1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
26 unsigned int repeat_period
;
27 unsigned int scancode_bits
;
29 [RC_PROTO_UNKNOWN
] = { .name
= "unknown", .repeat_period
= 125 },
30 [RC_PROTO_OTHER
] = { .name
= "other", .repeat_period
= 125 },
31 [RC_PROTO_RC5
] = { .name
= "rc-5",
32 .scancode_bits
= 0x1f7f, .repeat_period
= 114 },
33 [RC_PROTO_RC5X_20
] = { .name
= "rc-5x-20",
34 .scancode_bits
= 0x1f7f3f, .repeat_period
= 114 },
35 [RC_PROTO_RC5_SZ
] = { .name
= "rc-5-sz",
36 .scancode_bits
= 0x2fff, .repeat_period
= 114 },
37 [RC_PROTO_JVC
] = { .name
= "jvc",
38 .scancode_bits
= 0xffff, .repeat_period
= 125 },
39 [RC_PROTO_SONY12
] = { .name
= "sony-12",
40 .scancode_bits
= 0x1f007f, .repeat_period
= 100 },
41 [RC_PROTO_SONY15
] = { .name
= "sony-15",
42 .scancode_bits
= 0xff007f, .repeat_period
= 100 },
43 [RC_PROTO_SONY20
] = { .name
= "sony-20",
44 .scancode_bits
= 0x1fff7f, .repeat_period
= 100 },
45 [RC_PROTO_NEC
] = { .name
= "nec",
46 .scancode_bits
= 0xffff, .repeat_period
= 110 },
47 [RC_PROTO_NECX
] = { .name
= "nec-x",
48 .scancode_bits
= 0xffffff, .repeat_period
= 110 },
49 [RC_PROTO_NEC32
] = { .name
= "nec-32",
50 .scancode_bits
= 0xffffffff, .repeat_period
= 110 },
51 [RC_PROTO_SANYO
] = { .name
= "sanyo",
52 .scancode_bits
= 0x1fffff, .repeat_period
= 125 },
53 [RC_PROTO_MCIR2_KBD
] = { .name
= "mcir2-kbd",
54 .scancode_bits
= 0xffffff, .repeat_period
= 100 },
55 [RC_PROTO_MCIR2_MSE
] = { .name
= "mcir2-mse",
56 .scancode_bits
= 0x1fffff, .repeat_period
= 100 },
57 [RC_PROTO_RC6_0
] = { .name
= "rc-6-0",
58 .scancode_bits
= 0xffff, .repeat_period
= 114 },
59 [RC_PROTO_RC6_6A_20
] = { .name
= "rc-6-6a-20",
60 .scancode_bits
= 0xfffff, .repeat_period
= 114 },
61 [RC_PROTO_RC6_6A_24
] = { .name
= "rc-6-6a-24",
62 .scancode_bits
= 0xffffff, .repeat_period
= 114 },
63 [RC_PROTO_RC6_6A_32
] = { .name
= "rc-6-6a-32",
64 .scancode_bits
= 0xffffffff, .repeat_period
= 114 },
65 [RC_PROTO_RC6_MCE
] = { .name
= "rc-6-mce",
66 .scancode_bits
= 0xffff7fff, .repeat_period
= 114 },
67 [RC_PROTO_SHARP
] = { .name
= "sharp",
68 .scancode_bits
= 0x1fff, .repeat_period
= 125 },
69 [RC_PROTO_XMP
] = { .name
= "xmp", .repeat_period
= 125 },
70 [RC_PROTO_CEC
] = { .name
= "cec", .repeat_period
= 0 },
71 [RC_PROTO_IMON
] = { .name
= "imon",
72 .scancode_bits
= 0x7fffffff, .repeat_period
= 114 },
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list
);
77 static DEFINE_SPINLOCK(rc_map_lock
);
78 static struct led_trigger
*led_feedback
;
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida
);
83 static struct rc_map_list
*seek_rc_map(const char *name
)
85 struct rc_map_list
*map
= NULL
;
87 spin_lock(&rc_map_lock
);
88 list_for_each_entry(map
, &rc_map_list
, list
) {
89 if (!strcmp(name
, map
->map
.name
)) {
90 spin_unlock(&rc_map_lock
);
94 spin_unlock(&rc_map_lock
);
99 struct rc_map
*rc_map_get(const char *name
)
102 struct rc_map_list
*map
;
104 map
= seek_rc_map(name
);
105 #ifdef CONFIG_MODULES
107 int rc
= request_module("%s", name
);
109 pr_err("Couldn't load IR keymap %s\n", name
);
112 msleep(20); /* Give some time for IR to register */
114 map
= seek_rc_map(name
);
118 pr_err("IR keymap %s not found\n", name
);
122 printk(KERN_INFO
"Registered IR keymap %s\n", map
->map
.name
);
126 EXPORT_SYMBOL_GPL(rc_map_get
);
128 int rc_map_register(struct rc_map_list
*map
)
130 spin_lock(&rc_map_lock
);
131 list_add_tail(&map
->list
, &rc_map_list
);
132 spin_unlock(&rc_map_lock
);
135 EXPORT_SYMBOL_GPL(rc_map_register
);
137 void rc_map_unregister(struct rc_map_list
*map
)
139 spin_lock(&rc_map_lock
);
140 list_del(&map
->list
);
141 spin_unlock(&rc_map_lock
);
143 EXPORT_SYMBOL_GPL(rc_map_unregister
);
146 static struct rc_map_table empty
[] = {
147 { 0x2a, KEY_COFFEE
},
150 static struct rc_map_list empty_map
= {
153 .size
= ARRAY_SIZE(empty
),
154 .rc_proto
= RC_PROTO_UNKNOWN
, /* Legacy IR type */
155 .name
= RC_MAP_EMPTY
,
160 * ir_create_table() - initializes a scancode table
161 * @dev: the rc_dev device
162 * @rc_map: the rc_map to initialize
163 * @name: name to assign to the table
164 * @rc_proto: ir type to assign to the new table
165 * @size: initial size of the table
167 * This routine will initialize the rc_map and will allocate
168 * memory to hold at least the specified number of elements.
170 * return: zero on success or a negative error code
172 static int ir_create_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
173 const char *name
, u64 rc_proto
, size_t size
)
175 rc_map
->name
= kstrdup(name
, GFP_KERNEL
);
178 rc_map
->rc_proto
= rc_proto
;
179 rc_map
->alloc
= roundup_pow_of_two(size
* sizeof(struct rc_map_table
));
180 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
181 rc_map
->scan
= kmalloc(rc_map
->alloc
, GFP_KERNEL
);
188 dev_dbg(&dev
->dev
, "Allocated space for %u keycode entries (%u bytes)\n",
189 rc_map
->size
, rc_map
->alloc
);
194 * ir_free_table() - frees memory allocated by a scancode table
195 * @rc_map: the table whose mappings need to be freed
197 * This routine will free memory alloctaed for key mappings used by given
200 static void ir_free_table(struct rc_map
*rc_map
)
210 * ir_resize_table() - resizes a scancode table if necessary
211 * @dev: the rc_dev device
212 * @rc_map: the rc_map to resize
213 * @gfp_flags: gfp flags to use when allocating memory
215 * This routine will shrink the rc_map if it has lots of
216 * unused entries and grow it if it is full.
218 * return: zero on success or a negative error code
220 static int ir_resize_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
223 unsigned int oldalloc
= rc_map
->alloc
;
224 unsigned int newalloc
= oldalloc
;
225 struct rc_map_table
*oldscan
= rc_map
->scan
;
226 struct rc_map_table
*newscan
;
228 if (rc_map
->size
== rc_map
->len
) {
229 /* All entries in use -> grow keytable */
230 if (rc_map
->alloc
>= IR_TAB_MAX_SIZE
)
234 dev_dbg(&dev
->dev
, "Growing table to %u bytes\n", newalloc
);
237 if ((rc_map
->len
* 3 < rc_map
->size
) && (oldalloc
> IR_TAB_MIN_SIZE
)) {
238 /* Less than 1/3 of entries in use -> shrink keytable */
240 dev_dbg(&dev
->dev
, "Shrinking table to %u bytes\n", newalloc
);
243 if (newalloc
== oldalloc
)
246 newscan
= kmalloc(newalloc
, gfp_flags
);
250 memcpy(newscan
, rc_map
->scan
, rc_map
->len
* sizeof(struct rc_map_table
));
251 rc_map
->scan
= newscan
;
252 rc_map
->alloc
= newalloc
;
253 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
259 * ir_update_mapping() - set a keycode in the scancode->keycode table
260 * @dev: the struct rc_dev device descriptor
261 * @rc_map: scancode table to be adjusted
262 * @index: index of the mapping that needs to be updated
263 * @new_keycode: the desired keycode
265 * This routine is used to update scancode->keycode mapping at given
268 * return: previous keycode assigned to the mapping
271 static unsigned int ir_update_mapping(struct rc_dev
*dev
,
272 struct rc_map
*rc_map
,
274 unsigned int new_keycode
)
276 int old_keycode
= rc_map
->scan
[index
].keycode
;
278 /* Did the user wish to remove the mapping? */
279 if (new_keycode
== KEY_RESERVED
|| new_keycode
== KEY_UNKNOWN
) {
280 dev_dbg(&dev
->dev
, "#%d: Deleting scan 0x%04x\n",
281 index
, rc_map
->scan
[index
].scancode
);
283 memmove(&rc_map
->scan
[index
], &rc_map
->scan
[index
+ 1],
284 (rc_map
->len
- index
) * sizeof(struct rc_map_table
));
286 dev_dbg(&dev
->dev
, "#%d: %s scan 0x%04x with key 0x%04x\n",
288 old_keycode
== KEY_RESERVED
? "New" : "Replacing",
289 rc_map
->scan
[index
].scancode
, new_keycode
);
290 rc_map
->scan
[index
].keycode
= new_keycode
;
293 if (old_keycode
!= KEY_RESERVED
) {
294 /* Possibly shrink the keytable, failure is not a problem */
295 ir_resize_table(dev
, rc_map
, GFP_ATOMIC
);
302 * ir_establish_scancode() - set a keycode in the scancode->keycode table
303 * @dev: the struct rc_dev device descriptor
304 * @rc_map: scancode table to be searched
305 * @scancode: the desired scancode
306 * @resize: controls whether we allowed to resize the table to
307 * accommodate not yet present scancodes
309 * This routine is used to locate given scancode in rc_map.
310 * If scancode is not yet present the routine will allocate a new slot
313 * return: index of the mapping containing scancode in question
314 * or -1U in case of failure.
316 static unsigned int ir_establish_scancode(struct rc_dev
*dev
,
317 struct rc_map
*rc_map
,
318 unsigned int scancode
,
324 * Unfortunately, some hardware-based IR decoders don't provide
325 * all bits for the complete IR code. In general, they provide only
326 * the command part of the IR code. Yet, as it is possible to replace
327 * the provided IR with another one, it is needed to allow loading
328 * IR tables from other remotes. So, we support specifying a mask to
329 * indicate the valid bits of the scancodes.
331 if (dev
->scancode_mask
)
332 scancode
&= dev
->scancode_mask
;
334 /* First check if we already have a mapping for this ir command */
335 for (i
= 0; i
< rc_map
->len
; i
++) {
336 if (rc_map
->scan
[i
].scancode
== scancode
)
339 /* Keytable is sorted from lowest to highest scancode */
340 if (rc_map
->scan
[i
].scancode
>= scancode
)
344 /* No previous mapping found, we might need to grow the table */
345 if (rc_map
->size
== rc_map
->len
) {
346 if (!resize
|| ir_resize_table(dev
, rc_map
, GFP_ATOMIC
))
350 /* i is the proper index to insert our new keycode */
352 memmove(&rc_map
->scan
[i
+ 1], &rc_map
->scan
[i
],
353 (rc_map
->len
- i
) * sizeof(struct rc_map_table
));
354 rc_map
->scan
[i
].scancode
= scancode
;
355 rc_map
->scan
[i
].keycode
= KEY_RESERVED
;
362 * ir_setkeycode() - set a keycode in the scancode->keycode table
363 * @idev: the struct input_dev device descriptor
364 * @ke: Input keymap entry
365 * @old_keycode: result
367 * This routine is used to handle evdev EVIOCSKEY ioctl.
369 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
371 static int ir_setkeycode(struct input_dev
*idev
,
372 const struct input_keymap_entry
*ke
,
373 unsigned int *old_keycode
)
375 struct rc_dev
*rdev
= input_get_drvdata(idev
);
376 struct rc_map
*rc_map
= &rdev
->rc_map
;
378 unsigned int scancode
;
382 spin_lock_irqsave(&rc_map
->lock
, flags
);
384 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
386 if (index
>= rc_map
->len
) {
391 retval
= input_scancode_to_scalar(ke
, &scancode
);
395 index
= ir_establish_scancode(rdev
, rc_map
, scancode
, true);
396 if (index
>= rc_map
->len
) {
402 *old_keycode
= ir_update_mapping(rdev
, rc_map
, index
, ke
->keycode
);
405 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
410 * ir_setkeytable() - sets several entries in the scancode->keycode table
411 * @dev: the struct rc_dev device descriptor
412 * @from: the struct rc_map to copy entries from
414 * This routine is used to handle table initialization.
416 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
418 static int ir_setkeytable(struct rc_dev
*dev
,
419 const struct rc_map
*from
)
421 struct rc_map
*rc_map
= &dev
->rc_map
;
422 unsigned int i
, index
;
425 rc
= ir_create_table(dev
, rc_map
, from
->name
, from
->rc_proto
,
430 for (i
= 0; i
< from
->size
; i
++) {
431 index
= ir_establish_scancode(dev
, rc_map
,
432 from
->scan
[i
].scancode
, false);
433 if (index
>= rc_map
->len
) {
438 ir_update_mapping(dev
, rc_map
, index
,
439 from
->scan
[i
].keycode
);
443 ir_free_table(rc_map
);
448 static int rc_map_cmp(const void *key
, const void *elt
)
450 const unsigned int *scancode
= key
;
451 const struct rc_map_table
*e
= elt
;
453 if (*scancode
< e
->scancode
)
455 else if (*scancode
> e
->scancode
)
461 * ir_lookup_by_scancode() - locate mapping by scancode
462 * @rc_map: the struct rc_map to search
463 * @scancode: scancode to look for in the table
465 * This routine performs binary search in RC keykeymap table for
468 * return: index in the table, -1U if not found
470 static unsigned int ir_lookup_by_scancode(const struct rc_map
*rc_map
,
471 unsigned int scancode
)
473 struct rc_map_table
*res
;
475 res
= bsearch(&scancode
, rc_map
->scan
, rc_map
->len
,
476 sizeof(struct rc_map_table
), rc_map_cmp
);
480 return res
- rc_map
->scan
;
484 * ir_getkeycode() - get a keycode from the scancode->keycode table
485 * @idev: the struct input_dev device descriptor
486 * @ke: Input keymap entry
488 * This routine is used to handle evdev EVIOCGKEY ioctl.
490 * return: always returns zero.
492 static int ir_getkeycode(struct input_dev
*idev
,
493 struct input_keymap_entry
*ke
)
495 struct rc_dev
*rdev
= input_get_drvdata(idev
);
496 struct rc_map
*rc_map
= &rdev
->rc_map
;
497 struct rc_map_table
*entry
;
500 unsigned int scancode
;
503 spin_lock_irqsave(&rc_map
->lock
, flags
);
505 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
508 retval
= input_scancode_to_scalar(ke
, &scancode
);
512 index
= ir_lookup_by_scancode(rc_map
, scancode
);
515 if (index
< rc_map
->len
) {
516 entry
= &rc_map
->scan
[index
];
519 ke
->keycode
= entry
->keycode
;
520 ke
->len
= sizeof(entry
->scancode
);
521 memcpy(ke
->scancode
, &entry
->scancode
, sizeof(entry
->scancode
));
523 } else if (!(ke
->flags
& INPUT_KEYMAP_BY_INDEX
)) {
525 * We do not really know the valid range of scancodes
526 * so let's respond with KEY_RESERVED to anything we
527 * do not have mapping for [yet].
530 ke
->keycode
= KEY_RESERVED
;
539 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
544 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
545 * @dev: the struct rc_dev descriptor of the device
546 * @scancode: the scancode to look for
548 * This routine is used by drivers which need to convert a scancode to a
549 * keycode. Normally it should not be used since drivers should have no
550 * interest in keycodes.
552 * return: the corresponding keycode, or KEY_RESERVED
554 u32
rc_g_keycode_from_table(struct rc_dev
*dev
, u32 scancode
)
556 struct rc_map
*rc_map
= &dev
->rc_map
;
557 unsigned int keycode
;
561 spin_lock_irqsave(&rc_map
->lock
, flags
);
563 index
= ir_lookup_by_scancode(rc_map
, scancode
);
564 keycode
= index
< rc_map
->len
?
565 rc_map
->scan
[index
].keycode
: KEY_RESERVED
;
567 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
569 if (keycode
!= KEY_RESERVED
)
570 dev_dbg(&dev
->dev
, "%s: scancode 0x%04x keycode 0x%02x\n",
571 dev
->device_name
, scancode
, keycode
);
575 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table
);
578 * ir_do_keyup() - internal function to signal the release of a keypress
579 * @dev: the struct rc_dev descriptor of the device
580 * @sync: whether or not to call input_sync
582 * This function is used internally to release a keypress, it must be
583 * called with keylock held.
585 static void ir_do_keyup(struct rc_dev
*dev
, bool sync
)
587 if (!dev
->keypressed
)
590 dev_dbg(&dev
->dev
, "keyup key 0x%04x\n", dev
->last_keycode
);
591 del_timer(&dev
->timer_repeat
);
592 input_report_key(dev
->input_dev
, dev
->last_keycode
, 0);
593 led_trigger_event(led_feedback
, LED_OFF
);
595 input_sync(dev
->input_dev
);
596 dev
->keypressed
= false;
600 * rc_keyup() - signals the release of a keypress
601 * @dev: the struct rc_dev descriptor of the device
603 * This routine is used to signal that a key has been released on the
606 void rc_keyup(struct rc_dev
*dev
)
610 spin_lock_irqsave(&dev
->keylock
, flags
);
611 ir_do_keyup(dev
, true);
612 spin_unlock_irqrestore(&dev
->keylock
, flags
);
614 EXPORT_SYMBOL_GPL(rc_keyup
);
617 * ir_timer_keyup() - generates a keyup event after a timeout
619 * @t: a pointer to the struct timer_list
621 * This routine will generate a keyup event some time after a keydown event
622 * is generated when no further activity has been detected.
624 static void ir_timer_keyup(struct timer_list
*t
)
626 struct rc_dev
*dev
= from_timer(dev
, t
, timer_keyup
);
630 * ir->keyup_jiffies is used to prevent a race condition if a
631 * hardware interrupt occurs at this point and the keyup timer
632 * event is moved further into the future as a result.
634 * The timer will then be reactivated and this function called
635 * again in the future. We need to exit gracefully in that case
636 * to allow the input subsystem to do its auto-repeat magic or
637 * a keyup event might follow immediately after the keydown.
639 spin_lock_irqsave(&dev
->keylock
, flags
);
640 if (time_is_before_eq_jiffies(dev
->keyup_jiffies
))
641 ir_do_keyup(dev
, true);
642 spin_unlock_irqrestore(&dev
->keylock
, flags
);
646 * ir_timer_repeat() - generates a repeat event after a timeout
648 * @t: a pointer to the struct timer_list
650 * This routine will generate a soft repeat event every REP_PERIOD
653 static void ir_timer_repeat(struct timer_list
*t
)
655 struct rc_dev
*dev
= from_timer(dev
, t
, timer_repeat
);
656 struct input_dev
*input
= dev
->input_dev
;
659 spin_lock_irqsave(&dev
->keylock
, flags
);
660 if (dev
->keypressed
) {
661 input_event(input
, EV_KEY
, dev
->last_keycode
, 2);
663 if (input
->rep
[REP_PERIOD
])
664 mod_timer(&dev
->timer_repeat
, jiffies
+
665 msecs_to_jiffies(input
->rep
[REP_PERIOD
]));
667 spin_unlock_irqrestore(&dev
->keylock
, flags
);
670 static unsigned int repeat_period(int protocol
)
672 if (protocol
>= ARRAY_SIZE(protocols
))
675 return protocols
[protocol
].repeat_period
;
679 * rc_repeat() - signals that a key is still pressed
680 * @dev: the struct rc_dev descriptor of the device
682 * This routine is used by IR decoders when a repeat message which does
683 * not include the necessary bits to reproduce the scancode has been
686 void rc_repeat(struct rc_dev
*dev
)
689 unsigned int timeout
= nsecs_to_jiffies(dev
->timeout
) +
690 msecs_to_jiffies(repeat_period(dev
->last_protocol
));
691 struct lirc_scancode sc
= {
692 .scancode
= dev
->last_scancode
, .rc_proto
= dev
->last_protocol
,
693 .keycode
= dev
->keypressed
? dev
->last_keycode
: KEY_RESERVED
,
694 .flags
= LIRC_SCANCODE_FLAG_REPEAT
|
695 (dev
->last_toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0)
698 ir_lirc_scancode_event(dev
, &sc
);
700 spin_lock_irqsave(&dev
->keylock
, flags
);
702 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, dev
->last_scancode
);
703 input_sync(dev
->input_dev
);
705 if (dev
->keypressed
) {
706 dev
->keyup_jiffies
= jiffies
+ timeout
;
707 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
710 spin_unlock_irqrestore(&dev
->keylock
, flags
);
712 EXPORT_SYMBOL_GPL(rc_repeat
);
715 * ir_do_keydown() - internal function to process a keypress
716 * @dev: the struct rc_dev descriptor of the device
717 * @protocol: the protocol of the keypress
718 * @scancode: the scancode of the keypress
719 * @keycode: the keycode of the keypress
720 * @toggle: the toggle value of the keypress
722 * This function is used internally to register a keypress, it must be
723 * called with keylock held.
725 static void ir_do_keydown(struct rc_dev
*dev
, enum rc_proto protocol
,
726 u32 scancode
, u32 keycode
, u8 toggle
)
728 bool new_event
= (!dev
->keypressed
||
729 dev
->last_protocol
!= protocol
||
730 dev
->last_scancode
!= scancode
||
731 dev
->last_toggle
!= toggle
);
732 struct lirc_scancode sc
= {
733 .scancode
= scancode
, .rc_proto
= protocol
,
734 .flags
= toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0,
738 ir_lirc_scancode_event(dev
, &sc
);
740 if (new_event
&& dev
->keypressed
)
741 ir_do_keyup(dev
, false);
743 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, scancode
);
745 dev
->last_protocol
= protocol
;
746 dev
->last_scancode
= scancode
;
747 dev
->last_toggle
= toggle
;
748 dev
->last_keycode
= keycode
;
750 if (new_event
&& keycode
!= KEY_RESERVED
) {
751 /* Register a keypress */
752 dev
->keypressed
= true;
754 dev_dbg(&dev
->dev
, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
755 dev
->device_name
, keycode
, protocol
, scancode
);
756 input_report_key(dev
->input_dev
, keycode
, 1);
758 led_trigger_event(led_feedback
, LED_FULL
);
762 * For CEC, start sending repeat messages as soon as the first
763 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
764 * is non-zero. Otherwise, the input layer will generate repeat
767 if (!new_event
&& keycode
!= KEY_RESERVED
&&
768 dev
->allowed_protocols
== RC_PROTO_BIT_CEC
&&
769 !timer_pending(&dev
->timer_repeat
) &&
770 dev
->input_dev
->rep
[REP_PERIOD
] &&
771 !dev
->input_dev
->rep
[REP_DELAY
]) {
772 input_event(dev
->input_dev
, EV_KEY
, keycode
, 2);
773 mod_timer(&dev
->timer_repeat
, jiffies
+
774 msecs_to_jiffies(dev
->input_dev
->rep
[REP_PERIOD
]));
777 input_sync(dev
->input_dev
);
781 * rc_keydown() - generates input event for a key press
782 * @dev: the struct rc_dev descriptor of the device
783 * @protocol: the protocol for the keypress
784 * @scancode: the scancode for the keypress
785 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
786 * support toggle values, this should be set to zero)
788 * This routine is used to signal that a key has been pressed on the
791 void rc_keydown(struct rc_dev
*dev
, enum rc_proto protocol
, u32 scancode
,
795 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
797 spin_lock_irqsave(&dev
->keylock
, flags
);
798 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
800 if (dev
->keypressed
) {
801 dev
->keyup_jiffies
= jiffies
+ nsecs_to_jiffies(dev
->timeout
) +
802 msecs_to_jiffies(repeat_period(protocol
));
803 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
805 spin_unlock_irqrestore(&dev
->keylock
, flags
);
807 EXPORT_SYMBOL_GPL(rc_keydown
);
810 * rc_keydown_notimeout() - generates input event for a key press without
811 * an automatic keyup event at a later time
812 * @dev: the struct rc_dev descriptor of the device
813 * @protocol: the protocol for the keypress
814 * @scancode: the scancode for the keypress
815 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
816 * support toggle values, this should be set to zero)
818 * This routine is used to signal that a key has been pressed on the
819 * remote control. The driver must manually call rc_keyup() at a later stage.
821 void rc_keydown_notimeout(struct rc_dev
*dev
, enum rc_proto protocol
,
822 u32 scancode
, u8 toggle
)
825 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
827 spin_lock_irqsave(&dev
->keylock
, flags
);
828 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
829 spin_unlock_irqrestore(&dev
->keylock
, flags
);
831 EXPORT_SYMBOL_GPL(rc_keydown_notimeout
);
834 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
835 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
837 * @scancode: scancode
839 bool rc_validate_scancode(enum rc_proto proto
, u32 scancode
)
843 * NECX has a 16-bit address; if the lower 8 bits match the upper
844 * 8 bits inverted, then the address would match regular nec.
847 if ((((scancode
>> 16) ^ ~(scancode
>> 8)) & 0xff) == 0)
851 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
852 * of the command match the upper 8 bits inverted, then it would
853 * be either NEC or NECX.
856 if ((((scancode
>> 8) ^ ~scancode
) & 0xff) == 0)
860 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
861 * is regular mode-6a 32 bit
863 case RC_PROTO_RC6_MCE
:
864 if ((scancode
& 0xffff0000) != 0x800f0000)
867 case RC_PROTO_RC6_6A_32
:
868 if ((scancode
& 0xffff0000) == 0x800f0000)
879 * rc_validate_filter() - checks that the scancode and mask are valid and
880 * provides sensible defaults
881 * @dev: the struct rc_dev descriptor of the device
882 * @filter: the scancode and mask
884 * return: 0 or -EINVAL if the filter is not valid
886 static int rc_validate_filter(struct rc_dev
*dev
,
887 struct rc_scancode_filter
*filter
)
889 u32 mask
, s
= filter
->data
;
890 enum rc_proto protocol
= dev
->wakeup_protocol
;
892 if (protocol
>= ARRAY_SIZE(protocols
))
895 mask
= protocols
[protocol
].scancode_bits
;
897 if (!rc_validate_scancode(protocol
, s
))
900 filter
->data
&= mask
;
901 filter
->mask
&= mask
;
904 * If we have to raw encode the IR for wakeup, we cannot have a mask
906 if (dev
->encode_wakeup
&& filter
->mask
!= 0 && filter
->mask
!= mask
)
912 int rc_open(struct rc_dev
*rdev
)
919 mutex_lock(&rdev
->lock
);
921 if (!rdev
->registered
) {
924 if (!rdev
->users
++ && rdev
->open
)
925 rval
= rdev
->open(rdev
);
931 mutex_unlock(&rdev
->lock
);
936 static int ir_open(struct input_dev
*idev
)
938 struct rc_dev
*rdev
= input_get_drvdata(idev
);
940 return rc_open(rdev
);
943 void rc_close(struct rc_dev
*rdev
)
946 mutex_lock(&rdev
->lock
);
948 if (!--rdev
->users
&& rdev
->close
&& rdev
->registered
)
951 mutex_unlock(&rdev
->lock
);
955 static void ir_close(struct input_dev
*idev
)
957 struct rc_dev
*rdev
= input_get_drvdata(idev
);
961 /* class for /sys/class/rc */
962 static char *rc_devnode(struct device
*dev
, umode_t
*mode
)
964 return kasprintf(GFP_KERNEL
, "rc/%s", dev_name(dev
));
967 static struct class rc_class
= {
969 .devnode
= rc_devnode
,
973 * These are the protocol textual descriptions that are
974 * used by the sysfs protocols file. Note that the order
975 * of the entries is relevant.
977 static const struct {
980 const char *module_name
;
982 { RC_PROTO_BIT_NONE
, "none", NULL
},
983 { RC_PROTO_BIT_OTHER
, "other", NULL
},
984 { RC_PROTO_BIT_UNKNOWN
, "unknown", NULL
},
986 RC_PROTO_BIT_RC5X_20
, "rc-5", "ir-rc5-decoder" },
989 RC_PROTO_BIT_NEC32
, "nec", "ir-nec-decoder" },
990 { RC_PROTO_BIT_RC6_0
|
991 RC_PROTO_BIT_RC6_6A_20
|
992 RC_PROTO_BIT_RC6_6A_24
|
993 RC_PROTO_BIT_RC6_6A_32
|
994 RC_PROTO_BIT_RC6_MCE
, "rc-6", "ir-rc6-decoder" },
995 { RC_PROTO_BIT_JVC
, "jvc", "ir-jvc-decoder" },
996 { RC_PROTO_BIT_SONY12
|
997 RC_PROTO_BIT_SONY15
|
998 RC_PROTO_BIT_SONY20
, "sony", "ir-sony-decoder" },
999 { RC_PROTO_BIT_RC5_SZ
, "rc-5-sz", "ir-rc5-decoder" },
1000 { RC_PROTO_BIT_SANYO
, "sanyo", "ir-sanyo-decoder" },
1001 { RC_PROTO_BIT_SHARP
, "sharp", "ir-sharp-decoder" },
1002 { RC_PROTO_BIT_MCIR2_KBD
|
1003 RC_PROTO_BIT_MCIR2_MSE
, "mce_kbd", "ir-mce_kbd-decoder" },
1004 { RC_PROTO_BIT_XMP
, "xmp", "ir-xmp-decoder" },
1005 { RC_PROTO_BIT_CEC
, "cec", NULL
},
1006 { RC_PROTO_BIT_IMON
, "imon", "ir-imon-decoder" },
1010 * struct rc_filter_attribute - Device attribute relating to a filter type.
1011 * @attr: Device attribute.
1012 * @type: Filter type.
1013 * @mask: false for filter value, true for filter mask.
1015 struct rc_filter_attribute
{
1016 struct device_attribute attr
;
1017 enum rc_filter_type type
;
1020 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1022 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1023 struct rc_filter_attribute dev_attr_##_name = { \
1024 .attr = __ATTR(_name, _mode, _show, _store), \
1030 * show_protocols() - shows the current IR protocol(s)
1031 * @device: the device descriptor
1032 * @mattr: the device attribute struct
1033 * @buf: a pointer to the output buffer
1035 * This routine is a callback routine for input read the IR protocol type(s).
1036 * it is trigged by reading /sys/class/rc/rc?/protocols.
1037 * It returns the protocol names of supported protocols.
1038 * Enabled protocols are printed in brackets.
1040 * dev->lock is taken to guard against races between
1041 * store_protocols and show_protocols.
1043 static ssize_t
show_protocols(struct device
*device
,
1044 struct device_attribute
*mattr
, char *buf
)
1046 struct rc_dev
*dev
= to_rc_dev(device
);
1047 u64 allowed
, enabled
;
1051 mutex_lock(&dev
->lock
);
1053 enabled
= dev
->enabled_protocols
;
1054 allowed
= dev
->allowed_protocols
;
1055 if (dev
->raw
&& !allowed
)
1056 allowed
= ir_raw_get_allowed_protocols();
1058 mutex_unlock(&dev
->lock
);
1060 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1061 __func__
, (long long)allowed
, (long long)enabled
);
1063 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1064 if (allowed
& enabled
& proto_names
[i
].type
)
1065 tmp
+= sprintf(tmp
, "[%s] ", proto_names
[i
].name
);
1066 else if (allowed
& proto_names
[i
].type
)
1067 tmp
+= sprintf(tmp
, "%s ", proto_names
[i
].name
);
1069 if (allowed
& proto_names
[i
].type
)
1070 allowed
&= ~proto_names
[i
].type
;
1074 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1075 tmp
+= sprintf(tmp
, "[lirc] ");
1082 return tmp
+ 1 - buf
;
1086 * parse_protocol_change() - parses a protocol change request
1087 * @dev: rc_dev device
1088 * @protocols: pointer to the bitmask of current protocols
1089 * @buf: pointer to the buffer with a list of changes
1091 * Writing "+proto" will add a protocol to the protocol mask.
1092 * Writing "-proto" will remove a protocol from protocol mask.
1093 * Writing "proto" will enable only "proto".
1094 * Writing "none" will disable all protocols.
1095 * Returns the number of changes performed or a negative error code.
1097 static int parse_protocol_change(struct rc_dev
*dev
, u64
*protocols
,
1102 bool enable
, disable
;
1106 while ((tmp
= strsep((char **)&buf
, " \n")) != NULL
) {
1114 } else if (*tmp
== '-') {
1123 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1124 if (!strcasecmp(tmp
, proto_names
[i
].name
)) {
1125 mask
= proto_names
[i
].type
;
1130 if (i
== ARRAY_SIZE(proto_names
)) {
1131 if (!strcasecmp(tmp
, "lirc"))
1134 dev_dbg(&dev
->dev
, "Unknown protocol: '%s'\n",
1145 *protocols
&= ~mask
;
1151 dev_dbg(&dev
->dev
, "Protocol not specified\n");
1158 void ir_raw_load_modules(u64
*protocols
)
1163 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1164 if (proto_names
[i
].type
== RC_PROTO_BIT_NONE
||
1165 proto_names
[i
].type
& (RC_PROTO_BIT_OTHER
|
1166 RC_PROTO_BIT_UNKNOWN
))
1169 available
= ir_raw_get_allowed_protocols();
1170 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1173 if (!proto_names
[i
].module_name
) {
1174 pr_err("Can't enable IR protocol %s\n",
1175 proto_names
[i
].name
);
1176 *protocols
&= ~proto_names
[i
].type
;
1180 ret
= request_module("%s", proto_names
[i
].module_name
);
1182 pr_err("Couldn't load IR protocol module %s\n",
1183 proto_names
[i
].module_name
);
1184 *protocols
&= ~proto_names
[i
].type
;
1188 available
= ir_raw_get_allowed_protocols();
1189 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1192 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1193 proto_names
[i
].module_name
,
1194 proto_names
[i
].name
);
1195 *protocols
&= ~proto_names
[i
].type
;
1200 * store_protocols() - changes the current/wakeup IR protocol(s)
1201 * @device: the device descriptor
1202 * @mattr: the device attribute struct
1203 * @buf: a pointer to the input buffer
1204 * @len: length of the input buffer
1206 * This routine is for changing the IR protocol type.
1207 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1208 * See parse_protocol_change() for the valid commands.
1209 * Returns @len on success or a negative error code.
1211 * dev->lock is taken to guard against races between
1212 * store_protocols and show_protocols.
1214 static ssize_t
store_protocols(struct device
*device
,
1215 struct device_attribute
*mattr
,
1216 const char *buf
, size_t len
)
1218 struct rc_dev
*dev
= to_rc_dev(device
);
1219 u64
*current_protocols
;
1220 struct rc_scancode_filter
*filter
;
1221 u64 old_protocols
, new_protocols
;
1224 dev_dbg(&dev
->dev
, "Normal protocol change requested\n");
1225 current_protocols
= &dev
->enabled_protocols
;
1226 filter
= &dev
->scancode_filter
;
1228 if (!dev
->change_protocol
) {
1229 dev_dbg(&dev
->dev
, "Protocol switching not supported\n");
1233 mutex_lock(&dev
->lock
);
1235 old_protocols
= *current_protocols
;
1236 new_protocols
= old_protocols
;
1237 rc
= parse_protocol_change(dev
, &new_protocols
, buf
);
1241 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1242 ir_raw_load_modules(&new_protocols
);
1244 rc
= dev
->change_protocol(dev
, &new_protocols
);
1246 dev_dbg(&dev
->dev
, "Error setting protocols to 0x%llx\n",
1247 (long long)new_protocols
);
1251 if (new_protocols
!= old_protocols
) {
1252 *current_protocols
= new_protocols
;
1253 dev_dbg(&dev
->dev
, "Protocols changed to 0x%llx\n",
1254 (long long)new_protocols
);
1258 * If a protocol change was attempted the filter may need updating, even
1259 * if the actual protocol mask hasn't changed (since the driver may have
1260 * cleared the filter).
1261 * Try setting the same filter with the new protocol (if any).
1262 * Fall back to clearing the filter.
1264 if (dev
->s_filter
&& filter
->mask
) {
1266 rc
= dev
->s_filter(dev
, filter
);
1273 dev
->s_filter(dev
, filter
);
1280 mutex_unlock(&dev
->lock
);
1285 * show_filter() - shows the current scancode filter value or mask
1286 * @device: the device descriptor
1287 * @attr: the device attribute struct
1288 * @buf: a pointer to the output buffer
1290 * This routine is a callback routine to read a scancode filter value or mask.
1291 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1292 * It prints the current scancode filter value or mask of the appropriate filter
1293 * type in hexadecimal into @buf and returns the size of the buffer.
1295 * Bits of the filter value corresponding to set bits in the filter mask are
1296 * compared against input scancodes and non-matching scancodes are discarded.
1298 * dev->lock is taken to guard against races between
1299 * store_filter and show_filter.
1301 static ssize_t
show_filter(struct device
*device
,
1302 struct device_attribute
*attr
,
1305 struct rc_dev
*dev
= to_rc_dev(device
);
1306 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1307 struct rc_scancode_filter
*filter
;
1310 mutex_lock(&dev
->lock
);
1312 if (fattr
->type
== RC_FILTER_NORMAL
)
1313 filter
= &dev
->scancode_filter
;
1315 filter
= &dev
->scancode_wakeup_filter
;
1321 mutex_unlock(&dev
->lock
);
1323 return sprintf(buf
, "%#x\n", val
);
1327 * store_filter() - changes the scancode filter value
1328 * @device: the device descriptor
1329 * @attr: the device attribute struct
1330 * @buf: a pointer to the input buffer
1331 * @len: length of the input buffer
1333 * This routine is for changing a scancode filter value or mask.
1334 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1335 * Returns -EINVAL if an invalid filter value for the current protocol was
1336 * specified or if scancode filtering is not supported by the driver, otherwise
1339 * Bits of the filter value corresponding to set bits in the filter mask are
1340 * compared against input scancodes and non-matching scancodes are discarded.
1342 * dev->lock is taken to guard against races between
1343 * store_filter and show_filter.
1345 static ssize_t
store_filter(struct device
*device
,
1346 struct device_attribute
*attr
,
1347 const char *buf
, size_t len
)
1349 struct rc_dev
*dev
= to_rc_dev(device
);
1350 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1351 struct rc_scancode_filter new_filter
, *filter
;
1354 int (*set_filter
)(struct rc_dev
*dev
, struct rc_scancode_filter
*filter
);
1356 ret
= kstrtoul(buf
, 0, &val
);
1360 if (fattr
->type
== RC_FILTER_NORMAL
) {
1361 set_filter
= dev
->s_filter
;
1362 filter
= &dev
->scancode_filter
;
1364 set_filter
= dev
->s_wakeup_filter
;
1365 filter
= &dev
->scancode_wakeup_filter
;
1371 mutex_lock(&dev
->lock
);
1373 new_filter
= *filter
;
1375 new_filter
.mask
= val
;
1377 new_filter
.data
= val
;
1379 if (fattr
->type
== RC_FILTER_WAKEUP
) {
1381 * Refuse to set a filter unless a protocol is enabled
1382 * and the filter is valid for that protocol
1384 if (dev
->wakeup_protocol
!= RC_PROTO_UNKNOWN
)
1385 ret
= rc_validate_filter(dev
, &new_filter
);
1393 if (fattr
->type
== RC_FILTER_NORMAL
&& !dev
->enabled_protocols
&&
1395 /* refuse to set a filter unless a protocol is enabled */
1400 ret
= set_filter(dev
, &new_filter
);
1404 *filter
= new_filter
;
1407 mutex_unlock(&dev
->lock
);
1408 return (ret
< 0) ? ret
: len
;
1412 * show_wakeup_protocols() - shows the wakeup IR protocol
1413 * @device: the device descriptor
1414 * @mattr: the device attribute struct
1415 * @buf: a pointer to the output buffer
1417 * This routine is a callback routine for input read the IR protocol type(s).
1418 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1419 * It returns the protocol names of supported protocols.
1420 * The enabled protocols are printed in brackets.
1422 * dev->lock is taken to guard against races between
1423 * store_wakeup_protocols and show_wakeup_protocols.
1425 static ssize_t
show_wakeup_protocols(struct device
*device
,
1426 struct device_attribute
*mattr
,
1429 struct rc_dev
*dev
= to_rc_dev(device
);
1431 enum rc_proto enabled
;
1435 mutex_lock(&dev
->lock
);
1437 allowed
= dev
->allowed_wakeup_protocols
;
1438 enabled
= dev
->wakeup_protocol
;
1440 mutex_unlock(&dev
->lock
);
1442 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - %d\n",
1443 __func__
, (long long)allowed
, enabled
);
1445 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1446 if (allowed
& (1ULL << i
)) {
1448 tmp
+= sprintf(tmp
, "[%s] ", protocols
[i
].name
);
1450 tmp
+= sprintf(tmp
, "%s ", protocols
[i
].name
);
1458 return tmp
+ 1 - buf
;
1462 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1463 * @device: the device descriptor
1464 * @mattr: the device attribute struct
1465 * @buf: a pointer to the input buffer
1466 * @len: length of the input buffer
1468 * This routine is for changing the IR protocol type.
1469 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1470 * Returns @len on success or a negative error code.
1472 * dev->lock is taken to guard against races between
1473 * store_wakeup_protocols and show_wakeup_protocols.
1475 static ssize_t
store_wakeup_protocols(struct device
*device
,
1476 struct device_attribute
*mattr
,
1477 const char *buf
, size_t len
)
1479 struct rc_dev
*dev
= to_rc_dev(device
);
1480 enum rc_proto protocol
;
1485 mutex_lock(&dev
->lock
);
1487 allowed
= dev
->allowed_wakeup_protocols
;
1489 if (sysfs_streq(buf
, "none")) {
1490 protocol
= RC_PROTO_UNKNOWN
;
1492 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1493 if ((allowed
& (1ULL << i
)) &&
1494 sysfs_streq(buf
, protocols
[i
].name
)) {
1500 if (i
== ARRAY_SIZE(protocols
)) {
1505 if (dev
->encode_wakeup
) {
1506 u64 mask
= 1ULL << protocol
;
1508 ir_raw_load_modules(&mask
);
1516 if (dev
->wakeup_protocol
!= protocol
) {
1517 dev
->wakeup_protocol
= protocol
;
1518 dev_dbg(&dev
->dev
, "Wakeup protocol changed to %d\n", protocol
);
1520 if (protocol
== RC_PROTO_RC6_MCE
)
1521 dev
->scancode_wakeup_filter
.data
= 0x800f0000;
1523 dev
->scancode_wakeup_filter
.data
= 0;
1524 dev
->scancode_wakeup_filter
.mask
= 0;
1526 rc
= dev
->s_wakeup_filter(dev
, &dev
->scancode_wakeup_filter
);
1534 mutex_unlock(&dev
->lock
);
1538 static void rc_dev_release(struct device
*device
)
1540 struct rc_dev
*dev
= to_rc_dev(device
);
1545 #define ADD_HOTPLUG_VAR(fmt, val...) \
1547 int err = add_uevent_var(env, fmt, val); \
1552 static int rc_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1554 struct rc_dev
*dev
= to_rc_dev(device
);
1556 if (dev
->rc_map
.name
)
1557 ADD_HOTPLUG_VAR("NAME=%s", dev
->rc_map
.name
);
1558 if (dev
->driver_name
)
1559 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev
->driver_name
);
1560 if (dev
->device_name
)
1561 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev
->device_name
);
1567 * Static device attribute struct with the sysfs attributes for IR's
1569 static struct device_attribute dev_attr_ro_protocols
=
1570 __ATTR(protocols
, 0444, show_protocols
, NULL
);
1571 static struct device_attribute dev_attr_rw_protocols
=
1572 __ATTR(protocols
, 0644, show_protocols
, store_protocols
);
1573 static DEVICE_ATTR(wakeup_protocols
, 0644, show_wakeup_protocols
,
1574 store_wakeup_protocols
);
1575 static RC_FILTER_ATTR(filter
, S_IRUGO
|S_IWUSR
,
1576 show_filter
, store_filter
, RC_FILTER_NORMAL
, false);
1577 static RC_FILTER_ATTR(filter_mask
, S_IRUGO
|S_IWUSR
,
1578 show_filter
, store_filter
, RC_FILTER_NORMAL
, true);
1579 static RC_FILTER_ATTR(wakeup_filter
, S_IRUGO
|S_IWUSR
,
1580 show_filter
, store_filter
, RC_FILTER_WAKEUP
, false);
1581 static RC_FILTER_ATTR(wakeup_filter_mask
, S_IRUGO
|S_IWUSR
,
1582 show_filter
, store_filter
, RC_FILTER_WAKEUP
, true);
1584 static struct attribute
*rc_dev_rw_protocol_attrs
[] = {
1585 &dev_attr_rw_protocols
.attr
,
1589 static const struct attribute_group rc_dev_rw_protocol_attr_grp
= {
1590 .attrs
= rc_dev_rw_protocol_attrs
,
1593 static struct attribute
*rc_dev_ro_protocol_attrs
[] = {
1594 &dev_attr_ro_protocols
.attr
,
1598 static const struct attribute_group rc_dev_ro_protocol_attr_grp
= {
1599 .attrs
= rc_dev_ro_protocol_attrs
,
1602 static struct attribute
*rc_dev_filter_attrs
[] = {
1603 &dev_attr_filter
.attr
.attr
,
1604 &dev_attr_filter_mask
.attr
.attr
,
1608 static const struct attribute_group rc_dev_filter_attr_grp
= {
1609 .attrs
= rc_dev_filter_attrs
,
1612 static struct attribute
*rc_dev_wakeup_filter_attrs
[] = {
1613 &dev_attr_wakeup_filter
.attr
.attr
,
1614 &dev_attr_wakeup_filter_mask
.attr
.attr
,
1615 &dev_attr_wakeup_protocols
.attr
,
1619 static const struct attribute_group rc_dev_wakeup_filter_attr_grp
= {
1620 .attrs
= rc_dev_wakeup_filter_attrs
,
1623 static const struct device_type rc_dev_type
= {
1624 .release
= rc_dev_release
,
1625 .uevent
= rc_dev_uevent
,
1628 struct rc_dev
*rc_allocate_device(enum rc_driver_type type
)
1632 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1636 if (type
!= RC_DRIVER_IR_RAW_TX
) {
1637 dev
->input_dev
= input_allocate_device();
1638 if (!dev
->input_dev
) {
1643 dev
->input_dev
->getkeycode
= ir_getkeycode
;
1644 dev
->input_dev
->setkeycode
= ir_setkeycode
;
1645 input_set_drvdata(dev
->input_dev
, dev
);
1647 dev
->timeout
= IR_DEFAULT_TIMEOUT
;
1648 timer_setup(&dev
->timer_keyup
, ir_timer_keyup
, 0);
1649 timer_setup(&dev
->timer_repeat
, ir_timer_repeat
, 0);
1651 spin_lock_init(&dev
->rc_map
.lock
);
1652 spin_lock_init(&dev
->keylock
);
1654 mutex_init(&dev
->lock
);
1656 dev
->dev
.type
= &rc_dev_type
;
1657 dev
->dev
.class = &rc_class
;
1658 device_initialize(&dev
->dev
);
1660 dev
->driver_type
= type
;
1662 __module_get(THIS_MODULE
);
1665 EXPORT_SYMBOL_GPL(rc_allocate_device
);
1667 void rc_free_device(struct rc_dev
*dev
)
1672 input_free_device(dev
->input_dev
);
1674 put_device(&dev
->dev
);
1676 /* kfree(dev) will be called by the callback function
1679 module_put(THIS_MODULE
);
1681 EXPORT_SYMBOL_GPL(rc_free_device
);
1683 static void devm_rc_alloc_release(struct device
*dev
, void *res
)
1685 rc_free_device(*(struct rc_dev
**)res
);
1688 struct rc_dev
*devm_rc_allocate_device(struct device
*dev
,
1689 enum rc_driver_type type
)
1691 struct rc_dev
**dr
, *rc
;
1693 dr
= devres_alloc(devm_rc_alloc_release
, sizeof(*dr
), GFP_KERNEL
);
1697 rc
= rc_allocate_device(type
);
1703 rc
->dev
.parent
= dev
;
1704 rc
->managed_alloc
= true;
1706 devres_add(dev
, dr
);
1710 EXPORT_SYMBOL_GPL(devm_rc_allocate_device
);
1712 static int rc_prepare_rx_device(struct rc_dev
*dev
)
1715 struct rc_map
*rc_map
;
1721 rc_map
= rc_map_get(dev
->map_name
);
1723 rc_map
= rc_map_get(RC_MAP_EMPTY
);
1724 if (!rc_map
|| !rc_map
->scan
|| rc_map
->size
== 0)
1727 rc
= ir_setkeytable(dev
, rc_map
);
1731 rc_proto
= BIT_ULL(rc_map
->rc_proto
);
1733 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1734 dev
->enabled_protocols
= dev
->allowed_protocols
;
1736 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1737 ir_raw_load_modules(&rc_proto
);
1739 if (dev
->change_protocol
) {
1740 rc
= dev
->change_protocol(dev
, &rc_proto
);
1743 dev
->enabled_protocols
= rc_proto
;
1746 /* Keyboard events */
1747 set_bit(EV_KEY
, dev
->input_dev
->evbit
);
1748 set_bit(EV_REP
, dev
->input_dev
->evbit
);
1749 set_bit(EV_MSC
, dev
->input_dev
->evbit
);
1750 set_bit(MSC_SCAN
, dev
->input_dev
->mscbit
);
1751 bitmap_fill(dev
->input_dev
->keybit
, KEY_CNT
);
1753 /* Pointer/mouse events */
1754 set_bit(EV_REL
, dev
->input_dev
->evbit
);
1755 set_bit(REL_X
, dev
->input_dev
->relbit
);
1756 set_bit(REL_Y
, dev
->input_dev
->relbit
);
1759 dev
->input_dev
->open
= ir_open
;
1761 dev
->input_dev
->close
= ir_close
;
1763 dev
->input_dev
->dev
.parent
= &dev
->dev
;
1764 memcpy(&dev
->input_dev
->id
, &dev
->input_id
, sizeof(dev
->input_id
));
1765 dev
->input_dev
->phys
= dev
->input_phys
;
1766 dev
->input_dev
->name
= dev
->device_name
;
1771 ir_free_table(&dev
->rc_map
);
1776 static int rc_setup_rx_device(struct rc_dev
*dev
)
1780 /* rc_open will be called here */
1781 rc
= input_register_device(dev
->input_dev
);
1786 * Default delay of 250ms is too short for some protocols, especially
1787 * since the timeout is currently set to 250ms. Increase it to 500ms,
1788 * to avoid wrong repetition of the keycodes. Note that this must be
1789 * set after the call to input_register_device().
1791 if (dev
->allowed_protocols
== RC_PROTO_BIT_CEC
)
1792 dev
->input_dev
->rep
[REP_DELAY
] = 0;
1794 dev
->input_dev
->rep
[REP_DELAY
] = 500;
1797 * As a repeat event on protocols like RC-5 and NEC take as long as
1798 * 110/114ms, using 33ms as a repeat period is not the right thing
1801 dev
->input_dev
->rep
[REP_PERIOD
] = 125;
1806 static void rc_free_rx_device(struct rc_dev
*dev
)
1811 if (dev
->input_dev
) {
1812 input_unregister_device(dev
->input_dev
);
1813 dev
->input_dev
= NULL
;
1816 ir_free_table(&dev
->rc_map
);
1819 int rc_register_device(struct rc_dev
*dev
)
1829 minor
= ida_simple_get(&rc_ida
, 0, RC_DEV_MAX
, GFP_KERNEL
);
1834 dev_set_name(&dev
->dev
, "rc%u", dev
->minor
);
1835 dev_set_drvdata(&dev
->dev
, dev
);
1837 dev
->dev
.groups
= dev
->sysfs_groups
;
1838 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1839 dev
->sysfs_groups
[attr
++] = &rc_dev_ro_protocol_attr_grp
;
1840 else if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
)
1841 dev
->sysfs_groups
[attr
++] = &rc_dev_rw_protocol_attr_grp
;
1843 dev
->sysfs_groups
[attr
++] = &rc_dev_filter_attr_grp
;
1844 if (dev
->s_wakeup_filter
)
1845 dev
->sysfs_groups
[attr
++] = &rc_dev_wakeup_filter_attr_grp
;
1846 dev
->sysfs_groups
[attr
++] = NULL
;
1848 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1849 rc
= ir_raw_event_prepare(dev
);
1854 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1855 rc
= rc_prepare_rx_device(dev
);
1860 rc
= device_add(&dev
->dev
);
1864 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1865 dev_info(&dev
->dev
, "%s as %s\n",
1866 dev
->device_name
?: "Unspecified device", path
?: "N/A");
1869 dev
->registered
= true;
1871 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1872 rc
= rc_setup_rx_device(dev
);
1877 /* Ensure that the lirc kfifo is setup before we start the thread */
1878 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
) {
1879 rc
= ir_lirc_register(dev
);
1884 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1885 rc
= ir_raw_event_register(dev
);
1890 dev_dbg(&dev
->dev
, "Registered rc%u (driver: %s)\n", dev
->minor
,
1891 dev
->driver_name
? dev
->driver_name
: "unknown");
1896 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
1897 ir_lirc_unregister(dev
);
1899 rc_free_rx_device(dev
);
1901 device_del(&dev
->dev
);
1903 ir_free_table(&dev
->rc_map
);
1905 ir_raw_event_free(dev
);
1907 ida_simple_remove(&rc_ida
, minor
);
1910 EXPORT_SYMBOL_GPL(rc_register_device
);
1912 static void devm_rc_release(struct device
*dev
, void *res
)
1914 rc_unregister_device(*(struct rc_dev
**)res
);
1917 int devm_rc_register_device(struct device
*parent
, struct rc_dev
*dev
)
1922 dr
= devres_alloc(devm_rc_release
, sizeof(*dr
), GFP_KERNEL
);
1926 ret
= rc_register_device(dev
);
1933 devres_add(parent
, dr
);
1937 EXPORT_SYMBOL_GPL(devm_rc_register_device
);
1939 void rc_unregister_device(struct rc_dev
*dev
)
1944 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1945 ir_raw_event_unregister(dev
);
1947 del_timer_sync(&dev
->timer_keyup
);
1948 del_timer_sync(&dev
->timer_repeat
);
1950 rc_free_rx_device(dev
);
1952 mutex_lock(&dev
->lock
);
1953 dev
->registered
= false;
1954 mutex_unlock(&dev
->lock
);
1957 * lirc device should be freed with dev->registered = false, so
1958 * that userspace polling will get notified.
1960 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
1961 ir_lirc_unregister(dev
);
1963 device_del(&dev
->dev
);
1965 ida_simple_remove(&rc_ida
, dev
->minor
);
1967 if (!dev
->managed_alloc
)
1968 rc_free_device(dev
);
1971 EXPORT_SYMBOL_GPL(rc_unregister_device
);
1974 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1977 static int __init
rc_core_init(void)
1979 int rc
= class_register(&rc_class
);
1981 pr_err("rc_core: unable to register rc class\n");
1985 rc
= lirc_dev_init();
1987 pr_err("rc_core: unable to init lirc\n");
1988 class_unregister(&rc_class
);
1992 led_trigger_register_simple("rc-feedback", &led_feedback
);
1993 rc_map_register(&empty_map
);
1998 static void __exit
rc_core_exit(void)
2001 class_unregister(&rc_class
);
2002 led_trigger_unregister_simple(led_feedback
);
2003 rc_map_unregister(&empty_map
);
2006 subsys_initcall(rc_core_init
);
2007 module_exit(rc_core_exit
);
2009 MODULE_AUTHOR("Mauro Carvalho Chehab");
2010 MODULE_LICENSE("GPL v2");