1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
22 #include "transaction.h"
23 #include "btrfs_inode.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
30 static const char* const btrfs_compress_types
[] = { "", "zlib", "lzo", "zstd" };
32 const char* btrfs_compress_type2str(enum btrfs_compression_type type
)
35 case BTRFS_COMPRESS_ZLIB
:
36 case BTRFS_COMPRESS_LZO
:
37 case BTRFS_COMPRESS_ZSTD
:
38 case BTRFS_COMPRESS_NONE
:
39 return btrfs_compress_types
[type
];
45 static int btrfs_decompress_bio(struct compressed_bio
*cb
);
47 static inline int compressed_bio_size(struct btrfs_fs_info
*fs_info
,
48 unsigned long disk_size
)
50 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
52 return sizeof(struct compressed_bio
) +
53 (DIV_ROUND_UP(disk_size
, fs_info
->sectorsize
)) * csum_size
;
56 static int check_compressed_csum(struct btrfs_inode
*inode
,
57 struct compressed_bio
*cb
,
65 u32
*cb_sum
= &cb
->sums
;
67 if (inode
->flags
& BTRFS_INODE_NODATASUM
)
70 for (i
= 0; i
< cb
->nr_pages
; i
++) {
71 page
= cb
->compressed_pages
[i
];
74 kaddr
= kmap_atomic(page
);
75 csum
= btrfs_csum_data(kaddr
, csum
, PAGE_SIZE
);
76 btrfs_csum_final(csum
, (u8
*)&csum
);
79 if (csum
!= *cb_sum
) {
80 btrfs_print_data_csum_error(inode
, disk_start
, csum
,
81 *cb_sum
, cb
->mirror_num
);
93 /* when we finish reading compressed pages from the disk, we
94 * decompress them and then run the bio end_io routines on the
95 * decompressed pages (in the inode address space).
97 * This allows the checksumming and other IO error handling routines
100 * The compressed pages are freed here, and it must be run
103 static void end_compressed_bio_read(struct bio
*bio
)
105 struct compressed_bio
*cb
= bio
->bi_private
;
109 unsigned int mirror
= btrfs_io_bio(bio
)->mirror_num
;
115 /* if there are more bios still pending for this compressed
118 if (!refcount_dec_and_test(&cb
->pending_bios
))
122 * Record the correct mirror_num in cb->orig_bio so that
123 * read-repair can work properly.
125 ASSERT(btrfs_io_bio(cb
->orig_bio
));
126 btrfs_io_bio(cb
->orig_bio
)->mirror_num
= mirror
;
127 cb
->mirror_num
= mirror
;
130 * Some IO in this cb have failed, just skip checksum as there
131 * is no way it could be correct.
137 ret
= check_compressed_csum(BTRFS_I(inode
), cb
,
138 (u64
)bio
->bi_iter
.bi_sector
<< 9);
142 /* ok, we're the last bio for this extent, lets start
145 ret
= btrfs_decompress_bio(cb
);
151 /* release the compressed pages */
153 for (index
= 0; index
< cb
->nr_pages
; index
++) {
154 page
= cb
->compressed_pages
[index
];
155 page
->mapping
= NULL
;
159 /* do io completion on the original bio */
161 bio_io_error(cb
->orig_bio
);
164 struct bio_vec
*bvec
;
167 * we have verified the checksum already, set page
168 * checked so the end_io handlers know about it
170 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
171 bio_for_each_segment_all(bvec
, cb
->orig_bio
, i
)
172 SetPageChecked(bvec
->bv_page
);
174 bio_endio(cb
->orig_bio
);
177 /* finally free the cb struct */
178 kfree(cb
->compressed_pages
);
185 * Clear the writeback bits on all of the file
186 * pages for a compressed write
188 static noinline
void end_compressed_writeback(struct inode
*inode
,
189 const struct compressed_bio
*cb
)
191 unsigned long index
= cb
->start
>> PAGE_SHIFT
;
192 unsigned long end_index
= (cb
->start
+ cb
->len
- 1) >> PAGE_SHIFT
;
193 struct page
*pages
[16];
194 unsigned long nr_pages
= end_index
- index
+ 1;
199 mapping_set_error(inode
->i_mapping
, -EIO
);
201 while (nr_pages
> 0) {
202 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
204 nr_pages
, ARRAY_SIZE(pages
)), pages
);
210 for (i
= 0; i
< ret
; i
++) {
212 SetPageError(pages
[i
]);
213 end_page_writeback(pages
[i
]);
219 /* the inode may be gone now */
223 * do the cleanup once all the compressed pages hit the disk.
224 * This will clear writeback on the file pages and free the compressed
227 * This also calls the writeback end hooks for the file pages so that
228 * metadata and checksums can be updated in the file.
230 static void end_compressed_bio_write(struct bio
*bio
)
232 struct extent_io_tree
*tree
;
233 struct compressed_bio
*cb
= bio
->bi_private
;
241 /* if there are more bios still pending for this compressed
244 if (!refcount_dec_and_test(&cb
->pending_bios
))
247 /* ok, we're the last bio for this extent, step one is to
248 * call back into the FS and do all the end_io operations
251 tree
= &BTRFS_I(inode
)->io_tree
;
252 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
253 tree
->ops
->writepage_end_io_hook(cb
->compressed_pages
[0],
255 cb
->start
+ cb
->len
- 1,
258 BLK_STS_OK
: BLK_STS_NOTSUPP
);
259 cb
->compressed_pages
[0]->mapping
= NULL
;
261 end_compressed_writeback(inode
, cb
);
262 /* note, our inode could be gone now */
265 * release the compressed pages, these came from alloc_page and
266 * are not attached to the inode at all
269 for (index
= 0; index
< cb
->nr_pages
; index
++) {
270 page
= cb
->compressed_pages
[index
];
271 page
->mapping
= NULL
;
275 /* finally free the cb struct */
276 kfree(cb
->compressed_pages
);
283 * worker function to build and submit bios for previously compressed pages.
284 * The corresponding pages in the inode should be marked for writeback
285 * and the compressed pages should have a reference on them for dropping
286 * when the IO is complete.
288 * This also checksums the file bytes and gets things ready for
291 blk_status_t
btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
292 unsigned long len
, u64 disk_start
,
293 unsigned long compressed_len
,
294 struct page
**compressed_pages
,
295 unsigned long nr_pages
,
296 unsigned int write_flags
)
298 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
299 struct bio
*bio
= NULL
;
300 struct compressed_bio
*cb
;
301 unsigned long bytes_left
;
304 u64 first_byte
= disk_start
;
305 struct block_device
*bdev
;
307 int skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
309 WARN_ON(start
& ((u64
)PAGE_SIZE
- 1));
310 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
312 return BLK_STS_RESOURCE
;
313 refcount_set(&cb
->pending_bios
, 0);
319 cb
->compressed_pages
= compressed_pages
;
320 cb
->compressed_len
= compressed_len
;
322 cb
->nr_pages
= nr_pages
;
324 bdev
= fs_info
->fs_devices
->latest_bdev
;
326 bio
= btrfs_bio_alloc(bdev
, first_byte
);
327 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
328 bio
->bi_private
= cb
;
329 bio
->bi_end_io
= end_compressed_bio_write
;
330 refcount_set(&cb
->pending_bios
, 1);
332 /* create and submit bios for the compressed pages */
333 bytes_left
= compressed_len
;
334 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
337 page
= compressed_pages
[pg_index
];
338 page
->mapping
= inode
->i_mapping
;
339 if (bio
->bi_iter
.bi_size
)
340 submit
= btrfs_merge_bio_hook(page
, 0, PAGE_SIZE
, bio
, 0);
342 page
->mapping
= NULL
;
343 if (submit
|| bio_add_page(bio
, page
, PAGE_SIZE
, 0) <
346 * inc the count before we submit the bio so
347 * we know the end IO handler won't happen before
348 * we inc the count. Otherwise, the cb might get
349 * freed before we're done setting it up
351 refcount_inc(&cb
->pending_bios
);
352 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
353 BTRFS_WQ_ENDIO_DATA
);
354 BUG_ON(ret
); /* -ENOMEM */
357 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
358 BUG_ON(ret
); /* -ENOMEM */
361 ret
= btrfs_map_bio(fs_info
, bio
, 0, 1);
363 bio
->bi_status
= ret
;
367 bio
= btrfs_bio_alloc(bdev
, first_byte
);
368 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
369 bio
->bi_private
= cb
;
370 bio
->bi_end_io
= end_compressed_bio_write
;
371 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
373 if (bytes_left
< PAGE_SIZE
) {
375 "bytes left %lu compress len %lu nr %lu",
376 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
378 bytes_left
-= PAGE_SIZE
;
379 first_byte
+= PAGE_SIZE
;
383 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
384 BUG_ON(ret
); /* -ENOMEM */
387 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
388 BUG_ON(ret
); /* -ENOMEM */
391 ret
= btrfs_map_bio(fs_info
, bio
, 0, 1);
393 bio
->bi_status
= ret
;
400 static u64
bio_end_offset(struct bio
*bio
)
402 struct bio_vec
*last
= bio_last_bvec_all(bio
);
404 return page_offset(last
->bv_page
) + last
->bv_len
+ last
->bv_offset
;
407 static noinline
int add_ra_bio_pages(struct inode
*inode
,
409 struct compressed_bio
*cb
)
411 unsigned long end_index
;
412 unsigned long pg_index
;
414 u64 isize
= i_size_read(inode
);
417 unsigned long nr_pages
= 0;
418 struct extent_map
*em
;
419 struct address_space
*mapping
= inode
->i_mapping
;
420 struct extent_map_tree
*em_tree
;
421 struct extent_io_tree
*tree
;
425 last_offset
= bio_end_offset(cb
->orig_bio
);
426 em_tree
= &BTRFS_I(inode
)->extent_tree
;
427 tree
= &BTRFS_I(inode
)->io_tree
;
432 end_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
434 while (last_offset
< compressed_end
) {
435 pg_index
= last_offset
>> PAGE_SHIFT
;
437 if (pg_index
> end_index
)
440 page
= xa_load(&mapping
->i_pages
, pg_index
);
441 if (page
&& !xa_is_value(page
)) {
448 page
= __page_cache_alloc(mapping_gfp_constraint(mapping
,
453 if (add_to_page_cache_lru(page
, mapping
, pg_index
, GFP_NOFS
)) {
458 end
= last_offset
+ PAGE_SIZE
- 1;
460 * at this point, we have a locked page in the page cache
461 * for these bytes in the file. But, we have to make
462 * sure they map to this compressed extent on disk.
464 set_page_extent_mapped(page
);
465 lock_extent(tree
, last_offset
, end
);
466 read_lock(&em_tree
->lock
);
467 em
= lookup_extent_mapping(em_tree
, last_offset
,
469 read_unlock(&em_tree
->lock
);
471 if (!em
|| last_offset
< em
->start
||
472 (last_offset
+ PAGE_SIZE
> extent_map_end(em
)) ||
473 (em
->block_start
>> 9) != cb
->orig_bio
->bi_iter
.bi_sector
) {
475 unlock_extent(tree
, last_offset
, end
);
482 if (page
->index
== end_index
) {
484 size_t zero_offset
= isize
& (PAGE_SIZE
- 1);
488 zeros
= PAGE_SIZE
- zero_offset
;
489 userpage
= kmap_atomic(page
);
490 memset(userpage
+ zero_offset
, 0, zeros
);
491 flush_dcache_page(page
);
492 kunmap_atomic(userpage
);
496 ret
= bio_add_page(cb
->orig_bio
, page
,
499 if (ret
== PAGE_SIZE
) {
503 unlock_extent(tree
, last_offset
, end
);
509 last_offset
+= PAGE_SIZE
;
515 * for a compressed read, the bio we get passed has all the inode pages
516 * in it. We don't actually do IO on those pages but allocate new ones
517 * to hold the compressed pages on disk.
519 * bio->bi_iter.bi_sector points to the compressed extent on disk
520 * bio->bi_io_vec points to all of the inode pages
522 * After the compressed pages are read, we copy the bytes into the
523 * bio we were passed and then call the bio end_io calls
525 blk_status_t
btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
526 int mirror_num
, unsigned long bio_flags
)
528 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
529 struct extent_map_tree
*em_tree
;
530 struct compressed_bio
*cb
;
531 unsigned long compressed_len
;
532 unsigned long nr_pages
;
533 unsigned long pg_index
;
535 struct block_device
*bdev
;
536 struct bio
*comp_bio
;
537 u64 cur_disk_byte
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
540 struct extent_map
*em
;
541 blk_status_t ret
= BLK_STS_RESOURCE
;
545 em_tree
= &BTRFS_I(inode
)->extent_tree
;
547 /* we need the actual starting offset of this extent in the file */
548 read_lock(&em_tree
->lock
);
549 em
= lookup_extent_mapping(em_tree
,
550 page_offset(bio_first_page_all(bio
)),
552 read_unlock(&em_tree
->lock
);
554 return BLK_STS_IOERR
;
556 compressed_len
= em
->block_len
;
557 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
561 refcount_set(&cb
->pending_bios
, 0);
564 cb
->mirror_num
= mirror_num
;
567 cb
->start
= em
->orig_start
;
569 em_start
= em
->start
;
574 cb
->len
= bio
->bi_iter
.bi_size
;
575 cb
->compressed_len
= compressed_len
;
576 cb
->compress_type
= extent_compress_type(bio_flags
);
579 nr_pages
= DIV_ROUND_UP(compressed_len
, PAGE_SIZE
);
580 cb
->compressed_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
582 if (!cb
->compressed_pages
)
585 bdev
= fs_info
->fs_devices
->latest_bdev
;
587 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
588 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
590 if (!cb
->compressed_pages
[pg_index
]) {
591 faili
= pg_index
- 1;
592 ret
= BLK_STS_RESOURCE
;
596 faili
= nr_pages
- 1;
597 cb
->nr_pages
= nr_pages
;
599 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
601 /* include any pages we added in add_ra-bio_pages */
602 cb
->len
= bio
->bi_iter
.bi_size
;
604 comp_bio
= btrfs_bio_alloc(bdev
, cur_disk_byte
);
605 comp_bio
->bi_opf
= REQ_OP_READ
;
606 comp_bio
->bi_private
= cb
;
607 comp_bio
->bi_end_io
= end_compressed_bio_read
;
608 refcount_set(&cb
->pending_bios
, 1);
610 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
613 page
= cb
->compressed_pages
[pg_index
];
614 page
->mapping
= inode
->i_mapping
;
615 page
->index
= em_start
>> PAGE_SHIFT
;
617 if (comp_bio
->bi_iter
.bi_size
)
618 submit
= btrfs_merge_bio_hook(page
, 0, PAGE_SIZE
,
621 page
->mapping
= NULL
;
622 if (submit
|| bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0) <
624 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
,
625 BTRFS_WQ_ENDIO_DATA
);
626 BUG_ON(ret
); /* -ENOMEM */
629 * inc the count before we submit the bio so
630 * we know the end IO handler won't happen before
631 * we inc the count. Otherwise, the cb might get
632 * freed before we're done setting it up
634 refcount_inc(&cb
->pending_bios
);
636 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
637 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
,
639 BUG_ON(ret
); /* -ENOMEM */
641 sums
+= DIV_ROUND_UP(comp_bio
->bi_iter
.bi_size
,
642 fs_info
->sectorsize
);
644 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
, 0);
646 comp_bio
->bi_status
= ret
;
650 comp_bio
= btrfs_bio_alloc(bdev
, cur_disk_byte
);
651 comp_bio
->bi_opf
= REQ_OP_READ
;
652 comp_bio
->bi_private
= cb
;
653 comp_bio
->bi_end_io
= end_compressed_bio_read
;
655 bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0);
657 cur_disk_byte
+= PAGE_SIZE
;
660 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
, BTRFS_WQ_ENDIO_DATA
);
661 BUG_ON(ret
); /* -ENOMEM */
663 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
664 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
, sums
);
665 BUG_ON(ret
); /* -ENOMEM */
668 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
, 0);
670 comp_bio
->bi_status
= ret
;
678 __free_page(cb
->compressed_pages
[faili
]);
682 kfree(cb
->compressed_pages
);
691 * Heuristic uses systematic sampling to collect data from the input data
692 * range, the logic can be tuned by the following constants:
694 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
695 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
697 #define SAMPLING_READ_SIZE (16)
698 #define SAMPLING_INTERVAL (256)
701 * For statistical analysis of the input data we consider bytes that form a
702 * Galois Field of 256 objects. Each object has an attribute count, ie. how
703 * many times the object appeared in the sample.
705 #define BUCKET_SIZE (256)
708 * The size of the sample is based on a statistical sampling rule of thumb.
709 * The common way is to perform sampling tests as long as the number of
710 * elements in each cell is at least 5.
712 * Instead of 5, we choose 32 to obtain more accurate results.
713 * If the data contain the maximum number of symbols, which is 256, we obtain a
714 * sample size bound by 8192.
716 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
717 * from up to 512 locations.
719 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
720 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
726 struct heuristic_ws
{
727 /* Partial copy of input data */
730 /* Buckets store counters for each byte value */
731 struct bucket_item
*bucket
;
733 struct bucket_item
*bucket_b
;
734 struct list_head list
;
737 static void free_heuristic_ws(struct list_head
*ws
)
739 struct heuristic_ws
*workspace
;
741 workspace
= list_entry(ws
, struct heuristic_ws
, list
);
743 kvfree(workspace
->sample
);
744 kfree(workspace
->bucket
);
745 kfree(workspace
->bucket_b
);
749 static struct list_head
*alloc_heuristic_ws(void)
751 struct heuristic_ws
*ws
;
753 ws
= kzalloc(sizeof(*ws
), GFP_KERNEL
);
755 return ERR_PTR(-ENOMEM
);
757 ws
->sample
= kvmalloc(MAX_SAMPLE_SIZE
, GFP_KERNEL
);
761 ws
->bucket
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket
), GFP_KERNEL
);
765 ws
->bucket_b
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket_b
), GFP_KERNEL
);
769 INIT_LIST_HEAD(&ws
->list
);
772 free_heuristic_ws(&ws
->list
);
773 return ERR_PTR(-ENOMEM
);
776 struct workspaces_list
{
777 struct list_head idle_ws
;
779 /* Number of free workspaces */
781 /* Total number of allocated workspaces */
783 /* Waiters for a free workspace */
784 wait_queue_head_t ws_wait
;
787 static struct workspaces_list btrfs_comp_ws
[BTRFS_COMPRESS_TYPES
];
789 static struct workspaces_list btrfs_heuristic_ws
;
791 static const struct btrfs_compress_op
* const btrfs_compress_op
[] = {
792 &btrfs_zlib_compress
,
794 &btrfs_zstd_compress
,
797 void __init
btrfs_init_compress(void)
799 struct list_head
*workspace
;
802 INIT_LIST_HEAD(&btrfs_heuristic_ws
.idle_ws
);
803 spin_lock_init(&btrfs_heuristic_ws
.ws_lock
);
804 atomic_set(&btrfs_heuristic_ws
.total_ws
, 0);
805 init_waitqueue_head(&btrfs_heuristic_ws
.ws_wait
);
807 workspace
= alloc_heuristic_ws();
808 if (IS_ERR(workspace
)) {
810 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
812 atomic_set(&btrfs_heuristic_ws
.total_ws
, 1);
813 btrfs_heuristic_ws
.free_ws
= 1;
814 list_add(workspace
, &btrfs_heuristic_ws
.idle_ws
);
817 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
818 INIT_LIST_HEAD(&btrfs_comp_ws
[i
].idle_ws
);
819 spin_lock_init(&btrfs_comp_ws
[i
].ws_lock
);
820 atomic_set(&btrfs_comp_ws
[i
].total_ws
, 0);
821 init_waitqueue_head(&btrfs_comp_ws
[i
].ws_wait
);
824 * Preallocate one workspace for each compression type so
825 * we can guarantee forward progress in the worst case
827 workspace
= btrfs_compress_op
[i
]->alloc_workspace();
828 if (IS_ERR(workspace
)) {
829 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
831 atomic_set(&btrfs_comp_ws
[i
].total_ws
, 1);
832 btrfs_comp_ws
[i
].free_ws
= 1;
833 list_add(workspace
, &btrfs_comp_ws
[i
].idle_ws
);
839 * This finds an available workspace or allocates a new one.
840 * If it's not possible to allocate a new one, waits until there's one.
841 * Preallocation makes a forward progress guarantees and we do not return
844 static struct list_head
*__find_workspace(int type
, bool heuristic
)
846 struct list_head
*workspace
;
847 int cpus
= num_online_cpus();
850 struct list_head
*idle_ws
;
853 wait_queue_head_t
*ws_wait
;
857 idle_ws
= &btrfs_heuristic_ws
.idle_ws
;
858 ws_lock
= &btrfs_heuristic_ws
.ws_lock
;
859 total_ws
= &btrfs_heuristic_ws
.total_ws
;
860 ws_wait
= &btrfs_heuristic_ws
.ws_wait
;
861 free_ws
= &btrfs_heuristic_ws
.free_ws
;
863 idle_ws
= &btrfs_comp_ws
[idx
].idle_ws
;
864 ws_lock
= &btrfs_comp_ws
[idx
].ws_lock
;
865 total_ws
= &btrfs_comp_ws
[idx
].total_ws
;
866 ws_wait
= &btrfs_comp_ws
[idx
].ws_wait
;
867 free_ws
= &btrfs_comp_ws
[idx
].free_ws
;
872 if (!list_empty(idle_ws
)) {
873 workspace
= idle_ws
->next
;
876 spin_unlock(ws_lock
);
880 if (atomic_read(total_ws
) > cpus
) {
883 spin_unlock(ws_lock
);
884 prepare_to_wait(ws_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
885 if (atomic_read(total_ws
) > cpus
&& !*free_ws
)
887 finish_wait(ws_wait
, &wait
);
890 atomic_inc(total_ws
);
891 spin_unlock(ws_lock
);
894 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
895 * to turn it off here because we might get called from the restricted
896 * context of btrfs_compress_bio/btrfs_compress_pages
898 nofs_flag
= memalloc_nofs_save();
900 workspace
= alloc_heuristic_ws();
902 workspace
= btrfs_compress_op
[idx
]->alloc_workspace();
903 memalloc_nofs_restore(nofs_flag
);
905 if (IS_ERR(workspace
)) {
906 atomic_dec(total_ws
);
910 * Do not return the error but go back to waiting. There's a
911 * workspace preallocated for each type and the compression
912 * time is bounded so we get to a workspace eventually. This
913 * makes our caller's life easier.
915 * To prevent silent and low-probability deadlocks (when the
916 * initial preallocation fails), check if there are any
919 if (atomic_read(total_ws
) == 0) {
920 static DEFINE_RATELIMIT_STATE(_rs
,
921 /* once per minute */ 60 * HZ
,
924 if (__ratelimit(&_rs
)) {
925 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
933 static struct list_head
*find_workspace(int type
)
935 return __find_workspace(type
, false);
939 * put a workspace struct back on the list or free it if we have enough
940 * idle ones sitting around
942 static void __free_workspace(int type
, struct list_head
*workspace
,
946 struct list_head
*idle_ws
;
949 wait_queue_head_t
*ws_wait
;
953 idle_ws
= &btrfs_heuristic_ws
.idle_ws
;
954 ws_lock
= &btrfs_heuristic_ws
.ws_lock
;
955 total_ws
= &btrfs_heuristic_ws
.total_ws
;
956 ws_wait
= &btrfs_heuristic_ws
.ws_wait
;
957 free_ws
= &btrfs_heuristic_ws
.free_ws
;
959 idle_ws
= &btrfs_comp_ws
[idx
].idle_ws
;
960 ws_lock
= &btrfs_comp_ws
[idx
].ws_lock
;
961 total_ws
= &btrfs_comp_ws
[idx
].total_ws
;
962 ws_wait
= &btrfs_comp_ws
[idx
].ws_wait
;
963 free_ws
= &btrfs_comp_ws
[idx
].free_ws
;
967 if (*free_ws
<= num_online_cpus()) {
968 list_add(workspace
, idle_ws
);
970 spin_unlock(ws_lock
);
973 spin_unlock(ws_lock
);
976 free_heuristic_ws(workspace
);
978 btrfs_compress_op
[idx
]->free_workspace(workspace
);
979 atomic_dec(total_ws
);
981 cond_wake_up(ws_wait
);
984 static void free_workspace(int type
, struct list_head
*ws
)
986 return __free_workspace(type
, ws
, false);
990 * cleanup function for module exit
992 static void free_workspaces(void)
994 struct list_head
*workspace
;
997 while (!list_empty(&btrfs_heuristic_ws
.idle_ws
)) {
998 workspace
= btrfs_heuristic_ws
.idle_ws
.next
;
1000 free_heuristic_ws(workspace
);
1001 atomic_dec(&btrfs_heuristic_ws
.total_ws
);
1004 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
1005 while (!list_empty(&btrfs_comp_ws
[i
].idle_ws
)) {
1006 workspace
= btrfs_comp_ws
[i
].idle_ws
.next
;
1007 list_del(workspace
);
1008 btrfs_compress_op
[i
]->free_workspace(workspace
);
1009 atomic_dec(&btrfs_comp_ws
[i
].total_ws
);
1015 * Given an address space and start and length, compress the bytes into @pages
1016 * that are allocated on demand.
1018 * @type_level is encoded algorithm and level, where level 0 means whatever
1019 * default the algorithm chooses and is opaque here;
1020 * - compression algo are 0-3
1021 * - the level are bits 4-7
1023 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1024 * and returns number of actually allocated pages
1026 * @total_in is used to return the number of bytes actually read. It
1027 * may be smaller than the input length if we had to exit early because we
1028 * ran out of room in the pages array or because we cross the
1029 * max_out threshold.
1031 * @total_out is an in/out parameter, must be set to the input length and will
1032 * be also used to return the total number of compressed bytes
1034 * @max_out tells us the max number of bytes that we're allowed to
1037 int btrfs_compress_pages(unsigned int type_level
, struct address_space
*mapping
,
1038 u64 start
, struct page
**pages
,
1039 unsigned long *out_pages
,
1040 unsigned long *total_in
,
1041 unsigned long *total_out
)
1043 struct list_head
*workspace
;
1045 int type
= type_level
& 0xF;
1047 workspace
= find_workspace(type
);
1049 btrfs_compress_op
[type
- 1]->set_level(workspace
, type_level
);
1050 ret
= btrfs_compress_op
[type
-1]->compress_pages(workspace
, mapping
,
1053 total_in
, total_out
);
1054 free_workspace(type
, workspace
);
1059 * pages_in is an array of pages with compressed data.
1061 * disk_start is the starting logical offset of this array in the file
1063 * orig_bio contains the pages from the file that we want to decompress into
1065 * srclen is the number of bytes in pages_in
1067 * The basic idea is that we have a bio that was created by readpages.
1068 * The pages in the bio are for the uncompressed data, and they may not
1069 * be contiguous. They all correspond to the range of bytes covered by
1070 * the compressed extent.
1072 static int btrfs_decompress_bio(struct compressed_bio
*cb
)
1074 struct list_head
*workspace
;
1076 int type
= cb
->compress_type
;
1078 workspace
= find_workspace(type
);
1079 ret
= btrfs_compress_op
[type
- 1]->decompress_bio(workspace
, cb
);
1080 free_workspace(type
, workspace
);
1086 * a less complex decompression routine. Our compressed data fits in a
1087 * single page, and we want to read a single page out of it.
1088 * start_byte tells us the offset into the compressed data we're interested in
1090 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
1091 unsigned long start_byte
, size_t srclen
, size_t destlen
)
1093 struct list_head
*workspace
;
1096 workspace
= find_workspace(type
);
1098 ret
= btrfs_compress_op
[type
-1]->decompress(workspace
, data_in
,
1099 dest_page
, start_byte
,
1102 free_workspace(type
, workspace
);
1106 void __cold
btrfs_exit_compress(void)
1112 * Copy uncompressed data from working buffer to pages.
1114 * buf_start is the byte offset we're of the start of our workspace buffer.
1116 * total_out is the last byte of the buffer
1118 int btrfs_decompress_buf2page(const char *buf
, unsigned long buf_start
,
1119 unsigned long total_out
, u64 disk_start
,
1122 unsigned long buf_offset
;
1123 unsigned long current_buf_start
;
1124 unsigned long start_byte
;
1125 unsigned long prev_start_byte
;
1126 unsigned long working_bytes
= total_out
- buf_start
;
1127 unsigned long bytes
;
1129 struct bio_vec bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1132 * start byte is the first byte of the page we're currently
1133 * copying into relative to the start of the compressed data.
1135 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1137 /* we haven't yet hit data corresponding to this page */
1138 if (total_out
<= start_byte
)
1142 * the start of the data we care about is offset into
1143 * the middle of our working buffer
1145 if (total_out
> start_byte
&& buf_start
< start_byte
) {
1146 buf_offset
= start_byte
- buf_start
;
1147 working_bytes
-= buf_offset
;
1151 current_buf_start
= buf_start
;
1153 /* copy bytes from the working buffer into the pages */
1154 while (working_bytes
> 0) {
1155 bytes
= min_t(unsigned long, bvec
.bv_len
,
1156 PAGE_SIZE
- buf_offset
);
1157 bytes
= min(bytes
, working_bytes
);
1159 kaddr
= kmap_atomic(bvec
.bv_page
);
1160 memcpy(kaddr
+ bvec
.bv_offset
, buf
+ buf_offset
, bytes
);
1161 kunmap_atomic(kaddr
);
1162 flush_dcache_page(bvec
.bv_page
);
1164 buf_offset
+= bytes
;
1165 working_bytes
-= bytes
;
1166 current_buf_start
+= bytes
;
1168 /* check if we need to pick another page */
1169 bio_advance(bio
, bytes
);
1170 if (!bio
->bi_iter
.bi_size
)
1172 bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1173 prev_start_byte
= start_byte
;
1174 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1177 * We need to make sure we're only adjusting
1178 * our offset into compression working buffer when
1179 * we're switching pages. Otherwise we can incorrectly
1180 * keep copying when we were actually done.
1182 if (start_byte
!= prev_start_byte
) {
1184 * make sure our new page is covered by this
1187 if (total_out
<= start_byte
)
1191 * the next page in the biovec might not be adjacent
1192 * to the last page, but it might still be found
1193 * inside this working buffer. bump our offset pointer
1195 if (total_out
> start_byte
&&
1196 current_buf_start
< start_byte
) {
1197 buf_offset
= start_byte
- buf_start
;
1198 working_bytes
= total_out
- start_byte
;
1199 current_buf_start
= buf_start
+ buf_offset
;
1208 * Shannon Entropy calculation
1210 * Pure byte distribution analysis fails to determine compressiability of data.
1211 * Try calculating entropy to estimate the average minimum number of bits
1212 * needed to encode the sampled data.
1214 * For convenience, return the percentage of needed bits, instead of amount of
1217 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1218 * and can be compressible with high probability
1220 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1222 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1224 #define ENTROPY_LVL_ACEPTABLE (65)
1225 #define ENTROPY_LVL_HIGH (80)
1228 * For increasead precision in shannon_entropy calculation,
1229 * let's do pow(n, M) to save more digits after comma:
1231 * - maximum int bit length is 64
1232 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1233 * - 13 * 4 = 52 < 64 -> M = 4
1237 static inline u32
ilog2_w(u64 n
)
1239 return ilog2(n
* n
* n
* n
);
1242 static u32
shannon_entropy(struct heuristic_ws
*ws
)
1244 const u32 entropy_max
= 8 * ilog2_w(2);
1245 u32 entropy_sum
= 0;
1246 u32 p
, p_base
, sz_base
;
1249 sz_base
= ilog2_w(ws
->sample_size
);
1250 for (i
= 0; i
< BUCKET_SIZE
&& ws
->bucket
[i
].count
> 0; i
++) {
1251 p
= ws
->bucket
[i
].count
;
1252 p_base
= ilog2_w(p
);
1253 entropy_sum
+= p
* (sz_base
- p_base
);
1256 entropy_sum
/= ws
->sample_size
;
1257 return entropy_sum
* 100 / entropy_max
;
1260 #define RADIX_BASE 4U
1261 #define COUNTERS_SIZE (1U << RADIX_BASE)
1263 static u8
get4bits(u64 num
, int shift
) {
1268 low4bits
= (COUNTERS_SIZE
- 1) - (num
% COUNTERS_SIZE
);
1273 * Use 4 bits as radix base
1274 * Use 16 u32 counters for calculating new possition in buf array
1276 * @array - array that will be sorted
1277 * @array_buf - buffer array to store sorting results
1278 * must be equal in size to @array
1281 static void radix_sort(struct bucket_item
*array
, struct bucket_item
*array_buf
,
1286 u32 counters
[COUNTERS_SIZE
];
1294 * Try avoid useless loop iterations for small numbers stored in big
1295 * counters. Example: 48 33 4 ... in 64bit array
1297 max_num
= array
[0].count
;
1298 for (i
= 1; i
< num
; i
++) {
1299 buf_num
= array
[i
].count
;
1300 if (buf_num
> max_num
)
1304 buf_num
= ilog2(max_num
);
1305 bitlen
= ALIGN(buf_num
, RADIX_BASE
* 2);
1308 while (shift
< bitlen
) {
1309 memset(counters
, 0, sizeof(counters
));
1311 for (i
= 0; i
< num
; i
++) {
1312 buf_num
= array
[i
].count
;
1313 addr
= get4bits(buf_num
, shift
);
1317 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1318 counters
[i
] += counters
[i
- 1];
1320 for (i
= num
- 1; i
>= 0; i
--) {
1321 buf_num
= array
[i
].count
;
1322 addr
= get4bits(buf_num
, shift
);
1324 new_addr
= counters
[addr
];
1325 array_buf
[new_addr
] = array
[i
];
1328 shift
+= RADIX_BASE
;
1331 * Normal radix expects to move data from a temporary array, to
1332 * the main one. But that requires some CPU time. Avoid that
1333 * by doing another sort iteration to original array instead of
1336 memset(counters
, 0, sizeof(counters
));
1338 for (i
= 0; i
< num
; i
++) {
1339 buf_num
= array_buf
[i
].count
;
1340 addr
= get4bits(buf_num
, shift
);
1344 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1345 counters
[i
] += counters
[i
- 1];
1347 for (i
= num
- 1; i
>= 0; i
--) {
1348 buf_num
= array_buf
[i
].count
;
1349 addr
= get4bits(buf_num
, shift
);
1351 new_addr
= counters
[addr
];
1352 array
[new_addr
] = array_buf
[i
];
1355 shift
+= RADIX_BASE
;
1360 * Size of the core byte set - how many bytes cover 90% of the sample
1362 * There are several types of structured binary data that use nearly all byte
1363 * values. The distribution can be uniform and counts in all buckets will be
1364 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1366 * Other possibility is normal (Gaussian) distribution, where the data could
1367 * be potentially compressible, but we have to take a few more steps to decide
1370 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1371 * compression algo can easy fix that
1372 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1373 * probability is not compressible
1375 #define BYTE_CORE_SET_LOW (64)
1376 #define BYTE_CORE_SET_HIGH (200)
1378 static int byte_core_set_size(struct heuristic_ws
*ws
)
1381 u32 coreset_sum
= 0;
1382 const u32 core_set_threshold
= ws
->sample_size
* 90 / 100;
1383 struct bucket_item
*bucket
= ws
->bucket
;
1385 /* Sort in reverse order */
1386 radix_sort(ws
->bucket
, ws
->bucket_b
, BUCKET_SIZE
);
1388 for (i
= 0; i
< BYTE_CORE_SET_LOW
; i
++)
1389 coreset_sum
+= bucket
[i
].count
;
1391 if (coreset_sum
> core_set_threshold
)
1394 for (; i
< BYTE_CORE_SET_HIGH
&& bucket
[i
].count
> 0; i
++) {
1395 coreset_sum
+= bucket
[i
].count
;
1396 if (coreset_sum
> core_set_threshold
)
1404 * Count byte values in buckets.
1405 * This heuristic can detect textual data (configs, xml, json, html, etc).
1406 * Because in most text-like data byte set is restricted to limited number of
1407 * possible characters, and that restriction in most cases makes data easy to
1410 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1411 * less - compressible
1412 * more - need additional analysis
1414 #define BYTE_SET_THRESHOLD (64)
1416 static u32
byte_set_size(const struct heuristic_ws
*ws
)
1419 u32 byte_set_size
= 0;
1421 for (i
= 0; i
< BYTE_SET_THRESHOLD
; i
++) {
1422 if (ws
->bucket
[i
].count
> 0)
1427 * Continue collecting count of byte values in buckets. If the byte
1428 * set size is bigger then the threshold, it's pointless to continue,
1429 * the detection technique would fail for this type of data.
1431 for (; i
< BUCKET_SIZE
; i
++) {
1432 if (ws
->bucket
[i
].count
> 0) {
1434 if (byte_set_size
> BYTE_SET_THRESHOLD
)
1435 return byte_set_size
;
1439 return byte_set_size
;
1442 static bool sample_repeated_patterns(struct heuristic_ws
*ws
)
1444 const u32 half_of_sample
= ws
->sample_size
/ 2;
1445 const u8
*data
= ws
->sample
;
1447 return memcmp(&data
[0], &data
[half_of_sample
], half_of_sample
) == 0;
1450 static void heuristic_collect_sample(struct inode
*inode
, u64 start
, u64 end
,
1451 struct heuristic_ws
*ws
)
1454 u64 index
, index_end
;
1455 u32 i
, curr_sample_pos
;
1459 * Compression handles the input data by chunks of 128KiB
1460 * (defined by BTRFS_MAX_UNCOMPRESSED)
1462 * We do the same for the heuristic and loop over the whole range.
1464 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1465 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1467 if (end
- start
> BTRFS_MAX_UNCOMPRESSED
)
1468 end
= start
+ BTRFS_MAX_UNCOMPRESSED
;
1470 index
= start
>> PAGE_SHIFT
;
1471 index_end
= end
>> PAGE_SHIFT
;
1473 /* Don't miss unaligned end */
1474 if (!IS_ALIGNED(end
, PAGE_SIZE
))
1477 curr_sample_pos
= 0;
1478 while (index
< index_end
) {
1479 page
= find_get_page(inode
->i_mapping
, index
);
1480 in_data
= kmap(page
);
1481 /* Handle case where the start is not aligned to PAGE_SIZE */
1482 i
= start
% PAGE_SIZE
;
1483 while (i
< PAGE_SIZE
- SAMPLING_READ_SIZE
) {
1484 /* Don't sample any garbage from the last page */
1485 if (start
> end
- SAMPLING_READ_SIZE
)
1487 memcpy(&ws
->sample
[curr_sample_pos
], &in_data
[i
],
1488 SAMPLING_READ_SIZE
);
1489 i
+= SAMPLING_INTERVAL
;
1490 start
+= SAMPLING_INTERVAL
;
1491 curr_sample_pos
+= SAMPLING_READ_SIZE
;
1499 ws
->sample_size
= curr_sample_pos
;
1503 * Compression heuristic.
1505 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1506 * quickly (compared to direct compression) detect data characteristics
1507 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1510 * The following types of analysis can be performed:
1511 * - detect mostly zero data
1512 * - detect data with low "byte set" size (text, etc)
1513 * - detect data with low/high "core byte" set
1515 * Return non-zero if the compression should be done, 0 otherwise.
1517 int btrfs_compress_heuristic(struct inode
*inode
, u64 start
, u64 end
)
1519 struct list_head
*ws_list
= __find_workspace(0, true);
1520 struct heuristic_ws
*ws
;
1525 ws
= list_entry(ws_list
, struct heuristic_ws
, list
);
1527 heuristic_collect_sample(inode
, start
, end
, ws
);
1529 if (sample_repeated_patterns(ws
)) {
1534 memset(ws
->bucket
, 0, sizeof(*ws
->bucket
)*BUCKET_SIZE
);
1536 for (i
= 0; i
< ws
->sample_size
; i
++) {
1537 byte
= ws
->sample
[i
];
1538 ws
->bucket
[byte
].count
++;
1541 i
= byte_set_size(ws
);
1542 if (i
< BYTE_SET_THRESHOLD
) {
1547 i
= byte_core_set_size(ws
);
1548 if (i
<= BYTE_CORE_SET_LOW
) {
1553 if (i
>= BYTE_CORE_SET_HIGH
) {
1558 i
= shannon_entropy(ws
);
1559 if (i
<= ENTROPY_LVL_ACEPTABLE
) {
1565 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1566 * needed to give green light to compression.
1568 * For now just assume that compression at that level is not worth the
1569 * resources because:
1571 * 1. it is possible to defrag the data later
1573 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1574 * values, every bucket has counter at level ~54. The heuristic would
1575 * be confused. This can happen when data have some internal repeated
1576 * patterns like "abbacbbc...". This can be detected by analyzing
1577 * pairs of bytes, which is too costly.
1579 if (i
< ENTROPY_LVL_HIGH
) {
1588 __free_workspace(0, ws_list
, true);
1592 unsigned int btrfs_compress_str2level(const char *str
)
1594 if (strncmp(str
, "zlib", 4) != 0)
1597 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1598 if (str
[4] == ':' && '1' <= str
[5] && str
[5] <= '9' && str
[6] == 0)
1599 return str
[5] - '0';
1601 return BTRFS_ZLIB_DEFAULT_LEVEL
;