2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
27 #include <linux/file.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
58 unsigned id
; /* kernel internal index number */
59 unsigned nr
; /* number of io_events */
60 unsigned head
; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
65 unsigned compat_features
;
66 unsigned incompat_features
;
67 unsigned header_length
; /* size of aio_ring */
70 struct io_event io_events
[0];
71 }; /* 128 bytes + ring size */
73 #define AIO_RING_PAGES 8
78 struct kioctx __rcu
*table
[];
82 unsigned reqs_available
;
86 struct completion comp
;
91 struct percpu_ref users
;
94 struct percpu_ref reqs
;
96 unsigned long user_id
;
98 struct __percpu kioctx_cpu
*cpu
;
101 * For percpu reqs_available, number of slots we move to/from global
106 * This is what userspace passed to io_setup(), it's not used for
107 * anything but counting against the global max_reqs quota.
109 * The real limit is nr_events - 1, which will be larger (see
114 /* Size of ringbuffer, in units of struct io_event */
117 unsigned long mmap_base
;
118 unsigned long mmap_size
;
120 struct page
**ring_pages
;
123 struct rcu_work free_rwork
; /* see free_ioctx() */
126 * signals when all in-flight requests are done
128 struct ctx_rq_wait
*rq_wait
;
132 * This counts the number of available slots in the ringbuffer,
133 * so we avoid overflowing it: it's decremented (if positive)
134 * when allocating a kiocb and incremented when the resulting
135 * io_event is pulled off the ringbuffer.
137 * We batch accesses to it with a percpu version.
139 atomic_t reqs_available
;
140 } ____cacheline_aligned_in_smp
;
144 struct list_head active_reqs
; /* used for cancellation */
145 } ____cacheline_aligned_in_smp
;
148 struct mutex ring_lock
;
149 wait_queue_head_t wait
;
150 } ____cacheline_aligned_in_smp
;
154 unsigned completed_events
;
155 spinlock_t completion_lock
;
156 } ____cacheline_aligned_in_smp
;
158 struct page
*internal_pages
[AIO_RING_PAGES
];
159 struct file
*aio_ring_file
;
165 struct work_struct work
;
172 struct wait_queue_head
*head
;
176 struct wait_queue_entry wait
;
177 struct work_struct work
;
183 struct fsync_iocb fsync
;
184 struct poll_iocb poll
;
187 struct kioctx
*ki_ctx
;
188 kiocb_cancel_fn
*ki_cancel
;
190 struct iocb __user
*ki_user_iocb
; /* user's aiocb */
191 __u64 ki_user_data
; /* user's data for completion */
193 struct list_head ki_list
; /* the aio core uses this
194 * for cancellation */
195 refcount_t ki_refcnt
;
198 * If the aio_resfd field of the userspace iocb is not zero,
199 * this is the underlying eventfd context to deliver events to.
201 struct eventfd_ctx
*ki_eventfd
;
204 /*------ sysctl variables----*/
205 static DEFINE_SPINLOCK(aio_nr_lock
);
206 unsigned long aio_nr
; /* current system wide number of aio requests */
207 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
208 /*----end sysctl variables---*/
210 static struct kmem_cache
*kiocb_cachep
;
211 static struct kmem_cache
*kioctx_cachep
;
213 static struct vfsmount
*aio_mnt
;
215 static const struct file_operations aio_ring_fops
;
216 static const struct address_space_operations aio_ctx_aops
;
218 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
221 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
223 return ERR_CAST(inode
);
225 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
226 inode
->i_mapping
->private_data
= ctx
;
227 inode
->i_size
= PAGE_SIZE
* nr_pages
;
229 file
= alloc_file_pseudo(inode
, aio_mnt
, "[aio]",
230 O_RDWR
, &aio_ring_fops
);
236 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
237 int flags
, const char *dev_name
, void *data
)
239 struct dentry
*root
= mount_pseudo(fs_type
, "aio:", NULL
, NULL
,
243 root
->d_sb
->s_iflags
|= SB_I_NOEXEC
;
248 * Creates the slab caches used by the aio routines, panic on
249 * failure as this is done early during the boot sequence.
251 static int __init
aio_setup(void)
253 static struct file_system_type aio_fs
= {
256 .kill_sb
= kill_anon_super
,
258 aio_mnt
= kern_mount(&aio_fs
);
260 panic("Failed to create aio fs mount.");
262 kiocb_cachep
= KMEM_CACHE(aio_kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
263 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
266 __initcall(aio_setup
);
268 static void put_aio_ring_file(struct kioctx
*ctx
)
270 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
271 struct address_space
*i_mapping
;
274 truncate_setsize(file_inode(aio_ring_file
), 0);
276 /* Prevent further access to the kioctx from migratepages */
277 i_mapping
= aio_ring_file
->f_mapping
;
278 spin_lock(&i_mapping
->private_lock
);
279 i_mapping
->private_data
= NULL
;
280 ctx
->aio_ring_file
= NULL
;
281 spin_unlock(&i_mapping
->private_lock
);
287 static void aio_free_ring(struct kioctx
*ctx
)
291 /* Disconnect the kiotx from the ring file. This prevents future
292 * accesses to the kioctx from page migration.
294 put_aio_ring_file(ctx
);
296 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
298 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
299 page_count(ctx
->ring_pages
[i
]));
300 page
= ctx
->ring_pages
[i
];
303 ctx
->ring_pages
[i
] = NULL
;
307 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
308 kfree(ctx
->ring_pages
);
309 ctx
->ring_pages
= NULL
;
313 static int aio_ring_mremap(struct vm_area_struct
*vma
)
315 struct file
*file
= vma
->vm_file
;
316 struct mm_struct
*mm
= vma
->vm_mm
;
317 struct kioctx_table
*table
;
318 int i
, res
= -EINVAL
;
320 spin_lock(&mm
->ioctx_lock
);
322 table
= rcu_dereference(mm
->ioctx_table
);
323 for (i
= 0; i
< table
->nr
; i
++) {
326 ctx
= rcu_dereference(table
->table
[i
]);
327 if (ctx
&& ctx
->aio_ring_file
== file
) {
328 if (!atomic_read(&ctx
->dead
)) {
329 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
337 spin_unlock(&mm
->ioctx_lock
);
341 static const struct vm_operations_struct aio_ring_vm_ops
= {
342 .mremap
= aio_ring_mremap
,
343 #if IS_ENABLED(CONFIG_MMU)
344 .fault
= filemap_fault
,
345 .map_pages
= filemap_map_pages
,
346 .page_mkwrite
= filemap_page_mkwrite
,
350 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
352 vma
->vm_flags
|= VM_DONTEXPAND
;
353 vma
->vm_ops
= &aio_ring_vm_ops
;
357 static const struct file_operations aio_ring_fops
= {
358 .mmap
= aio_ring_mmap
,
361 #if IS_ENABLED(CONFIG_MIGRATION)
362 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
363 struct page
*old
, enum migrate_mode mode
)
371 * We cannot support the _NO_COPY case here, because copy needs to
372 * happen under the ctx->completion_lock. That does not work with the
373 * migration workflow of MIGRATE_SYNC_NO_COPY.
375 if (mode
== MIGRATE_SYNC_NO_COPY
)
380 /* mapping->private_lock here protects against the kioctx teardown. */
381 spin_lock(&mapping
->private_lock
);
382 ctx
= mapping
->private_data
;
388 /* The ring_lock mutex. The prevents aio_read_events() from writing
389 * to the ring's head, and prevents page migration from mucking in
390 * a partially initialized kiotx.
392 if (!mutex_trylock(&ctx
->ring_lock
)) {
398 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
399 /* Make sure the old page hasn't already been changed */
400 if (ctx
->ring_pages
[idx
] != old
)
408 /* Writeback must be complete */
409 BUG_ON(PageWriteback(old
));
412 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
, 1);
413 if (rc
!= MIGRATEPAGE_SUCCESS
) {
418 /* Take completion_lock to prevent other writes to the ring buffer
419 * while the old page is copied to the new. This prevents new
420 * events from being lost.
422 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
423 migrate_page_copy(new, old
);
424 BUG_ON(ctx
->ring_pages
[idx
] != old
);
425 ctx
->ring_pages
[idx
] = new;
426 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
428 /* The old page is no longer accessible. */
432 mutex_unlock(&ctx
->ring_lock
);
434 spin_unlock(&mapping
->private_lock
);
439 static const struct address_space_operations aio_ctx_aops
= {
440 .set_page_dirty
= __set_page_dirty_no_writeback
,
441 #if IS_ENABLED(CONFIG_MIGRATION)
442 .migratepage
= aio_migratepage
,
446 static int aio_setup_ring(struct kioctx
*ctx
, unsigned int nr_events
)
448 struct aio_ring
*ring
;
449 struct mm_struct
*mm
= current
->mm
;
450 unsigned long size
, unused
;
455 /* Compensate for the ring buffer's head/tail overlap entry */
456 nr_events
+= 2; /* 1 is required, 2 for good luck */
458 size
= sizeof(struct aio_ring
);
459 size
+= sizeof(struct io_event
) * nr_events
;
461 nr_pages
= PFN_UP(size
);
465 file
= aio_private_file(ctx
, nr_pages
);
467 ctx
->aio_ring_file
= NULL
;
471 ctx
->aio_ring_file
= file
;
472 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
473 / sizeof(struct io_event
);
475 ctx
->ring_pages
= ctx
->internal_pages
;
476 if (nr_pages
> AIO_RING_PAGES
) {
477 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
479 if (!ctx
->ring_pages
) {
480 put_aio_ring_file(ctx
);
485 for (i
= 0; i
< nr_pages
; i
++) {
487 page
= find_or_create_page(file
->f_mapping
,
488 i
, GFP_HIGHUSER
| __GFP_ZERO
);
491 pr_debug("pid(%d) page[%d]->count=%d\n",
492 current
->pid
, i
, page_count(page
));
493 SetPageUptodate(page
);
496 ctx
->ring_pages
[i
] = page
;
500 if (unlikely(i
!= nr_pages
)) {
505 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
506 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
508 if (down_write_killable(&mm
->mmap_sem
)) {
514 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
515 PROT_READ
| PROT_WRITE
,
516 MAP_SHARED
, 0, &unused
, NULL
);
517 up_write(&mm
->mmap_sem
);
518 if (IS_ERR((void *)ctx
->mmap_base
)) {
524 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
526 ctx
->user_id
= ctx
->mmap_base
;
527 ctx
->nr_events
= nr_events
; /* trusted copy */
529 ring
= kmap_atomic(ctx
->ring_pages
[0]);
530 ring
->nr
= nr_events
; /* user copy */
532 ring
->head
= ring
->tail
= 0;
533 ring
->magic
= AIO_RING_MAGIC
;
534 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
535 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
536 ring
->header_length
= sizeof(struct aio_ring
);
538 flush_dcache_page(ctx
->ring_pages
[0]);
543 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
544 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
545 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
547 void kiocb_set_cancel_fn(struct kiocb
*iocb
, kiocb_cancel_fn
*cancel
)
549 struct aio_kiocb
*req
= container_of(iocb
, struct aio_kiocb
, rw
);
550 struct kioctx
*ctx
= req
->ki_ctx
;
553 if (WARN_ON_ONCE(!list_empty(&req
->ki_list
)))
556 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
557 list_add_tail(&req
->ki_list
, &ctx
->active_reqs
);
558 req
->ki_cancel
= cancel
;
559 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
561 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
564 * free_ioctx() should be RCU delayed to synchronize against the RCU
565 * protected lookup_ioctx() and also needs process context to call
566 * aio_free_ring(). Use rcu_work.
568 static void free_ioctx(struct work_struct
*work
)
570 struct kioctx
*ctx
= container_of(to_rcu_work(work
), struct kioctx
,
572 pr_debug("freeing %p\n", ctx
);
575 free_percpu(ctx
->cpu
);
576 percpu_ref_exit(&ctx
->reqs
);
577 percpu_ref_exit(&ctx
->users
);
578 kmem_cache_free(kioctx_cachep
, ctx
);
581 static void free_ioctx_reqs(struct percpu_ref
*ref
)
583 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
585 /* At this point we know that there are no any in-flight requests */
586 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
587 complete(&ctx
->rq_wait
->comp
);
589 /* Synchronize against RCU protected table->table[] dereferences */
590 INIT_RCU_WORK(&ctx
->free_rwork
, free_ioctx
);
591 queue_rcu_work(system_wq
, &ctx
->free_rwork
);
595 * When this function runs, the kioctx has been removed from the "hash table"
596 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
597 * now it's safe to cancel any that need to be.
599 static void free_ioctx_users(struct percpu_ref
*ref
)
601 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
602 struct aio_kiocb
*req
;
604 spin_lock_irq(&ctx
->ctx_lock
);
606 while (!list_empty(&ctx
->active_reqs
)) {
607 req
= list_first_entry(&ctx
->active_reqs
,
608 struct aio_kiocb
, ki_list
);
609 req
->ki_cancel(&req
->rw
);
610 list_del_init(&req
->ki_list
);
613 spin_unlock_irq(&ctx
->ctx_lock
);
615 percpu_ref_kill(&ctx
->reqs
);
616 percpu_ref_put(&ctx
->reqs
);
619 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
622 struct kioctx_table
*table
, *old
;
623 struct aio_ring
*ring
;
625 spin_lock(&mm
->ioctx_lock
);
626 table
= rcu_dereference_raw(mm
->ioctx_table
);
630 for (i
= 0; i
< table
->nr
; i
++)
631 if (!rcu_access_pointer(table
->table
[i
])) {
633 rcu_assign_pointer(table
->table
[i
], ctx
);
634 spin_unlock(&mm
->ioctx_lock
);
636 /* While kioctx setup is in progress,
637 * we are protected from page migration
638 * changes ring_pages by ->ring_lock.
640 ring
= kmap_atomic(ctx
->ring_pages
[0]);
646 new_nr
= (table
? table
->nr
: 1) * 4;
647 spin_unlock(&mm
->ioctx_lock
);
649 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
656 spin_lock(&mm
->ioctx_lock
);
657 old
= rcu_dereference_raw(mm
->ioctx_table
);
660 rcu_assign_pointer(mm
->ioctx_table
, table
);
661 } else if (table
->nr
> old
->nr
) {
662 memcpy(table
->table
, old
->table
,
663 old
->nr
* sizeof(struct kioctx
*));
665 rcu_assign_pointer(mm
->ioctx_table
, table
);
674 static void aio_nr_sub(unsigned nr
)
676 spin_lock(&aio_nr_lock
);
677 if (WARN_ON(aio_nr
- nr
> aio_nr
))
681 spin_unlock(&aio_nr_lock
);
685 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
687 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
689 struct mm_struct
*mm
= current
->mm
;
694 * Store the original nr_events -- what userspace passed to io_setup(),
695 * for counting against the global limit -- before it changes.
697 unsigned int max_reqs
= nr_events
;
700 * We keep track of the number of available ringbuffer slots, to prevent
701 * overflow (reqs_available), and we also use percpu counters for this.
703 * So since up to half the slots might be on other cpu's percpu counters
704 * and unavailable, double nr_events so userspace sees what they
705 * expected: additionally, we move req_batch slots to/from percpu
706 * counters at a time, so make sure that isn't 0:
708 nr_events
= max(nr_events
, num_possible_cpus() * 4);
711 /* Prevent overflows */
712 if (nr_events
> (0x10000000U
/ sizeof(struct io_event
))) {
713 pr_debug("ENOMEM: nr_events too high\n");
714 return ERR_PTR(-EINVAL
);
717 if (!nr_events
|| (unsigned long)max_reqs
> aio_max_nr
)
718 return ERR_PTR(-EAGAIN
);
720 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
722 return ERR_PTR(-ENOMEM
);
724 ctx
->max_reqs
= max_reqs
;
726 spin_lock_init(&ctx
->ctx_lock
);
727 spin_lock_init(&ctx
->completion_lock
);
728 mutex_init(&ctx
->ring_lock
);
729 /* Protect against page migration throughout kiotx setup by keeping
730 * the ring_lock mutex held until setup is complete. */
731 mutex_lock(&ctx
->ring_lock
);
732 init_waitqueue_head(&ctx
->wait
);
734 INIT_LIST_HEAD(&ctx
->active_reqs
);
736 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
739 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
742 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
746 err
= aio_setup_ring(ctx
, nr_events
);
750 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
751 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
752 if (ctx
->req_batch
< 1)
755 /* limit the number of system wide aios */
756 spin_lock(&aio_nr_lock
);
757 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
758 aio_nr
+ ctx
->max_reqs
< aio_nr
) {
759 spin_unlock(&aio_nr_lock
);
763 aio_nr
+= ctx
->max_reqs
;
764 spin_unlock(&aio_nr_lock
);
766 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
767 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
769 err
= ioctx_add_table(ctx
, mm
);
773 /* Release the ring_lock mutex now that all setup is complete. */
774 mutex_unlock(&ctx
->ring_lock
);
776 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
777 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
781 aio_nr_sub(ctx
->max_reqs
);
783 atomic_set(&ctx
->dead
, 1);
785 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
788 mutex_unlock(&ctx
->ring_lock
);
789 free_percpu(ctx
->cpu
);
790 percpu_ref_exit(&ctx
->reqs
);
791 percpu_ref_exit(&ctx
->users
);
792 kmem_cache_free(kioctx_cachep
, ctx
);
793 pr_debug("error allocating ioctx %d\n", err
);
798 * Cancels all outstanding aio requests on an aio context. Used
799 * when the processes owning a context have all exited to encourage
800 * the rapid destruction of the kioctx.
802 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
803 struct ctx_rq_wait
*wait
)
805 struct kioctx_table
*table
;
807 spin_lock(&mm
->ioctx_lock
);
808 if (atomic_xchg(&ctx
->dead
, 1)) {
809 spin_unlock(&mm
->ioctx_lock
);
813 table
= rcu_dereference_raw(mm
->ioctx_table
);
814 WARN_ON(ctx
!= rcu_access_pointer(table
->table
[ctx
->id
]));
815 RCU_INIT_POINTER(table
->table
[ctx
->id
], NULL
);
816 spin_unlock(&mm
->ioctx_lock
);
818 /* free_ioctx_reqs() will do the necessary RCU synchronization */
819 wake_up_all(&ctx
->wait
);
822 * It'd be more correct to do this in free_ioctx(), after all
823 * the outstanding kiocbs have finished - but by then io_destroy
824 * has already returned, so io_setup() could potentially return
825 * -EAGAIN with no ioctxs actually in use (as far as userspace
828 aio_nr_sub(ctx
->max_reqs
);
831 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
834 percpu_ref_kill(&ctx
->users
);
839 * exit_aio: called when the last user of mm goes away. At this point, there is
840 * no way for any new requests to be submited or any of the io_* syscalls to be
841 * called on the context.
843 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
846 void exit_aio(struct mm_struct
*mm
)
848 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
849 struct ctx_rq_wait wait
;
855 atomic_set(&wait
.count
, table
->nr
);
856 init_completion(&wait
.comp
);
859 for (i
= 0; i
< table
->nr
; ++i
) {
861 rcu_dereference_protected(table
->table
[i
], true);
869 * We don't need to bother with munmap() here - exit_mmap(mm)
870 * is coming and it'll unmap everything. And we simply can't,
871 * this is not necessarily our ->mm.
872 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
873 * that it needs to unmap the area, just set it to 0.
876 kill_ioctx(mm
, ctx
, &wait
);
879 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
880 /* Wait until all IO for the context are done. */
881 wait_for_completion(&wait
.comp
);
884 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
888 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
890 struct kioctx_cpu
*kcpu
;
893 local_irq_save(flags
);
894 kcpu
= this_cpu_ptr(ctx
->cpu
);
895 kcpu
->reqs_available
+= nr
;
897 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
898 kcpu
->reqs_available
-= ctx
->req_batch
;
899 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
902 local_irq_restore(flags
);
905 static bool get_reqs_available(struct kioctx
*ctx
)
907 struct kioctx_cpu
*kcpu
;
911 local_irq_save(flags
);
912 kcpu
= this_cpu_ptr(ctx
->cpu
);
913 if (!kcpu
->reqs_available
) {
914 int old
, avail
= atomic_read(&ctx
->reqs_available
);
917 if (avail
< ctx
->req_batch
)
921 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
922 avail
, avail
- ctx
->req_batch
);
923 } while (avail
!= old
);
925 kcpu
->reqs_available
+= ctx
->req_batch
;
929 kcpu
->reqs_available
--;
931 local_irq_restore(flags
);
935 /* refill_reqs_available
936 * Updates the reqs_available reference counts used for tracking the
937 * number of free slots in the completion ring. This can be called
938 * from aio_complete() (to optimistically update reqs_available) or
939 * from aio_get_req() (the we're out of events case). It must be
940 * called holding ctx->completion_lock.
942 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
945 unsigned events_in_ring
, completed
;
947 /* Clamp head since userland can write to it. */
948 head
%= ctx
->nr_events
;
950 events_in_ring
= tail
- head
;
952 events_in_ring
= ctx
->nr_events
- (head
- tail
);
954 completed
= ctx
->completed_events
;
955 if (events_in_ring
< completed
)
956 completed
-= events_in_ring
;
963 ctx
->completed_events
-= completed
;
964 put_reqs_available(ctx
, completed
);
967 /* user_refill_reqs_available
968 * Called to refill reqs_available when aio_get_req() encounters an
969 * out of space in the completion ring.
971 static void user_refill_reqs_available(struct kioctx
*ctx
)
973 spin_lock_irq(&ctx
->completion_lock
);
974 if (ctx
->completed_events
) {
975 struct aio_ring
*ring
;
978 /* Access of ring->head may race with aio_read_events_ring()
979 * here, but that's okay since whether we read the old version
980 * or the new version, and either will be valid. The important
981 * part is that head cannot pass tail since we prevent
982 * aio_complete() from updating tail by holding
983 * ctx->completion_lock. Even if head is invalid, the check
984 * against ctx->completed_events below will make sure we do the
987 ring
= kmap_atomic(ctx
->ring_pages
[0]);
991 refill_reqs_available(ctx
, head
, ctx
->tail
);
994 spin_unlock_irq(&ctx
->completion_lock
);
998 * Allocate a slot for an aio request.
999 * Returns NULL if no requests are free.
1001 static inline struct aio_kiocb
*aio_get_req(struct kioctx
*ctx
)
1003 struct aio_kiocb
*req
;
1005 if (!get_reqs_available(ctx
)) {
1006 user_refill_reqs_available(ctx
);
1007 if (!get_reqs_available(ctx
))
1011 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
|__GFP_ZERO
);
1015 percpu_ref_get(&ctx
->reqs
);
1016 INIT_LIST_HEAD(&req
->ki_list
);
1017 refcount_set(&req
->ki_refcnt
, 0);
1021 put_reqs_available(ctx
, 1);
1025 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1027 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1028 struct mm_struct
*mm
= current
->mm
;
1029 struct kioctx
*ctx
, *ret
= NULL
;
1030 struct kioctx_table
*table
;
1033 if (get_user(id
, &ring
->id
))
1037 table
= rcu_dereference(mm
->ioctx_table
);
1039 if (!table
|| id
>= table
->nr
)
1042 id
= array_index_nospec(id
, table
->nr
);
1043 ctx
= rcu_dereference(table
->table
[id
]);
1044 if (ctx
&& ctx
->user_id
== ctx_id
) {
1045 if (percpu_ref_tryget_live(&ctx
->users
))
1053 static inline void iocb_put(struct aio_kiocb
*iocb
)
1055 if (refcount_read(&iocb
->ki_refcnt
) == 0 ||
1056 refcount_dec_and_test(&iocb
->ki_refcnt
)) {
1057 percpu_ref_put(&iocb
->ki_ctx
->reqs
);
1058 kmem_cache_free(kiocb_cachep
, iocb
);
1063 * Called when the io request on the given iocb is complete.
1065 static void aio_complete(struct aio_kiocb
*iocb
, long res
, long res2
)
1067 struct kioctx
*ctx
= iocb
->ki_ctx
;
1068 struct aio_ring
*ring
;
1069 struct io_event
*ev_page
, *event
;
1070 unsigned tail
, pos
, head
;
1071 unsigned long flags
;
1074 * Add a completion event to the ring buffer. Must be done holding
1075 * ctx->completion_lock to prevent other code from messing with the tail
1076 * pointer since we might be called from irq context.
1078 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1081 pos
= tail
+ AIO_EVENTS_OFFSET
;
1083 if (++tail
>= ctx
->nr_events
)
1086 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1087 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1089 event
->obj
= (u64
)(unsigned long)iocb
->ki_user_iocb
;
1090 event
->data
= iocb
->ki_user_data
;
1094 kunmap_atomic(ev_page
);
1095 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1097 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1098 ctx
, tail
, iocb
, iocb
->ki_user_iocb
, iocb
->ki_user_data
,
1101 /* after flagging the request as done, we
1102 * must never even look at it again
1104 smp_wmb(); /* make event visible before updating tail */
1108 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1111 kunmap_atomic(ring
);
1112 flush_dcache_page(ctx
->ring_pages
[0]);
1114 ctx
->completed_events
++;
1115 if (ctx
->completed_events
> 1)
1116 refill_reqs_available(ctx
, head
, tail
);
1117 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1119 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1122 * Check if the user asked us to deliver the result through an
1123 * eventfd. The eventfd_signal() function is safe to be called
1126 if (iocb
->ki_eventfd
) {
1127 eventfd_signal(iocb
->ki_eventfd
, 1);
1128 eventfd_ctx_put(iocb
->ki_eventfd
);
1132 * We have to order our ring_info tail store above and test
1133 * of the wait list below outside the wait lock. This is
1134 * like in wake_up_bit() where clearing a bit has to be
1135 * ordered with the unlocked test.
1139 if (waitqueue_active(&ctx
->wait
))
1140 wake_up(&ctx
->wait
);
1144 /* aio_read_events_ring
1145 * Pull an event off of the ioctx's event ring. Returns the number of
1148 static long aio_read_events_ring(struct kioctx
*ctx
,
1149 struct io_event __user
*event
, long nr
)
1151 struct aio_ring
*ring
;
1152 unsigned head
, tail
, pos
;
1157 * The mutex can block and wake us up and that will cause
1158 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1159 * and repeat. This should be rare enough that it doesn't cause
1160 * peformance issues. See the comment in read_events() for more detail.
1162 sched_annotate_sleep();
1163 mutex_lock(&ctx
->ring_lock
);
1165 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1166 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1169 kunmap_atomic(ring
);
1172 * Ensure that once we've read the current tail pointer, that
1173 * we also see the events that were stored up to the tail.
1177 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1182 head
%= ctx
->nr_events
;
1183 tail
%= ctx
->nr_events
;
1187 struct io_event
*ev
;
1190 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1194 pos
= head
+ AIO_EVENTS_OFFSET
;
1195 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1196 pos
%= AIO_EVENTS_PER_PAGE
;
1198 avail
= min(avail
, nr
- ret
);
1199 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
- pos
);
1202 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1203 sizeof(*ev
) * avail
);
1206 if (unlikely(copy_ret
)) {
1213 head
%= ctx
->nr_events
;
1216 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1218 kunmap_atomic(ring
);
1219 flush_dcache_page(ctx
->ring_pages
[0]);
1221 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1223 mutex_unlock(&ctx
->ring_lock
);
1228 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1229 struct io_event __user
*event
, long *i
)
1231 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1236 if (unlikely(atomic_read(&ctx
->dead
)))
1242 return ret
< 0 || *i
>= min_nr
;
1245 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1246 struct io_event __user
*event
,
1252 * Note that aio_read_events() is being called as the conditional - i.e.
1253 * we're calling it after prepare_to_wait() has set task state to
1254 * TASK_INTERRUPTIBLE.
1256 * But aio_read_events() can block, and if it blocks it's going to flip
1257 * the task state back to TASK_RUNNING.
1259 * This should be ok, provided it doesn't flip the state back to
1260 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1261 * will only happen if the mutex_lock() call blocks, and we then find
1262 * the ringbuffer empty. So in practice we should be ok, but it's
1263 * something to be aware of when touching this code.
1266 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1268 wait_event_interruptible_hrtimeout(ctx
->wait
,
1269 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1275 * Create an aio_context capable of receiving at least nr_events.
1276 * ctxp must not point to an aio_context that already exists, and
1277 * must be initialized to 0 prior to the call. On successful
1278 * creation of the aio_context, *ctxp is filled in with the resulting
1279 * handle. May fail with -EINVAL if *ctxp is not initialized,
1280 * if the specified nr_events exceeds internal limits. May fail
1281 * with -EAGAIN if the specified nr_events exceeds the user's limit
1282 * of available events. May fail with -ENOMEM if insufficient kernel
1283 * resources are available. May fail with -EFAULT if an invalid
1284 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1287 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1289 struct kioctx
*ioctx
= NULL
;
1293 ret
= get_user(ctx
, ctxp
);
1298 if (unlikely(ctx
|| nr_events
== 0)) {
1299 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1304 ioctx
= ioctx_alloc(nr_events
);
1305 ret
= PTR_ERR(ioctx
);
1306 if (!IS_ERR(ioctx
)) {
1307 ret
= put_user(ioctx
->user_id
, ctxp
);
1309 kill_ioctx(current
->mm
, ioctx
, NULL
);
1310 percpu_ref_put(&ioctx
->users
);
1317 #ifdef CONFIG_COMPAT
1318 COMPAT_SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, u32 __user
*, ctx32p
)
1320 struct kioctx
*ioctx
= NULL
;
1324 ret
= get_user(ctx
, ctx32p
);
1329 if (unlikely(ctx
|| nr_events
== 0)) {
1330 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1335 ioctx
= ioctx_alloc(nr_events
);
1336 ret
= PTR_ERR(ioctx
);
1337 if (!IS_ERR(ioctx
)) {
1338 /* truncating is ok because it's a user address */
1339 ret
= put_user((u32
)ioctx
->user_id
, ctx32p
);
1341 kill_ioctx(current
->mm
, ioctx
, NULL
);
1342 percpu_ref_put(&ioctx
->users
);
1351 * Destroy the aio_context specified. May cancel any outstanding
1352 * AIOs and block on completion. Will fail with -ENOSYS if not
1353 * implemented. May fail with -EINVAL if the context pointed to
1356 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1358 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1359 if (likely(NULL
!= ioctx
)) {
1360 struct ctx_rq_wait wait
;
1363 init_completion(&wait
.comp
);
1364 atomic_set(&wait
.count
, 1);
1366 /* Pass requests_done to kill_ioctx() where it can be set
1367 * in a thread-safe way. If we try to set it here then we have
1368 * a race condition if two io_destroy() called simultaneously.
1370 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1371 percpu_ref_put(&ioctx
->users
);
1373 /* Wait until all IO for the context are done. Otherwise kernel
1374 * keep using user-space buffers even if user thinks the context
1378 wait_for_completion(&wait
.comp
);
1382 pr_debug("EINVAL: invalid context id\n");
1386 static void aio_remove_iocb(struct aio_kiocb
*iocb
)
1388 struct kioctx
*ctx
= iocb
->ki_ctx
;
1389 unsigned long flags
;
1391 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1392 list_del(&iocb
->ki_list
);
1393 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1396 static void aio_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
1398 struct aio_kiocb
*iocb
= container_of(kiocb
, struct aio_kiocb
, rw
);
1400 if (!list_empty_careful(&iocb
->ki_list
))
1401 aio_remove_iocb(iocb
);
1403 if (kiocb
->ki_flags
& IOCB_WRITE
) {
1404 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
1407 * Tell lockdep we inherited freeze protection from submission
1410 if (S_ISREG(inode
->i_mode
))
1411 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
1412 file_end_write(kiocb
->ki_filp
);
1415 fput(kiocb
->ki_filp
);
1416 aio_complete(iocb
, res
, res2
);
1419 static int aio_prep_rw(struct kiocb
*req
, struct iocb
*iocb
)
1423 req
->ki_filp
= fget(iocb
->aio_fildes
);
1424 if (unlikely(!req
->ki_filp
))
1426 req
->ki_complete
= aio_complete_rw
;
1427 req
->ki_pos
= iocb
->aio_offset
;
1428 req
->ki_flags
= iocb_flags(req
->ki_filp
);
1429 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
)
1430 req
->ki_flags
|= IOCB_EVENTFD
;
1431 req
->ki_hint
= ki_hint_validate(file_write_hint(req
->ki_filp
));
1432 if (iocb
->aio_flags
& IOCB_FLAG_IOPRIO
) {
1434 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1435 * aio_reqprio is interpreted as an I/O scheduling
1436 * class and priority.
1438 ret
= ioprio_check_cap(iocb
->aio_reqprio
);
1440 pr_debug("aio ioprio check cap error: %d\n", ret
);
1445 req
->ki_ioprio
= iocb
->aio_reqprio
;
1447 req
->ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1449 ret
= kiocb_set_rw_flags(req
, iocb
->aio_rw_flags
);
1455 static int aio_setup_rw(int rw
, struct iocb
*iocb
, struct iovec
**iovec
,
1456 bool vectored
, bool compat
, struct iov_iter
*iter
)
1458 void __user
*buf
= (void __user
*)(uintptr_t)iocb
->aio_buf
;
1459 size_t len
= iocb
->aio_nbytes
;
1462 ssize_t ret
= import_single_range(rw
, buf
, len
, *iovec
, iter
);
1466 #ifdef CONFIG_COMPAT
1468 return compat_import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
,
1471 return import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
, iter
);
1474 static inline void aio_rw_done(struct kiocb
*req
, ssize_t ret
)
1480 case -ERESTARTNOINTR
:
1481 case -ERESTARTNOHAND
:
1482 case -ERESTART_RESTARTBLOCK
:
1484 * There's no easy way to restart the syscall since other AIO's
1485 * may be already running. Just fail this IO with EINTR.
1490 aio_complete_rw(req
, ret
, 0);
1494 static ssize_t
aio_read(struct kiocb
*req
, struct iocb
*iocb
, bool vectored
,
1497 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1498 struct iov_iter iter
;
1502 ret
= aio_prep_rw(req
, iocb
);
1505 file
= req
->ki_filp
;
1508 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1511 if (unlikely(!file
->f_op
->read_iter
))
1514 ret
= aio_setup_rw(READ
, iocb
, &iovec
, vectored
, compat
, &iter
);
1517 ret
= rw_verify_area(READ
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1519 aio_rw_done(req
, call_read_iter(file
, req
, &iter
));
1527 static ssize_t
aio_write(struct kiocb
*req
, struct iocb
*iocb
, bool vectored
,
1530 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1531 struct iov_iter iter
;
1535 ret
= aio_prep_rw(req
, iocb
);
1538 file
= req
->ki_filp
;
1541 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1544 if (unlikely(!file
->f_op
->write_iter
))
1547 ret
= aio_setup_rw(WRITE
, iocb
, &iovec
, vectored
, compat
, &iter
);
1550 ret
= rw_verify_area(WRITE
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1553 * Open-code file_start_write here to grab freeze protection,
1554 * which will be released by another thread in
1555 * aio_complete_rw(). Fool lockdep by telling it the lock got
1556 * released so that it doesn't complain about the held lock when
1557 * we return to userspace.
1559 if (S_ISREG(file_inode(file
)->i_mode
)) {
1560 __sb_start_write(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
, true);
1561 __sb_writers_release(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
);
1563 req
->ki_flags
|= IOCB_WRITE
;
1564 aio_rw_done(req
, call_write_iter(file
, req
, &iter
));
1573 static void aio_fsync_work(struct work_struct
*work
)
1575 struct fsync_iocb
*req
= container_of(work
, struct fsync_iocb
, work
);
1578 ret
= vfs_fsync(req
->file
, req
->datasync
);
1580 aio_complete(container_of(req
, struct aio_kiocb
, fsync
), ret
, 0);
1583 static int aio_fsync(struct fsync_iocb
*req
, struct iocb
*iocb
, bool datasync
)
1585 if (unlikely(iocb
->aio_buf
|| iocb
->aio_offset
|| iocb
->aio_nbytes
||
1586 iocb
->aio_rw_flags
))
1589 req
->file
= fget(iocb
->aio_fildes
);
1590 if (unlikely(!req
->file
))
1592 if (unlikely(!req
->file
->f_op
->fsync
)) {
1597 req
->datasync
= datasync
;
1598 INIT_WORK(&req
->work
, aio_fsync_work
);
1599 schedule_work(&req
->work
);
1603 static inline void aio_poll_complete(struct aio_kiocb
*iocb
, __poll_t mask
)
1605 struct file
*file
= iocb
->poll
.file
;
1607 aio_complete(iocb
, mangle_poll(mask
), 0);
1611 static void aio_poll_complete_work(struct work_struct
*work
)
1613 struct poll_iocb
*req
= container_of(work
, struct poll_iocb
, work
);
1614 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1615 struct poll_table_struct pt
= { ._key
= req
->events
};
1616 struct kioctx
*ctx
= iocb
->ki_ctx
;
1619 if (!READ_ONCE(req
->cancelled
))
1620 mask
= vfs_poll(req
->file
, &pt
) & req
->events
;
1623 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1624 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1625 * synchronize with them. In the cancellation case the list_del_init
1626 * itself is not actually needed, but harmless so we keep it in to
1627 * avoid further branches in the fast path.
1629 spin_lock_irq(&ctx
->ctx_lock
);
1630 if (!mask
&& !READ_ONCE(req
->cancelled
)) {
1631 add_wait_queue(req
->head
, &req
->wait
);
1632 spin_unlock_irq(&ctx
->ctx_lock
);
1635 list_del_init(&iocb
->ki_list
);
1636 spin_unlock_irq(&ctx
->ctx_lock
);
1638 aio_poll_complete(iocb
, mask
);
1641 /* assumes we are called with irqs disabled */
1642 static int aio_poll_cancel(struct kiocb
*iocb
)
1644 struct aio_kiocb
*aiocb
= container_of(iocb
, struct aio_kiocb
, rw
);
1645 struct poll_iocb
*req
= &aiocb
->poll
;
1647 spin_lock(&req
->head
->lock
);
1648 WRITE_ONCE(req
->cancelled
, true);
1649 if (!list_empty(&req
->wait
.entry
)) {
1650 list_del_init(&req
->wait
.entry
);
1651 schedule_work(&aiocb
->poll
.work
);
1653 spin_unlock(&req
->head
->lock
);
1658 static int aio_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1661 struct poll_iocb
*req
= container_of(wait
, struct poll_iocb
, wait
);
1662 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1663 __poll_t mask
= key_to_poll(key
);
1667 /* for instances that support it check for an event match first: */
1669 if (!(mask
& req
->events
))
1672 /* try to complete the iocb inline if we can: */
1673 if (spin_trylock(&iocb
->ki_ctx
->ctx_lock
)) {
1674 list_del(&iocb
->ki_list
);
1675 spin_unlock(&iocb
->ki_ctx
->ctx_lock
);
1677 list_del_init(&req
->wait
.entry
);
1678 aio_poll_complete(iocb
, mask
);
1683 list_del_init(&req
->wait
.entry
);
1684 schedule_work(&req
->work
);
1688 struct aio_poll_table
{
1689 struct poll_table_struct pt
;
1690 struct aio_kiocb
*iocb
;
1695 aio_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1696 struct poll_table_struct
*p
)
1698 struct aio_poll_table
*pt
= container_of(p
, struct aio_poll_table
, pt
);
1700 /* multiple wait queues per file are not supported */
1701 if (unlikely(pt
->iocb
->poll
.head
)) {
1702 pt
->error
= -EINVAL
;
1707 pt
->iocb
->poll
.head
= head
;
1708 add_wait_queue(head
, &pt
->iocb
->poll
.wait
);
1711 static ssize_t
aio_poll(struct aio_kiocb
*aiocb
, struct iocb
*iocb
)
1713 struct kioctx
*ctx
= aiocb
->ki_ctx
;
1714 struct poll_iocb
*req
= &aiocb
->poll
;
1715 struct aio_poll_table apt
;
1718 /* reject any unknown events outside the normal event mask. */
1719 if ((u16
)iocb
->aio_buf
!= iocb
->aio_buf
)
1721 /* reject fields that are not defined for poll */
1722 if (iocb
->aio_offset
|| iocb
->aio_nbytes
|| iocb
->aio_rw_flags
)
1725 INIT_WORK(&req
->work
, aio_poll_complete_work
);
1726 req
->events
= demangle_poll(iocb
->aio_buf
) | EPOLLERR
| EPOLLHUP
;
1727 req
->file
= fget(iocb
->aio_fildes
);
1728 if (unlikely(!req
->file
))
1731 apt
.pt
._qproc
= aio_poll_queue_proc
;
1732 apt
.pt
._key
= req
->events
;
1734 apt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1736 /* initialized the list so that we can do list_empty checks */
1737 INIT_LIST_HEAD(&req
->wait
.entry
);
1738 init_waitqueue_func_entry(&req
->wait
, aio_poll_wake
);
1740 /* one for removal from waitqueue, one for this function */
1741 refcount_set(&aiocb
->ki_refcnt
, 2);
1743 mask
= vfs_poll(req
->file
, &apt
.pt
) & req
->events
;
1744 if (unlikely(!req
->head
)) {
1745 /* we did not manage to set up a waitqueue, done */
1749 spin_lock_irq(&ctx
->ctx_lock
);
1750 spin_lock(&req
->head
->lock
);
1752 /* wake_up context handles the rest */
1755 } else if (mask
|| apt
.error
) {
1756 /* if we get an error or a mask we are done */
1757 WARN_ON_ONCE(list_empty(&req
->wait
.entry
));
1758 list_del_init(&req
->wait
.entry
);
1760 /* actually waiting for an event */
1761 list_add_tail(&aiocb
->ki_list
, &ctx
->active_reqs
);
1762 aiocb
->ki_cancel
= aio_poll_cancel
;
1764 spin_unlock(&req
->head
->lock
);
1765 spin_unlock_irq(&ctx
->ctx_lock
);
1768 if (unlikely(apt
.error
)) {
1774 aio_poll_complete(aiocb
, mask
);
1779 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1782 struct aio_kiocb
*req
;
1786 if (unlikely(copy_from_user(&iocb
, user_iocb
, sizeof(iocb
))))
1789 /* enforce forwards compatibility on users */
1790 if (unlikely(iocb
.aio_reserved2
)) {
1791 pr_debug("EINVAL: reserve field set\n");
1795 /* prevent overflows */
1797 (iocb
.aio_buf
!= (unsigned long)iocb
.aio_buf
) ||
1798 (iocb
.aio_nbytes
!= (size_t)iocb
.aio_nbytes
) ||
1799 ((ssize_t
)iocb
.aio_nbytes
< 0)
1801 pr_debug("EINVAL: overflow check\n");
1805 req
= aio_get_req(ctx
);
1809 if (iocb
.aio_flags
& IOCB_FLAG_RESFD
) {
1811 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1812 * instance of the file* now. The file descriptor must be
1813 * an eventfd() fd, and will be signaled for each completed
1814 * event using the eventfd_signal() function.
1816 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
.aio_resfd
);
1817 if (IS_ERR(req
->ki_eventfd
)) {
1818 ret
= PTR_ERR(req
->ki_eventfd
);
1819 req
->ki_eventfd
= NULL
;
1824 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1825 if (unlikely(ret
)) {
1826 pr_debug("EFAULT: aio_key\n");
1830 req
->ki_user_iocb
= user_iocb
;
1831 req
->ki_user_data
= iocb
.aio_data
;
1833 switch (iocb
.aio_lio_opcode
) {
1834 case IOCB_CMD_PREAD
:
1835 ret
= aio_read(&req
->rw
, &iocb
, false, compat
);
1837 case IOCB_CMD_PWRITE
:
1838 ret
= aio_write(&req
->rw
, &iocb
, false, compat
);
1840 case IOCB_CMD_PREADV
:
1841 ret
= aio_read(&req
->rw
, &iocb
, true, compat
);
1843 case IOCB_CMD_PWRITEV
:
1844 ret
= aio_write(&req
->rw
, &iocb
, true, compat
);
1846 case IOCB_CMD_FSYNC
:
1847 ret
= aio_fsync(&req
->fsync
, &iocb
, false);
1849 case IOCB_CMD_FDSYNC
:
1850 ret
= aio_fsync(&req
->fsync
, &iocb
, true);
1853 ret
= aio_poll(req
, &iocb
);
1856 pr_debug("invalid aio operation %d\n", iocb
.aio_lio_opcode
);
1862 * If ret is 0, we'd either done aio_complete() ourselves or have
1863 * arranged for that to be done asynchronously. Anything non-zero
1864 * means that we need to destroy req ourselves.
1870 put_reqs_available(ctx
, 1);
1871 percpu_ref_put(&ctx
->reqs
);
1872 if (req
->ki_eventfd
)
1873 eventfd_ctx_put(req
->ki_eventfd
);
1874 kmem_cache_free(kiocb_cachep
, req
);
1879 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1880 * the number of iocbs queued. May return -EINVAL if the aio_context
1881 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1882 * *iocbpp[0] is not properly initialized, if the operation specified
1883 * is invalid for the file descriptor in the iocb. May fail with
1884 * -EFAULT if any of the data structures point to invalid data. May
1885 * fail with -EBADF if the file descriptor specified in the first
1886 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1887 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1888 * fail with -ENOSYS if not implemented.
1890 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1891 struct iocb __user
* __user
*, iocbpp
)
1896 struct blk_plug plug
;
1898 if (unlikely(nr
< 0))
1901 ctx
= lookup_ioctx(ctx_id
);
1902 if (unlikely(!ctx
)) {
1903 pr_debug("EINVAL: invalid context id\n");
1907 if (nr
> ctx
->nr_events
)
1908 nr
= ctx
->nr_events
;
1910 blk_start_plug(&plug
);
1911 for (i
= 0; i
< nr
; i
++) {
1912 struct iocb __user
*user_iocb
;
1914 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1919 ret
= io_submit_one(ctx
, user_iocb
, false);
1923 blk_finish_plug(&plug
);
1925 percpu_ref_put(&ctx
->users
);
1929 #ifdef CONFIG_COMPAT
1930 COMPAT_SYSCALL_DEFINE3(io_submit
, compat_aio_context_t
, ctx_id
,
1931 int, nr
, compat_uptr_t __user
*, iocbpp
)
1936 struct blk_plug plug
;
1938 if (unlikely(nr
< 0))
1941 ctx
= lookup_ioctx(ctx_id
);
1942 if (unlikely(!ctx
)) {
1943 pr_debug("EINVAL: invalid context id\n");
1947 if (nr
> ctx
->nr_events
)
1948 nr
= ctx
->nr_events
;
1950 blk_start_plug(&plug
);
1951 for (i
= 0; i
< nr
; i
++) {
1952 compat_uptr_t user_iocb
;
1954 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1959 ret
= io_submit_one(ctx
, compat_ptr(user_iocb
), true);
1963 blk_finish_plug(&plug
);
1965 percpu_ref_put(&ctx
->users
);
1971 * Finds a given iocb for cancellation.
1973 static struct aio_kiocb
*
1974 lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
)
1976 struct aio_kiocb
*kiocb
;
1978 assert_spin_locked(&ctx
->ctx_lock
);
1980 /* TODO: use a hash or array, this sucks. */
1981 list_for_each_entry(kiocb
, &ctx
->active_reqs
, ki_list
) {
1982 if (kiocb
->ki_user_iocb
== iocb
)
1989 * Attempts to cancel an iocb previously passed to io_submit. If
1990 * the operation is successfully cancelled, the resulting event is
1991 * copied into the memory pointed to by result without being placed
1992 * into the completion queue and 0 is returned. May fail with
1993 * -EFAULT if any of the data structures pointed to are invalid.
1994 * May fail with -EINVAL if aio_context specified by ctx_id is
1995 * invalid. May fail with -EAGAIN if the iocb specified was not
1996 * cancelled. Will fail with -ENOSYS if not implemented.
1998 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1999 struct io_event __user
*, result
)
2002 struct aio_kiocb
*kiocb
;
2006 if (unlikely(get_user(key
, &iocb
->aio_key
)))
2008 if (unlikely(key
!= KIOCB_KEY
))
2011 ctx
= lookup_ioctx(ctx_id
);
2015 spin_lock_irq(&ctx
->ctx_lock
);
2016 kiocb
= lookup_kiocb(ctx
, iocb
);
2018 ret
= kiocb
->ki_cancel(&kiocb
->rw
);
2019 list_del_init(&kiocb
->ki_list
);
2021 spin_unlock_irq(&ctx
->ctx_lock
);
2025 * The result argument is no longer used - the io_event is
2026 * always delivered via the ring buffer. -EINPROGRESS indicates
2027 * cancellation is progress:
2032 percpu_ref_put(&ctx
->users
);
2037 static long do_io_getevents(aio_context_t ctx_id
,
2040 struct io_event __user
*events
,
2041 struct timespec64
*ts
)
2043 ktime_t until
= ts
? timespec64_to_ktime(*ts
) : KTIME_MAX
;
2044 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
2047 if (likely(ioctx
)) {
2048 if (likely(min_nr
<= nr
&& min_nr
>= 0))
2049 ret
= read_events(ioctx
, min_nr
, nr
, events
, until
);
2050 percpu_ref_put(&ioctx
->users
);
2057 * Attempts to read at least min_nr events and up to nr events from
2058 * the completion queue for the aio_context specified by ctx_id. If
2059 * it succeeds, the number of read events is returned. May fail with
2060 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2061 * out of range, if timeout is out of range. May fail with -EFAULT
2062 * if any of the memory specified is invalid. May return 0 or
2063 * < min_nr if the timeout specified by timeout has elapsed
2064 * before sufficient events are available, where timeout == NULL
2065 * specifies an infinite timeout. Note that the timeout pointed to by
2066 * timeout is relative. Will fail with -ENOSYS if not implemented.
2068 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
2071 struct io_event __user
*, events
,
2072 struct timespec __user
*, timeout
)
2074 struct timespec64 ts
;
2077 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2080 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2081 if (!ret
&& signal_pending(current
))
2086 struct __aio_sigset
{
2087 const sigset_t __user
*sigmask
;
2091 SYSCALL_DEFINE6(io_pgetevents
,
2092 aio_context_t
, ctx_id
,
2095 struct io_event __user
*, events
,
2096 struct timespec __user
*, timeout
,
2097 const struct __aio_sigset __user
*, usig
)
2099 struct __aio_sigset ksig
= { NULL
, };
2100 sigset_t ksigmask
, sigsaved
;
2101 struct timespec64 ts
;
2104 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2107 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2111 if (ksig
.sigsetsize
!= sizeof(sigset_t
))
2113 if (copy_from_user(&ksigmask
, ksig
.sigmask
, sizeof(ksigmask
)))
2115 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2116 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
2119 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2120 if (signal_pending(current
)) {
2122 current
->saved_sigmask
= sigsaved
;
2123 set_restore_sigmask();
2127 ret
= -ERESTARTNOHAND
;
2130 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
2136 #ifdef CONFIG_COMPAT
2137 COMPAT_SYSCALL_DEFINE5(io_getevents
, compat_aio_context_t
, ctx_id
,
2138 compat_long_t
, min_nr
,
2140 struct io_event __user
*, events
,
2141 struct old_timespec32 __user
*, timeout
)
2143 struct timespec64 t
;
2146 if (timeout
&& get_old_timespec32(&t
, timeout
))
2149 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2150 if (!ret
&& signal_pending(current
))
2156 struct __compat_aio_sigset
{
2157 compat_sigset_t __user
*sigmask
;
2158 compat_size_t sigsetsize
;
2161 COMPAT_SYSCALL_DEFINE6(io_pgetevents
,
2162 compat_aio_context_t
, ctx_id
,
2163 compat_long_t
, min_nr
,
2165 struct io_event __user
*, events
,
2166 struct old_timespec32 __user
*, timeout
,
2167 const struct __compat_aio_sigset __user
*, usig
)
2169 struct __compat_aio_sigset ksig
= { NULL
, };
2170 sigset_t ksigmask
, sigsaved
;
2171 struct timespec64 t
;
2174 if (timeout
&& get_old_timespec32(&t
, timeout
))
2177 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2181 if (ksig
.sigsetsize
!= sizeof(compat_sigset_t
))
2183 if (get_compat_sigset(&ksigmask
, ksig
.sigmask
))
2185 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2186 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
2189 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2190 if (signal_pending(current
)) {
2192 current
->saved_sigmask
= sigsaved
;
2193 set_restore_sigmask();
2196 ret
= -ERESTARTNOHAND
;
2199 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);