2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
29 #include "extent_map.h"
31 #include "transaction.h"
32 #include "print-tree.h"
34 #include "async-thread.h"
36 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
37 struct btrfs_root
*root
,
38 struct btrfs_device
*device
);
39 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
41 static DEFINE_MUTEX(uuid_mutex
);
42 static LIST_HEAD(fs_uuids
);
44 static void lock_chunks(struct btrfs_root
*root
)
46 mutex_lock(&root
->fs_info
->chunk_mutex
);
49 static void unlock_chunks(struct btrfs_root
*root
)
51 mutex_unlock(&root
->fs_info
->chunk_mutex
);
54 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
56 struct btrfs_device
*device
;
57 WARN_ON(fs_devices
->opened
);
58 while (!list_empty(&fs_devices
->devices
)) {
59 device
= list_entry(fs_devices
->devices
.next
,
60 struct btrfs_device
, dev_list
);
61 list_del(&device
->dev_list
);
68 int btrfs_cleanup_fs_uuids(void)
70 struct btrfs_fs_devices
*fs_devices
;
72 while (!list_empty(&fs_uuids
)) {
73 fs_devices
= list_entry(fs_uuids
.next
,
74 struct btrfs_fs_devices
, list
);
75 list_del(&fs_devices
->list
);
76 free_fs_devices(fs_devices
);
81 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
84 struct btrfs_device
*dev
;
86 list_for_each_entry(dev
, head
, dev_list
) {
87 if (dev
->devid
== devid
&&
88 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
95 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
97 struct btrfs_fs_devices
*fs_devices
;
99 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
100 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
106 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
107 struct bio
*head
, struct bio
*tail
)
110 struct bio
*old_head
;
112 old_head
= pending_bios
->head
;
113 pending_bios
->head
= head
;
114 if (pending_bios
->tail
)
115 tail
->bi_next
= old_head
;
117 pending_bios
->tail
= tail
;
121 * we try to collect pending bios for a device so we don't get a large
122 * number of procs sending bios down to the same device. This greatly
123 * improves the schedulers ability to collect and merge the bios.
125 * But, it also turns into a long list of bios to process and that is sure
126 * to eventually make the worker thread block. The solution here is to
127 * make some progress and then put this work struct back at the end of
128 * the list if the block device is congested. This way, multiple devices
129 * can make progress from a single worker thread.
131 static noinline
int run_scheduled_bios(struct btrfs_device
*device
)
134 struct backing_dev_info
*bdi
;
135 struct btrfs_fs_info
*fs_info
;
136 struct btrfs_pending_bios
*pending_bios
;
140 unsigned long num_run
;
141 unsigned long batch_run
= 0;
143 unsigned long last_waited
= 0;
145 int sync_pending
= 0;
146 struct blk_plug plug
;
149 * this function runs all the bios we've collected for
150 * a particular device. We don't want to wander off to
151 * another device without first sending all of these down.
152 * So, setup a plug here and finish it off before we return
154 blk_start_plug(&plug
);
156 bdi
= blk_get_backing_dev_info(device
->bdev
);
157 fs_info
= device
->dev_root
->fs_info
;
158 limit
= btrfs_async_submit_limit(fs_info
);
159 limit
= limit
* 2 / 3;
162 spin_lock(&device
->io_lock
);
167 /* take all the bios off the list at once and process them
168 * later on (without the lock held). But, remember the
169 * tail and other pointers so the bios can be properly reinserted
170 * into the list if we hit congestion
172 if (!force_reg
&& device
->pending_sync_bios
.head
) {
173 pending_bios
= &device
->pending_sync_bios
;
176 pending_bios
= &device
->pending_bios
;
180 pending
= pending_bios
->head
;
181 tail
= pending_bios
->tail
;
182 WARN_ON(pending
&& !tail
);
185 * if pending was null this time around, no bios need processing
186 * at all and we can stop. Otherwise it'll loop back up again
187 * and do an additional check so no bios are missed.
189 * device->running_pending is used to synchronize with the
192 if (device
->pending_sync_bios
.head
== NULL
&&
193 device
->pending_bios
.head
== NULL
) {
195 device
->running_pending
= 0;
198 device
->running_pending
= 1;
201 pending_bios
->head
= NULL
;
202 pending_bios
->tail
= NULL
;
204 spin_unlock(&device
->io_lock
);
209 /* we want to work on both lists, but do more bios on the
210 * sync list than the regular list
213 pending_bios
!= &device
->pending_sync_bios
&&
214 device
->pending_sync_bios
.head
) ||
215 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
216 device
->pending_bios
.head
)) {
217 spin_lock(&device
->io_lock
);
218 requeue_list(pending_bios
, pending
, tail
);
223 pending
= pending
->bi_next
;
225 atomic_dec(&fs_info
->nr_async_bios
);
227 if (atomic_read(&fs_info
->nr_async_bios
) < limit
&&
228 waitqueue_active(&fs_info
->async_submit_wait
))
229 wake_up(&fs_info
->async_submit_wait
);
231 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
234 * if we're doing the sync list, record that our
235 * plug has some sync requests on it
237 * If we're doing the regular list and there are
238 * sync requests sitting around, unplug before
241 if (pending_bios
== &device
->pending_sync_bios
) {
243 } else if (sync_pending
) {
244 blk_finish_plug(&plug
);
245 blk_start_plug(&plug
);
249 submit_bio(cur
->bi_rw
, cur
);
256 * we made progress, there is more work to do and the bdi
257 * is now congested. Back off and let other work structs
260 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
261 fs_info
->fs_devices
->open_devices
> 1) {
262 struct io_context
*ioc
;
264 ioc
= current
->io_context
;
267 * the main goal here is that we don't want to
268 * block if we're going to be able to submit
269 * more requests without blocking.
271 * This code does two great things, it pokes into
272 * the elevator code from a filesystem _and_
273 * it makes assumptions about how batching works.
275 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
276 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
278 ioc
->last_waited
== last_waited
)) {
280 * we want to go through our batch of
281 * requests and stop. So, we copy out
282 * the ioc->last_waited time and test
283 * against it before looping
285 last_waited
= ioc
->last_waited
;
290 spin_lock(&device
->io_lock
);
291 requeue_list(pending_bios
, pending
, tail
);
292 device
->running_pending
= 1;
294 spin_unlock(&device
->io_lock
);
295 btrfs_requeue_work(&device
->work
);
298 /* unplug every 64 requests just for good measure */
299 if (batch_run
% 64 == 0) {
300 blk_finish_plug(&plug
);
301 blk_start_plug(&plug
);
310 spin_lock(&device
->io_lock
);
311 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
313 spin_unlock(&device
->io_lock
);
316 blk_finish_plug(&plug
);
320 static void pending_bios_fn(struct btrfs_work
*work
)
322 struct btrfs_device
*device
;
324 device
= container_of(work
, struct btrfs_device
, work
);
325 run_scheduled_bios(device
);
328 static noinline
int device_list_add(const char *path
,
329 struct btrfs_super_block
*disk_super
,
330 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
332 struct btrfs_device
*device
;
333 struct btrfs_fs_devices
*fs_devices
;
334 u64 found_transid
= btrfs_super_generation(disk_super
);
337 fs_devices
= find_fsid(disk_super
->fsid
);
339 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
342 INIT_LIST_HEAD(&fs_devices
->devices
);
343 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
344 list_add(&fs_devices
->list
, &fs_uuids
);
345 memcpy(fs_devices
->fsid
, disk_super
->fsid
, BTRFS_FSID_SIZE
);
346 fs_devices
->latest_devid
= devid
;
347 fs_devices
->latest_trans
= found_transid
;
348 mutex_init(&fs_devices
->device_list_mutex
);
351 device
= __find_device(&fs_devices
->devices
, devid
,
352 disk_super
->dev_item
.uuid
);
355 if (fs_devices
->opened
)
358 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
360 /* we can safely leave the fs_devices entry around */
363 device
->devid
= devid
;
364 device
->work
.func
= pending_bios_fn
;
365 memcpy(device
->uuid
, disk_super
->dev_item
.uuid
,
367 spin_lock_init(&device
->io_lock
);
368 device
->name
= kstrdup(path
, GFP_NOFS
);
373 INIT_LIST_HEAD(&device
->dev_alloc_list
);
375 /* init readahead state */
376 spin_lock_init(&device
->reada_lock
);
377 device
->reada_curr_zone
= NULL
;
378 atomic_set(&device
->reada_in_flight
, 0);
379 device
->reada_next
= 0;
380 INIT_RADIX_TREE(&device
->reada_zones
, GFP_NOFS
& ~__GFP_WAIT
);
381 INIT_RADIX_TREE(&device
->reada_extents
, GFP_NOFS
& ~__GFP_WAIT
);
383 mutex_lock(&fs_devices
->device_list_mutex
);
384 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
385 mutex_unlock(&fs_devices
->device_list_mutex
);
387 device
->fs_devices
= fs_devices
;
388 fs_devices
->num_devices
++;
389 } else if (!device
->name
|| strcmp(device
->name
, path
)) {
390 name
= kstrdup(path
, GFP_NOFS
);
395 if (device
->missing
) {
396 fs_devices
->missing_devices
--;
401 if (found_transid
> fs_devices
->latest_trans
) {
402 fs_devices
->latest_devid
= devid
;
403 fs_devices
->latest_trans
= found_transid
;
405 *fs_devices_ret
= fs_devices
;
409 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
411 struct btrfs_fs_devices
*fs_devices
;
412 struct btrfs_device
*device
;
413 struct btrfs_device
*orig_dev
;
415 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
417 return ERR_PTR(-ENOMEM
);
419 INIT_LIST_HEAD(&fs_devices
->devices
);
420 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
421 INIT_LIST_HEAD(&fs_devices
->list
);
422 mutex_init(&fs_devices
->device_list_mutex
);
423 fs_devices
->latest_devid
= orig
->latest_devid
;
424 fs_devices
->latest_trans
= orig
->latest_trans
;
425 memcpy(fs_devices
->fsid
, orig
->fsid
, sizeof(fs_devices
->fsid
));
427 /* We have held the volume lock, it is safe to get the devices. */
428 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
429 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
433 device
->name
= kstrdup(orig_dev
->name
, GFP_NOFS
);
439 device
->devid
= orig_dev
->devid
;
440 device
->work
.func
= pending_bios_fn
;
441 memcpy(device
->uuid
, orig_dev
->uuid
, sizeof(device
->uuid
));
442 spin_lock_init(&device
->io_lock
);
443 INIT_LIST_HEAD(&device
->dev_list
);
444 INIT_LIST_HEAD(&device
->dev_alloc_list
);
446 list_add(&device
->dev_list
, &fs_devices
->devices
);
447 device
->fs_devices
= fs_devices
;
448 fs_devices
->num_devices
++;
452 free_fs_devices(fs_devices
);
453 return ERR_PTR(-ENOMEM
);
456 int btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
)
458 struct btrfs_device
*device
, *next
;
460 mutex_lock(&uuid_mutex
);
462 /* This is the initialized path, it is safe to release the devices. */
463 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
464 if (device
->in_fs_metadata
)
468 blkdev_put(device
->bdev
, device
->mode
);
470 fs_devices
->open_devices
--;
472 if (device
->writeable
) {
473 list_del_init(&device
->dev_alloc_list
);
474 device
->writeable
= 0;
475 fs_devices
->rw_devices
--;
477 list_del_init(&device
->dev_list
);
478 fs_devices
->num_devices
--;
483 if (fs_devices
->seed
) {
484 fs_devices
= fs_devices
->seed
;
488 mutex_unlock(&uuid_mutex
);
492 static void __free_device(struct work_struct
*work
)
494 struct btrfs_device
*device
;
496 device
= container_of(work
, struct btrfs_device
, rcu_work
);
499 blkdev_put(device
->bdev
, device
->mode
);
505 static void free_device(struct rcu_head
*head
)
507 struct btrfs_device
*device
;
509 device
= container_of(head
, struct btrfs_device
, rcu
);
511 INIT_WORK(&device
->rcu_work
, __free_device
);
512 schedule_work(&device
->rcu_work
);
515 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
517 struct btrfs_device
*device
;
519 if (--fs_devices
->opened
> 0)
522 mutex_lock(&fs_devices
->device_list_mutex
);
523 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
524 struct btrfs_device
*new_device
;
527 fs_devices
->open_devices
--;
529 if (device
->writeable
) {
530 list_del_init(&device
->dev_alloc_list
);
531 fs_devices
->rw_devices
--;
534 if (device
->can_discard
)
535 fs_devices
->num_can_discard
--;
537 new_device
= kmalloc(sizeof(*new_device
), GFP_NOFS
);
539 memcpy(new_device
, device
, sizeof(*new_device
));
540 new_device
->name
= kstrdup(device
->name
, GFP_NOFS
);
541 BUG_ON(device
->name
&& !new_device
->name
);
542 new_device
->bdev
= NULL
;
543 new_device
->writeable
= 0;
544 new_device
->in_fs_metadata
= 0;
545 new_device
->can_discard
= 0;
546 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
548 call_rcu(&device
->rcu
, free_device
);
550 mutex_unlock(&fs_devices
->device_list_mutex
);
552 WARN_ON(fs_devices
->open_devices
);
553 WARN_ON(fs_devices
->rw_devices
);
554 fs_devices
->opened
= 0;
555 fs_devices
->seeding
= 0;
560 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
562 struct btrfs_fs_devices
*seed_devices
= NULL
;
565 mutex_lock(&uuid_mutex
);
566 ret
= __btrfs_close_devices(fs_devices
);
567 if (!fs_devices
->opened
) {
568 seed_devices
= fs_devices
->seed
;
569 fs_devices
->seed
= NULL
;
571 mutex_unlock(&uuid_mutex
);
573 while (seed_devices
) {
574 fs_devices
= seed_devices
;
575 seed_devices
= fs_devices
->seed
;
576 __btrfs_close_devices(fs_devices
);
577 free_fs_devices(fs_devices
);
582 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
583 fmode_t flags
, void *holder
)
585 struct request_queue
*q
;
586 struct block_device
*bdev
;
587 struct list_head
*head
= &fs_devices
->devices
;
588 struct btrfs_device
*device
;
589 struct block_device
*latest_bdev
= NULL
;
590 struct buffer_head
*bh
;
591 struct btrfs_super_block
*disk_super
;
592 u64 latest_devid
= 0;
593 u64 latest_transid
= 0;
600 list_for_each_entry(device
, head
, dev_list
) {
606 bdev
= blkdev_get_by_path(device
->name
, flags
, holder
);
608 printk(KERN_INFO
"open %s failed\n", device
->name
);
611 set_blocksize(bdev
, 4096);
613 bh
= btrfs_read_dev_super(bdev
);
617 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
618 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
619 if (devid
!= device
->devid
)
622 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
626 device
->generation
= btrfs_super_generation(disk_super
);
627 if (!latest_transid
|| device
->generation
> latest_transid
) {
628 latest_devid
= devid
;
629 latest_transid
= device
->generation
;
633 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
634 device
->writeable
= 0;
636 device
->writeable
= !bdev_read_only(bdev
);
640 q
= bdev_get_queue(bdev
);
641 if (blk_queue_discard(q
)) {
642 device
->can_discard
= 1;
643 fs_devices
->num_can_discard
++;
647 device
->in_fs_metadata
= 0;
648 device
->mode
= flags
;
650 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
651 fs_devices
->rotating
= 1;
653 fs_devices
->open_devices
++;
654 if (device
->writeable
) {
655 fs_devices
->rw_devices
++;
656 list_add(&device
->dev_alloc_list
,
657 &fs_devices
->alloc_list
);
665 blkdev_put(bdev
, flags
);
669 if (fs_devices
->open_devices
== 0) {
673 fs_devices
->seeding
= seeding
;
674 fs_devices
->opened
= 1;
675 fs_devices
->latest_bdev
= latest_bdev
;
676 fs_devices
->latest_devid
= latest_devid
;
677 fs_devices
->latest_trans
= latest_transid
;
678 fs_devices
->total_rw_bytes
= 0;
683 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
684 fmode_t flags
, void *holder
)
688 mutex_lock(&uuid_mutex
);
689 if (fs_devices
->opened
) {
690 fs_devices
->opened
++;
693 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
695 mutex_unlock(&uuid_mutex
);
699 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
700 struct btrfs_fs_devices
**fs_devices_ret
)
702 struct btrfs_super_block
*disk_super
;
703 struct block_device
*bdev
;
704 struct buffer_head
*bh
;
709 mutex_lock(&uuid_mutex
);
712 bdev
= blkdev_get_by_path(path
, flags
, holder
);
719 ret
= set_blocksize(bdev
, 4096);
722 bh
= btrfs_read_dev_super(bdev
);
727 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
728 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
729 transid
= btrfs_super_generation(disk_super
);
730 if (disk_super
->label
[0])
731 printk(KERN_INFO
"device label %s ", disk_super
->label
);
733 printk(KERN_INFO
"device fsid %pU ", disk_super
->fsid
);
734 printk(KERN_CONT
"devid %llu transid %llu %s\n",
735 (unsigned long long)devid
, (unsigned long long)transid
, path
);
736 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
740 blkdev_put(bdev
, flags
);
742 mutex_unlock(&uuid_mutex
);
746 /* helper to account the used device space in the range */
747 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
748 u64 end
, u64
*length
)
750 struct btrfs_key key
;
751 struct btrfs_root
*root
= device
->dev_root
;
752 struct btrfs_dev_extent
*dev_extent
;
753 struct btrfs_path
*path
;
757 struct extent_buffer
*l
;
761 if (start
>= device
->total_bytes
)
764 path
= btrfs_alloc_path();
769 key
.objectid
= device
->devid
;
771 key
.type
= BTRFS_DEV_EXTENT_KEY
;
773 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
777 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
784 slot
= path
->slots
[0];
785 if (slot
>= btrfs_header_nritems(l
)) {
786 ret
= btrfs_next_leaf(root
, path
);
794 btrfs_item_key_to_cpu(l
, &key
, slot
);
796 if (key
.objectid
< device
->devid
)
799 if (key
.objectid
> device
->devid
)
802 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
805 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
806 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
808 if (key
.offset
<= start
&& extent_end
> end
) {
809 *length
= end
- start
+ 1;
811 } else if (key
.offset
<= start
&& extent_end
> start
)
812 *length
+= extent_end
- start
;
813 else if (key
.offset
> start
&& extent_end
<= end
)
814 *length
+= extent_end
- key
.offset
;
815 else if (key
.offset
> start
&& key
.offset
<= end
) {
816 *length
+= end
- key
.offset
+ 1;
818 } else if (key
.offset
> end
)
826 btrfs_free_path(path
);
831 * find_free_dev_extent - find free space in the specified device
832 * @trans: transaction handler
833 * @device: the device which we search the free space in
834 * @num_bytes: the size of the free space that we need
835 * @start: store the start of the free space.
836 * @len: the size of the free space. that we find, or the size of the max
837 * free space if we don't find suitable free space
839 * this uses a pretty simple search, the expectation is that it is
840 * called very infrequently and that a given device has a small number
843 * @start is used to store the start of the free space if we find. But if we
844 * don't find suitable free space, it will be used to store the start position
845 * of the max free space.
847 * @len is used to store the size of the free space that we find.
848 * But if we don't find suitable free space, it is used to store the size of
849 * the max free space.
851 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
852 struct btrfs_device
*device
, u64 num_bytes
,
853 u64
*start
, u64
*len
)
855 struct btrfs_key key
;
856 struct btrfs_root
*root
= device
->dev_root
;
857 struct btrfs_dev_extent
*dev_extent
;
858 struct btrfs_path
*path
;
864 u64 search_end
= device
->total_bytes
;
867 struct extent_buffer
*l
;
869 /* FIXME use last free of some kind */
871 /* we don't want to overwrite the superblock on the drive,
872 * so we make sure to start at an offset of at least 1MB
874 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
876 max_hole_start
= search_start
;
880 if (search_start
>= search_end
) {
885 path
= btrfs_alloc_path();
892 key
.objectid
= device
->devid
;
893 key
.offset
= search_start
;
894 key
.type
= BTRFS_DEV_EXTENT_KEY
;
896 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 0);
900 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
907 slot
= path
->slots
[0];
908 if (slot
>= btrfs_header_nritems(l
)) {
909 ret
= btrfs_next_leaf(root
, path
);
917 btrfs_item_key_to_cpu(l
, &key
, slot
);
919 if (key
.objectid
< device
->devid
)
922 if (key
.objectid
> device
->devid
)
925 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
928 if (key
.offset
> search_start
) {
929 hole_size
= key
.offset
- search_start
;
931 if (hole_size
> max_hole_size
) {
932 max_hole_start
= search_start
;
933 max_hole_size
= hole_size
;
937 * If this free space is greater than which we need,
938 * it must be the max free space that we have found
939 * until now, so max_hole_start must point to the start
940 * of this free space and the length of this free space
941 * is stored in max_hole_size. Thus, we return
942 * max_hole_start and max_hole_size and go back to the
945 if (hole_size
>= num_bytes
) {
951 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
952 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
954 if (extent_end
> search_start
)
955 search_start
= extent_end
;
962 * At this point, search_start should be the end of
963 * allocated dev extents, and when shrinking the device,
964 * search_end may be smaller than search_start.
966 if (search_end
> search_start
)
967 hole_size
= search_end
- search_start
;
969 if (hole_size
> max_hole_size
) {
970 max_hole_start
= search_start
;
971 max_hole_size
= hole_size
;
975 if (hole_size
< num_bytes
)
981 btrfs_free_path(path
);
983 *start
= max_hole_start
;
985 *len
= max_hole_size
;
989 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
990 struct btrfs_device
*device
,
994 struct btrfs_path
*path
;
995 struct btrfs_root
*root
= device
->dev_root
;
996 struct btrfs_key key
;
997 struct btrfs_key found_key
;
998 struct extent_buffer
*leaf
= NULL
;
999 struct btrfs_dev_extent
*extent
= NULL
;
1001 path
= btrfs_alloc_path();
1005 key
.objectid
= device
->devid
;
1007 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1009 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1011 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1012 BTRFS_DEV_EXTENT_KEY
);
1015 leaf
= path
->nodes
[0];
1016 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1017 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1018 struct btrfs_dev_extent
);
1019 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1020 btrfs_dev_extent_length(leaf
, extent
) < start
);
1022 btrfs_release_path(path
);
1024 } else if (ret
== 0) {
1025 leaf
= path
->nodes
[0];
1026 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1027 struct btrfs_dev_extent
);
1031 if (device
->bytes_used
> 0) {
1032 u64 len
= btrfs_dev_extent_length(leaf
, extent
);
1033 device
->bytes_used
-= len
;
1034 spin_lock(&root
->fs_info
->free_chunk_lock
);
1035 root
->fs_info
->free_chunk_space
+= len
;
1036 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1038 ret
= btrfs_del_item(trans
, root
, path
);
1041 btrfs_free_path(path
);
1045 int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1046 struct btrfs_device
*device
,
1047 u64 chunk_tree
, u64 chunk_objectid
,
1048 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1051 struct btrfs_path
*path
;
1052 struct btrfs_root
*root
= device
->dev_root
;
1053 struct btrfs_dev_extent
*extent
;
1054 struct extent_buffer
*leaf
;
1055 struct btrfs_key key
;
1057 WARN_ON(!device
->in_fs_metadata
);
1058 path
= btrfs_alloc_path();
1062 key
.objectid
= device
->devid
;
1064 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1065 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1069 leaf
= path
->nodes
[0];
1070 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1071 struct btrfs_dev_extent
);
1072 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1073 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1074 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1076 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1077 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent
),
1080 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1081 btrfs_mark_buffer_dirty(leaf
);
1082 btrfs_free_path(path
);
1086 static noinline
int find_next_chunk(struct btrfs_root
*root
,
1087 u64 objectid
, u64
*offset
)
1089 struct btrfs_path
*path
;
1091 struct btrfs_key key
;
1092 struct btrfs_chunk
*chunk
;
1093 struct btrfs_key found_key
;
1095 path
= btrfs_alloc_path();
1099 key
.objectid
= objectid
;
1100 key
.offset
= (u64
)-1;
1101 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1103 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1109 ret
= btrfs_previous_item(root
, path
, 0, BTRFS_CHUNK_ITEM_KEY
);
1113 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1115 if (found_key
.objectid
!= objectid
)
1118 chunk
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1119 struct btrfs_chunk
);
1120 *offset
= found_key
.offset
+
1121 btrfs_chunk_length(path
->nodes
[0], chunk
);
1126 btrfs_free_path(path
);
1130 static noinline
int find_next_devid(struct btrfs_root
*root
, u64
*objectid
)
1133 struct btrfs_key key
;
1134 struct btrfs_key found_key
;
1135 struct btrfs_path
*path
;
1137 root
= root
->fs_info
->chunk_root
;
1139 path
= btrfs_alloc_path();
1143 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1144 key
.type
= BTRFS_DEV_ITEM_KEY
;
1145 key
.offset
= (u64
)-1;
1147 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1153 ret
= btrfs_previous_item(root
, path
, BTRFS_DEV_ITEMS_OBJECTID
,
1154 BTRFS_DEV_ITEM_KEY
);
1158 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1160 *objectid
= found_key
.offset
+ 1;
1164 btrfs_free_path(path
);
1169 * the device information is stored in the chunk root
1170 * the btrfs_device struct should be fully filled in
1172 int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1173 struct btrfs_root
*root
,
1174 struct btrfs_device
*device
)
1177 struct btrfs_path
*path
;
1178 struct btrfs_dev_item
*dev_item
;
1179 struct extent_buffer
*leaf
;
1180 struct btrfs_key key
;
1183 root
= root
->fs_info
->chunk_root
;
1185 path
= btrfs_alloc_path();
1189 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1190 key
.type
= BTRFS_DEV_ITEM_KEY
;
1191 key
.offset
= device
->devid
;
1193 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1198 leaf
= path
->nodes
[0];
1199 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1201 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1202 btrfs_set_device_generation(leaf
, dev_item
, 0);
1203 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1204 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1205 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1206 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1207 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1208 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1209 btrfs_set_device_group(leaf
, dev_item
, 0);
1210 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1211 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1212 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1214 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
1215 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1216 ptr
= (unsigned long)btrfs_device_fsid(dev_item
);
1217 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1218 btrfs_mark_buffer_dirty(leaf
);
1222 btrfs_free_path(path
);
1226 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1227 struct btrfs_device
*device
)
1230 struct btrfs_path
*path
;
1231 struct btrfs_key key
;
1232 struct btrfs_trans_handle
*trans
;
1234 root
= root
->fs_info
->chunk_root
;
1236 path
= btrfs_alloc_path();
1240 trans
= btrfs_start_transaction(root
, 0);
1241 if (IS_ERR(trans
)) {
1242 btrfs_free_path(path
);
1243 return PTR_ERR(trans
);
1245 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1246 key
.type
= BTRFS_DEV_ITEM_KEY
;
1247 key
.offset
= device
->devid
;
1250 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1259 ret
= btrfs_del_item(trans
, root
, path
);
1263 btrfs_free_path(path
);
1264 unlock_chunks(root
);
1265 btrfs_commit_transaction(trans
, root
);
1269 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1271 struct btrfs_device
*device
;
1272 struct btrfs_device
*next_device
;
1273 struct block_device
*bdev
;
1274 struct buffer_head
*bh
= NULL
;
1275 struct btrfs_super_block
*disk_super
;
1276 struct btrfs_fs_devices
*cur_devices
;
1282 bool clear_super
= false;
1284 mutex_lock(&uuid_mutex
);
1285 mutex_lock(&root
->fs_info
->volume_mutex
);
1287 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1288 root
->fs_info
->avail_system_alloc_bits
|
1289 root
->fs_info
->avail_metadata_alloc_bits
;
1291 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) &&
1292 root
->fs_info
->fs_devices
->num_devices
<= 4) {
1293 printk(KERN_ERR
"btrfs: unable to go below four devices "
1299 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) &&
1300 root
->fs_info
->fs_devices
->num_devices
<= 2) {
1301 printk(KERN_ERR
"btrfs: unable to go below two "
1302 "devices on raid1\n");
1307 if (strcmp(device_path
, "missing") == 0) {
1308 struct list_head
*devices
;
1309 struct btrfs_device
*tmp
;
1312 devices
= &root
->fs_info
->fs_devices
->devices
;
1314 * It is safe to read the devices since the volume_mutex
1317 list_for_each_entry(tmp
, devices
, dev_list
) {
1318 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1327 printk(KERN_ERR
"btrfs: no missing devices found to "
1332 bdev
= blkdev_get_by_path(device_path
, FMODE_READ
| FMODE_EXCL
,
1333 root
->fs_info
->bdev_holder
);
1335 ret
= PTR_ERR(bdev
);
1339 set_blocksize(bdev
, 4096);
1340 bh
= btrfs_read_dev_super(bdev
);
1345 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1346 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1347 dev_uuid
= disk_super
->dev_item
.uuid
;
1348 device
= btrfs_find_device(root
, devid
, dev_uuid
,
1356 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1357 printk(KERN_ERR
"btrfs: unable to remove the only writeable "
1363 if (device
->writeable
) {
1365 list_del_init(&device
->dev_alloc_list
);
1366 unlock_chunks(root
);
1367 root
->fs_info
->fs_devices
->rw_devices
--;
1371 ret
= btrfs_shrink_device(device
, 0);
1375 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1379 spin_lock(&root
->fs_info
->free_chunk_lock
);
1380 root
->fs_info
->free_chunk_space
= device
->total_bytes
-
1382 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1384 device
->in_fs_metadata
= 0;
1385 btrfs_scrub_cancel_dev(root
, device
);
1388 * the device list mutex makes sure that we don't change
1389 * the device list while someone else is writing out all
1390 * the device supers.
1393 cur_devices
= device
->fs_devices
;
1394 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1395 list_del_rcu(&device
->dev_list
);
1397 device
->fs_devices
->num_devices
--;
1399 if (device
->missing
)
1400 root
->fs_info
->fs_devices
->missing_devices
--;
1402 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1403 struct btrfs_device
, dev_list
);
1404 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1405 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1406 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1407 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1410 device
->fs_devices
->open_devices
--;
1412 call_rcu(&device
->rcu
, free_device
);
1413 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1415 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1416 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1418 if (cur_devices
->open_devices
== 0) {
1419 struct btrfs_fs_devices
*fs_devices
;
1420 fs_devices
= root
->fs_info
->fs_devices
;
1421 while (fs_devices
) {
1422 if (fs_devices
->seed
== cur_devices
)
1424 fs_devices
= fs_devices
->seed
;
1426 fs_devices
->seed
= cur_devices
->seed
;
1427 cur_devices
->seed
= NULL
;
1429 __btrfs_close_devices(cur_devices
);
1430 unlock_chunks(root
);
1431 free_fs_devices(cur_devices
);
1435 * at this point, the device is zero sized. We want to
1436 * remove it from the devices list and zero out the old super
1439 /* make sure this device isn't detected as part of
1442 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1443 set_buffer_dirty(bh
);
1444 sync_dirty_buffer(bh
);
1453 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1455 mutex_unlock(&root
->fs_info
->volume_mutex
);
1456 mutex_unlock(&uuid_mutex
);
1459 if (device
->writeable
) {
1461 list_add(&device
->dev_alloc_list
,
1462 &root
->fs_info
->fs_devices
->alloc_list
);
1463 unlock_chunks(root
);
1464 root
->fs_info
->fs_devices
->rw_devices
++;
1470 * does all the dirty work required for changing file system's UUID.
1472 static int btrfs_prepare_sprout(struct btrfs_trans_handle
*trans
,
1473 struct btrfs_root
*root
)
1475 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1476 struct btrfs_fs_devices
*old_devices
;
1477 struct btrfs_fs_devices
*seed_devices
;
1478 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
1479 struct btrfs_device
*device
;
1482 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1483 if (!fs_devices
->seeding
)
1486 seed_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
1490 old_devices
= clone_fs_devices(fs_devices
);
1491 if (IS_ERR(old_devices
)) {
1492 kfree(seed_devices
);
1493 return PTR_ERR(old_devices
);
1496 list_add(&old_devices
->list
, &fs_uuids
);
1498 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1499 seed_devices
->opened
= 1;
1500 INIT_LIST_HEAD(&seed_devices
->devices
);
1501 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1502 mutex_init(&seed_devices
->device_list_mutex
);
1504 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1505 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
1507 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1509 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1510 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1511 device
->fs_devices
= seed_devices
;
1514 fs_devices
->seeding
= 0;
1515 fs_devices
->num_devices
= 0;
1516 fs_devices
->open_devices
= 0;
1517 fs_devices
->seed
= seed_devices
;
1519 generate_random_uuid(fs_devices
->fsid
);
1520 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1521 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1522 super_flags
= btrfs_super_flags(disk_super
) &
1523 ~BTRFS_SUPER_FLAG_SEEDING
;
1524 btrfs_set_super_flags(disk_super
, super_flags
);
1530 * strore the expected generation for seed devices in device items.
1532 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1533 struct btrfs_root
*root
)
1535 struct btrfs_path
*path
;
1536 struct extent_buffer
*leaf
;
1537 struct btrfs_dev_item
*dev_item
;
1538 struct btrfs_device
*device
;
1539 struct btrfs_key key
;
1540 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1541 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1545 path
= btrfs_alloc_path();
1549 root
= root
->fs_info
->chunk_root
;
1550 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1552 key
.type
= BTRFS_DEV_ITEM_KEY
;
1555 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1559 leaf
= path
->nodes
[0];
1561 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1562 ret
= btrfs_next_leaf(root
, path
);
1567 leaf
= path
->nodes
[0];
1568 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1569 btrfs_release_path(path
);
1573 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1574 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1575 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1578 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1579 struct btrfs_dev_item
);
1580 devid
= btrfs_device_id(leaf
, dev_item
);
1581 read_extent_buffer(leaf
, dev_uuid
,
1582 (unsigned long)btrfs_device_uuid(dev_item
),
1584 read_extent_buffer(leaf
, fs_uuid
,
1585 (unsigned long)btrfs_device_fsid(dev_item
),
1587 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
1590 if (device
->fs_devices
->seeding
) {
1591 btrfs_set_device_generation(leaf
, dev_item
,
1592 device
->generation
);
1593 btrfs_mark_buffer_dirty(leaf
);
1601 btrfs_free_path(path
);
1605 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1607 struct request_queue
*q
;
1608 struct btrfs_trans_handle
*trans
;
1609 struct btrfs_device
*device
;
1610 struct block_device
*bdev
;
1611 struct list_head
*devices
;
1612 struct super_block
*sb
= root
->fs_info
->sb
;
1614 int seeding_dev
= 0;
1617 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1620 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
1621 root
->fs_info
->bdev_holder
);
1623 return PTR_ERR(bdev
);
1625 if (root
->fs_info
->fs_devices
->seeding
) {
1627 down_write(&sb
->s_umount
);
1628 mutex_lock(&uuid_mutex
);
1631 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
1632 mutex_lock(&root
->fs_info
->volume_mutex
);
1634 devices
= &root
->fs_info
->fs_devices
->devices
;
1636 * we have the volume lock, so we don't need the extra
1637 * device list mutex while reading the list here.
1639 list_for_each_entry(device
, devices
, dev_list
) {
1640 if (device
->bdev
== bdev
) {
1646 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
1648 /* we can safely leave the fs_devices entry around */
1653 device
->name
= kstrdup(device_path
, GFP_NOFS
);
1654 if (!device
->name
) {
1660 ret
= find_next_devid(root
, &device
->devid
);
1662 kfree(device
->name
);
1667 trans
= btrfs_start_transaction(root
, 0);
1668 if (IS_ERR(trans
)) {
1669 kfree(device
->name
);
1671 ret
= PTR_ERR(trans
);
1677 q
= bdev_get_queue(bdev
);
1678 if (blk_queue_discard(q
))
1679 device
->can_discard
= 1;
1680 device
->writeable
= 1;
1681 device
->work
.func
= pending_bios_fn
;
1682 generate_random_uuid(device
->uuid
);
1683 spin_lock_init(&device
->io_lock
);
1684 device
->generation
= trans
->transid
;
1685 device
->io_width
= root
->sectorsize
;
1686 device
->io_align
= root
->sectorsize
;
1687 device
->sector_size
= root
->sectorsize
;
1688 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
1689 device
->disk_total_bytes
= device
->total_bytes
;
1690 device
->dev_root
= root
->fs_info
->dev_root
;
1691 device
->bdev
= bdev
;
1692 device
->in_fs_metadata
= 1;
1693 device
->mode
= FMODE_EXCL
;
1694 set_blocksize(device
->bdev
, 4096);
1697 sb
->s_flags
&= ~MS_RDONLY
;
1698 ret
= btrfs_prepare_sprout(trans
, root
);
1702 device
->fs_devices
= root
->fs_info
->fs_devices
;
1705 * we don't want write_supers to jump in here with our device
1708 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1709 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
1710 list_add(&device
->dev_alloc_list
,
1711 &root
->fs_info
->fs_devices
->alloc_list
);
1712 root
->fs_info
->fs_devices
->num_devices
++;
1713 root
->fs_info
->fs_devices
->open_devices
++;
1714 root
->fs_info
->fs_devices
->rw_devices
++;
1715 if (device
->can_discard
)
1716 root
->fs_info
->fs_devices
->num_can_discard
++;
1717 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
1719 spin_lock(&root
->fs_info
->free_chunk_lock
);
1720 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
1721 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1723 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1724 root
->fs_info
->fs_devices
->rotating
= 1;
1726 total_bytes
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
1727 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
1728 total_bytes
+ device
->total_bytes
);
1730 total_bytes
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
1731 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
1733 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1736 ret
= init_first_rw_device(trans
, root
, device
);
1738 ret
= btrfs_finish_sprout(trans
, root
);
1741 ret
= btrfs_add_device(trans
, root
, device
);
1745 * we've got more storage, clear any full flags on the space
1748 btrfs_clear_space_info_full(root
->fs_info
);
1750 unlock_chunks(root
);
1751 btrfs_commit_transaction(trans
, root
);
1754 mutex_unlock(&uuid_mutex
);
1755 up_write(&sb
->s_umount
);
1757 ret
= btrfs_relocate_sys_chunks(root
);
1761 mutex_unlock(&root
->fs_info
->volume_mutex
);
1764 blkdev_put(bdev
, FMODE_EXCL
);
1766 mutex_unlock(&uuid_mutex
);
1767 up_write(&sb
->s_umount
);
1772 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
1773 struct btrfs_device
*device
)
1776 struct btrfs_path
*path
;
1777 struct btrfs_root
*root
;
1778 struct btrfs_dev_item
*dev_item
;
1779 struct extent_buffer
*leaf
;
1780 struct btrfs_key key
;
1782 root
= device
->dev_root
->fs_info
->chunk_root
;
1784 path
= btrfs_alloc_path();
1788 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1789 key
.type
= BTRFS_DEV_ITEM_KEY
;
1790 key
.offset
= device
->devid
;
1792 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1801 leaf
= path
->nodes
[0];
1802 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1804 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1805 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1806 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1807 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1808 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1809 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->disk_total_bytes
);
1810 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1811 btrfs_mark_buffer_dirty(leaf
);
1814 btrfs_free_path(path
);
1818 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1819 struct btrfs_device
*device
, u64 new_size
)
1821 struct btrfs_super_block
*super_copy
=
1822 device
->dev_root
->fs_info
->super_copy
;
1823 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1824 u64 diff
= new_size
- device
->total_bytes
;
1826 if (!device
->writeable
)
1828 if (new_size
<= device
->total_bytes
)
1831 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
1832 device
->fs_devices
->total_rw_bytes
+= diff
;
1834 device
->total_bytes
= new_size
;
1835 device
->disk_total_bytes
= new_size
;
1836 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
1838 return btrfs_update_device(trans
, device
);
1841 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1842 struct btrfs_device
*device
, u64 new_size
)
1845 lock_chunks(device
->dev_root
);
1846 ret
= __btrfs_grow_device(trans
, device
, new_size
);
1847 unlock_chunks(device
->dev_root
);
1851 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
1852 struct btrfs_root
*root
,
1853 u64 chunk_tree
, u64 chunk_objectid
,
1857 struct btrfs_path
*path
;
1858 struct btrfs_key key
;
1860 root
= root
->fs_info
->chunk_root
;
1861 path
= btrfs_alloc_path();
1865 key
.objectid
= chunk_objectid
;
1866 key
.offset
= chunk_offset
;
1867 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1869 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1872 ret
= btrfs_del_item(trans
, root
, path
);
1874 btrfs_free_path(path
);
1878 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
1881 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
1882 struct btrfs_disk_key
*disk_key
;
1883 struct btrfs_chunk
*chunk
;
1890 struct btrfs_key key
;
1892 array_size
= btrfs_super_sys_array_size(super_copy
);
1894 ptr
= super_copy
->sys_chunk_array
;
1897 while (cur
< array_size
) {
1898 disk_key
= (struct btrfs_disk_key
*)ptr
;
1899 btrfs_disk_key_to_cpu(&key
, disk_key
);
1901 len
= sizeof(*disk_key
);
1903 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
1904 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
1905 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
1906 len
+= btrfs_chunk_item_size(num_stripes
);
1911 if (key
.objectid
== chunk_objectid
&&
1912 key
.offset
== chunk_offset
) {
1913 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
1915 btrfs_set_super_sys_array_size(super_copy
, array_size
);
1924 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
1925 u64 chunk_tree
, u64 chunk_objectid
,
1928 struct extent_map_tree
*em_tree
;
1929 struct btrfs_root
*extent_root
;
1930 struct btrfs_trans_handle
*trans
;
1931 struct extent_map
*em
;
1932 struct map_lookup
*map
;
1936 root
= root
->fs_info
->chunk_root
;
1937 extent_root
= root
->fs_info
->extent_root
;
1938 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
1940 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
1944 /* step one, relocate all the extents inside this chunk */
1945 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
1949 trans
= btrfs_start_transaction(root
, 0);
1950 BUG_ON(IS_ERR(trans
));
1955 * step two, delete the device extents and the
1956 * chunk tree entries
1958 read_lock(&em_tree
->lock
);
1959 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
1960 read_unlock(&em_tree
->lock
);
1962 BUG_ON(em
->start
> chunk_offset
||
1963 em
->start
+ em
->len
< chunk_offset
);
1964 map
= (struct map_lookup
*)em
->bdev
;
1966 for (i
= 0; i
< map
->num_stripes
; i
++) {
1967 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
1968 map
->stripes
[i
].physical
);
1971 if (map
->stripes
[i
].dev
) {
1972 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
1976 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
1981 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
1983 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1984 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
1988 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
1991 write_lock(&em_tree
->lock
);
1992 remove_extent_mapping(em_tree
, em
);
1993 write_unlock(&em_tree
->lock
);
1998 /* once for the tree */
1999 free_extent_map(em
);
2001 free_extent_map(em
);
2003 unlock_chunks(root
);
2004 btrfs_end_transaction(trans
, root
);
2008 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2010 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2011 struct btrfs_path
*path
;
2012 struct extent_buffer
*leaf
;
2013 struct btrfs_chunk
*chunk
;
2014 struct btrfs_key key
;
2015 struct btrfs_key found_key
;
2016 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
2018 bool retried
= false;
2022 path
= btrfs_alloc_path();
2027 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2028 key
.offset
= (u64
)-1;
2029 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2032 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2037 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2044 leaf
= path
->nodes
[0];
2045 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2047 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2048 struct btrfs_chunk
);
2049 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2050 btrfs_release_path(path
);
2052 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2053 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
2062 if (found_key
.offset
== 0)
2064 key
.offset
= found_key
.offset
- 1;
2067 if (failed
&& !retried
) {
2071 } else if (failed
&& retried
) {
2076 btrfs_free_path(path
);
2080 static u64
div_factor(u64 num
, int factor
)
2089 int btrfs_balance(struct btrfs_root
*dev_root
)
2092 struct list_head
*devices
= &dev_root
->fs_info
->fs_devices
->devices
;
2093 struct btrfs_device
*device
;
2096 struct btrfs_path
*path
;
2097 struct btrfs_key key
;
2098 struct btrfs_root
*chunk_root
= dev_root
->fs_info
->chunk_root
;
2099 struct btrfs_trans_handle
*trans
;
2100 struct btrfs_key found_key
;
2102 if (dev_root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2105 if (!capable(CAP_SYS_ADMIN
))
2108 mutex_lock(&dev_root
->fs_info
->volume_mutex
);
2109 dev_root
= dev_root
->fs_info
->dev_root
;
2111 /* step one make some room on all the devices */
2112 list_for_each_entry(device
, devices
, dev_list
) {
2113 old_size
= device
->total_bytes
;
2114 size_to_free
= div_factor(old_size
, 1);
2115 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
2116 if (!device
->writeable
||
2117 device
->total_bytes
- device
->bytes_used
> size_to_free
)
2120 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
2125 trans
= btrfs_start_transaction(dev_root
, 0);
2126 BUG_ON(IS_ERR(trans
));
2128 ret
= btrfs_grow_device(trans
, device
, old_size
);
2131 btrfs_end_transaction(trans
, dev_root
);
2134 /* step two, relocate all the chunks */
2135 path
= btrfs_alloc_path();
2140 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2141 key
.offset
= (u64
)-1;
2142 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2145 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2150 * this shouldn't happen, it means the last relocate
2156 ret
= btrfs_previous_item(chunk_root
, path
, 0,
2157 BTRFS_CHUNK_ITEM_KEY
);
2161 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2163 if (found_key
.objectid
!= key
.objectid
)
2166 /* chunk zero is special */
2167 if (found_key
.offset
== 0)
2170 btrfs_release_path(path
);
2171 ret
= btrfs_relocate_chunk(chunk_root
,
2172 chunk_root
->root_key
.objectid
,
2175 if (ret
&& ret
!= -ENOSPC
)
2177 key
.offset
= found_key
.offset
- 1;
2181 btrfs_free_path(path
);
2182 mutex_unlock(&dev_root
->fs_info
->volume_mutex
);
2187 * shrinking a device means finding all of the device extents past
2188 * the new size, and then following the back refs to the chunks.
2189 * The chunk relocation code actually frees the device extent
2191 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
2193 struct btrfs_trans_handle
*trans
;
2194 struct btrfs_root
*root
= device
->dev_root
;
2195 struct btrfs_dev_extent
*dev_extent
= NULL
;
2196 struct btrfs_path
*path
;
2204 bool retried
= false;
2205 struct extent_buffer
*l
;
2206 struct btrfs_key key
;
2207 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2208 u64 old_total
= btrfs_super_total_bytes(super_copy
);
2209 u64 old_size
= device
->total_bytes
;
2210 u64 diff
= device
->total_bytes
- new_size
;
2212 if (new_size
>= device
->total_bytes
)
2215 path
= btrfs_alloc_path();
2223 device
->total_bytes
= new_size
;
2224 if (device
->writeable
) {
2225 device
->fs_devices
->total_rw_bytes
-= diff
;
2226 spin_lock(&root
->fs_info
->free_chunk_lock
);
2227 root
->fs_info
->free_chunk_space
-= diff
;
2228 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2230 unlock_chunks(root
);
2233 key
.objectid
= device
->devid
;
2234 key
.offset
= (u64
)-1;
2235 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2238 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2242 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
2247 btrfs_release_path(path
);
2252 slot
= path
->slots
[0];
2253 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
2255 if (key
.objectid
!= device
->devid
) {
2256 btrfs_release_path(path
);
2260 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
2261 length
= btrfs_dev_extent_length(l
, dev_extent
);
2263 if (key
.offset
+ length
<= new_size
) {
2264 btrfs_release_path(path
);
2268 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
2269 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
2270 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
2271 btrfs_release_path(path
);
2273 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
2275 if (ret
&& ret
!= -ENOSPC
)
2282 if (failed
&& !retried
) {
2286 } else if (failed
&& retried
) {
2290 device
->total_bytes
= old_size
;
2291 if (device
->writeable
)
2292 device
->fs_devices
->total_rw_bytes
+= diff
;
2293 spin_lock(&root
->fs_info
->free_chunk_lock
);
2294 root
->fs_info
->free_chunk_space
+= diff
;
2295 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2296 unlock_chunks(root
);
2300 /* Shrinking succeeded, else we would be at "done". */
2301 trans
= btrfs_start_transaction(root
, 0);
2302 if (IS_ERR(trans
)) {
2303 ret
= PTR_ERR(trans
);
2309 device
->disk_total_bytes
= new_size
;
2310 /* Now btrfs_update_device() will change the on-disk size. */
2311 ret
= btrfs_update_device(trans
, device
);
2313 unlock_chunks(root
);
2314 btrfs_end_transaction(trans
, root
);
2317 WARN_ON(diff
> old_total
);
2318 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
2319 unlock_chunks(root
);
2320 btrfs_end_transaction(trans
, root
);
2322 btrfs_free_path(path
);
2326 static int btrfs_add_system_chunk(struct btrfs_trans_handle
*trans
,
2327 struct btrfs_root
*root
,
2328 struct btrfs_key
*key
,
2329 struct btrfs_chunk
*chunk
, int item_size
)
2331 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2332 struct btrfs_disk_key disk_key
;
2336 array_size
= btrfs_super_sys_array_size(super_copy
);
2337 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
2340 ptr
= super_copy
->sys_chunk_array
+ array_size
;
2341 btrfs_cpu_key_to_disk(&disk_key
, key
);
2342 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
2343 ptr
+= sizeof(disk_key
);
2344 memcpy(ptr
, chunk
, item_size
);
2345 item_size
+= sizeof(disk_key
);
2346 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
2351 * sort the devices in descending order by max_avail, total_avail
2353 static int btrfs_cmp_device_info(const void *a
, const void *b
)
2355 const struct btrfs_device_info
*di_a
= a
;
2356 const struct btrfs_device_info
*di_b
= b
;
2358 if (di_a
->max_avail
> di_b
->max_avail
)
2360 if (di_a
->max_avail
< di_b
->max_avail
)
2362 if (di_a
->total_avail
> di_b
->total_avail
)
2364 if (di_a
->total_avail
< di_b
->total_avail
)
2369 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2370 struct btrfs_root
*extent_root
,
2371 struct map_lookup
**map_ret
,
2372 u64
*num_bytes_out
, u64
*stripe_size_out
,
2373 u64 start
, u64 type
)
2375 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
2376 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
2377 struct list_head
*cur
;
2378 struct map_lookup
*map
= NULL
;
2379 struct extent_map_tree
*em_tree
;
2380 struct extent_map
*em
;
2381 struct btrfs_device_info
*devices_info
= NULL
;
2383 int num_stripes
; /* total number of stripes to allocate */
2384 int sub_stripes
; /* sub_stripes info for map */
2385 int dev_stripes
; /* stripes per dev */
2386 int devs_max
; /* max devs to use */
2387 int devs_min
; /* min devs needed */
2388 int devs_increment
; /* ndevs has to be a multiple of this */
2389 int ncopies
; /* how many copies to data has */
2391 u64 max_stripe_size
;
2399 if ((type
& BTRFS_BLOCK_GROUP_RAID1
) &&
2400 (type
& BTRFS_BLOCK_GROUP_DUP
)) {
2402 type
&= ~BTRFS_BLOCK_GROUP_DUP
;
2405 if (list_empty(&fs_devices
->alloc_list
))
2412 devs_max
= 0; /* 0 == as many as possible */
2416 * define the properties of each RAID type.
2417 * FIXME: move this to a global table and use it in all RAID
2420 if (type
& (BTRFS_BLOCK_GROUP_DUP
)) {
2424 } else if (type
& (BTRFS_BLOCK_GROUP_RAID0
)) {
2426 } else if (type
& (BTRFS_BLOCK_GROUP_RAID1
)) {
2431 } else if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2440 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
2441 max_stripe_size
= 1024 * 1024 * 1024;
2442 max_chunk_size
= 10 * max_stripe_size
;
2443 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
2444 max_stripe_size
= 256 * 1024 * 1024;
2445 max_chunk_size
= max_stripe_size
;
2446 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2447 max_stripe_size
= 8 * 1024 * 1024;
2448 max_chunk_size
= 2 * max_stripe_size
;
2450 printk(KERN_ERR
"btrfs: invalid chunk type 0x%llx requested\n",
2455 /* we don't want a chunk larger than 10% of writeable space */
2456 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
2459 devices_info
= kzalloc(sizeof(*devices_info
) * fs_devices
->rw_devices
,
2464 cur
= fs_devices
->alloc_list
.next
;
2467 * in the first pass through the devices list, we gather information
2468 * about the available holes on each device.
2471 while (cur
!= &fs_devices
->alloc_list
) {
2472 struct btrfs_device
*device
;
2476 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
2480 if (!device
->writeable
) {
2482 "btrfs: read-only device in alloc_list\n");
2487 if (!device
->in_fs_metadata
)
2490 if (device
->total_bytes
> device
->bytes_used
)
2491 total_avail
= device
->total_bytes
- device
->bytes_used
;
2495 /* If there is no space on this device, skip it. */
2496 if (total_avail
== 0)
2499 ret
= find_free_dev_extent(trans
, device
,
2500 max_stripe_size
* dev_stripes
,
2501 &dev_offset
, &max_avail
);
2502 if (ret
&& ret
!= -ENOSPC
)
2506 max_avail
= max_stripe_size
* dev_stripes
;
2508 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
2511 devices_info
[ndevs
].dev_offset
= dev_offset
;
2512 devices_info
[ndevs
].max_avail
= max_avail
;
2513 devices_info
[ndevs
].total_avail
= total_avail
;
2514 devices_info
[ndevs
].dev
= device
;
2519 * now sort the devices by hole size / available space
2521 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
2522 btrfs_cmp_device_info
, NULL
);
2524 /* round down to number of usable stripes */
2525 ndevs
-= ndevs
% devs_increment
;
2527 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
2532 if (devs_max
&& ndevs
> devs_max
)
2535 * the primary goal is to maximize the number of stripes, so use as many
2536 * devices as possible, even if the stripes are not maximum sized.
2538 stripe_size
= devices_info
[ndevs
-1].max_avail
;
2539 num_stripes
= ndevs
* dev_stripes
;
2541 if (stripe_size
* num_stripes
> max_chunk_size
* ncopies
) {
2542 stripe_size
= max_chunk_size
* ncopies
;
2543 do_div(stripe_size
, num_stripes
);
2546 do_div(stripe_size
, dev_stripes
);
2547 do_div(stripe_size
, BTRFS_STRIPE_LEN
);
2548 stripe_size
*= BTRFS_STRIPE_LEN
;
2550 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
2555 map
->num_stripes
= num_stripes
;
2557 for (i
= 0; i
< ndevs
; ++i
) {
2558 for (j
= 0; j
< dev_stripes
; ++j
) {
2559 int s
= i
* dev_stripes
+ j
;
2560 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
2561 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
2565 map
->sector_size
= extent_root
->sectorsize
;
2566 map
->stripe_len
= BTRFS_STRIPE_LEN
;
2567 map
->io_align
= BTRFS_STRIPE_LEN
;
2568 map
->io_width
= BTRFS_STRIPE_LEN
;
2570 map
->sub_stripes
= sub_stripes
;
2573 num_bytes
= stripe_size
* (num_stripes
/ ncopies
);
2575 *stripe_size_out
= stripe_size
;
2576 *num_bytes_out
= num_bytes
;
2578 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
2580 em
= alloc_extent_map();
2585 em
->bdev
= (struct block_device
*)map
;
2587 em
->len
= num_bytes
;
2588 em
->block_start
= 0;
2589 em
->block_len
= em
->len
;
2591 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
2592 write_lock(&em_tree
->lock
);
2593 ret
= add_extent_mapping(em_tree
, em
);
2594 write_unlock(&em_tree
->lock
);
2596 free_extent_map(em
);
2598 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
2599 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2603 for (i
= 0; i
< map
->num_stripes
; ++i
) {
2604 struct btrfs_device
*device
;
2607 device
= map
->stripes
[i
].dev
;
2608 dev_offset
= map
->stripes
[i
].physical
;
2610 ret
= btrfs_alloc_dev_extent(trans
, device
,
2611 info
->chunk_root
->root_key
.objectid
,
2612 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2613 start
, dev_offset
, stripe_size
);
2617 kfree(devices_info
);
2622 kfree(devices_info
);
2626 static int __finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
2627 struct btrfs_root
*extent_root
,
2628 struct map_lookup
*map
, u64 chunk_offset
,
2629 u64 chunk_size
, u64 stripe_size
)
2632 struct btrfs_key key
;
2633 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2634 struct btrfs_device
*device
;
2635 struct btrfs_chunk
*chunk
;
2636 struct btrfs_stripe
*stripe
;
2637 size_t item_size
= btrfs_chunk_item_size(map
->num_stripes
);
2641 chunk
= kzalloc(item_size
, GFP_NOFS
);
2646 while (index
< map
->num_stripes
) {
2647 device
= map
->stripes
[index
].dev
;
2648 device
->bytes_used
+= stripe_size
;
2649 ret
= btrfs_update_device(trans
, device
);
2654 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
2655 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
2657 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
2660 stripe
= &chunk
->stripe
;
2661 while (index
< map
->num_stripes
) {
2662 device
= map
->stripes
[index
].dev
;
2663 dev_offset
= map
->stripes
[index
].physical
;
2665 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
2666 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
2667 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
2672 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
2673 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
2674 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
2675 btrfs_set_stack_chunk_type(chunk
, map
->type
);
2676 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
2677 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
2678 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
2679 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
2680 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
2682 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2683 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2684 key
.offset
= chunk_offset
;
2686 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
2689 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2690 ret
= btrfs_add_system_chunk(trans
, chunk_root
, &key
, chunk
,
2700 * Chunk allocation falls into two parts. The first part does works
2701 * that make the new allocated chunk useable, but not do any operation
2702 * that modifies the chunk tree. The second part does the works that
2703 * require modifying the chunk tree. This division is important for the
2704 * bootstrap process of adding storage to a seed btrfs.
2706 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2707 struct btrfs_root
*extent_root
, u64 type
)
2712 struct map_lookup
*map
;
2713 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2716 ret
= find_next_chunk(chunk_root
, BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2721 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2722 &stripe_size
, chunk_offset
, type
);
2726 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2727 chunk_size
, stripe_size
);
2732 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
2733 struct btrfs_root
*root
,
2734 struct btrfs_device
*device
)
2737 u64 sys_chunk_offset
;
2741 u64 sys_stripe_size
;
2743 struct map_lookup
*map
;
2744 struct map_lookup
*sys_map
;
2745 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2746 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2749 ret
= find_next_chunk(fs_info
->chunk_root
,
2750 BTRFS_FIRST_CHUNK_TREE_OBJECTID
, &chunk_offset
);
2754 alloc_profile
= BTRFS_BLOCK_GROUP_METADATA
|
2755 (fs_info
->metadata_alloc_profile
&
2756 fs_info
->avail_metadata_alloc_bits
);
2757 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2759 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2760 &stripe_size
, chunk_offset
, alloc_profile
);
2763 sys_chunk_offset
= chunk_offset
+ chunk_size
;
2765 alloc_profile
= BTRFS_BLOCK_GROUP_SYSTEM
|
2766 (fs_info
->system_alloc_profile
&
2767 fs_info
->avail_system_alloc_bits
);
2768 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2770 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &sys_map
,
2771 &sys_chunk_size
, &sys_stripe_size
,
2772 sys_chunk_offset
, alloc_profile
);
2775 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
2779 * Modifying chunk tree needs allocating new blocks from both
2780 * system block group and metadata block group. So we only can
2781 * do operations require modifying the chunk tree after both
2782 * block groups were created.
2784 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2785 chunk_size
, stripe_size
);
2788 ret
= __finish_chunk_alloc(trans
, extent_root
, sys_map
,
2789 sys_chunk_offset
, sys_chunk_size
,
2795 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
2797 struct extent_map
*em
;
2798 struct map_lookup
*map
;
2799 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
2803 read_lock(&map_tree
->map_tree
.lock
);
2804 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2805 read_unlock(&map_tree
->map_tree
.lock
);
2809 if (btrfs_test_opt(root
, DEGRADED
)) {
2810 free_extent_map(em
);
2814 map
= (struct map_lookup
*)em
->bdev
;
2815 for (i
= 0; i
< map
->num_stripes
; i
++) {
2816 if (!map
->stripes
[i
].dev
->writeable
) {
2821 free_extent_map(em
);
2825 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
2827 extent_map_tree_init(&tree
->map_tree
);
2830 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
2832 struct extent_map
*em
;
2835 write_lock(&tree
->map_tree
.lock
);
2836 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
2838 remove_extent_mapping(&tree
->map_tree
, em
);
2839 write_unlock(&tree
->map_tree
.lock
);
2844 free_extent_map(em
);
2845 /* once for the tree */
2846 free_extent_map(em
);
2850 int btrfs_num_copies(struct btrfs_mapping_tree
*map_tree
, u64 logical
, u64 len
)
2852 struct extent_map
*em
;
2853 struct map_lookup
*map
;
2854 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2857 read_lock(&em_tree
->lock
);
2858 em
= lookup_extent_mapping(em_tree
, logical
, len
);
2859 read_unlock(&em_tree
->lock
);
2862 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2863 map
= (struct map_lookup
*)em
->bdev
;
2864 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
2865 ret
= map
->num_stripes
;
2866 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2867 ret
= map
->sub_stripes
;
2870 free_extent_map(em
);
2874 static int find_live_mirror(struct map_lookup
*map
, int first
, int num
,
2878 if (map
->stripes
[optimal
].dev
->bdev
)
2880 for (i
= first
; i
< first
+ num
; i
++) {
2881 if (map
->stripes
[i
].dev
->bdev
)
2884 /* we couldn't find one that doesn't fail. Just return something
2885 * and the io error handling code will clean up eventually
2890 static int __btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2891 u64 logical
, u64
*length
,
2892 struct btrfs_bio
**bbio_ret
,
2895 struct extent_map
*em
;
2896 struct map_lookup
*map
;
2897 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2900 u64 stripe_end_offset
;
2904 int stripes_allocated
= 8;
2905 int stripes_required
= 1;
2910 struct btrfs_bio
*bbio
= NULL
;
2912 if (bbio_ret
&& !(rw
& (REQ_WRITE
| REQ_DISCARD
)))
2913 stripes_allocated
= 1;
2916 bbio
= kzalloc(btrfs_bio_size(stripes_allocated
),
2921 atomic_set(&bbio
->error
, 0);
2924 read_lock(&em_tree
->lock
);
2925 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
2926 read_unlock(&em_tree
->lock
);
2929 printk(KERN_CRIT
"unable to find logical %llu len %llu\n",
2930 (unsigned long long)logical
,
2931 (unsigned long long)*length
);
2935 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2936 map
= (struct map_lookup
*)em
->bdev
;
2937 offset
= logical
- em
->start
;
2939 if (mirror_num
> map
->num_stripes
)
2942 /* if our btrfs_bio struct is too small, back off and try again */
2943 if (rw
& REQ_WRITE
) {
2944 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
2945 BTRFS_BLOCK_GROUP_DUP
)) {
2946 stripes_required
= map
->num_stripes
;
2948 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2949 stripes_required
= map
->sub_stripes
;
2953 if (rw
& REQ_DISCARD
) {
2954 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
2955 BTRFS_BLOCK_GROUP_RAID1
|
2956 BTRFS_BLOCK_GROUP_DUP
|
2957 BTRFS_BLOCK_GROUP_RAID10
)) {
2958 stripes_required
= map
->num_stripes
;
2961 if (bbio_ret
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
2962 stripes_allocated
< stripes_required
) {
2963 stripes_allocated
= map
->num_stripes
;
2964 free_extent_map(em
);
2970 * stripe_nr counts the total number of stripes we have to stride
2971 * to get to this block
2973 do_div(stripe_nr
, map
->stripe_len
);
2975 stripe_offset
= stripe_nr
* map
->stripe_len
;
2976 BUG_ON(offset
< stripe_offset
);
2978 /* stripe_offset is the offset of this block in its stripe*/
2979 stripe_offset
= offset
- stripe_offset
;
2981 if (rw
& REQ_DISCARD
)
2982 *length
= min_t(u64
, em
->len
- offset
, *length
);
2983 else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
2984 BTRFS_BLOCK_GROUP_RAID1
|
2985 BTRFS_BLOCK_GROUP_RAID10
|
2986 BTRFS_BLOCK_GROUP_DUP
)) {
2987 /* we limit the length of each bio to what fits in a stripe */
2988 *length
= min_t(u64
, em
->len
- offset
,
2989 map
->stripe_len
- stripe_offset
);
2991 *length
= em
->len
- offset
;
2999 stripe_nr_orig
= stripe_nr
;
3000 stripe_nr_end
= (offset
+ *length
+ map
->stripe_len
- 1) &
3001 (~(map
->stripe_len
- 1));
3002 do_div(stripe_nr_end
, map
->stripe_len
);
3003 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
3005 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3006 if (rw
& REQ_DISCARD
)
3007 num_stripes
= min_t(u64
, map
->num_stripes
,
3008 stripe_nr_end
- stripe_nr_orig
);
3009 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
3010 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
3011 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
3012 num_stripes
= map
->num_stripes
;
3013 else if (mirror_num
)
3014 stripe_index
= mirror_num
- 1;
3016 stripe_index
= find_live_mirror(map
, 0,
3018 current
->pid
% map
->num_stripes
);
3019 mirror_num
= stripe_index
+ 1;
3022 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
3023 if (rw
& (REQ_WRITE
| REQ_DISCARD
)) {
3024 num_stripes
= map
->num_stripes
;
3025 } else if (mirror_num
) {
3026 stripe_index
= mirror_num
- 1;
3031 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3032 int factor
= map
->num_stripes
/ map
->sub_stripes
;
3034 stripe_index
= do_div(stripe_nr
, factor
);
3035 stripe_index
*= map
->sub_stripes
;
3038 num_stripes
= map
->sub_stripes
;
3039 else if (rw
& REQ_DISCARD
)
3040 num_stripes
= min_t(u64
, map
->sub_stripes
*
3041 (stripe_nr_end
- stripe_nr_orig
),
3043 else if (mirror_num
)
3044 stripe_index
+= mirror_num
- 1;
3046 stripe_index
= find_live_mirror(map
, stripe_index
,
3047 map
->sub_stripes
, stripe_index
+
3048 current
->pid
% map
->sub_stripes
);
3049 mirror_num
= stripe_index
+ 1;
3053 * after this do_div call, stripe_nr is the number of stripes
3054 * on this device we have to walk to find the data, and
3055 * stripe_index is the number of our device in the stripe array
3057 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
3058 mirror_num
= stripe_index
+ 1;
3060 BUG_ON(stripe_index
>= map
->num_stripes
);
3062 if (rw
& REQ_DISCARD
) {
3063 for (i
= 0; i
< num_stripes
; i
++) {
3064 bbio
->stripes
[i
].physical
=
3065 map
->stripes
[stripe_index
].physical
+
3066 stripe_offset
+ stripe_nr
* map
->stripe_len
;
3067 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
3069 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3071 u32 last_stripe
= 0;
3074 div_u64_rem(stripe_nr_end
- 1,
3078 for (j
= 0; j
< map
->num_stripes
; j
++) {
3081 div_u64_rem(stripe_nr_end
- 1 - j
,
3082 map
->num_stripes
, &test
);
3083 if (test
== stripe_index
)
3086 stripes
= stripe_nr_end
- 1 - j
;
3087 do_div(stripes
, map
->num_stripes
);
3088 bbio
->stripes
[i
].length
= map
->stripe_len
*
3089 (stripes
- stripe_nr
+ 1);
3092 bbio
->stripes
[i
].length
-=
3096 if (stripe_index
== last_stripe
)
3097 bbio
->stripes
[i
].length
-=
3099 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3102 int factor
= map
->num_stripes
/
3104 u32 last_stripe
= 0;
3106 div_u64_rem(stripe_nr_end
- 1,
3107 factor
, &last_stripe
);
3108 last_stripe
*= map
->sub_stripes
;
3110 for (j
= 0; j
< factor
; j
++) {
3113 div_u64_rem(stripe_nr_end
- 1 - j
,
3117 stripe_index
/ map
->sub_stripes
)
3120 stripes
= stripe_nr_end
- 1 - j
;
3121 do_div(stripes
, factor
);
3122 bbio
->stripes
[i
].length
= map
->stripe_len
*
3123 (stripes
- stripe_nr
+ 1);
3125 if (i
< map
->sub_stripes
) {
3126 bbio
->stripes
[i
].length
-=
3128 if (i
== map
->sub_stripes
- 1)
3131 if (stripe_index
>= last_stripe
&&
3132 stripe_index
<= (last_stripe
+
3133 map
->sub_stripes
- 1)) {
3134 bbio
->stripes
[i
].length
-=
3138 bbio
->stripes
[i
].length
= *length
;
3141 if (stripe_index
== map
->num_stripes
) {
3142 /* This could only happen for RAID0/10 */
3148 for (i
= 0; i
< num_stripes
; i
++) {
3149 bbio
->stripes
[i
].physical
=
3150 map
->stripes
[stripe_index
].physical
+
3152 stripe_nr
* map
->stripe_len
;
3153 bbio
->stripes
[i
].dev
=
3154 map
->stripes
[stripe_index
].dev
;
3160 bbio
->num_stripes
= num_stripes
;
3161 bbio
->max_errors
= max_errors
;
3162 bbio
->mirror_num
= mirror_num
;
3165 free_extent_map(em
);
3169 int btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
3170 u64 logical
, u64
*length
,
3171 struct btrfs_bio
**bbio_ret
, int mirror_num
)
3173 return __btrfs_map_block(map_tree
, rw
, logical
, length
, bbio_ret
,
3177 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
3178 u64 chunk_start
, u64 physical
, u64 devid
,
3179 u64
**logical
, int *naddrs
, int *stripe_len
)
3181 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
3182 struct extent_map
*em
;
3183 struct map_lookup
*map
;
3190 read_lock(&em_tree
->lock
);
3191 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
3192 read_unlock(&em_tree
->lock
);
3194 BUG_ON(!em
|| em
->start
!= chunk_start
);
3195 map
= (struct map_lookup
*)em
->bdev
;
3198 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
3199 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
3200 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
3201 do_div(length
, map
->num_stripes
);
3203 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
3206 for (i
= 0; i
< map
->num_stripes
; i
++) {
3207 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
3209 if (map
->stripes
[i
].physical
> physical
||
3210 map
->stripes
[i
].physical
+ length
<= physical
)
3213 stripe_nr
= physical
- map
->stripes
[i
].physical
;
3214 do_div(stripe_nr
, map
->stripe_len
);
3216 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3217 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
3218 do_div(stripe_nr
, map
->sub_stripes
);
3219 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3220 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
3222 bytenr
= chunk_start
+ stripe_nr
* map
->stripe_len
;
3223 WARN_ON(nr
>= map
->num_stripes
);
3224 for (j
= 0; j
< nr
; j
++) {
3225 if (buf
[j
] == bytenr
)
3229 WARN_ON(nr
>= map
->num_stripes
);
3236 *stripe_len
= map
->stripe_len
;
3238 free_extent_map(em
);
3242 static void btrfs_end_bio(struct bio
*bio
, int err
)
3244 struct btrfs_bio
*bbio
= bio
->bi_private
;
3245 int is_orig_bio
= 0;
3248 atomic_inc(&bbio
->error
);
3250 if (bio
== bbio
->orig_bio
)
3253 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
3256 bio
= bbio
->orig_bio
;
3258 bio
->bi_private
= bbio
->private;
3259 bio
->bi_end_io
= bbio
->end_io
;
3260 bio
->bi_bdev
= (struct block_device
*)
3261 (unsigned long)bbio
->mirror_num
;
3262 /* only send an error to the higher layers if it is
3263 * beyond the tolerance of the multi-bio
3265 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
3269 * this bio is actually up to date, we didn't
3270 * go over the max number of errors
3272 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3277 bio_endio(bio
, err
);
3278 } else if (!is_orig_bio
) {
3283 struct async_sched
{
3286 struct btrfs_fs_info
*info
;
3287 struct btrfs_work work
;
3291 * see run_scheduled_bios for a description of why bios are collected for
3294 * This will add one bio to the pending list for a device and make sure
3295 * the work struct is scheduled.
3297 static noinline
int schedule_bio(struct btrfs_root
*root
,
3298 struct btrfs_device
*device
,
3299 int rw
, struct bio
*bio
)
3301 int should_queue
= 1;
3302 struct btrfs_pending_bios
*pending_bios
;
3304 /* don't bother with additional async steps for reads, right now */
3305 if (!(rw
& REQ_WRITE
)) {
3307 submit_bio(rw
, bio
);
3313 * nr_async_bios allows us to reliably return congestion to the
3314 * higher layers. Otherwise, the async bio makes it appear we have
3315 * made progress against dirty pages when we've really just put it
3316 * on a queue for later
3318 atomic_inc(&root
->fs_info
->nr_async_bios
);
3319 WARN_ON(bio
->bi_next
);
3320 bio
->bi_next
= NULL
;
3323 spin_lock(&device
->io_lock
);
3324 if (bio
->bi_rw
& REQ_SYNC
)
3325 pending_bios
= &device
->pending_sync_bios
;
3327 pending_bios
= &device
->pending_bios
;
3329 if (pending_bios
->tail
)
3330 pending_bios
->tail
->bi_next
= bio
;
3332 pending_bios
->tail
= bio
;
3333 if (!pending_bios
->head
)
3334 pending_bios
->head
= bio
;
3335 if (device
->running_pending
)
3338 spin_unlock(&device
->io_lock
);
3341 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
3346 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
3347 int mirror_num
, int async_submit
)
3349 struct btrfs_mapping_tree
*map_tree
;
3350 struct btrfs_device
*dev
;
3351 struct bio
*first_bio
= bio
;
3352 u64 logical
= (u64
)bio
->bi_sector
<< 9;
3358 struct btrfs_bio
*bbio
= NULL
;
3360 length
= bio
->bi_size
;
3361 map_tree
= &root
->fs_info
->mapping_tree
;
3362 map_length
= length
;
3364 ret
= btrfs_map_block(map_tree
, rw
, logical
, &map_length
, &bbio
,
3368 total_devs
= bbio
->num_stripes
;
3369 if (map_length
< length
) {
3370 printk(KERN_CRIT
"mapping failed logical %llu bio len %llu "
3371 "len %llu\n", (unsigned long long)logical
,
3372 (unsigned long long)length
,
3373 (unsigned long long)map_length
);
3377 bbio
->orig_bio
= first_bio
;
3378 bbio
->private = first_bio
->bi_private
;
3379 bbio
->end_io
= first_bio
->bi_end_io
;
3380 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
3382 while (dev_nr
< total_devs
) {
3383 if (dev_nr
< total_devs
- 1) {
3384 bio
= bio_clone(first_bio
, GFP_NOFS
);
3389 bio
->bi_private
= bbio
;
3390 bio
->bi_end_io
= btrfs_end_bio
;
3391 bio
->bi_sector
= bbio
->stripes
[dev_nr
].physical
>> 9;
3392 dev
= bbio
->stripes
[dev_nr
].dev
;
3393 if (dev
&& dev
->bdev
&& (rw
!= WRITE
|| dev
->writeable
)) {
3394 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
3395 "(%s id %llu), size=%u\n", rw
,
3396 (u64
)bio
->bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
3397 dev
->name
, dev
->devid
, bio
->bi_size
);
3398 bio
->bi_bdev
= dev
->bdev
;
3400 schedule_bio(root
, dev
, rw
, bio
);
3402 submit_bio(rw
, bio
);
3404 bio
->bi_bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3405 bio
->bi_sector
= logical
>> 9;
3406 bio_endio(bio
, -EIO
);
3413 struct btrfs_device
*btrfs_find_device(struct btrfs_root
*root
, u64 devid
,
3416 struct btrfs_device
*device
;
3417 struct btrfs_fs_devices
*cur_devices
;
3419 cur_devices
= root
->fs_info
->fs_devices
;
3420 while (cur_devices
) {
3422 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3423 device
= __find_device(&cur_devices
->devices
,
3428 cur_devices
= cur_devices
->seed
;
3433 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
3434 u64 devid
, u8
*dev_uuid
)
3436 struct btrfs_device
*device
;
3437 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
3439 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
3442 list_add(&device
->dev_list
,
3443 &fs_devices
->devices
);
3444 device
->dev_root
= root
->fs_info
->dev_root
;
3445 device
->devid
= devid
;
3446 device
->work
.func
= pending_bios_fn
;
3447 device
->fs_devices
= fs_devices
;
3448 device
->missing
= 1;
3449 fs_devices
->num_devices
++;
3450 fs_devices
->missing_devices
++;
3451 spin_lock_init(&device
->io_lock
);
3452 INIT_LIST_HEAD(&device
->dev_alloc_list
);
3453 memcpy(device
->uuid
, dev_uuid
, BTRFS_UUID_SIZE
);
3457 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
3458 struct extent_buffer
*leaf
,
3459 struct btrfs_chunk
*chunk
)
3461 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
3462 struct map_lookup
*map
;
3463 struct extent_map
*em
;
3467 u8 uuid
[BTRFS_UUID_SIZE
];
3472 logical
= key
->offset
;
3473 length
= btrfs_chunk_length(leaf
, chunk
);
3475 read_lock(&map_tree
->map_tree
.lock
);
3476 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
3477 read_unlock(&map_tree
->map_tree
.lock
);
3479 /* already mapped? */
3480 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
3481 free_extent_map(em
);
3484 free_extent_map(em
);
3487 em
= alloc_extent_map();
3490 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3491 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
3493 free_extent_map(em
);
3497 em
->bdev
= (struct block_device
*)map
;
3498 em
->start
= logical
;
3500 em
->block_start
= 0;
3501 em
->block_len
= em
->len
;
3503 map
->num_stripes
= num_stripes
;
3504 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
3505 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
3506 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
3507 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
3508 map
->type
= btrfs_chunk_type(leaf
, chunk
);
3509 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
3510 for (i
= 0; i
< num_stripes
; i
++) {
3511 map
->stripes
[i
].physical
=
3512 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
3513 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
3514 read_extent_buffer(leaf
, uuid
, (unsigned long)
3515 btrfs_stripe_dev_uuid_nr(chunk
, i
),
3517 map
->stripes
[i
].dev
= btrfs_find_device(root
, devid
, uuid
,
3519 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
3521 free_extent_map(em
);
3524 if (!map
->stripes
[i
].dev
) {
3525 map
->stripes
[i
].dev
=
3526 add_missing_dev(root
, devid
, uuid
);
3527 if (!map
->stripes
[i
].dev
) {
3529 free_extent_map(em
);
3533 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
3536 write_lock(&map_tree
->map_tree
.lock
);
3537 ret
= add_extent_mapping(&map_tree
->map_tree
, em
);
3538 write_unlock(&map_tree
->map_tree
.lock
);
3540 free_extent_map(em
);
3545 static int fill_device_from_item(struct extent_buffer
*leaf
,
3546 struct btrfs_dev_item
*dev_item
,
3547 struct btrfs_device
*device
)
3551 device
->devid
= btrfs_device_id(leaf
, dev_item
);
3552 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
3553 device
->total_bytes
= device
->disk_total_bytes
;
3554 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
3555 device
->type
= btrfs_device_type(leaf
, dev_item
);
3556 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
3557 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
3558 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
3560 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
3561 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
3566 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
3568 struct btrfs_fs_devices
*fs_devices
;
3571 mutex_lock(&uuid_mutex
);
3573 fs_devices
= root
->fs_info
->fs_devices
->seed
;
3574 while (fs_devices
) {
3575 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3579 fs_devices
= fs_devices
->seed
;
3582 fs_devices
= find_fsid(fsid
);
3588 fs_devices
= clone_fs_devices(fs_devices
);
3589 if (IS_ERR(fs_devices
)) {
3590 ret
= PTR_ERR(fs_devices
);
3594 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
3595 root
->fs_info
->bdev_holder
);
3599 if (!fs_devices
->seeding
) {
3600 __btrfs_close_devices(fs_devices
);
3601 free_fs_devices(fs_devices
);
3606 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
3607 root
->fs_info
->fs_devices
->seed
= fs_devices
;
3609 mutex_unlock(&uuid_mutex
);
3613 static int read_one_dev(struct btrfs_root
*root
,
3614 struct extent_buffer
*leaf
,
3615 struct btrfs_dev_item
*dev_item
)
3617 struct btrfs_device
*device
;
3620 u8 fs_uuid
[BTRFS_UUID_SIZE
];
3621 u8 dev_uuid
[BTRFS_UUID_SIZE
];
3623 devid
= btrfs_device_id(leaf
, dev_item
);
3624 read_extent_buffer(leaf
, dev_uuid
,
3625 (unsigned long)btrfs_device_uuid(dev_item
),
3627 read_extent_buffer(leaf
, fs_uuid
,
3628 (unsigned long)btrfs_device_fsid(dev_item
),
3631 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
3632 ret
= open_seed_devices(root
, fs_uuid
);
3633 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
3637 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
3638 if (!device
|| !device
->bdev
) {
3639 if (!btrfs_test_opt(root
, DEGRADED
))
3643 printk(KERN_WARNING
"warning devid %llu missing\n",
3644 (unsigned long long)devid
);
3645 device
= add_missing_dev(root
, devid
, dev_uuid
);
3648 } else if (!device
->missing
) {
3650 * this happens when a device that was properly setup
3651 * in the device info lists suddenly goes bad.
3652 * device->bdev is NULL, and so we have to set
3653 * device->missing to one here
3655 root
->fs_info
->fs_devices
->missing_devices
++;
3656 device
->missing
= 1;
3660 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
3661 BUG_ON(device
->writeable
);
3662 if (device
->generation
!=
3663 btrfs_device_generation(leaf
, dev_item
))
3667 fill_device_from_item(leaf
, dev_item
, device
);
3668 device
->dev_root
= root
->fs_info
->dev_root
;
3669 device
->in_fs_metadata
= 1;
3670 if (device
->writeable
) {
3671 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
3672 spin_lock(&root
->fs_info
->free_chunk_lock
);
3673 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
3675 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3681 int btrfs_read_sys_array(struct btrfs_root
*root
)
3683 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3684 struct extent_buffer
*sb
;
3685 struct btrfs_disk_key
*disk_key
;
3686 struct btrfs_chunk
*chunk
;
3688 unsigned long sb_ptr
;
3694 struct btrfs_key key
;
3696 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
3697 BTRFS_SUPER_INFO_SIZE
);
3700 btrfs_set_buffer_uptodate(sb
);
3701 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
3703 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
3704 array_size
= btrfs_super_sys_array_size(super_copy
);
3706 ptr
= super_copy
->sys_chunk_array
;
3707 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
3710 while (cur
< array_size
) {
3711 disk_key
= (struct btrfs_disk_key
*)ptr
;
3712 btrfs_disk_key_to_cpu(&key
, disk_key
);
3714 len
= sizeof(*disk_key
); ptr
+= len
;
3718 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3719 chunk
= (struct btrfs_chunk
*)sb_ptr
;
3720 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
3723 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
3724 len
= btrfs_chunk_item_size(num_stripes
);
3733 free_extent_buffer(sb
);
3737 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
3739 struct btrfs_path
*path
;
3740 struct extent_buffer
*leaf
;
3741 struct btrfs_key key
;
3742 struct btrfs_key found_key
;
3746 root
= root
->fs_info
->chunk_root
;
3748 path
= btrfs_alloc_path();
3752 /* first we search for all of the device items, and then we
3753 * read in all of the chunk items. This way we can create chunk
3754 * mappings that reference all of the devices that are afound
3756 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
3760 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3764 leaf
= path
->nodes
[0];
3765 slot
= path
->slots
[0];
3766 if (slot
>= btrfs_header_nritems(leaf
)) {
3767 ret
= btrfs_next_leaf(root
, path
);
3774 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3775 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3776 if (found_key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
)
3778 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
3779 struct btrfs_dev_item
*dev_item
;
3780 dev_item
= btrfs_item_ptr(leaf
, slot
,
3781 struct btrfs_dev_item
);
3782 ret
= read_one_dev(root
, leaf
, dev_item
);
3786 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3787 struct btrfs_chunk
*chunk
;
3788 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3789 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
3795 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3797 btrfs_release_path(path
);
3802 btrfs_free_path(path
);