perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / fs / btrfs / compression.c
blob2955a4ea2fa8cb82a5969274805e9f4abbde5b3d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
34 switch (type) {
35 case BTRFS_COMPRESS_ZLIB:
36 case BTRFS_COMPRESS_LZO:
37 case BTRFS_COMPRESS_ZSTD:
38 case BTRFS_COMPRESS_NONE:
39 return btrfs_compress_types[type];
42 return NULL;
45 static int btrfs_decompress_bio(struct compressed_bio *cb);
47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 unsigned long disk_size)
50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
52 return sizeof(struct compressed_bio) +
53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
56 static int check_compressed_csum(struct btrfs_inode *inode,
57 struct compressed_bio *cb,
58 u64 disk_start)
60 int ret;
61 struct page *page;
62 unsigned long i;
63 char *kaddr;
64 u32 csum;
65 u32 *cb_sum = &cb->sums;
67 if (inode->flags & BTRFS_INODE_NODATASUM)
68 return 0;
70 for (i = 0; i < cb->nr_pages; i++) {
71 page = cb->compressed_pages[i];
72 csum = ~(u32)0;
74 kaddr = kmap_atomic(page);
75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 btrfs_csum_final(csum, (u8 *)&csum);
77 kunmap_atomic(kaddr);
79 if (csum != *cb_sum) {
80 btrfs_print_data_csum_error(inode, disk_start, csum,
81 *cb_sum, cb->mirror_num);
82 ret = -EIO;
83 goto fail;
85 cb_sum++;
88 ret = 0;
89 fail:
90 return ret;
93 /* when we finish reading compressed pages from the disk, we
94 * decompress them and then run the bio end_io routines on the
95 * decompressed pages (in the inode address space).
97 * This allows the checksumming and other IO error handling routines
98 * to work normally
100 * The compressed pages are freed here, and it must be run
101 * in process context
103 static void end_compressed_bio_read(struct bio *bio)
105 struct compressed_bio *cb = bio->bi_private;
106 struct inode *inode;
107 struct page *page;
108 unsigned long index;
109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 int ret = 0;
112 if (bio->bi_status)
113 cb->errors = 1;
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
118 if (!refcount_dec_and_test(&cb->pending_bios))
119 goto out;
122 * Record the correct mirror_num in cb->orig_bio so that
123 * read-repair can work properly.
125 ASSERT(btrfs_io_bio(cb->orig_bio));
126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 cb->mirror_num = mirror;
130 * Some IO in this cb have failed, just skip checksum as there
131 * is no way it could be correct.
133 if (cb->errors == 1)
134 goto csum_failed;
136 inode = cb->inode;
137 ret = check_compressed_csum(BTRFS_I(inode), cb,
138 (u64)bio->bi_iter.bi_sector << 9);
139 if (ret)
140 goto csum_failed;
142 /* ok, we're the last bio for this extent, lets start
143 * the decompression.
145 ret = btrfs_decompress_bio(cb);
147 csum_failed:
148 if (ret)
149 cb->errors = 1;
151 /* release the compressed pages */
152 index = 0;
153 for (index = 0; index < cb->nr_pages; index++) {
154 page = cb->compressed_pages[index];
155 page->mapping = NULL;
156 put_page(page);
159 /* do io completion on the original bio */
160 if (cb->errors) {
161 bio_io_error(cb->orig_bio);
162 } else {
163 int i;
164 struct bio_vec *bvec;
167 * we have verified the checksum already, set page
168 * checked so the end_io handlers know about it
170 ASSERT(!bio_flagged(bio, BIO_CLONED));
171 bio_for_each_segment_all(bvec, cb->orig_bio, i)
172 SetPageChecked(bvec->bv_page);
174 bio_endio(cb->orig_bio);
177 /* finally free the cb struct */
178 kfree(cb->compressed_pages);
179 kfree(cb);
180 out:
181 bio_put(bio);
185 * Clear the writeback bits on all of the file
186 * pages for a compressed write
188 static noinline void end_compressed_writeback(struct inode *inode,
189 const struct compressed_bio *cb)
191 unsigned long index = cb->start >> PAGE_SHIFT;
192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
193 struct page *pages[16];
194 unsigned long nr_pages = end_index - index + 1;
195 int i;
196 int ret;
198 if (cb->errors)
199 mapping_set_error(inode->i_mapping, -EIO);
201 while (nr_pages > 0) {
202 ret = find_get_pages_contig(inode->i_mapping, index,
203 min_t(unsigned long,
204 nr_pages, ARRAY_SIZE(pages)), pages);
205 if (ret == 0) {
206 nr_pages -= 1;
207 index += 1;
208 continue;
210 for (i = 0; i < ret; i++) {
211 if (cb->errors)
212 SetPageError(pages[i]);
213 end_page_writeback(pages[i]);
214 put_page(pages[i]);
216 nr_pages -= ret;
217 index += ret;
219 /* the inode may be gone now */
223 * do the cleanup once all the compressed pages hit the disk.
224 * This will clear writeback on the file pages and free the compressed
225 * pages.
227 * This also calls the writeback end hooks for the file pages so that
228 * metadata and checksums can be updated in the file.
230 static void end_compressed_bio_write(struct bio *bio)
232 struct extent_io_tree *tree;
233 struct compressed_bio *cb = bio->bi_private;
234 struct inode *inode;
235 struct page *page;
236 unsigned long index;
238 if (bio->bi_status)
239 cb->errors = 1;
241 /* if there are more bios still pending for this compressed
242 * extent, just exit
244 if (!refcount_dec_and_test(&cb->pending_bios))
245 goto out;
247 /* ok, we're the last bio for this extent, step one is to
248 * call back into the FS and do all the end_io operations
250 inode = cb->inode;
251 tree = &BTRFS_I(inode)->io_tree;
252 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
253 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
254 cb->start,
255 cb->start + cb->len - 1,
256 NULL,
257 bio->bi_status ?
258 BLK_STS_OK : BLK_STS_NOTSUPP);
259 cb->compressed_pages[0]->mapping = NULL;
261 end_compressed_writeback(inode, cb);
262 /* note, our inode could be gone now */
265 * release the compressed pages, these came from alloc_page and
266 * are not attached to the inode at all
268 index = 0;
269 for (index = 0; index < cb->nr_pages; index++) {
270 page = cb->compressed_pages[index];
271 page->mapping = NULL;
272 put_page(page);
275 /* finally free the cb struct */
276 kfree(cb->compressed_pages);
277 kfree(cb);
278 out:
279 bio_put(bio);
283 * worker function to build and submit bios for previously compressed pages.
284 * The corresponding pages in the inode should be marked for writeback
285 * and the compressed pages should have a reference on them for dropping
286 * when the IO is complete.
288 * This also checksums the file bytes and gets things ready for
289 * the end io hooks.
291 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
292 unsigned long len, u64 disk_start,
293 unsigned long compressed_len,
294 struct page **compressed_pages,
295 unsigned long nr_pages,
296 unsigned int write_flags)
298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
299 struct bio *bio = NULL;
300 struct compressed_bio *cb;
301 unsigned long bytes_left;
302 int pg_index = 0;
303 struct page *page;
304 u64 first_byte = disk_start;
305 struct block_device *bdev;
306 blk_status_t ret;
307 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
309 WARN_ON(start & ((u64)PAGE_SIZE - 1));
310 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
311 if (!cb)
312 return BLK_STS_RESOURCE;
313 refcount_set(&cb->pending_bios, 0);
314 cb->errors = 0;
315 cb->inode = inode;
316 cb->start = start;
317 cb->len = len;
318 cb->mirror_num = 0;
319 cb->compressed_pages = compressed_pages;
320 cb->compressed_len = compressed_len;
321 cb->orig_bio = NULL;
322 cb->nr_pages = nr_pages;
324 bdev = fs_info->fs_devices->latest_bdev;
326 bio = btrfs_bio_alloc(bdev, first_byte);
327 bio->bi_opf = REQ_OP_WRITE | write_flags;
328 bio->bi_private = cb;
329 bio->bi_end_io = end_compressed_bio_write;
330 refcount_set(&cb->pending_bios, 1);
332 /* create and submit bios for the compressed pages */
333 bytes_left = compressed_len;
334 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
335 int submit = 0;
337 page = compressed_pages[pg_index];
338 page->mapping = inode->i_mapping;
339 if (bio->bi_iter.bi_size)
340 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
342 page->mapping = NULL;
343 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
344 PAGE_SIZE) {
346 * inc the count before we submit the bio so
347 * we know the end IO handler won't happen before
348 * we inc the count. Otherwise, the cb might get
349 * freed before we're done setting it up
351 refcount_inc(&cb->pending_bios);
352 ret = btrfs_bio_wq_end_io(fs_info, bio,
353 BTRFS_WQ_ENDIO_DATA);
354 BUG_ON(ret); /* -ENOMEM */
356 if (!skip_sum) {
357 ret = btrfs_csum_one_bio(inode, bio, start, 1);
358 BUG_ON(ret); /* -ENOMEM */
361 ret = btrfs_map_bio(fs_info, bio, 0, 1);
362 if (ret) {
363 bio->bi_status = ret;
364 bio_endio(bio);
367 bio = btrfs_bio_alloc(bdev, first_byte);
368 bio->bi_opf = REQ_OP_WRITE | write_flags;
369 bio->bi_private = cb;
370 bio->bi_end_io = end_compressed_bio_write;
371 bio_add_page(bio, page, PAGE_SIZE, 0);
373 if (bytes_left < PAGE_SIZE) {
374 btrfs_info(fs_info,
375 "bytes left %lu compress len %lu nr %lu",
376 bytes_left, cb->compressed_len, cb->nr_pages);
378 bytes_left -= PAGE_SIZE;
379 first_byte += PAGE_SIZE;
380 cond_resched();
383 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
384 BUG_ON(ret); /* -ENOMEM */
386 if (!skip_sum) {
387 ret = btrfs_csum_one_bio(inode, bio, start, 1);
388 BUG_ON(ret); /* -ENOMEM */
391 ret = btrfs_map_bio(fs_info, bio, 0, 1);
392 if (ret) {
393 bio->bi_status = ret;
394 bio_endio(bio);
397 return 0;
400 static u64 bio_end_offset(struct bio *bio)
402 struct bio_vec *last = bio_last_bvec_all(bio);
404 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
407 static noinline int add_ra_bio_pages(struct inode *inode,
408 u64 compressed_end,
409 struct compressed_bio *cb)
411 unsigned long end_index;
412 unsigned long pg_index;
413 u64 last_offset;
414 u64 isize = i_size_read(inode);
415 int ret;
416 struct page *page;
417 unsigned long nr_pages = 0;
418 struct extent_map *em;
419 struct address_space *mapping = inode->i_mapping;
420 struct extent_map_tree *em_tree;
421 struct extent_io_tree *tree;
422 u64 end;
423 int misses = 0;
425 last_offset = bio_end_offset(cb->orig_bio);
426 em_tree = &BTRFS_I(inode)->extent_tree;
427 tree = &BTRFS_I(inode)->io_tree;
429 if (isize == 0)
430 return 0;
432 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
434 while (last_offset < compressed_end) {
435 pg_index = last_offset >> PAGE_SHIFT;
437 if (pg_index > end_index)
438 break;
440 page = xa_load(&mapping->i_pages, pg_index);
441 if (page && !xa_is_value(page)) {
442 misses++;
443 if (misses > 4)
444 break;
445 goto next;
448 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
449 ~__GFP_FS));
450 if (!page)
451 break;
453 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
454 put_page(page);
455 goto next;
458 end = last_offset + PAGE_SIZE - 1;
460 * at this point, we have a locked page in the page cache
461 * for these bytes in the file. But, we have to make
462 * sure they map to this compressed extent on disk.
464 set_page_extent_mapped(page);
465 lock_extent(tree, last_offset, end);
466 read_lock(&em_tree->lock);
467 em = lookup_extent_mapping(em_tree, last_offset,
468 PAGE_SIZE);
469 read_unlock(&em_tree->lock);
471 if (!em || last_offset < em->start ||
472 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
473 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
474 free_extent_map(em);
475 unlock_extent(tree, last_offset, end);
476 unlock_page(page);
477 put_page(page);
478 break;
480 free_extent_map(em);
482 if (page->index == end_index) {
483 char *userpage;
484 size_t zero_offset = isize & (PAGE_SIZE - 1);
486 if (zero_offset) {
487 int zeros;
488 zeros = PAGE_SIZE - zero_offset;
489 userpage = kmap_atomic(page);
490 memset(userpage + zero_offset, 0, zeros);
491 flush_dcache_page(page);
492 kunmap_atomic(userpage);
496 ret = bio_add_page(cb->orig_bio, page,
497 PAGE_SIZE, 0);
499 if (ret == PAGE_SIZE) {
500 nr_pages++;
501 put_page(page);
502 } else {
503 unlock_extent(tree, last_offset, end);
504 unlock_page(page);
505 put_page(page);
506 break;
508 next:
509 last_offset += PAGE_SIZE;
511 return 0;
515 * for a compressed read, the bio we get passed has all the inode pages
516 * in it. We don't actually do IO on those pages but allocate new ones
517 * to hold the compressed pages on disk.
519 * bio->bi_iter.bi_sector points to the compressed extent on disk
520 * bio->bi_io_vec points to all of the inode pages
522 * After the compressed pages are read, we copy the bytes into the
523 * bio we were passed and then call the bio end_io calls
525 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
526 int mirror_num, unsigned long bio_flags)
528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
529 struct extent_map_tree *em_tree;
530 struct compressed_bio *cb;
531 unsigned long compressed_len;
532 unsigned long nr_pages;
533 unsigned long pg_index;
534 struct page *page;
535 struct block_device *bdev;
536 struct bio *comp_bio;
537 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
538 u64 em_len;
539 u64 em_start;
540 struct extent_map *em;
541 blk_status_t ret = BLK_STS_RESOURCE;
542 int faili = 0;
543 u32 *sums;
545 em_tree = &BTRFS_I(inode)->extent_tree;
547 /* we need the actual starting offset of this extent in the file */
548 read_lock(&em_tree->lock);
549 em = lookup_extent_mapping(em_tree,
550 page_offset(bio_first_page_all(bio)),
551 PAGE_SIZE);
552 read_unlock(&em_tree->lock);
553 if (!em)
554 return BLK_STS_IOERR;
556 compressed_len = em->block_len;
557 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
558 if (!cb)
559 goto out;
561 refcount_set(&cb->pending_bios, 0);
562 cb->errors = 0;
563 cb->inode = inode;
564 cb->mirror_num = mirror_num;
565 sums = &cb->sums;
567 cb->start = em->orig_start;
568 em_len = em->len;
569 em_start = em->start;
571 free_extent_map(em);
572 em = NULL;
574 cb->len = bio->bi_iter.bi_size;
575 cb->compressed_len = compressed_len;
576 cb->compress_type = extent_compress_type(bio_flags);
577 cb->orig_bio = bio;
579 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
580 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
581 GFP_NOFS);
582 if (!cb->compressed_pages)
583 goto fail1;
585 bdev = fs_info->fs_devices->latest_bdev;
587 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
588 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
589 __GFP_HIGHMEM);
590 if (!cb->compressed_pages[pg_index]) {
591 faili = pg_index - 1;
592 ret = BLK_STS_RESOURCE;
593 goto fail2;
596 faili = nr_pages - 1;
597 cb->nr_pages = nr_pages;
599 add_ra_bio_pages(inode, em_start + em_len, cb);
601 /* include any pages we added in add_ra-bio_pages */
602 cb->len = bio->bi_iter.bi_size;
604 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
605 comp_bio->bi_opf = REQ_OP_READ;
606 comp_bio->bi_private = cb;
607 comp_bio->bi_end_io = end_compressed_bio_read;
608 refcount_set(&cb->pending_bios, 1);
610 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
611 int submit = 0;
613 page = cb->compressed_pages[pg_index];
614 page->mapping = inode->i_mapping;
615 page->index = em_start >> PAGE_SHIFT;
617 if (comp_bio->bi_iter.bi_size)
618 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
619 comp_bio, 0);
621 page->mapping = NULL;
622 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
623 PAGE_SIZE) {
624 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
625 BTRFS_WQ_ENDIO_DATA);
626 BUG_ON(ret); /* -ENOMEM */
629 * inc the count before we submit the bio so
630 * we know the end IO handler won't happen before
631 * we inc the count. Otherwise, the cb might get
632 * freed before we're done setting it up
634 refcount_inc(&cb->pending_bios);
636 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
637 ret = btrfs_lookup_bio_sums(inode, comp_bio,
638 sums);
639 BUG_ON(ret); /* -ENOMEM */
641 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
642 fs_info->sectorsize);
644 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
645 if (ret) {
646 comp_bio->bi_status = ret;
647 bio_endio(comp_bio);
650 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
651 comp_bio->bi_opf = REQ_OP_READ;
652 comp_bio->bi_private = cb;
653 comp_bio->bi_end_io = end_compressed_bio_read;
655 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
657 cur_disk_byte += PAGE_SIZE;
660 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
661 BUG_ON(ret); /* -ENOMEM */
663 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
664 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
665 BUG_ON(ret); /* -ENOMEM */
668 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
669 if (ret) {
670 comp_bio->bi_status = ret;
671 bio_endio(comp_bio);
674 return 0;
676 fail2:
677 while (faili >= 0) {
678 __free_page(cb->compressed_pages[faili]);
679 faili--;
682 kfree(cb->compressed_pages);
683 fail1:
684 kfree(cb);
685 out:
686 free_extent_map(em);
687 return ret;
691 * Heuristic uses systematic sampling to collect data from the input data
692 * range, the logic can be tuned by the following constants:
694 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
695 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
697 #define SAMPLING_READ_SIZE (16)
698 #define SAMPLING_INTERVAL (256)
701 * For statistical analysis of the input data we consider bytes that form a
702 * Galois Field of 256 objects. Each object has an attribute count, ie. how
703 * many times the object appeared in the sample.
705 #define BUCKET_SIZE (256)
708 * The size of the sample is based on a statistical sampling rule of thumb.
709 * The common way is to perform sampling tests as long as the number of
710 * elements in each cell is at least 5.
712 * Instead of 5, we choose 32 to obtain more accurate results.
713 * If the data contain the maximum number of symbols, which is 256, we obtain a
714 * sample size bound by 8192.
716 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
717 * from up to 512 locations.
719 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
720 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
722 struct bucket_item {
723 u32 count;
726 struct heuristic_ws {
727 /* Partial copy of input data */
728 u8 *sample;
729 u32 sample_size;
730 /* Buckets store counters for each byte value */
731 struct bucket_item *bucket;
732 /* Sorting buffer */
733 struct bucket_item *bucket_b;
734 struct list_head list;
737 static void free_heuristic_ws(struct list_head *ws)
739 struct heuristic_ws *workspace;
741 workspace = list_entry(ws, struct heuristic_ws, list);
743 kvfree(workspace->sample);
744 kfree(workspace->bucket);
745 kfree(workspace->bucket_b);
746 kfree(workspace);
749 static struct list_head *alloc_heuristic_ws(void)
751 struct heuristic_ws *ws;
753 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
754 if (!ws)
755 return ERR_PTR(-ENOMEM);
757 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
758 if (!ws->sample)
759 goto fail;
761 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
762 if (!ws->bucket)
763 goto fail;
765 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
766 if (!ws->bucket_b)
767 goto fail;
769 INIT_LIST_HEAD(&ws->list);
770 return &ws->list;
771 fail:
772 free_heuristic_ws(&ws->list);
773 return ERR_PTR(-ENOMEM);
776 struct workspaces_list {
777 struct list_head idle_ws;
778 spinlock_t ws_lock;
779 /* Number of free workspaces */
780 int free_ws;
781 /* Total number of allocated workspaces */
782 atomic_t total_ws;
783 /* Waiters for a free workspace */
784 wait_queue_head_t ws_wait;
787 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
789 static struct workspaces_list btrfs_heuristic_ws;
791 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
792 &btrfs_zlib_compress,
793 &btrfs_lzo_compress,
794 &btrfs_zstd_compress,
797 void __init btrfs_init_compress(void)
799 struct list_head *workspace;
800 int i;
802 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
803 spin_lock_init(&btrfs_heuristic_ws.ws_lock);
804 atomic_set(&btrfs_heuristic_ws.total_ws, 0);
805 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
807 workspace = alloc_heuristic_ws();
808 if (IS_ERR(workspace)) {
809 pr_warn(
810 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
811 } else {
812 atomic_set(&btrfs_heuristic_ws.total_ws, 1);
813 btrfs_heuristic_ws.free_ws = 1;
814 list_add(workspace, &btrfs_heuristic_ws.idle_ws);
817 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
818 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
819 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
820 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
821 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
824 * Preallocate one workspace for each compression type so
825 * we can guarantee forward progress in the worst case
827 workspace = btrfs_compress_op[i]->alloc_workspace();
828 if (IS_ERR(workspace)) {
829 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
830 } else {
831 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
832 btrfs_comp_ws[i].free_ws = 1;
833 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
839 * This finds an available workspace or allocates a new one.
840 * If it's not possible to allocate a new one, waits until there's one.
841 * Preallocation makes a forward progress guarantees and we do not return
842 * errors.
844 static struct list_head *__find_workspace(int type, bool heuristic)
846 struct list_head *workspace;
847 int cpus = num_online_cpus();
848 int idx = type - 1;
849 unsigned nofs_flag;
850 struct list_head *idle_ws;
851 spinlock_t *ws_lock;
852 atomic_t *total_ws;
853 wait_queue_head_t *ws_wait;
854 int *free_ws;
856 if (heuristic) {
857 idle_ws = &btrfs_heuristic_ws.idle_ws;
858 ws_lock = &btrfs_heuristic_ws.ws_lock;
859 total_ws = &btrfs_heuristic_ws.total_ws;
860 ws_wait = &btrfs_heuristic_ws.ws_wait;
861 free_ws = &btrfs_heuristic_ws.free_ws;
862 } else {
863 idle_ws = &btrfs_comp_ws[idx].idle_ws;
864 ws_lock = &btrfs_comp_ws[idx].ws_lock;
865 total_ws = &btrfs_comp_ws[idx].total_ws;
866 ws_wait = &btrfs_comp_ws[idx].ws_wait;
867 free_ws = &btrfs_comp_ws[idx].free_ws;
870 again:
871 spin_lock(ws_lock);
872 if (!list_empty(idle_ws)) {
873 workspace = idle_ws->next;
874 list_del(workspace);
875 (*free_ws)--;
876 spin_unlock(ws_lock);
877 return workspace;
880 if (atomic_read(total_ws) > cpus) {
881 DEFINE_WAIT(wait);
883 spin_unlock(ws_lock);
884 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
885 if (atomic_read(total_ws) > cpus && !*free_ws)
886 schedule();
887 finish_wait(ws_wait, &wait);
888 goto again;
890 atomic_inc(total_ws);
891 spin_unlock(ws_lock);
894 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
895 * to turn it off here because we might get called from the restricted
896 * context of btrfs_compress_bio/btrfs_compress_pages
898 nofs_flag = memalloc_nofs_save();
899 if (heuristic)
900 workspace = alloc_heuristic_ws();
901 else
902 workspace = btrfs_compress_op[idx]->alloc_workspace();
903 memalloc_nofs_restore(nofs_flag);
905 if (IS_ERR(workspace)) {
906 atomic_dec(total_ws);
907 wake_up(ws_wait);
910 * Do not return the error but go back to waiting. There's a
911 * workspace preallocated for each type and the compression
912 * time is bounded so we get to a workspace eventually. This
913 * makes our caller's life easier.
915 * To prevent silent and low-probability deadlocks (when the
916 * initial preallocation fails), check if there are any
917 * workspaces at all.
919 if (atomic_read(total_ws) == 0) {
920 static DEFINE_RATELIMIT_STATE(_rs,
921 /* once per minute */ 60 * HZ,
922 /* no burst */ 1);
924 if (__ratelimit(&_rs)) {
925 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
928 goto again;
930 return workspace;
933 static struct list_head *find_workspace(int type)
935 return __find_workspace(type, false);
939 * put a workspace struct back on the list or free it if we have enough
940 * idle ones sitting around
942 static void __free_workspace(int type, struct list_head *workspace,
943 bool heuristic)
945 int idx = type - 1;
946 struct list_head *idle_ws;
947 spinlock_t *ws_lock;
948 atomic_t *total_ws;
949 wait_queue_head_t *ws_wait;
950 int *free_ws;
952 if (heuristic) {
953 idle_ws = &btrfs_heuristic_ws.idle_ws;
954 ws_lock = &btrfs_heuristic_ws.ws_lock;
955 total_ws = &btrfs_heuristic_ws.total_ws;
956 ws_wait = &btrfs_heuristic_ws.ws_wait;
957 free_ws = &btrfs_heuristic_ws.free_ws;
958 } else {
959 idle_ws = &btrfs_comp_ws[idx].idle_ws;
960 ws_lock = &btrfs_comp_ws[idx].ws_lock;
961 total_ws = &btrfs_comp_ws[idx].total_ws;
962 ws_wait = &btrfs_comp_ws[idx].ws_wait;
963 free_ws = &btrfs_comp_ws[idx].free_ws;
966 spin_lock(ws_lock);
967 if (*free_ws <= num_online_cpus()) {
968 list_add(workspace, idle_ws);
969 (*free_ws)++;
970 spin_unlock(ws_lock);
971 goto wake;
973 spin_unlock(ws_lock);
975 if (heuristic)
976 free_heuristic_ws(workspace);
977 else
978 btrfs_compress_op[idx]->free_workspace(workspace);
979 atomic_dec(total_ws);
980 wake:
981 cond_wake_up(ws_wait);
984 static void free_workspace(int type, struct list_head *ws)
986 return __free_workspace(type, ws, false);
990 * cleanup function for module exit
992 static void free_workspaces(void)
994 struct list_head *workspace;
995 int i;
997 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
998 workspace = btrfs_heuristic_ws.idle_ws.next;
999 list_del(workspace);
1000 free_heuristic_ws(workspace);
1001 atomic_dec(&btrfs_heuristic_ws.total_ws);
1004 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1005 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1006 workspace = btrfs_comp_ws[i].idle_ws.next;
1007 list_del(workspace);
1008 btrfs_compress_op[i]->free_workspace(workspace);
1009 atomic_dec(&btrfs_comp_ws[i].total_ws);
1015 * Given an address space and start and length, compress the bytes into @pages
1016 * that are allocated on demand.
1018 * @type_level is encoded algorithm and level, where level 0 means whatever
1019 * default the algorithm chooses and is opaque here;
1020 * - compression algo are 0-3
1021 * - the level are bits 4-7
1023 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1024 * and returns number of actually allocated pages
1026 * @total_in is used to return the number of bytes actually read. It
1027 * may be smaller than the input length if we had to exit early because we
1028 * ran out of room in the pages array or because we cross the
1029 * max_out threshold.
1031 * @total_out is an in/out parameter, must be set to the input length and will
1032 * be also used to return the total number of compressed bytes
1034 * @max_out tells us the max number of bytes that we're allowed to
1035 * stuff into pages
1037 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1038 u64 start, struct page **pages,
1039 unsigned long *out_pages,
1040 unsigned long *total_in,
1041 unsigned long *total_out)
1043 struct list_head *workspace;
1044 int ret;
1045 int type = type_level & 0xF;
1047 workspace = find_workspace(type);
1049 btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1050 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1051 start, pages,
1052 out_pages,
1053 total_in, total_out);
1054 free_workspace(type, workspace);
1055 return ret;
1059 * pages_in is an array of pages with compressed data.
1061 * disk_start is the starting logical offset of this array in the file
1063 * orig_bio contains the pages from the file that we want to decompress into
1065 * srclen is the number of bytes in pages_in
1067 * The basic idea is that we have a bio that was created by readpages.
1068 * The pages in the bio are for the uncompressed data, and they may not
1069 * be contiguous. They all correspond to the range of bytes covered by
1070 * the compressed extent.
1072 static int btrfs_decompress_bio(struct compressed_bio *cb)
1074 struct list_head *workspace;
1075 int ret;
1076 int type = cb->compress_type;
1078 workspace = find_workspace(type);
1079 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1080 free_workspace(type, workspace);
1082 return ret;
1086 * a less complex decompression routine. Our compressed data fits in a
1087 * single page, and we want to read a single page out of it.
1088 * start_byte tells us the offset into the compressed data we're interested in
1090 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1091 unsigned long start_byte, size_t srclen, size_t destlen)
1093 struct list_head *workspace;
1094 int ret;
1096 workspace = find_workspace(type);
1098 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1099 dest_page, start_byte,
1100 srclen, destlen);
1102 free_workspace(type, workspace);
1103 return ret;
1106 void __cold btrfs_exit_compress(void)
1108 free_workspaces();
1112 * Copy uncompressed data from working buffer to pages.
1114 * buf_start is the byte offset we're of the start of our workspace buffer.
1116 * total_out is the last byte of the buffer
1118 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1119 unsigned long total_out, u64 disk_start,
1120 struct bio *bio)
1122 unsigned long buf_offset;
1123 unsigned long current_buf_start;
1124 unsigned long start_byte;
1125 unsigned long prev_start_byte;
1126 unsigned long working_bytes = total_out - buf_start;
1127 unsigned long bytes;
1128 char *kaddr;
1129 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1132 * start byte is the first byte of the page we're currently
1133 * copying into relative to the start of the compressed data.
1135 start_byte = page_offset(bvec.bv_page) - disk_start;
1137 /* we haven't yet hit data corresponding to this page */
1138 if (total_out <= start_byte)
1139 return 1;
1142 * the start of the data we care about is offset into
1143 * the middle of our working buffer
1145 if (total_out > start_byte && buf_start < start_byte) {
1146 buf_offset = start_byte - buf_start;
1147 working_bytes -= buf_offset;
1148 } else {
1149 buf_offset = 0;
1151 current_buf_start = buf_start;
1153 /* copy bytes from the working buffer into the pages */
1154 while (working_bytes > 0) {
1155 bytes = min_t(unsigned long, bvec.bv_len,
1156 PAGE_SIZE - buf_offset);
1157 bytes = min(bytes, working_bytes);
1159 kaddr = kmap_atomic(bvec.bv_page);
1160 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1161 kunmap_atomic(kaddr);
1162 flush_dcache_page(bvec.bv_page);
1164 buf_offset += bytes;
1165 working_bytes -= bytes;
1166 current_buf_start += bytes;
1168 /* check if we need to pick another page */
1169 bio_advance(bio, bytes);
1170 if (!bio->bi_iter.bi_size)
1171 return 0;
1172 bvec = bio_iter_iovec(bio, bio->bi_iter);
1173 prev_start_byte = start_byte;
1174 start_byte = page_offset(bvec.bv_page) - disk_start;
1177 * We need to make sure we're only adjusting
1178 * our offset into compression working buffer when
1179 * we're switching pages. Otherwise we can incorrectly
1180 * keep copying when we were actually done.
1182 if (start_byte != prev_start_byte) {
1184 * make sure our new page is covered by this
1185 * working buffer
1187 if (total_out <= start_byte)
1188 return 1;
1191 * the next page in the biovec might not be adjacent
1192 * to the last page, but it might still be found
1193 * inside this working buffer. bump our offset pointer
1195 if (total_out > start_byte &&
1196 current_buf_start < start_byte) {
1197 buf_offset = start_byte - buf_start;
1198 working_bytes = total_out - start_byte;
1199 current_buf_start = buf_start + buf_offset;
1204 return 1;
1208 * Shannon Entropy calculation
1210 * Pure byte distribution analysis fails to determine compressiability of data.
1211 * Try calculating entropy to estimate the average minimum number of bits
1212 * needed to encode the sampled data.
1214 * For convenience, return the percentage of needed bits, instead of amount of
1215 * bits directly.
1217 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1218 * and can be compressible with high probability
1220 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1222 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1224 #define ENTROPY_LVL_ACEPTABLE (65)
1225 #define ENTROPY_LVL_HIGH (80)
1228 * For increasead precision in shannon_entropy calculation,
1229 * let's do pow(n, M) to save more digits after comma:
1231 * - maximum int bit length is 64
1232 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1233 * - 13 * 4 = 52 < 64 -> M = 4
1235 * So use pow(n, 4).
1237 static inline u32 ilog2_w(u64 n)
1239 return ilog2(n * n * n * n);
1242 static u32 shannon_entropy(struct heuristic_ws *ws)
1244 const u32 entropy_max = 8 * ilog2_w(2);
1245 u32 entropy_sum = 0;
1246 u32 p, p_base, sz_base;
1247 u32 i;
1249 sz_base = ilog2_w(ws->sample_size);
1250 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1251 p = ws->bucket[i].count;
1252 p_base = ilog2_w(p);
1253 entropy_sum += p * (sz_base - p_base);
1256 entropy_sum /= ws->sample_size;
1257 return entropy_sum * 100 / entropy_max;
1260 #define RADIX_BASE 4U
1261 #define COUNTERS_SIZE (1U << RADIX_BASE)
1263 static u8 get4bits(u64 num, int shift) {
1264 u8 low4bits;
1266 num >>= shift;
1267 /* Reverse order */
1268 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1269 return low4bits;
1273 * Use 4 bits as radix base
1274 * Use 16 u32 counters for calculating new possition in buf array
1276 * @array - array that will be sorted
1277 * @array_buf - buffer array to store sorting results
1278 * must be equal in size to @array
1279 * @num - array size
1281 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1282 int num)
1284 u64 max_num;
1285 u64 buf_num;
1286 u32 counters[COUNTERS_SIZE];
1287 u32 new_addr;
1288 u32 addr;
1289 int bitlen;
1290 int shift;
1291 int i;
1294 * Try avoid useless loop iterations for small numbers stored in big
1295 * counters. Example: 48 33 4 ... in 64bit array
1297 max_num = array[0].count;
1298 for (i = 1; i < num; i++) {
1299 buf_num = array[i].count;
1300 if (buf_num > max_num)
1301 max_num = buf_num;
1304 buf_num = ilog2(max_num);
1305 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1307 shift = 0;
1308 while (shift < bitlen) {
1309 memset(counters, 0, sizeof(counters));
1311 for (i = 0; i < num; i++) {
1312 buf_num = array[i].count;
1313 addr = get4bits(buf_num, shift);
1314 counters[addr]++;
1317 for (i = 1; i < COUNTERS_SIZE; i++)
1318 counters[i] += counters[i - 1];
1320 for (i = num - 1; i >= 0; i--) {
1321 buf_num = array[i].count;
1322 addr = get4bits(buf_num, shift);
1323 counters[addr]--;
1324 new_addr = counters[addr];
1325 array_buf[new_addr] = array[i];
1328 shift += RADIX_BASE;
1331 * Normal radix expects to move data from a temporary array, to
1332 * the main one. But that requires some CPU time. Avoid that
1333 * by doing another sort iteration to original array instead of
1334 * memcpy()
1336 memset(counters, 0, sizeof(counters));
1338 for (i = 0; i < num; i ++) {
1339 buf_num = array_buf[i].count;
1340 addr = get4bits(buf_num, shift);
1341 counters[addr]++;
1344 for (i = 1; i < COUNTERS_SIZE; i++)
1345 counters[i] += counters[i - 1];
1347 for (i = num - 1; i >= 0; i--) {
1348 buf_num = array_buf[i].count;
1349 addr = get4bits(buf_num, shift);
1350 counters[addr]--;
1351 new_addr = counters[addr];
1352 array[new_addr] = array_buf[i];
1355 shift += RADIX_BASE;
1360 * Size of the core byte set - how many bytes cover 90% of the sample
1362 * There are several types of structured binary data that use nearly all byte
1363 * values. The distribution can be uniform and counts in all buckets will be
1364 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1366 * Other possibility is normal (Gaussian) distribution, where the data could
1367 * be potentially compressible, but we have to take a few more steps to decide
1368 * how much.
1370 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1371 * compression algo can easy fix that
1372 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1373 * probability is not compressible
1375 #define BYTE_CORE_SET_LOW (64)
1376 #define BYTE_CORE_SET_HIGH (200)
1378 static int byte_core_set_size(struct heuristic_ws *ws)
1380 u32 i;
1381 u32 coreset_sum = 0;
1382 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1383 struct bucket_item *bucket = ws->bucket;
1385 /* Sort in reverse order */
1386 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1388 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1389 coreset_sum += bucket[i].count;
1391 if (coreset_sum > core_set_threshold)
1392 return i;
1394 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1395 coreset_sum += bucket[i].count;
1396 if (coreset_sum > core_set_threshold)
1397 break;
1400 return i;
1404 * Count byte values in buckets.
1405 * This heuristic can detect textual data (configs, xml, json, html, etc).
1406 * Because in most text-like data byte set is restricted to limited number of
1407 * possible characters, and that restriction in most cases makes data easy to
1408 * compress.
1410 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1411 * less - compressible
1412 * more - need additional analysis
1414 #define BYTE_SET_THRESHOLD (64)
1416 static u32 byte_set_size(const struct heuristic_ws *ws)
1418 u32 i;
1419 u32 byte_set_size = 0;
1421 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1422 if (ws->bucket[i].count > 0)
1423 byte_set_size++;
1427 * Continue collecting count of byte values in buckets. If the byte
1428 * set size is bigger then the threshold, it's pointless to continue,
1429 * the detection technique would fail for this type of data.
1431 for (; i < BUCKET_SIZE; i++) {
1432 if (ws->bucket[i].count > 0) {
1433 byte_set_size++;
1434 if (byte_set_size > BYTE_SET_THRESHOLD)
1435 return byte_set_size;
1439 return byte_set_size;
1442 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1444 const u32 half_of_sample = ws->sample_size / 2;
1445 const u8 *data = ws->sample;
1447 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1450 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1451 struct heuristic_ws *ws)
1453 struct page *page;
1454 u64 index, index_end;
1455 u32 i, curr_sample_pos;
1456 u8 *in_data;
1459 * Compression handles the input data by chunks of 128KiB
1460 * (defined by BTRFS_MAX_UNCOMPRESSED)
1462 * We do the same for the heuristic and loop over the whole range.
1464 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1465 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1467 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1468 end = start + BTRFS_MAX_UNCOMPRESSED;
1470 index = start >> PAGE_SHIFT;
1471 index_end = end >> PAGE_SHIFT;
1473 /* Don't miss unaligned end */
1474 if (!IS_ALIGNED(end, PAGE_SIZE))
1475 index_end++;
1477 curr_sample_pos = 0;
1478 while (index < index_end) {
1479 page = find_get_page(inode->i_mapping, index);
1480 in_data = kmap(page);
1481 /* Handle case where the start is not aligned to PAGE_SIZE */
1482 i = start % PAGE_SIZE;
1483 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1484 /* Don't sample any garbage from the last page */
1485 if (start > end - SAMPLING_READ_SIZE)
1486 break;
1487 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1488 SAMPLING_READ_SIZE);
1489 i += SAMPLING_INTERVAL;
1490 start += SAMPLING_INTERVAL;
1491 curr_sample_pos += SAMPLING_READ_SIZE;
1493 kunmap(page);
1494 put_page(page);
1496 index++;
1499 ws->sample_size = curr_sample_pos;
1503 * Compression heuristic.
1505 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1506 * quickly (compared to direct compression) detect data characteristics
1507 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1508 * data.
1510 * The following types of analysis can be performed:
1511 * - detect mostly zero data
1512 * - detect data with low "byte set" size (text, etc)
1513 * - detect data with low/high "core byte" set
1515 * Return non-zero if the compression should be done, 0 otherwise.
1517 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1519 struct list_head *ws_list = __find_workspace(0, true);
1520 struct heuristic_ws *ws;
1521 u32 i;
1522 u8 byte;
1523 int ret = 0;
1525 ws = list_entry(ws_list, struct heuristic_ws, list);
1527 heuristic_collect_sample(inode, start, end, ws);
1529 if (sample_repeated_patterns(ws)) {
1530 ret = 1;
1531 goto out;
1534 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1536 for (i = 0; i < ws->sample_size; i++) {
1537 byte = ws->sample[i];
1538 ws->bucket[byte].count++;
1541 i = byte_set_size(ws);
1542 if (i < BYTE_SET_THRESHOLD) {
1543 ret = 2;
1544 goto out;
1547 i = byte_core_set_size(ws);
1548 if (i <= BYTE_CORE_SET_LOW) {
1549 ret = 3;
1550 goto out;
1553 if (i >= BYTE_CORE_SET_HIGH) {
1554 ret = 0;
1555 goto out;
1558 i = shannon_entropy(ws);
1559 if (i <= ENTROPY_LVL_ACEPTABLE) {
1560 ret = 4;
1561 goto out;
1565 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1566 * needed to give green light to compression.
1568 * For now just assume that compression at that level is not worth the
1569 * resources because:
1571 * 1. it is possible to defrag the data later
1573 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1574 * values, every bucket has counter at level ~54. The heuristic would
1575 * be confused. This can happen when data have some internal repeated
1576 * patterns like "abbacbbc...". This can be detected by analyzing
1577 * pairs of bytes, which is too costly.
1579 if (i < ENTROPY_LVL_HIGH) {
1580 ret = 5;
1581 goto out;
1582 } else {
1583 ret = 0;
1584 goto out;
1587 out:
1588 __free_workspace(0, ws_list, true);
1589 return ret;
1592 unsigned int btrfs_compress_str2level(const char *str)
1594 if (strncmp(str, "zlib", 4) != 0)
1595 return 0;
1597 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1598 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1599 return str[5] - '0';
1601 return BTRFS_ZLIB_DEFAULT_LEVEL;