2 * Copyright © 2014 Broadcom
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
32 #include "uapi/drm/vc4_drm.h"
35 #include "vc4_trace.h"
38 vc4_queue_hangcheck(struct drm_device
*dev
)
40 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
42 mod_timer(&vc4
->hangcheck
.timer
,
43 round_jiffies_up(jiffies
+ msecs_to_jiffies(100)));
46 struct vc4_hang_state
{
47 struct drm_vc4_get_hang_state user_state
;
50 struct drm_gem_object
**bo
;
54 vc4_free_hang_state(struct drm_device
*dev
, struct vc4_hang_state
*state
)
58 for (i
= 0; i
< state
->user_state
.bo_count
; i
++)
59 drm_gem_object_put_unlocked(state
->bo
[i
]);
65 vc4_get_hang_state_ioctl(struct drm_device
*dev
, void *data
,
66 struct drm_file
*file_priv
)
68 struct drm_vc4_get_hang_state
*get_state
= data
;
69 struct drm_vc4_get_hang_state_bo
*bo_state
;
70 struct vc4_hang_state
*kernel_state
;
71 struct drm_vc4_get_hang_state
*state
;
72 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
73 unsigned long irqflags
;
77 spin_lock_irqsave(&vc4
->job_lock
, irqflags
);
78 kernel_state
= vc4
->hang_state
;
80 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
83 state
= &kernel_state
->user_state
;
85 /* If the user's array isn't big enough, just return the
86 * required array size.
88 if (get_state
->bo_count
< state
->bo_count
) {
89 get_state
->bo_count
= state
->bo_count
;
90 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
94 vc4
->hang_state
= NULL
;
95 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
97 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
98 state
->bo
= get_state
->bo
;
99 memcpy(get_state
, state
, sizeof(*state
));
101 bo_state
= kcalloc(state
->bo_count
, sizeof(*bo_state
), GFP_KERNEL
);
107 for (i
= 0; i
< state
->bo_count
; i
++) {
108 struct vc4_bo
*vc4_bo
= to_vc4_bo(kernel_state
->bo
[i
]);
111 ret
= drm_gem_handle_create(file_priv
, kernel_state
->bo
[i
],
116 goto err_delete_handle
;
118 bo_state
[i
].handle
= handle
;
119 bo_state
[i
].paddr
= vc4_bo
->base
.paddr
;
120 bo_state
[i
].size
= vc4_bo
->base
.base
.size
;
123 if (copy_to_user(u64_to_user_ptr(get_state
->bo
),
125 state
->bo_count
* sizeof(*bo_state
)))
130 for (i
= 0; i
< state
->bo_count
; i
++)
131 drm_gem_handle_delete(file_priv
, bo_state
[i
].handle
);
135 vc4_free_hang_state(dev
, kernel_state
);
142 vc4_save_hang_state(struct drm_device
*dev
)
144 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
145 struct drm_vc4_get_hang_state
*state
;
146 struct vc4_hang_state
*kernel_state
;
147 struct vc4_exec_info
*exec
[2];
149 unsigned long irqflags
;
150 unsigned int i
, j
, k
, unref_list_count
;
152 kernel_state
= kcalloc(1, sizeof(*kernel_state
), GFP_KERNEL
);
156 state
= &kernel_state
->user_state
;
158 spin_lock_irqsave(&vc4
->job_lock
, irqflags
);
159 exec
[0] = vc4_first_bin_job(vc4
);
160 exec
[1] = vc4_first_render_job(vc4
);
161 if (!exec
[0] && !exec
[1]) {
162 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
166 /* Get the bos from both binner and renderer into hang state. */
168 for (i
= 0; i
< 2; i
++) {
172 unref_list_count
= 0;
173 list_for_each_entry(bo
, &exec
[i
]->unref_list
, unref_head
)
175 state
->bo_count
+= exec
[i
]->bo_count
+ unref_list_count
;
178 kernel_state
->bo
= kcalloc(state
->bo_count
,
179 sizeof(*kernel_state
->bo
), GFP_ATOMIC
);
181 if (!kernel_state
->bo
) {
182 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
187 for (i
= 0; i
< 2; i
++) {
191 for (j
= 0; j
< exec
[i
]->bo_count
; j
++) {
192 bo
= to_vc4_bo(&exec
[i
]->bo
[j
]->base
);
194 /* Retain BOs just in case they were marked purgeable.
195 * This prevents the BO from being purged before
196 * someone had a chance to dump the hang state.
198 WARN_ON(!refcount_read(&bo
->usecnt
));
199 refcount_inc(&bo
->usecnt
);
200 drm_gem_object_get(&exec
[i
]->bo
[j
]->base
);
201 kernel_state
->bo
[k
++] = &exec
[i
]->bo
[j
]->base
;
204 list_for_each_entry(bo
, &exec
[i
]->unref_list
, unref_head
) {
205 /* No need to retain BOs coming from the ->unref_list
206 * because they are naturally unpurgeable.
208 drm_gem_object_get(&bo
->base
.base
);
209 kernel_state
->bo
[k
++] = &bo
->base
.base
;
213 WARN_ON_ONCE(k
!= state
->bo_count
);
216 state
->start_bin
= exec
[0]->ct0ca
;
218 state
->start_render
= exec
[1]->ct1ca
;
220 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
222 state
->ct0ca
= V3D_READ(V3D_CTNCA(0));
223 state
->ct0ea
= V3D_READ(V3D_CTNEA(0));
225 state
->ct1ca
= V3D_READ(V3D_CTNCA(1));
226 state
->ct1ea
= V3D_READ(V3D_CTNEA(1));
228 state
->ct0cs
= V3D_READ(V3D_CTNCS(0));
229 state
->ct1cs
= V3D_READ(V3D_CTNCS(1));
231 state
->ct0ra0
= V3D_READ(V3D_CT00RA0
);
232 state
->ct1ra0
= V3D_READ(V3D_CT01RA0
);
234 state
->bpca
= V3D_READ(V3D_BPCA
);
235 state
->bpcs
= V3D_READ(V3D_BPCS
);
236 state
->bpoa
= V3D_READ(V3D_BPOA
);
237 state
->bpos
= V3D_READ(V3D_BPOS
);
239 state
->vpmbase
= V3D_READ(V3D_VPMBASE
);
241 state
->dbge
= V3D_READ(V3D_DBGE
);
242 state
->fdbgo
= V3D_READ(V3D_FDBGO
);
243 state
->fdbgb
= V3D_READ(V3D_FDBGB
);
244 state
->fdbgr
= V3D_READ(V3D_FDBGR
);
245 state
->fdbgs
= V3D_READ(V3D_FDBGS
);
246 state
->errstat
= V3D_READ(V3D_ERRSTAT
);
248 /* We need to turn purgeable BOs into unpurgeable ones so that
249 * userspace has a chance to dump the hang state before the kernel
250 * decides to purge those BOs.
251 * Note that BO consistency at dump time cannot be guaranteed. For
252 * example, if the owner of these BOs decides to re-use them or mark
253 * them purgeable again there's nothing we can do to prevent it.
255 for (i
= 0; i
< kernel_state
->user_state
.bo_count
; i
++) {
256 struct vc4_bo
*bo
= to_vc4_bo(kernel_state
->bo
[i
]);
258 if (bo
->madv
== __VC4_MADV_NOTSUPP
)
261 mutex_lock(&bo
->madv_lock
);
262 if (!WARN_ON(bo
->madv
== __VC4_MADV_PURGED
))
263 bo
->madv
= VC4_MADV_WILLNEED
;
264 refcount_dec(&bo
->usecnt
);
265 mutex_unlock(&bo
->madv_lock
);
268 spin_lock_irqsave(&vc4
->job_lock
, irqflags
);
269 if (vc4
->hang_state
) {
270 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
271 vc4_free_hang_state(dev
, kernel_state
);
273 vc4
->hang_state
= kernel_state
;
274 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
279 vc4_reset(struct drm_device
*dev
)
281 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
283 DRM_INFO("Resetting GPU.\n");
285 mutex_lock(&vc4
->power_lock
);
286 if (vc4
->power_refcount
) {
287 /* Power the device off and back on the by dropping the
288 * reference on runtime PM.
290 pm_runtime_put_sync_suspend(&vc4
->v3d
->pdev
->dev
);
291 pm_runtime_get_sync(&vc4
->v3d
->pdev
->dev
);
293 mutex_unlock(&vc4
->power_lock
);
297 /* Rearm the hangcheck -- another job might have been waiting
298 * for our hung one to get kicked off, and vc4_irq_reset()
299 * would have started it.
301 vc4_queue_hangcheck(dev
);
305 vc4_reset_work(struct work_struct
*work
)
307 struct vc4_dev
*vc4
=
308 container_of(work
, struct vc4_dev
, hangcheck
.reset_work
);
310 vc4_save_hang_state(vc4
->dev
);
316 vc4_hangcheck_elapsed(struct timer_list
*t
)
318 struct vc4_dev
*vc4
= from_timer(vc4
, t
, hangcheck
.timer
);
319 struct drm_device
*dev
= vc4
->dev
;
320 uint32_t ct0ca
, ct1ca
;
321 unsigned long irqflags
;
322 struct vc4_exec_info
*bin_exec
, *render_exec
;
324 spin_lock_irqsave(&vc4
->job_lock
, irqflags
);
326 bin_exec
= vc4_first_bin_job(vc4
);
327 render_exec
= vc4_first_render_job(vc4
);
329 /* If idle, we can stop watching for hangs. */
330 if (!bin_exec
&& !render_exec
) {
331 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
335 ct0ca
= V3D_READ(V3D_CTNCA(0));
336 ct1ca
= V3D_READ(V3D_CTNCA(1));
338 /* If we've made any progress in execution, rearm the timer
341 if ((bin_exec
&& ct0ca
!= bin_exec
->last_ct0ca
) ||
342 (render_exec
&& ct1ca
!= render_exec
->last_ct1ca
)) {
344 bin_exec
->last_ct0ca
= ct0ca
;
346 render_exec
->last_ct1ca
= ct1ca
;
347 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
348 vc4_queue_hangcheck(dev
);
352 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
354 /* We've gone too long with no progress, reset. This has to
355 * be done from a work struct, since resetting can sleep and
356 * this timer hook isn't allowed to.
358 schedule_work(&vc4
->hangcheck
.reset_work
);
362 submit_cl(struct drm_device
*dev
, uint32_t thread
, uint32_t start
, uint32_t end
)
364 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
366 /* Set the current and end address of the control list.
367 * Writing the end register is what starts the job.
369 V3D_WRITE(V3D_CTNCA(thread
), start
);
370 V3D_WRITE(V3D_CTNEA(thread
), end
);
374 vc4_wait_for_seqno(struct drm_device
*dev
, uint64_t seqno
, uint64_t timeout_ns
,
377 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
379 unsigned long timeout_expire
;
382 if (vc4
->finished_seqno
>= seqno
)
388 timeout_expire
= jiffies
+ nsecs_to_jiffies(timeout_ns
);
390 trace_vc4_wait_for_seqno_begin(dev
, seqno
, timeout_ns
);
392 prepare_to_wait(&vc4
->job_wait_queue
, &wait
,
393 interruptible
? TASK_INTERRUPTIBLE
:
394 TASK_UNINTERRUPTIBLE
);
396 if (interruptible
&& signal_pending(current
)) {
401 if (vc4
->finished_seqno
>= seqno
)
404 if (timeout_ns
!= ~0ull) {
405 if (time_after_eq(jiffies
, timeout_expire
)) {
409 schedule_timeout(timeout_expire
- jiffies
);
415 finish_wait(&vc4
->job_wait_queue
, &wait
);
416 trace_vc4_wait_for_seqno_end(dev
, seqno
);
422 vc4_flush_caches(struct drm_device
*dev
)
424 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
426 /* Flush the GPU L2 caches. These caches sit on top of system
427 * L3 (the 128kb or so shared with the CPU), and are
428 * non-allocating in the L3.
430 V3D_WRITE(V3D_L2CACTL
,
433 V3D_WRITE(V3D_SLCACTL
,
434 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC
) |
435 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC
) |
436 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC
) |
437 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC
));
441 vc4_flush_texture_caches(struct drm_device
*dev
)
443 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
445 V3D_WRITE(V3D_L2CACTL
,
448 V3D_WRITE(V3D_SLCACTL
,
449 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC
) |
450 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC
));
453 /* Sets the registers for the next job to be actually be executed in
456 * The job_lock should be held during this.
459 vc4_submit_next_bin_job(struct drm_device
*dev
)
461 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
462 struct vc4_exec_info
*exec
;
465 exec
= vc4_first_bin_job(vc4
);
469 vc4_flush_caches(dev
);
471 /* Only start the perfmon if it was not already started by a previous
474 if (exec
->perfmon
&& vc4
->active_perfmon
!= exec
->perfmon
)
475 vc4_perfmon_start(vc4
, exec
->perfmon
);
477 /* Either put the job in the binner if it uses the binner, or
478 * immediately move it to the to-be-rendered queue.
480 if (exec
->ct0ca
!= exec
->ct0ea
) {
481 submit_cl(dev
, 0, exec
->ct0ca
, exec
->ct0ea
);
483 struct vc4_exec_info
*next
;
485 vc4_move_job_to_render(dev
, exec
);
486 next
= vc4_first_bin_job(vc4
);
488 /* We can't start the next bin job if the previous job had a
489 * different perfmon instance attached to it. The same goes
490 * if one of them had a perfmon attached to it and the other
493 if (next
&& next
->perfmon
== exec
->perfmon
)
499 vc4_submit_next_render_job(struct drm_device
*dev
)
501 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
502 struct vc4_exec_info
*exec
= vc4_first_render_job(vc4
);
507 /* A previous RCL may have written to one of our textures, and
508 * our full cache flush at bin time may have occurred before
509 * that RCL completed. Flush the texture cache now, but not
510 * the instructions or uniforms (since we don't write those
513 vc4_flush_texture_caches(dev
);
515 submit_cl(dev
, 1, exec
->ct1ca
, exec
->ct1ea
);
519 vc4_move_job_to_render(struct drm_device
*dev
, struct vc4_exec_info
*exec
)
521 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
522 bool was_empty
= list_empty(&vc4
->render_job_list
);
524 list_move_tail(&exec
->head
, &vc4
->render_job_list
);
526 vc4_submit_next_render_job(dev
);
530 vc4_update_bo_seqnos(struct vc4_exec_info
*exec
, uint64_t seqno
)
535 for (i
= 0; i
< exec
->bo_count
; i
++) {
536 bo
= to_vc4_bo(&exec
->bo
[i
]->base
);
539 reservation_object_add_shared_fence(bo
->resv
, exec
->fence
);
542 list_for_each_entry(bo
, &exec
->unref_list
, unref_head
) {
546 for (i
= 0; i
< exec
->rcl_write_bo_count
; i
++) {
547 bo
= to_vc4_bo(&exec
->rcl_write_bo
[i
]->base
);
548 bo
->write_seqno
= seqno
;
550 reservation_object_add_excl_fence(bo
->resv
, exec
->fence
);
555 vc4_unlock_bo_reservations(struct drm_device
*dev
,
556 struct vc4_exec_info
*exec
,
557 struct ww_acquire_ctx
*acquire_ctx
)
561 for (i
= 0; i
< exec
->bo_count
; i
++) {
562 struct vc4_bo
*bo
= to_vc4_bo(&exec
->bo
[i
]->base
);
564 ww_mutex_unlock(&bo
->resv
->lock
);
567 ww_acquire_fini(acquire_ctx
);
570 /* Takes the reservation lock on all the BOs being referenced, so that
571 * at queue submit time we can update the reservations.
573 * We don't lock the RCL the tile alloc/state BOs, or overflow memory
574 * (all of which are on exec->unref_list). They're entirely private
575 * to vc4, so we don't attach dma-buf fences to them.
578 vc4_lock_bo_reservations(struct drm_device
*dev
,
579 struct vc4_exec_info
*exec
,
580 struct ww_acquire_ctx
*acquire_ctx
)
582 int contended_lock
= -1;
586 ww_acquire_init(acquire_ctx
, &reservation_ww_class
);
589 if (contended_lock
!= -1) {
590 bo
= to_vc4_bo(&exec
->bo
[contended_lock
]->base
);
591 ret
= ww_mutex_lock_slow_interruptible(&bo
->resv
->lock
,
594 ww_acquire_done(acquire_ctx
);
599 for (i
= 0; i
< exec
->bo_count
; i
++) {
600 if (i
== contended_lock
)
603 bo
= to_vc4_bo(&exec
->bo
[i
]->base
);
605 ret
= ww_mutex_lock_interruptible(&bo
->resv
->lock
, acquire_ctx
);
609 for (j
= 0; j
< i
; j
++) {
610 bo
= to_vc4_bo(&exec
->bo
[j
]->base
);
611 ww_mutex_unlock(&bo
->resv
->lock
);
614 if (contended_lock
!= -1 && contended_lock
>= i
) {
615 bo
= to_vc4_bo(&exec
->bo
[contended_lock
]->base
);
617 ww_mutex_unlock(&bo
->resv
->lock
);
620 if (ret
== -EDEADLK
) {
625 ww_acquire_done(acquire_ctx
);
630 ww_acquire_done(acquire_ctx
);
632 /* Reserve space for our shared (read-only) fence references,
633 * before we commit the CL to the hardware.
635 for (i
= 0; i
< exec
->bo_count
; i
++) {
636 bo
= to_vc4_bo(&exec
->bo
[i
]->base
);
638 ret
= reservation_object_reserve_shared(bo
->resv
);
640 vc4_unlock_bo_reservations(dev
, exec
, acquire_ctx
);
648 /* Queues a struct vc4_exec_info for execution. If no job is
649 * currently executing, then submits it.
651 * Unlike most GPUs, our hardware only handles one command list at a
652 * time. To queue multiple jobs at once, we'd need to edit the
653 * previous command list to have a jump to the new one at the end, and
654 * then bump the end address. That's a change for a later date,
658 vc4_queue_submit(struct drm_device
*dev
, struct vc4_exec_info
*exec
,
659 struct ww_acquire_ctx
*acquire_ctx
,
660 struct drm_syncobj
*out_sync
)
662 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
663 struct vc4_exec_info
*renderjob
;
665 unsigned long irqflags
;
666 struct vc4_fence
*fence
;
668 fence
= kzalloc(sizeof(*fence
), GFP_KERNEL
);
673 spin_lock_irqsave(&vc4
->job_lock
, irqflags
);
675 seqno
= ++vc4
->emit_seqno
;
678 dma_fence_init(&fence
->base
, &vc4_fence_ops
, &vc4
->job_lock
,
679 vc4
->dma_fence_context
, exec
->seqno
);
680 fence
->seqno
= exec
->seqno
;
681 exec
->fence
= &fence
->base
;
684 drm_syncobj_replace_fence(out_sync
, 0, exec
->fence
);
686 vc4_update_bo_seqnos(exec
, seqno
);
688 vc4_unlock_bo_reservations(dev
, exec
, acquire_ctx
);
690 list_add_tail(&exec
->head
, &vc4
->bin_job_list
);
692 /* If no bin job was executing and if the render job (if any) has the
693 * same perfmon as our job attached to it (or if both jobs don't have
694 * perfmon activated), then kick ours off. Otherwise, it'll get
695 * started when the previous job's flush/render done interrupt occurs.
697 renderjob
= vc4_first_render_job(vc4
);
698 if (vc4_first_bin_job(vc4
) == exec
&&
699 (!renderjob
|| renderjob
->perfmon
== exec
->perfmon
)) {
700 vc4_submit_next_bin_job(dev
);
701 vc4_queue_hangcheck(dev
);
704 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
710 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
711 * referenced by the job.
713 * @file_priv: DRM file for this fd
714 * @exec: V3D job being set up
716 * The command validator needs to reference BOs by their index within
717 * the submitted job's BO list. This does the validation of the job's
718 * BO list and reference counting for the lifetime of the job.
721 vc4_cl_lookup_bos(struct drm_device
*dev
,
722 struct drm_file
*file_priv
,
723 struct vc4_exec_info
*exec
)
725 struct drm_vc4_submit_cl
*args
= exec
->args
;
730 exec
->bo_count
= args
->bo_handle_count
;
732 if (!exec
->bo_count
) {
733 /* See comment on bo_index for why we have to check
736 DRM_DEBUG("Rendering requires BOs to validate\n");
740 exec
->bo
= kvmalloc_array(exec
->bo_count
,
741 sizeof(struct drm_gem_cma_object
*),
742 GFP_KERNEL
| __GFP_ZERO
);
744 DRM_ERROR("Failed to allocate validated BO pointers\n");
748 handles
= kvmalloc_array(exec
->bo_count
, sizeof(uint32_t), GFP_KERNEL
);
751 DRM_ERROR("Failed to allocate incoming GEM handles\n");
755 if (copy_from_user(handles
, u64_to_user_ptr(args
->bo_handles
),
756 exec
->bo_count
* sizeof(uint32_t))) {
758 DRM_ERROR("Failed to copy in GEM handles\n");
762 spin_lock(&file_priv
->table_lock
);
763 for (i
= 0; i
< exec
->bo_count
; i
++) {
764 struct drm_gem_object
*bo
= idr_find(&file_priv
->object_idr
,
767 DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
773 drm_gem_object_get(bo
);
774 exec
->bo
[i
] = (struct drm_gem_cma_object
*)bo
;
776 spin_unlock(&file_priv
->table_lock
);
781 for (i
= 0; i
< exec
->bo_count
; i
++) {
782 ret
= vc4_bo_inc_usecnt(to_vc4_bo(&exec
->bo
[i
]->base
));
784 goto fail_dec_usecnt
;
791 /* Decrease usecnt on acquired objects.
792 * We cannot rely on vc4_complete_exec() to release resources here,
793 * because vc4_complete_exec() has no information about which BO has
794 * had its ->usecnt incremented.
795 * To make things easier we just free everything explicitly and set
796 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
799 for (i
-- ; i
>= 0; i
--)
800 vc4_bo_dec_usecnt(to_vc4_bo(&exec
->bo
[i
]->base
));
803 /* Release any reference to acquired objects. */
804 for (i
= 0; i
< exec
->bo_count
&& exec
->bo
[i
]; i
++)
805 drm_gem_object_put_unlocked(&exec
->bo
[i
]->base
);
815 vc4_get_bcl(struct drm_device
*dev
, struct vc4_exec_info
*exec
)
817 struct drm_vc4_submit_cl
*args
= exec
->args
;
821 uint32_t bin_offset
= 0;
822 uint32_t shader_rec_offset
= roundup(bin_offset
+ args
->bin_cl_size
,
824 uint32_t uniforms_offset
= shader_rec_offset
+ args
->shader_rec_size
;
825 uint32_t exec_size
= uniforms_offset
+ args
->uniforms_size
;
826 uint32_t temp_size
= exec_size
+ (sizeof(struct vc4_shader_state
) *
827 args
->shader_rec_count
);
830 if (shader_rec_offset
< args
->bin_cl_size
||
831 uniforms_offset
< shader_rec_offset
||
832 exec_size
< uniforms_offset
||
833 args
->shader_rec_count
>= (UINT_MAX
/
834 sizeof(struct vc4_shader_state
)) ||
835 temp_size
< exec_size
) {
836 DRM_DEBUG("overflow in exec arguments\n");
841 /* Allocate space where we'll store the copied in user command lists
842 * and shader records.
844 * We don't just copy directly into the BOs because we need to
845 * read the contents back for validation, and I think the
846 * bo->vaddr is uncached access.
848 temp
= kvmalloc_array(temp_size
, 1, GFP_KERNEL
);
850 DRM_ERROR("Failed to allocate storage for copying "
851 "in bin/render CLs.\n");
855 bin
= temp
+ bin_offset
;
856 exec
->shader_rec_u
= temp
+ shader_rec_offset
;
857 exec
->uniforms_u
= temp
+ uniforms_offset
;
858 exec
->shader_state
= temp
+ exec_size
;
859 exec
->shader_state_size
= args
->shader_rec_count
;
861 if (copy_from_user(bin
,
862 u64_to_user_ptr(args
->bin_cl
),
863 args
->bin_cl_size
)) {
868 if (copy_from_user(exec
->shader_rec_u
,
869 u64_to_user_ptr(args
->shader_rec
),
870 args
->shader_rec_size
)) {
875 if (copy_from_user(exec
->uniforms_u
,
876 u64_to_user_ptr(args
->uniforms
),
877 args
->uniforms_size
)) {
882 bo
= vc4_bo_create(dev
, exec_size
, true, VC4_BO_TYPE_BCL
);
884 DRM_ERROR("Couldn't allocate BO for binning\n");
888 exec
->exec_bo
= &bo
->base
;
890 list_add_tail(&to_vc4_bo(&exec
->exec_bo
->base
)->unref_head
,
893 exec
->ct0ca
= exec
->exec_bo
->paddr
+ bin_offset
;
897 exec
->shader_rec_v
= exec
->exec_bo
->vaddr
+ shader_rec_offset
;
898 exec
->shader_rec_p
= exec
->exec_bo
->paddr
+ shader_rec_offset
;
899 exec
->shader_rec_size
= args
->shader_rec_size
;
901 exec
->uniforms_v
= exec
->exec_bo
->vaddr
+ uniforms_offset
;
902 exec
->uniforms_p
= exec
->exec_bo
->paddr
+ uniforms_offset
;
903 exec
->uniforms_size
= args
->uniforms_size
;
905 ret
= vc4_validate_bin_cl(dev
,
906 exec
->exec_bo
->vaddr
+ bin_offset
,
912 ret
= vc4_validate_shader_recs(dev
, exec
);
916 /* Block waiting on any previous rendering into the CS's VBO,
917 * IB, or textures, so that pixels are actually written by the
918 * time we try to read them.
920 ret
= vc4_wait_for_seqno(dev
, exec
->bin_dep_seqno
, ~0ull, true);
928 vc4_complete_exec(struct drm_device
*dev
, struct vc4_exec_info
*exec
)
930 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
931 unsigned long irqflags
;
934 /* If we got force-completed because of GPU reset rather than
935 * through our IRQ handler, signal the fence now.
938 dma_fence_signal(exec
->fence
);
939 dma_fence_put(exec
->fence
);
943 for (i
= 0; i
< exec
->bo_count
; i
++) {
944 struct vc4_bo
*bo
= to_vc4_bo(&exec
->bo
[i
]->base
);
946 vc4_bo_dec_usecnt(bo
);
947 drm_gem_object_put_unlocked(&exec
->bo
[i
]->base
);
952 while (!list_empty(&exec
->unref_list
)) {
953 struct vc4_bo
*bo
= list_first_entry(&exec
->unref_list
,
954 struct vc4_bo
, unref_head
);
955 list_del(&bo
->unref_head
);
956 drm_gem_object_put_unlocked(&bo
->base
.base
);
959 /* Free up the allocation of any bin slots we used. */
960 spin_lock_irqsave(&vc4
->job_lock
, irqflags
);
961 vc4
->bin_alloc_used
&= ~exec
->bin_slots
;
962 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
964 /* Release the reference we had on the perf monitor. */
965 vc4_perfmon_put(exec
->perfmon
);
967 mutex_lock(&vc4
->power_lock
);
968 if (--vc4
->power_refcount
== 0) {
969 pm_runtime_mark_last_busy(&vc4
->v3d
->pdev
->dev
);
970 pm_runtime_put_autosuspend(&vc4
->v3d
->pdev
->dev
);
972 mutex_unlock(&vc4
->power_lock
);
978 vc4_job_handle_completed(struct vc4_dev
*vc4
)
980 unsigned long irqflags
;
981 struct vc4_seqno_cb
*cb
, *cb_temp
;
983 spin_lock_irqsave(&vc4
->job_lock
, irqflags
);
984 while (!list_empty(&vc4
->job_done_list
)) {
985 struct vc4_exec_info
*exec
=
986 list_first_entry(&vc4
->job_done_list
,
987 struct vc4_exec_info
, head
);
988 list_del(&exec
->head
);
990 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
991 vc4_complete_exec(vc4
->dev
, exec
);
992 spin_lock_irqsave(&vc4
->job_lock
, irqflags
);
995 list_for_each_entry_safe(cb
, cb_temp
, &vc4
->seqno_cb_list
, work
.entry
) {
996 if (cb
->seqno
<= vc4
->finished_seqno
) {
997 list_del_init(&cb
->work
.entry
);
998 schedule_work(&cb
->work
);
1002 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
1005 static void vc4_seqno_cb_work(struct work_struct
*work
)
1007 struct vc4_seqno_cb
*cb
= container_of(work
, struct vc4_seqno_cb
, work
);
1012 int vc4_queue_seqno_cb(struct drm_device
*dev
,
1013 struct vc4_seqno_cb
*cb
, uint64_t seqno
,
1014 void (*func
)(struct vc4_seqno_cb
*cb
))
1016 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
1018 unsigned long irqflags
;
1021 INIT_WORK(&cb
->work
, vc4_seqno_cb_work
);
1023 spin_lock_irqsave(&vc4
->job_lock
, irqflags
);
1024 if (seqno
> vc4
->finished_seqno
) {
1026 list_add_tail(&cb
->work
.entry
, &vc4
->seqno_cb_list
);
1028 schedule_work(&cb
->work
);
1030 spin_unlock_irqrestore(&vc4
->job_lock
, irqflags
);
1035 /* Scheduled when any job has been completed, this walks the list of
1036 * jobs that had completed and unrefs their BOs and frees their exec
1040 vc4_job_done_work(struct work_struct
*work
)
1042 struct vc4_dev
*vc4
=
1043 container_of(work
, struct vc4_dev
, job_done_work
);
1045 vc4_job_handle_completed(vc4
);
1049 vc4_wait_for_seqno_ioctl_helper(struct drm_device
*dev
,
1051 uint64_t *timeout_ns
)
1053 unsigned long start
= jiffies
;
1054 int ret
= vc4_wait_for_seqno(dev
, seqno
, *timeout_ns
, true);
1056 if ((ret
== -EINTR
|| ret
== -ERESTARTSYS
) && *timeout_ns
!= ~0ull) {
1057 uint64_t delta
= jiffies_to_nsecs(jiffies
- start
);
1059 if (*timeout_ns
>= delta
)
1060 *timeout_ns
-= delta
;
1067 vc4_wait_seqno_ioctl(struct drm_device
*dev
, void *data
,
1068 struct drm_file
*file_priv
)
1070 struct drm_vc4_wait_seqno
*args
= data
;
1072 return vc4_wait_for_seqno_ioctl_helper(dev
, args
->seqno
,
1077 vc4_wait_bo_ioctl(struct drm_device
*dev
, void *data
,
1078 struct drm_file
*file_priv
)
1081 struct drm_vc4_wait_bo
*args
= data
;
1082 struct drm_gem_object
*gem_obj
;
1088 gem_obj
= drm_gem_object_lookup(file_priv
, args
->handle
);
1090 DRM_DEBUG("Failed to look up GEM BO %d\n", args
->handle
);
1093 bo
= to_vc4_bo(gem_obj
);
1095 ret
= vc4_wait_for_seqno_ioctl_helper(dev
, bo
->seqno
,
1098 drm_gem_object_put_unlocked(gem_obj
);
1103 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1105 * @data: ioctl argument
1106 * @file_priv: DRM file for this fd
1108 * This is the main entrypoint for userspace to submit a 3D frame to
1109 * the GPU. Userspace provides the binner command list (if
1110 * applicable), and the kernel sets up the render command list to draw
1111 * to the framebuffer described in the ioctl, using the command lists
1112 * that the 3D engine's binner will produce.
1115 vc4_submit_cl_ioctl(struct drm_device
*dev
, void *data
,
1116 struct drm_file
*file_priv
)
1118 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
1119 struct vc4_file
*vc4file
= file_priv
->driver_priv
;
1120 struct drm_vc4_submit_cl
*args
= data
;
1121 struct drm_syncobj
*out_sync
= NULL
;
1122 struct vc4_exec_info
*exec
;
1123 struct ww_acquire_ctx acquire_ctx
;
1124 struct dma_fence
*in_fence
;
1127 if ((args
->flags
& ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR
|
1128 VC4_SUBMIT_CL_FIXED_RCL_ORDER
|
1129 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X
|
1130 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y
)) != 0) {
1131 DRM_DEBUG("Unknown flags: 0x%02x\n", args
->flags
);
1135 if (args
->pad2
!= 0) {
1136 DRM_DEBUG("Invalid pad: 0x%08x\n", args
->pad2
);
1140 exec
= kcalloc(1, sizeof(*exec
), GFP_KERNEL
);
1142 DRM_ERROR("malloc failure on exec struct\n");
1146 mutex_lock(&vc4
->power_lock
);
1147 if (vc4
->power_refcount
++ == 0) {
1148 ret
= pm_runtime_get_sync(&vc4
->v3d
->pdev
->dev
);
1150 mutex_unlock(&vc4
->power_lock
);
1151 vc4
->power_refcount
--;
1156 mutex_unlock(&vc4
->power_lock
);
1159 INIT_LIST_HEAD(&exec
->unref_list
);
1161 ret
= vc4_cl_lookup_bos(dev
, file_priv
, exec
);
1165 if (args
->perfmonid
) {
1166 exec
->perfmon
= vc4_perfmon_find(vc4file
,
1168 if (!exec
->perfmon
) {
1174 if (args
->in_sync
) {
1175 ret
= drm_syncobj_find_fence(file_priv
, args
->in_sync
,
1180 /* When the fence (or fence array) is exclusively from our
1181 * context we can skip the wait since jobs are executed in
1182 * order of their submission through this ioctl and this can
1183 * only have fences from a prior job.
1185 if (!dma_fence_match_context(in_fence
,
1186 vc4
->dma_fence_context
)) {
1187 ret
= dma_fence_wait(in_fence
, true);
1189 dma_fence_put(in_fence
);
1194 dma_fence_put(in_fence
);
1197 if (exec
->args
->bin_cl_size
!= 0) {
1198 ret
= vc4_get_bcl(dev
, exec
);
1206 ret
= vc4_get_rcl(dev
, exec
);
1210 ret
= vc4_lock_bo_reservations(dev
, exec
, &acquire_ctx
);
1214 if (args
->out_sync
) {
1215 out_sync
= drm_syncobj_find(file_priv
, args
->out_sync
);
1221 /* We replace the fence in out_sync in vc4_queue_submit since
1222 * the render job could execute immediately after that call.
1223 * If it finishes before our ioctl processing resumes the
1224 * render job fence could already have been freed.
1228 /* Clear this out of the struct we'll be putting in the queue,
1229 * since it's part of our stack.
1233 ret
= vc4_queue_submit(dev
, exec
, &acquire_ctx
, out_sync
);
1235 /* The syncobj isn't part of the exec data and we need to free our
1236 * reference even if job submission failed.
1239 drm_syncobj_put(out_sync
);
1244 /* Return the seqno for our job. */
1245 args
->seqno
= vc4
->emit_seqno
;
1250 vc4_complete_exec(vc4
->dev
, exec
);
1256 vc4_gem_init(struct drm_device
*dev
)
1258 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
1260 vc4
->dma_fence_context
= dma_fence_context_alloc(1);
1262 INIT_LIST_HEAD(&vc4
->bin_job_list
);
1263 INIT_LIST_HEAD(&vc4
->render_job_list
);
1264 INIT_LIST_HEAD(&vc4
->job_done_list
);
1265 INIT_LIST_HEAD(&vc4
->seqno_cb_list
);
1266 spin_lock_init(&vc4
->job_lock
);
1268 INIT_WORK(&vc4
->hangcheck
.reset_work
, vc4_reset_work
);
1269 timer_setup(&vc4
->hangcheck
.timer
, vc4_hangcheck_elapsed
, 0);
1271 INIT_WORK(&vc4
->job_done_work
, vc4_job_done_work
);
1273 mutex_init(&vc4
->power_lock
);
1275 INIT_LIST_HEAD(&vc4
->purgeable
.list
);
1276 mutex_init(&vc4
->purgeable
.lock
);
1280 vc4_gem_destroy(struct drm_device
*dev
)
1282 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
1284 /* Waiting for exec to finish would need to be done before
1285 * unregistering V3D.
1287 WARN_ON(vc4
->emit_seqno
!= vc4
->finished_seqno
);
1289 /* V3D should already have disabled its interrupt and cleared
1290 * the overflow allocation registers. Now free the object.
1293 drm_gem_object_put_unlocked(&vc4
->bin_bo
->base
.base
);
1297 if (vc4
->hang_state
)
1298 vc4_free_hang_state(dev
, vc4
->hang_state
);
1301 int vc4_gem_madvise_ioctl(struct drm_device
*dev
, void *data
,
1302 struct drm_file
*file_priv
)
1304 struct drm_vc4_gem_madvise
*args
= data
;
1305 struct drm_gem_object
*gem_obj
;
1309 switch (args
->madv
) {
1310 case VC4_MADV_DONTNEED
:
1311 case VC4_MADV_WILLNEED
:
1320 gem_obj
= drm_gem_object_lookup(file_priv
, args
->handle
);
1322 DRM_DEBUG("Failed to look up GEM BO %d\n", args
->handle
);
1326 bo
= to_vc4_bo(gem_obj
);
1328 /* Only BOs exposed to userspace can be purged. */
1329 if (bo
->madv
== __VC4_MADV_NOTSUPP
) {
1330 DRM_DEBUG("madvise not supported on this BO\n");
1335 /* Not sure it's safe to purge imported BOs. Let's just assume it's
1336 * not until proven otherwise.
1338 if (gem_obj
->import_attach
) {
1339 DRM_DEBUG("madvise not supported on imported BOs\n");
1344 mutex_lock(&bo
->madv_lock
);
1346 if (args
->madv
== VC4_MADV_DONTNEED
&& bo
->madv
== VC4_MADV_WILLNEED
&&
1347 !refcount_read(&bo
->usecnt
)) {
1348 /* If the BO is about to be marked as purgeable, is not used
1349 * and is not already purgeable or purged, add it to the
1352 vc4_bo_add_to_purgeable_pool(bo
);
1353 } else if (args
->madv
== VC4_MADV_WILLNEED
&&
1354 bo
->madv
== VC4_MADV_DONTNEED
&&
1355 !refcount_read(&bo
->usecnt
)) {
1356 /* The BO has not been purged yet, just remove it from
1357 * the purgeable list.
1359 vc4_bo_remove_from_purgeable_pool(bo
);
1362 /* Save the purged state. */
1363 args
->retained
= bo
->madv
!= __VC4_MADV_PURGED
;
1365 /* Update internal madv state only if the bo was not purged. */
1366 if (bo
->madv
!= __VC4_MADV_PURGED
)
1367 bo
->madv
= args
->madv
;
1369 mutex_unlock(&bo
->madv_lock
);
1374 drm_gem_object_put_unlocked(gem_obj
);