while (num_bytes
> 0) {
7275 trans
= btrfs_start_transaction(root
, 3);
7276 if (IS_ERR(trans
)) {
7277 ret
= PTR_ERR(trans
);
7282 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7283 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7286 btrfs_end_transaction(trans
, root
);
7290 ret
= insert_reserved_file_extent(trans
, inode
,
7291 cur_offset
, ins
.objectid
,
7292 ins
.offset
, ins
.offset
,
7293 ins
.offset
, 0, 0, 0,
7294 BTRFS_FILE_EXTENT_PREALLOC
);
7296 btrfs_drop_extent_cache(inode
, cur_offset
,
7297 cur_offset
+ ins
.offset
-1, 0);
7299 num_bytes
-= ins
.offset
;
7300 cur_offset
+= ins
.offset
;
7301 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7303 inode
->i_ctime
= CURRENT_TIME
;
7304 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7305 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7306 (actual_len
> inode
->i_size
) &&
7307 (cur_offset
> inode
->i_size
)) {
7308 if (cur_offset
> actual_len
)
7309 i_size
= actual_len
;
7311 i_size
= cur_offset
;
7312 i_size_write(inode
, i_size
);
7313 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7316 ret
= btrfs_update_inode(trans
, root
, inode
);
7320 btrfs_end_transaction(trans
, root
);
7325 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7326 u64 start
, u64 num_bytes
, u64 min_size
,
7327 loff_t actual_len
, u64
*alloc_hint
)
7329 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7330 min_size
, actual_len
, alloc_hint
,
7334 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7335 struct btrfs_trans_handle
*trans
, int mode
,
7336 u64 start
, u64 num_bytes
, u64 min_size
,
7337 loff_t actual_len
, u64
*alloc_hint
)
7339 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7340 min_size
, actual_len
, alloc_hint
, trans
);
7343 static int btrfs_set_page_dirty(struct page
*page
)
7345 return __set_page_dirty_nobuffers(page
);
7348 static int btrfs_permission(struct inode
*inode
, int mask
)
7350 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7351 umode_t mode
= inode
->i_mode
;
7353 if (mask
& MAY_WRITE
&&
7354 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
7355 if (btrfs_root_readonly(root
))
7357 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
7360 return generic_permission(inode
, mask
);
7363 static const struct inode_operations btrfs_dir_inode_operations
= {
7364 .getattr
= btrfs_getattr
,
7365 .lookup
= btrfs_lookup
,
7366 .create
= btrfs_create
,
7367 .unlink
= btrfs_unlink
,
7369 .mkdir
= btrfs_mkdir
,
7370 .rmdir
= btrfs_rmdir
,
7371 .rename
= btrfs_rename
,
7372 .symlink
= btrfs_symlink
,
7373 .setattr
= btrfs_setattr
,
7374 .mknod
= btrfs_mknod
,
7375 .setxattr
= btrfs_setxattr
,
7376 .getxattr
= btrfs_getxattr
,
7377 .listxattr
= btrfs_listxattr
,
7378 .removexattr
= btrfs_removexattr
,
7379 .permission
= btrfs_permission
,
7380 .get_acl
= btrfs_get_acl
,
7382 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7383 .lookup
= btrfs_lookup
,
7384 .permission
= btrfs_permission
,
7385 .get_acl
= btrfs_get_acl
,
7388 static const struct file_operations btrfs_dir_file_operations
= {
7389 .llseek
= generic_file_llseek
,
7390 .read
= generic_read_dir
,
7391 .readdir
= btrfs_real_readdir
,
7392 .unlocked_ioctl
= btrfs_ioctl
,
7393 #ifdef CONFIG_COMPAT
7394 .compat_ioctl
= btrfs_ioctl
,
7396 .release
= btrfs_release_file
,
7397 .fsync
= btrfs_sync_file
,
7400 static struct extent_io_ops btrfs_extent_io_ops
= {
7401 .fill_delalloc
= run_delalloc_range
,
7402 .submit_bio_hook
= btrfs_submit_bio_hook
,
7403 .merge_bio_hook
= btrfs_merge_bio_hook
,
7404 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7405 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7406 .writepage_start_hook
= btrfs_writepage_start_hook
,
7407 .set_bit_hook
= btrfs_set_bit_hook
,
7408 .clear_bit_hook
= btrfs_clear_bit_hook
,
7409 .merge_extent_hook
= btrfs_merge_extent_hook
,
7410 .split_extent_hook
= btrfs_split_extent_hook
,
7414 * btrfs doesn't support the bmap operation because swapfiles
7415 * use bmap to make a mapping of extents in the file. They assume
7416 * these extents won't change over the life of the file and they
7417 * use the bmap result to do IO directly to the drive.
7419 * the btrfs bmap call would return logical addresses that aren't
7420 * suitable for IO and they also will change frequently as COW
7421 * operations happen. So, swapfile + btrfs == corruption.
7423 * For now we're avoiding this by dropping bmap.
7425 static const struct address_space_operations btrfs_aops
= {
7426 .readpage
= btrfs_readpage
,
7427 .writepage
= btrfs_writepage
,
7428 .writepages
= btrfs_writepages
,
7429 .readpages
= btrfs_readpages
,
7430 .direct_IO
= btrfs_direct_IO
,
7431 .invalidatepage
= btrfs_invalidatepage
,
7432 .releasepage
= btrfs_releasepage
,
7433 .set_page_dirty
= btrfs_set_page_dirty
,
7434 .error_remove_page
= generic_error_remove_page
,
7437 static const struct address_space_operations btrfs_symlink_aops
= {
7438 .readpage
= btrfs_readpage
,
7439 .writepage
= btrfs_writepage
,
7440 .invalidatepage
= btrfs_invalidatepage
,
7441 .releasepage
= btrfs_releasepage
,
7444 static const struct inode_operations btrfs_file_inode_operations
= {
7445 .getattr
= btrfs_getattr
,
7446 .setattr
= btrfs_setattr
,
7447 .setxattr
= btrfs_setxattr
,
7448 .getxattr
= btrfs_getxattr
,
7449 .listxattr
= btrfs_listxattr
,
7450 .removexattr
= btrfs_removexattr
,
7451 .permission
= btrfs_permission
,
7452 .fiemap
= btrfs_fiemap
,
7453 .get_acl
= btrfs_get_acl
,
7455 static const struct inode_operations btrfs_special_inode_operations
= {
7456 .getattr
= btrfs_getattr
,
7457 .setattr
= btrfs_setattr
,
7458 .permission
= btrfs_permission
,
7459 .setxattr
= btrfs_setxattr
,
7460 .getxattr
= btrfs_getxattr
,
7461 .listxattr
= btrfs_listxattr
,
7462 .removexattr
= btrfs_removexattr
,
7463 .get_acl
= btrfs_get_acl
,
7465 static const struct inode_operations btrfs_symlink_inode_operations
= {
7466 .readlink
= generic_readlink
,
7467 .follow_link
= page_follow_link_light
,
7468 .put_link
= page_put_link
,
7469 .getattr
= btrfs_getattr
,
7470 .setattr
= btrfs_setattr
,
7471 .permission
= btrfs_permission
,
7472 .setxattr
= btrfs_setxattr
,
7473 .getxattr
= btrfs_getxattr
,
7474 .listxattr
= btrfs_listxattr
,
7475 .removexattr
= btrfs_removexattr
,
7476 .get_acl
= btrfs_get_acl
,
7479 const struct dentry_operations btrfs_dentry_operations
= {
7480 .d_delete
= btrfs_dentry_delete
,
7481 .d_release
= btrfs_dentry_release
,