1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
16 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
17 *root
, struct btrfs_path
*path
, int level
);
18 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
19 const struct btrfs_key
*ins_key
, struct btrfs_path
*path
,
20 int data_size
, int extend
);
21 static int push_node_left(struct btrfs_trans_handle
*trans
,
22 struct btrfs_fs_info
*fs_info
,
23 struct extent_buffer
*dst
,
24 struct extent_buffer
*src
, int empty
);
25 static int balance_node_right(struct btrfs_trans_handle
*trans
,
26 struct btrfs_fs_info
*fs_info
,
27 struct extent_buffer
*dst_buf
,
28 struct extent_buffer
*src_buf
);
29 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
32 struct btrfs_path
*btrfs_alloc_path(void)
34 return kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
41 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
44 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
45 if (!p
->nodes
[i
] || !p
->locks
[i
])
47 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
48 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
49 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
50 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
51 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
55 /* this also releases the path */
56 void btrfs_free_path(struct btrfs_path
*p
)
60 btrfs_release_path(p
);
61 kmem_cache_free(btrfs_path_cachep
, p
);
65 * path release drops references on the extent buffers in the path
66 * and it drops any locks held by this path
68 * It is safe to call this on paths that no locks or extent buffers held.
70 noinline
void btrfs_release_path(struct btrfs_path
*p
)
74 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
79 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
82 free_extent_buffer(p
->nodes
[i
]);
88 * safely gets a reference on the root node of a tree. A lock
89 * is not taken, so a concurrent writer may put a different node
90 * at the root of the tree. See btrfs_lock_root_node for the
93 * The extent buffer returned by this has a reference taken, so
94 * it won't disappear. It may stop being the root of the tree
95 * at any time because there are no locks held.
97 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
99 struct extent_buffer
*eb
;
103 eb
= rcu_dereference(root
->node
);
106 * RCU really hurts here, we could free up the root node because
107 * it was COWed but we may not get the new root node yet so do
108 * the inc_not_zero dance and if it doesn't work then
109 * synchronize_rcu and try again.
111 if (atomic_inc_not_zero(&eb
->refs
)) {
121 /* loop around taking references on and locking the root node of the
122 * tree until you end up with a lock on the root. A locked buffer
123 * is returned, with a reference held.
125 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
127 struct extent_buffer
*eb
;
130 eb
= btrfs_root_node(root
);
132 if (eb
== root
->node
)
134 btrfs_tree_unlock(eb
);
135 free_extent_buffer(eb
);
140 /* loop around taking references on and locking the root node of the
141 * tree until you end up with a lock on the root. A locked buffer
142 * is returned, with a reference held.
144 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
146 struct extent_buffer
*eb
;
149 eb
= btrfs_root_node(root
);
150 btrfs_tree_read_lock(eb
);
151 if (eb
== root
->node
)
153 btrfs_tree_read_unlock(eb
);
154 free_extent_buffer(eb
);
159 /* cowonly root (everything not a reference counted cow subvolume), just get
160 * put onto a simple dirty list. transaction.c walks this to make sure they
161 * get properly updated on disk.
163 static void add_root_to_dirty_list(struct btrfs_root
*root
)
165 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
167 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
168 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
171 spin_lock(&fs_info
->trans_lock
);
172 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
173 /* Want the extent tree to be the last on the list */
174 if (root
->root_key
.objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
175 list_move_tail(&root
->dirty_list
,
176 &fs_info
->dirty_cowonly_roots
);
178 list_move(&root
->dirty_list
,
179 &fs_info
->dirty_cowonly_roots
);
181 spin_unlock(&fs_info
->trans_lock
);
185 * used by snapshot creation to make a copy of a root for a tree with
186 * a given objectid. The buffer with the new root node is returned in
187 * cow_ret, and this func returns zero on success or a negative error code.
189 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
190 struct btrfs_root
*root
,
191 struct extent_buffer
*buf
,
192 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
194 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
195 struct extent_buffer
*cow
;
198 struct btrfs_disk_key disk_key
;
200 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
201 trans
->transid
!= fs_info
->running_transaction
->transid
);
202 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
203 trans
->transid
!= root
->last_trans
);
205 level
= btrfs_header_level(buf
);
207 btrfs_item_key(buf
, &disk_key
, 0);
209 btrfs_node_key(buf
, &disk_key
, 0);
211 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
212 &disk_key
, level
, buf
->start
, 0);
216 copy_extent_buffer_full(cow
, buf
);
217 btrfs_set_header_bytenr(cow
, cow
->start
);
218 btrfs_set_header_generation(cow
, trans
->transid
);
219 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
220 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
221 BTRFS_HEADER_FLAG_RELOC
);
222 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
223 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
225 btrfs_set_header_owner(cow
, new_root_objectid
);
227 write_extent_buffer_fsid(cow
, fs_info
->fsid
);
229 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
230 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
231 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
233 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
238 btrfs_mark_buffer_dirty(cow
);
247 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
248 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
250 MOD_LOG_ROOT_REPLACE
,
253 struct tree_mod_root
{
258 struct tree_mod_elem
{
264 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
267 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
270 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
271 struct btrfs_disk_key key
;
274 /* this is used for op == MOD_LOG_MOVE_KEYS */
280 /* this is used for op == MOD_LOG_ROOT_REPLACE */
281 struct tree_mod_root old_root
;
285 * Pull a new tree mod seq number for our operation.
287 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
289 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
293 * This adds a new blocker to the tree mod log's blocker list if the @elem
294 * passed does not already have a sequence number set. So when a caller expects
295 * to record tree modifications, it should ensure to set elem->seq to zero
296 * before calling btrfs_get_tree_mod_seq.
297 * Returns a fresh, unused tree log modification sequence number, even if no new
300 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
301 struct seq_list
*elem
)
303 write_lock(&fs_info
->tree_mod_log_lock
);
304 spin_lock(&fs_info
->tree_mod_seq_lock
);
306 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
307 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
309 spin_unlock(&fs_info
->tree_mod_seq_lock
);
310 write_unlock(&fs_info
->tree_mod_log_lock
);
315 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
316 struct seq_list
*elem
)
318 struct rb_root
*tm_root
;
319 struct rb_node
*node
;
320 struct rb_node
*next
;
321 struct seq_list
*cur_elem
;
322 struct tree_mod_elem
*tm
;
323 u64 min_seq
= (u64
)-1;
324 u64 seq_putting
= elem
->seq
;
329 spin_lock(&fs_info
->tree_mod_seq_lock
);
330 list_del(&elem
->list
);
333 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
334 if (cur_elem
->seq
< min_seq
) {
335 if (seq_putting
> cur_elem
->seq
) {
337 * blocker with lower sequence number exists, we
338 * cannot remove anything from the log
340 spin_unlock(&fs_info
->tree_mod_seq_lock
);
343 min_seq
= cur_elem
->seq
;
346 spin_unlock(&fs_info
->tree_mod_seq_lock
);
349 * anything that's lower than the lowest existing (read: blocked)
350 * sequence number can be removed from the tree.
352 write_lock(&fs_info
->tree_mod_log_lock
);
353 tm_root
= &fs_info
->tree_mod_log
;
354 for (node
= rb_first(tm_root
); node
; node
= next
) {
355 next
= rb_next(node
);
356 tm
= rb_entry(node
, struct tree_mod_elem
, node
);
357 if (tm
->seq
> min_seq
)
359 rb_erase(node
, tm_root
);
362 write_unlock(&fs_info
->tree_mod_log_lock
);
366 * key order of the log:
367 * node/leaf start address -> sequence
369 * The 'start address' is the logical address of the *new* root node
370 * for root replace operations, or the logical address of the affected
371 * block for all other operations.
373 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
376 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
378 struct rb_root
*tm_root
;
379 struct rb_node
**new;
380 struct rb_node
*parent
= NULL
;
381 struct tree_mod_elem
*cur
;
383 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
385 tm_root
= &fs_info
->tree_mod_log
;
386 new = &tm_root
->rb_node
;
388 cur
= rb_entry(*new, struct tree_mod_elem
, node
);
390 if (cur
->logical
< tm
->logical
)
391 new = &((*new)->rb_left
);
392 else if (cur
->logical
> tm
->logical
)
393 new = &((*new)->rb_right
);
394 else if (cur
->seq
< tm
->seq
)
395 new = &((*new)->rb_left
);
396 else if (cur
->seq
> tm
->seq
)
397 new = &((*new)->rb_right
);
402 rb_link_node(&tm
->node
, parent
, new);
403 rb_insert_color(&tm
->node
, tm_root
);
408 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
409 * returns zero with the tree_mod_log_lock acquired. The caller must hold
410 * this until all tree mod log insertions are recorded in the rb tree and then
411 * write unlock fs_info::tree_mod_log_lock.
413 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
414 struct extent_buffer
*eb
) {
416 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
418 if (eb
&& btrfs_header_level(eb
) == 0)
421 write_lock(&fs_info
->tree_mod_log_lock
);
422 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
423 write_unlock(&fs_info
->tree_mod_log_lock
);
430 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
431 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
432 struct extent_buffer
*eb
)
435 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
437 if (eb
&& btrfs_header_level(eb
) == 0)
443 static struct tree_mod_elem
*
444 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
445 enum mod_log_op op
, gfp_t flags
)
447 struct tree_mod_elem
*tm
;
449 tm
= kzalloc(sizeof(*tm
), flags
);
453 tm
->logical
= eb
->start
;
454 if (op
!= MOD_LOG_KEY_ADD
) {
455 btrfs_node_key(eb
, &tm
->key
, slot
);
456 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
460 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
461 RB_CLEAR_NODE(&tm
->node
);
466 static noinline
int tree_mod_log_insert_key(struct extent_buffer
*eb
, int slot
,
467 enum mod_log_op op
, gfp_t flags
)
469 struct tree_mod_elem
*tm
;
472 if (!tree_mod_need_log(eb
->fs_info
, eb
))
475 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
479 if (tree_mod_dont_log(eb
->fs_info
, eb
)) {
484 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
485 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
492 static noinline
int tree_mod_log_insert_move(struct extent_buffer
*eb
,
493 int dst_slot
, int src_slot
, int nr_items
)
495 struct tree_mod_elem
*tm
= NULL
;
496 struct tree_mod_elem
**tm_list
= NULL
;
501 if (!tree_mod_need_log(eb
->fs_info
, eb
))
504 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
508 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
514 tm
->logical
= eb
->start
;
516 tm
->move
.dst_slot
= dst_slot
;
517 tm
->move
.nr_items
= nr_items
;
518 tm
->op
= MOD_LOG_MOVE_KEYS
;
520 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
521 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
522 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, GFP_NOFS
);
529 if (tree_mod_dont_log(eb
->fs_info
, eb
))
534 * When we override something during the move, we log these removals.
535 * This can only happen when we move towards the beginning of the
536 * buffer, i.e. dst_slot < src_slot.
538 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
539 ret
= __tree_mod_log_insert(eb
->fs_info
, tm_list
[i
]);
544 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
547 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
552 for (i
= 0; i
< nr_items
; i
++) {
553 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
554 rb_erase(&tm_list
[i
]->node
, &eb
->fs_info
->tree_mod_log
);
558 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
566 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
567 struct tree_mod_elem
**tm_list
,
573 for (i
= nritems
- 1; i
>= 0; i
--) {
574 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
576 for (j
= nritems
- 1; j
> i
; j
--)
577 rb_erase(&tm_list
[j
]->node
,
578 &fs_info
->tree_mod_log
);
586 static noinline
int tree_mod_log_insert_root(struct extent_buffer
*old_root
,
587 struct extent_buffer
*new_root
, int log_removal
)
589 struct btrfs_fs_info
*fs_info
= old_root
->fs_info
;
590 struct tree_mod_elem
*tm
= NULL
;
591 struct tree_mod_elem
**tm_list
= NULL
;
596 if (!tree_mod_need_log(fs_info
, NULL
))
599 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
600 nritems
= btrfs_header_nritems(old_root
);
601 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
607 for (i
= 0; i
< nritems
; i
++) {
608 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
609 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
617 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
623 tm
->logical
= new_root
->start
;
624 tm
->old_root
.logical
= old_root
->start
;
625 tm
->old_root
.level
= btrfs_header_level(old_root
);
626 tm
->generation
= btrfs_header_generation(old_root
);
627 tm
->op
= MOD_LOG_ROOT_REPLACE
;
629 if (tree_mod_dont_log(fs_info
, NULL
))
633 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
635 ret
= __tree_mod_log_insert(fs_info
, tm
);
637 write_unlock(&fs_info
->tree_mod_log_lock
);
646 for (i
= 0; i
< nritems
; i
++)
655 static struct tree_mod_elem
*
656 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
659 struct rb_root
*tm_root
;
660 struct rb_node
*node
;
661 struct tree_mod_elem
*cur
= NULL
;
662 struct tree_mod_elem
*found
= NULL
;
664 read_lock(&fs_info
->tree_mod_log_lock
);
665 tm_root
= &fs_info
->tree_mod_log
;
666 node
= tm_root
->rb_node
;
668 cur
= rb_entry(node
, struct tree_mod_elem
, node
);
669 if (cur
->logical
< start
) {
670 node
= node
->rb_left
;
671 } else if (cur
->logical
> start
) {
672 node
= node
->rb_right
;
673 } else if (cur
->seq
< min_seq
) {
674 node
= node
->rb_left
;
675 } else if (!smallest
) {
676 /* we want the node with the highest seq */
678 BUG_ON(found
->seq
> cur
->seq
);
680 node
= node
->rb_left
;
681 } else if (cur
->seq
> min_seq
) {
682 /* we want the node with the smallest seq */
684 BUG_ON(found
->seq
< cur
->seq
);
686 node
= node
->rb_right
;
692 read_unlock(&fs_info
->tree_mod_log_lock
);
698 * this returns the element from the log with the smallest time sequence
699 * value that's in the log (the oldest log item). any element with a time
700 * sequence lower than min_seq will be ignored.
702 static struct tree_mod_elem
*
703 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
706 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
710 * this returns the element from the log with the largest time sequence
711 * value that's in the log (the most recent log item). any element with
712 * a time sequence lower than min_seq will be ignored.
714 static struct tree_mod_elem
*
715 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
717 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
721 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
722 struct extent_buffer
*src
, unsigned long dst_offset
,
723 unsigned long src_offset
, int nr_items
)
726 struct tree_mod_elem
**tm_list
= NULL
;
727 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
731 if (!tree_mod_need_log(fs_info
, NULL
))
734 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
737 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
742 tm_list_add
= tm_list
;
743 tm_list_rem
= tm_list
+ nr_items
;
744 for (i
= 0; i
< nr_items
; i
++) {
745 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
746 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
747 if (!tm_list_rem
[i
]) {
752 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
753 MOD_LOG_KEY_ADD
, GFP_NOFS
);
754 if (!tm_list_add
[i
]) {
760 if (tree_mod_dont_log(fs_info
, NULL
))
764 for (i
= 0; i
< nr_items
; i
++) {
765 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
768 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
773 write_unlock(&fs_info
->tree_mod_log_lock
);
779 for (i
= 0; i
< nr_items
* 2; i
++) {
780 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
781 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
785 write_unlock(&fs_info
->tree_mod_log_lock
);
791 static noinline
int tree_mod_log_free_eb(struct extent_buffer
*eb
)
793 struct tree_mod_elem
**tm_list
= NULL
;
798 if (btrfs_header_level(eb
) == 0)
801 if (!tree_mod_need_log(eb
->fs_info
, NULL
))
804 nritems
= btrfs_header_nritems(eb
);
805 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
809 for (i
= 0; i
< nritems
; i
++) {
810 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
811 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
818 if (tree_mod_dont_log(eb
->fs_info
, eb
))
821 ret
= __tree_mod_log_free_eb(eb
->fs_info
, tm_list
, nritems
);
822 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
830 for (i
= 0; i
< nritems
; i
++)
838 * check if the tree block can be shared by multiple trees
840 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
841 struct extent_buffer
*buf
)
844 * Tree blocks not in reference counted trees and tree roots
845 * are never shared. If a block was allocated after the last
846 * snapshot and the block was not allocated by tree relocation,
847 * we know the block is not shared.
849 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
850 buf
!= root
->node
&& buf
!= root
->commit_root
&&
851 (btrfs_header_generation(buf
) <=
852 btrfs_root_last_snapshot(&root
->root_item
) ||
853 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
859 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
860 struct btrfs_root
*root
,
861 struct extent_buffer
*buf
,
862 struct extent_buffer
*cow
,
865 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
873 * Backrefs update rules:
875 * Always use full backrefs for extent pointers in tree block
876 * allocated by tree relocation.
878 * If a shared tree block is no longer referenced by its owner
879 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
880 * use full backrefs for extent pointers in tree block.
882 * If a tree block is been relocating
883 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
884 * use full backrefs for extent pointers in tree block.
885 * The reason for this is some operations (such as drop tree)
886 * are only allowed for blocks use full backrefs.
889 if (btrfs_block_can_be_shared(root
, buf
)) {
890 ret
= btrfs_lookup_extent_info(trans
, fs_info
, buf
->start
,
891 btrfs_header_level(buf
), 1,
897 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
902 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
903 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
904 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
909 owner
= btrfs_header_owner(buf
);
910 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
911 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
914 if ((owner
== root
->root_key
.objectid
||
915 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
916 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
917 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
921 if (root
->root_key
.objectid
==
922 BTRFS_TREE_RELOC_OBJECTID
) {
923 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
926 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
930 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
933 if (root
->root_key
.objectid
==
934 BTRFS_TREE_RELOC_OBJECTID
)
935 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
937 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
941 if (new_flags
!= 0) {
942 int level
= btrfs_header_level(buf
);
944 ret
= btrfs_set_disk_extent_flags(trans
, fs_info
,
947 new_flags
, level
, 0);
952 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
953 if (root
->root_key
.objectid
==
954 BTRFS_TREE_RELOC_OBJECTID
)
955 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
957 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
960 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
964 clean_tree_block(fs_info
, buf
);
971 * does the dirty work in cow of a single block. The parent block (if
972 * supplied) is updated to point to the new cow copy. The new buffer is marked
973 * dirty and returned locked. If you modify the block it needs to be marked
976 * search_start -- an allocation hint for the new block
978 * empty_size -- a hint that you plan on doing more cow. This is the size in
979 * bytes the allocator should try to find free next to the block it returns.
980 * This is just a hint and may be ignored by the allocator.
982 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
983 struct btrfs_root
*root
,
984 struct extent_buffer
*buf
,
985 struct extent_buffer
*parent
, int parent_slot
,
986 struct extent_buffer
**cow_ret
,
987 u64 search_start
, u64 empty_size
)
989 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
990 struct btrfs_disk_key disk_key
;
991 struct extent_buffer
*cow
;
995 u64 parent_start
= 0;
1000 btrfs_assert_tree_locked(buf
);
1002 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1003 trans
->transid
!= fs_info
->running_transaction
->transid
);
1004 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1005 trans
->transid
!= root
->last_trans
);
1007 level
= btrfs_header_level(buf
);
1010 btrfs_item_key(buf
, &disk_key
, 0);
1012 btrfs_node_key(buf
, &disk_key
, 0);
1014 if ((root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) && parent
)
1015 parent_start
= parent
->start
;
1018 * If we are COWing a node/leaf from the extent, chunk or device trees,
1019 * make sure that we do not finish block group creation of pending block
1020 * groups. We do this to avoid a deadlock.
1021 * COWing can result in allocation of a new chunk, and flushing pending
1022 * block groups (btrfs_create_pending_block_groups()) can be triggered
1023 * when finishing allocation of a new chunk. Creation of a pending block
1024 * group modifies the extent, chunk and device trees, therefore we could
1025 * deadlock with ourselves since we are holding a lock on an extent
1026 * buffer that btrfs_create_pending_block_groups() may try to COW later.
1028 if (root
== fs_info
->extent_root
||
1029 root
== fs_info
->chunk_root
||
1030 root
== fs_info
->dev_root
)
1031 trans
->can_flush_pending_bgs
= false;
1033 cow
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1034 root
->root_key
.objectid
, &disk_key
, level
,
1035 search_start
, empty_size
);
1036 trans
->can_flush_pending_bgs
= true;
1038 return PTR_ERR(cow
);
1040 /* cow is set to blocking by btrfs_init_new_buffer */
1042 copy_extent_buffer_full(cow
, buf
);
1043 btrfs_set_header_bytenr(cow
, cow
->start
);
1044 btrfs_set_header_generation(cow
, trans
->transid
);
1045 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1046 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1047 BTRFS_HEADER_FLAG_RELOC
);
1048 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1049 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1051 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1053 write_extent_buffer_fsid(cow
, fs_info
->fsid
);
1055 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1057 btrfs_abort_transaction(trans
, ret
);
1061 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1062 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1064 btrfs_abort_transaction(trans
, ret
);
1069 if (buf
== root
->node
) {
1070 WARN_ON(parent
&& parent
!= buf
);
1071 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1072 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1073 parent_start
= buf
->start
;
1075 extent_buffer_get(cow
);
1076 ret
= tree_mod_log_insert_root(root
->node
, cow
, 1);
1078 rcu_assign_pointer(root
->node
, cow
);
1080 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1082 free_extent_buffer(buf
);
1083 add_root_to_dirty_list(root
);
1085 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1086 tree_mod_log_insert_key(parent
, parent_slot
,
1087 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1088 btrfs_set_node_blockptr(parent
, parent_slot
,
1090 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1092 btrfs_mark_buffer_dirty(parent
);
1094 ret
= tree_mod_log_free_eb(buf
);
1096 btrfs_abort_transaction(trans
, ret
);
1100 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1104 btrfs_tree_unlock(buf
);
1105 free_extent_buffer_stale(buf
);
1106 btrfs_mark_buffer_dirty(cow
);
1112 * returns the logical address of the oldest predecessor of the given root.
1113 * entries older than time_seq are ignored.
1115 static struct tree_mod_elem
*__tree_mod_log_oldest_root(
1116 struct extent_buffer
*eb_root
, u64 time_seq
)
1118 struct tree_mod_elem
*tm
;
1119 struct tree_mod_elem
*found
= NULL
;
1120 u64 root_logical
= eb_root
->start
;
1127 * the very last operation that's logged for a root is the
1128 * replacement operation (if it is replaced at all). this has
1129 * the logical address of the *new* root, making it the very
1130 * first operation that's logged for this root.
1133 tm
= tree_mod_log_search_oldest(eb_root
->fs_info
, root_logical
,
1138 * if there are no tree operation for the oldest root, we simply
1139 * return it. this should only happen if that (old) root is at
1146 * if there's an operation that's not a root replacement, we
1147 * found the oldest version of our root. normally, we'll find a
1148 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1150 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1154 root_logical
= tm
->old_root
.logical
;
1158 /* if there's no old root to return, return what we found instead */
1166 * tm is a pointer to the first operation to rewind within eb. then, all
1167 * previous operations will be rewound (until we reach something older than
1171 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1172 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1175 struct rb_node
*next
;
1176 struct tree_mod_elem
*tm
= first_tm
;
1177 unsigned long o_dst
;
1178 unsigned long o_src
;
1179 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1181 n
= btrfs_header_nritems(eb
);
1182 read_lock(&fs_info
->tree_mod_log_lock
);
1183 while (tm
&& tm
->seq
>= time_seq
) {
1185 * all the operations are recorded with the operator used for
1186 * the modification. as we're going backwards, we do the
1187 * opposite of each operation here.
1190 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1191 BUG_ON(tm
->slot
< n
);
1193 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1194 case MOD_LOG_KEY_REMOVE
:
1195 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1196 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1197 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1201 case MOD_LOG_KEY_REPLACE
:
1202 BUG_ON(tm
->slot
>= n
);
1203 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1204 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1205 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1208 case MOD_LOG_KEY_ADD
:
1209 /* if a move operation is needed it's in the log */
1212 case MOD_LOG_MOVE_KEYS
:
1213 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1214 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1215 memmove_extent_buffer(eb
, o_dst
, o_src
,
1216 tm
->move
.nr_items
* p_size
);
1218 case MOD_LOG_ROOT_REPLACE
:
1220 * this operation is special. for roots, this must be
1221 * handled explicitly before rewinding.
1222 * for non-roots, this operation may exist if the node
1223 * was a root: root A -> child B; then A gets empty and
1224 * B is promoted to the new root. in the mod log, we'll
1225 * have a root-replace operation for B, a tree block
1226 * that is no root. we simply ignore that operation.
1230 next
= rb_next(&tm
->node
);
1233 tm
= rb_entry(next
, struct tree_mod_elem
, node
);
1234 if (tm
->logical
!= first_tm
->logical
)
1237 read_unlock(&fs_info
->tree_mod_log_lock
);
1238 btrfs_set_header_nritems(eb
, n
);
1242 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1243 * is returned. If rewind operations happen, a fresh buffer is returned. The
1244 * returned buffer is always read-locked. If the returned buffer is not the
1245 * input buffer, the lock on the input buffer is released and the input buffer
1246 * is freed (its refcount is decremented).
1248 static struct extent_buffer
*
1249 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1250 struct extent_buffer
*eb
, u64 time_seq
)
1252 struct extent_buffer
*eb_rewin
;
1253 struct tree_mod_elem
*tm
;
1258 if (btrfs_header_level(eb
) == 0)
1261 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1265 btrfs_set_path_blocking(path
);
1266 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1268 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1269 BUG_ON(tm
->slot
!= 0);
1270 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
);
1272 btrfs_tree_read_unlock_blocking(eb
);
1273 free_extent_buffer(eb
);
1276 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1277 btrfs_set_header_backref_rev(eb_rewin
,
1278 btrfs_header_backref_rev(eb
));
1279 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1280 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1282 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1284 btrfs_tree_read_unlock_blocking(eb
);
1285 free_extent_buffer(eb
);
1290 btrfs_tree_read_unlock_blocking(eb
);
1291 free_extent_buffer(eb
);
1293 extent_buffer_get(eb_rewin
);
1294 btrfs_tree_read_lock(eb_rewin
);
1295 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1296 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1297 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1303 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1304 * value. If there are no changes, the current root->root_node is returned. If
1305 * anything changed in between, there's a fresh buffer allocated on which the
1306 * rewind operations are done. In any case, the returned buffer is read locked.
1307 * Returns NULL on error (with no locks held).
1309 static inline struct extent_buffer
*
1310 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1312 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1313 struct tree_mod_elem
*tm
;
1314 struct extent_buffer
*eb
= NULL
;
1315 struct extent_buffer
*eb_root
;
1316 struct extent_buffer
*old
;
1317 struct tree_mod_root
*old_root
= NULL
;
1318 u64 old_generation
= 0;
1322 eb_root
= btrfs_read_lock_root_node(root
);
1323 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1327 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1328 old_root
= &tm
->old_root
;
1329 old_generation
= tm
->generation
;
1330 logical
= old_root
->logical
;
1331 level
= old_root
->level
;
1333 logical
= eb_root
->start
;
1334 level
= btrfs_header_level(eb_root
);
1337 tm
= tree_mod_log_search(fs_info
, logical
, time_seq
);
1338 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1339 btrfs_tree_read_unlock(eb_root
);
1340 free_extent_buffer(eb_root
);
1341 old
= read_tree_block(fs_info
, logical
, 0, level
, NULL
);
1342 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1344 free_extent_buffer(old
);
1346 "failed to read tree block %llu from get_old_root",
1349 eb
= btrfs_clone_extent_buffer(old
);
1350 free_extent_buffer(old
);
1352 } else if (old_root
) {
1353 btrfs_tree_read_unlock(eb_root
);
1354 free_extent_buffer(eb_root
);
1355 eb
= alloc_dummy_extent_buffer(fs_info
, logical
);
1357 btrfs_set_lock_blocking_rw(eb_root
, BTRFS_READ_LOCK
);
1358 eb
= btrfs_clone_extent_buffer(eb_root
);
1359 btrfs_tree_read_unlock_blocking(eb_root
);
1360 free_extent_buffer(eb_root
);
1365 extent_buffer_get(eb
);
1366 btrfs_tree_read_lock(eb
);
1368 btrfs_set_header_bytenr(eb
, eb
->start
);
1369 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1370 btrfs_set_header_owner(eb
, btrfs_header_owner(eb_root
));
1371 btrfs_set_header_level(eb
, old_root
->level
);
1372 btrfs_set_header_generation(eb
, old_generation
);
1375 __tree_mod_log_rewind(fs_info
, eb
, time_seq
, tm
);
1377 WARN_ON(btrfs_header_level(eb
) != 0);
1378 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1383 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1385 struct tree_mod_elem
*tm
;
1387 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1389 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1390 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1391 level
= tm
->old_root
.level
;
1393 level
= btrfs_header_level(eb_root
);
1395 free_extent_buffer(eb_root
);
1400 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1401 struct btrfs_root
*root
,
1402 struct extent_buffer
*buf
)
1404 if (btrfs_is_testing(root
->fs_info
))
1407 /* Ensure we can see the FORCE_COW bit */
1408 smp_mb__before_atomic();
1411 * We do not need to cow a block if
1412 * 1) this block is not created or changed in this transaction;
1413 * 2) this block does not belong to TREE_RELOC tree;
1414 * 3) the root is not forced COW.
1416 * What is forced COW:
1417 * when we create snapshot during committing the transaction,
1418 * after we've finished coping src root, we must COW the shared
1419 * block to ensure the metadata consistency.
1421 if (btrfs_header_generation(buf
) == trans
->transid
&&
1422 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1423 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1424 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1425 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1431 * cows a single block, see __btrfs_cow_block for the real work.
1432 * This version of it has extra checks so that a block isn't COWed more than
1433 * once per transaction, as long as it hasn't been written yet
1435 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1436 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1437 struct extent_buffer
*parent
, int parent_slot
,
1438 struct extent_buffer
**cow_ret
)
1440 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1444 if (trans
->transaction
!= fs_info
->running_transaction
)
1445 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1447 fs_info
->running_transaction
->transid
);
1449 if (trans
->transid
!= fs_info
->generation
)
1450 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1451 trans
->transid
, fs_info
->generation
);
1453 if (!should_cow_block(trans
, root
, buf
)) {
1454 trans
->dirty
= true;
1459 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1462 btrfs_set_lock_blocking(parent
);
1463 btrfs_set_lock_blocking(buf
);
1465 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1466 parent_slot
, cow_ret
, search_start
, 0);
1468 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1474 * helper function for defrag to decide if two blocks pointed to by a
1475 * node are actually close by
1477 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1479 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1481 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1487 * compare two keys in a memcmp fashion
1489 static int comp_keys(const struct btrfs_disk_key
*disk
,
1490 const struct btrfs_key
*k2
)
1492 struct btrfs_key k1
;
1494 btrfs_disk_key_to_cpu(&k1
, disk
);
1496 return btrfs_comp_cpu_keys(&k1
, k2
);
1500 * same as comp_keys only with two btrfs_key's
1502 int btrfs_comp_cpu_keys(const struct btrfs_key
*k1
, const struct btrfs_key
*k2
)
1504 if (k1
->objectid
> k2
->objectid
)
1506 if (k1
->objectid
< k2
->objectid
)
1508 if (k1
->type
> k2
->type
)
1510 if (k1
->type
< k2
->type
)
1512 if (k1
->offset
> k2
->offset
)
1514 if (k1
->offset
< k2
->offset
)
1520 * this is used by the defrag code to go through all the
1521 * leaves pointed to by a node and reallocate them so that
1522 * disk order is close to key order
1524 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1525 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1526 int start_slot
, u64
*last_ret
,
1527 struct btrfs_key
*progress
)
1529 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1530 struct extent_buffer
*cur
;
1533 u64 search_start
= *last_ret
;
1543 int progress_passed
= 0;
1544 struct btrfs_disk_key disk_key
;
1546 parent_level
= btrfs_header_level(parent
);
1548 WARN_ON(trans
->transaction
!= fs_info
->running_transaction
);
1549 WARN_ON(trans
->transid
!= fs_info
->generation
);
1551 parent_nritems
= btrfs_header_nritems(parent
);
1552 blocksize
= fs_info
->nodesize
;
1553 end_slot
= parent_nritems
- 1;
1555 if (parent_nritems
<= 1)
1558 btrfs_set_lock_blocking(parent
);
1560 for (i
= start_slot
; i
<= end_slot
; i
++) {
1561 struct btrfs_key first_key
;
1564 btrfs_node_key(parent
, &disk_key
, i
);
1565 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1568 progress_passed
= 1;
1569 blocknr
= btrfs_node_blockptr(parent
, i
);
1570 gen
= btrfs_node_ptr_generation(parent
, i
);
1571 btrfs_node_key_to_cpu(parent
, &first_key
, i
);
1572 if (last_block
== 0)
1573 last_block
= blocknr
;
1576 other
= btrfs_node_blockptr(parent
, i
- 1);
1577 close
= close_blocks(blocknr
, other
, blocksize
);
1579 if (!close
&& i
< end_slot
) {
1580 other
= btrfs_node_blockptr(parent
, i
+ 1);
1581 close
= close_blocks(blocknr
, other
, blocksize
);
1584 last_block
= blocknr
;
1588 cur
= find_extent_buffer(fs_info
, blocknr
);
1590 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1593 if (!cur
|| !uptodate
) {
1595 cur
= read_tree_block(fs_info
, blocknr
, gen
,
1599 return PTR_ERR(cur
);
1600 } else if (!extent_buffer_uptodate(cur
)) {
1601 free_extent_buffer(cur
);
1604 } else if (!uptodate
) {
1605 err
= btrfs_read_buffer(cur
, gen
,
1606 parent_level
- 1,&first_key
);
1608 free_extent_buffer(cur
);
1613 if (search_start
== 0)
1614 search_start
= last_block
;
1616 btrfs_tree_lock(cur
);
1617 btrfs_set_lock_blocking(cur
);
1618 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1621 (end_slot
- i
) * blocksize
));
1623 btrfs_tree_unlock(cur
);
1624 free_extent_buffer(cur
);
1627 search_start
= cur
->start
;
1628 last_block
= cur
->start
;
1629 *last_ret
= search_start
;
1630 btrfs_tree_unlock(cur
);
1631 free_extent_buffer(cur
);
1637 * search for key in the extent_buffer. The items start at offset p,
1638 * and they are item_size apart. There are 'max' items in p.
1640 * the slot in the array is returned via slot, and it points to
1641 * the place where you would insert key if it is not found in
1644 * slot may point to max if the key is bigger than all of the keys
1646 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1647 unsigned long p
, int item_size
,
1648 const struct btrfs_key
*key
,
1655 struct btrfs_disk_key
*tmp
= NULL
;
1656 struct btrfs_disk_key unaligned
;
1657 unsigned long offset
;
1659 unsigned long map_start
= 0;
1660 unsigned long map_len
= 0;
1664 btrfs_err(eb
->fs_info
,
1665 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1666 __func__
, low
, high
, eb
->start
,
1667 btrfs_header_owner(eb
), btrfs_header_level(eb
));
1671 while (low
< high
) {
1672 mid
= (low
+ high
) / 2;
1673 offset
= p
+ mid
* item_size
;
1675 if (!kaddr
|| offset
< map_start
||
1676 (offset
+ sizeof(struct btrfs_disk_key
)) >
1677 map_start
+ map_len
) {
1679 err
= map_private_extent_buffer(eb
, offset
,
1680 sizeof(struct btrfs_disk_key
),
1681 &kaddr
, &map_start
, &map_len
);
1684 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1686 } else if (err
== 1) {
1687 read_extent_buffer(eb
, &unaligned
,
1688 offset
, sizeof(unaligned
));
1695 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1698 ret
= comp_keys(tmp
, key
);
1714 * simple bin_search frontend that does the right thing for
1717 int btrfs_bin_search(struct extent_buffer
*eb
, const struct btrfs_key
*key
,
1718 int level
, int *slot
)
1721 return generic_bin_search(eb
,
1722 offsetof(struct btrfs_leaf
, items
),
1723 sizeof(struct btrfs_item
),
1724 key
, btrfs_header_nritems(eb
),
1727 return generic_bin_search(eb
,
1728 offsetof(struct btrfs_node
, ptrs
),
1729 sizeof(struct btrfs_key_ptr
),
1730 key
, btrfs_header_nritems(eb
),
1734 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1736 spin_lock(&root
->accounting_lock
);
1737 btrfs_set_root_used(&root
->root_item
,
1738 btrfs_root_used(&root
->root_item
) + size
);
1739 spin_unlock(&root
->accounting_lock
);
1742 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1744 spin_lock(&root
->accounting_lock
);
1745 btrfs_set_root_used(&root
->root_item
,
1746 btrfs_root_used(&root
->root_item
) - size
);
1747 spin_unlock(&root
->accounting_lock
);
1750 /* given a node and slot number, this reads the blocks it points to. The
1751 * extent buffer is returned with a reference taken (but unlocked).
1753 static noinline
struct extent_buffer
*
1754 read_node_slot(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*parent
,
1757 int level
= btrfs_header_level(parent
);
1758 struct extent_buffer
*eb
;
1759 struct btrfs_key first_key
;
1761 if (slot
< 0 || slot
>= btrfs_header_nritems(parent
))
1762 return ERR_PTR(-ENOENT
);
1766 btrfs_node_key_to_cpu(parent
, &first_key
, slot
);
1767 eb
= read_tree_block(fs_info
, btrfs_node_blockptr(parent
, slot
),
1768 btrfs_node_ptr_generation(parent
, slot
),
1769 level
- 1, &first_key
);
1770 if (!IS_ERR(eb
) && !extent_buffer_uptodate(eb
)) {
1771 free_extent_buffer(eb
);
1779 * node level balancing, used to make sure nodes are in proper order for
1780 * item deletion. We balance from the top down, so we have to make sure
1781 * that a deletion won't leave an node completely empty later on.
1783 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1784 struct btrfs_root
*root
,
1785 struct btrfs_path
*path
, int level
)
1787 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1788 struct extent_buffer
*right
= NULL
;
1789 struct extent_buffer
*mid
;
1790 struct extent_buffer
*left
= NULL
;
1791 struct extent_buffer
*parent
= NULL
;
1795 int orig_slot
= path
->slots
[level
];
1800 mid
= path
->nodes
[level
];
1802 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1803 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1804 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1806 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1808 if (level
< BTRFS_MAX_LEVEL
- 1) {
1809 parent
= path
->nodes
[level
+ 1];
1810 pslot
= path
->slots
[level
+ 1];
1814 * deal with the case where there is only one pointer in the root
1815 * by promoting the node below to a root
1818 struct extent_buffer
*child
;
1820 if (btrfs_header_nritems(mid
) != 1)
1823 /* promote the child to a root */
1824 child
= read_node_slot(fs_info
, mid
, 0);
1825 if (IS_ERR(child
)) {
1826 ret
= PTR_ERR(child
);
1827 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1831 btrfs_tree_lock(child
);
1832 btrfs_set_lock_blocking(child
);
1833 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1835 btrfs_tree_unlock(child
);
1836 free_extent_buffer(child
);
1840 ret
= tree_mod_log_insert_root(root
->node
, child
, 1);
1842 rcu_assign_pointer(root
->node
, child
);
1844 add_root_to_dirty_list(root
);
1845 btrfs_tree_unlock(child
);
1847 path
->locks
[level
] = 0;
1848 path
->nodes
[level
] = NULL
;
1849 clean_tree_block(fs_info
, mid
);
1850 btrfs_tree_unlock(mid
);
1851 /* once for the path */
1852 free_extent_buffer(mid
);
1854 root_sub_used(root
, mid
->len
);
1855 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1856 /* once for the root ptr */
1857 free_extent_buffer_stale(mid
);
1860 if (btrfs_header_nritems(mid
) >
1861 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 4)
1864 left
= read_node_slot(fs_info
, parent
, pslot
- 1);
1869 btrfs_tree_lock(left
);
1870 btrfs_set_lock_blocking(left
);
1871 wret
= btrfs_cow_block(trans
, root
, left
,
1872 parent
, pslot
- 1, &left
);
1879 right
= read_node_slot(fs_info
, parent
, pslot
+ 1);
1884 btrfs_tree_lock(right
);
1885 btrfs_set_lock_blocking(right
);
1886 wret
= btrfs_cow_block(trans
, root
, right
,
1887 parent
, pslot
+ 1, &right
);
1894 /* first, try to make some room in the middle buffer */
1896 orig_slot
+= btrfs_header_nritems(left
);
1897 wret
= push_node_left(trans
, fs_info
, left
, mid
, 1);
1903 * then try to empty the right most buffer into the middle
1906 wret
= push_node_left(trans
, fs_info
, mid
, right
, 1);
1907 if (wret
< 0 && wret
!= -ENOSPC
)
1909 if (btrfs_header_nritems(right
) == 0) {
1910 clean_tree_block(fs_info
, right
);
1911 btrfs_tree_unlock(right
);
1912 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
1913 root_sub_used(root
, right
->len
);
1914 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1915 free_extent_buffer_stale(right
);
1918 struct btrfs_disk_key right_key
;
1919 btrfs_node_key(right
, &right_key
, 0);
1920 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
1921 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1923 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1924 btrfs_mark_buffer_dirty(parent
);
1927 if (btrfs_header_nritems(mid
) == 1) {
1929 * we're not allowed to leave a node with one item in the
1930 * tree during a delete. A deletion from lower in the tree
1931 * could try to delete the only pointer in this node.
1932 * So, pull some keys from the left.
1933 * There has to be a left pointer at this point because
1934 * otherwise we would have pulled some pointers from the
1939 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1942 wret
= balance_node_right(trans
, fs_info
, mid
, left
);
1948 wret
= push_node_left(trans
, fs_info
, left
, mid
, 1);
1954 if (btrfs_header_nritems(mid
) == 0) {
1955 clean_tree_block(fs_info
, mid
);
1956 btrfs_tree_unlock(mid
);
1957 del_ptr(root
, path
, level
+ 1, pslot
);
1958 root_sub_used(root
, mid
->len
);
1959 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1960 free_extent_buffer_stale(mid
);
1963 /* update the parent key to reflect our changes */
1964 struct btrfs_disk_key mid_key
;
1965 btrfs_node_key(mid
, &mid_key
, 0);
1966 ret
= tree_mod_log_insert_key(parent
, pslot
,
1967 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1969 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1970 btrfs_mark_buffer_dirty(parent
);
1973 /* update the path */
1975 if (btrfs_header_nritems(left
) > orig_slot
) {
1976 extent_buffer_get(left
);
1977 /* left was locked after cow */
1978 path
->nodes
[level
] = left
;
1979 path
->slots
[level
+ 1] -= 1;
1980 path
->slots
[level
] = orig_slot
;
1982 btrfs_tree_unlock(mid
);
1983 free_extent_buffer(mid
);
1986 orig_slot
-= btrfs_header_nritems(left
);
1987 path
->slots
[level
] = orig_slot
;
1990 /* double check we haven't messed things up */
1992 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1996 btrfs_tree_unlock(right
);
1997 free_extent_buffer(right
);
2000 if (path
->nodes
[level
] != left
)
2001 btrfs_tree_unlock(left
);
2002 free_extent_buffer(left
);
2007 /* Node balancing for insertion. Here we only split or push nodes around
2008 * when they are completely full. This is also done top down, so we
2009 * have to be pessimistic.
2011 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2012 struct btrfs_root
*root
,
2013 struct btrfs_path
*path
, int level
)
2015 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2016 struct extent_buffer
*right
= NULL
;
2017 struct extent_buffer
*mid
;
2018 struct extent_buffer
*left
= NULL
;
2019 struct extent_buffer
*parent
= NULL
;
2023 int orig_slot
= path
->slots
[level
];
2028 mid
= path
->nodes
[level
];
2029 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2031 if (level
< BTRFS_MAX_LEVEL
- 1) {
2032 parent
= path
->nodes
[level
+ 1];
2033 pslot
= path
->slots
[level
+ 1];
2039 left
= read_node_slot(fs_info
, parent
, pslot
- 1);
2043 /* first, try to make some room in the middle buffer */
2047 btrfs_tree_lock(left
);
2048 btrfs_set_lock_blocking(left
);
2050 left_nr
= btrfs_header_nritems(left
);
2051 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2054 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2059 wret
= push_node_left(trans
, fs_info
,
2066 struct btrfs_disk_key disk_key
;
2067 orig_slot
+= left_nr
;
2068 btrfs_node_key(mid
, &disk_key
, 0);
2069 ret
= tree_mod_log_insert_key(parent
, pslot
,
2070 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2072 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2073 btrfs_mark_buffer_dirty(parent
);
2074 if (btrfs_header_nritems(left
) > orig_slot
) {
2075 path
->nodes
[level
] = left
;
2076 path
->slots
[level
+ 1] -= 1;
2077 path
->slots
[level
] = orig_slot
;
2078 btrfs_tree_unlock(mid
);
2079 free_extent_buffer(mid
);
2082 btrfs_header_nritems(left
);
2083 path
->slots
[level
] = orig_slot
;
2084 btrfs_tree_unlock(left
);
2085 free_extent_buffer(left
);
2089 btrfs_tree_unlock(left
);
2090 free_extent_buffer(left
);
2092 right
= read_node_slot(fs_info
, parent
, pslot
+ 1);
2097 * then try to empty the right most buffer into the middle
2102 btrfs_tree_lock(right
);
2103 btrfs_set_lock_blocking(right
);
2105 right_nr
= btrfs_header_nritems(right
);
2106 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2109 ret
= btrfs_cow_block(trans
, root
, right
,
2115 wret
= balance_node_right(trans
, fs_info
,
2122 struct btrfs_disk_key disk_key
;
2124 btrfs_node_key(right
, &disk_key
, 0);
2125 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
2126 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2128 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2129 btrfs_mark_buffer_dirty(parent
);
2131 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2132 path
->nodes
[level
] = right
;
2133 path
->slots
[level
+ 1] += 1;
2134 path
->slots
[level
] = orig_slot
-
2135 btrfs_header_nritems(mid
);
2136 btrfs_tree_unlock(mid
);
2137 free_extent_buffer(mid
);
2139 btrfs_tree_unlock(right
);
2140 free_extent_buffer(right
);
2144 btrfs_tree_unlock(right
);
2145 free_extent_buffer(right
);
2151 * readahead one full node of leaves, finding things that are close
2152 * to the block in 'slot', and triggering ra on them.
2154 static void reada_for_search(struct btrfs_fs_info
*fs_info
,
2155 struct btrfs_path
*path
,
2156 int level
, int slot
, u64 objectid
)
2158 struct extent_buffer
*node
;
2159 struct btrfs_disk_key disk_key
;
2164 struct extent_buffer
*eb
;
2172 if (!path
->nodes
[level
])
2175 node
= path
->nodes
[level
];
2177 search
= btrfs_node_blockptr(node
, slot
);
2178 blocksize
= fs_info
->nodesize
;
2179 eb
= find_extent_buffer(fs_info
, search
);
2181 free_extent_buffer(eb
);
2187 nritems
= btrfs_header_nritems(node
);
2191 if (path
->reada
== READA_BACK
) {
2195 } else if (path
->reada
== READA_FORWARD
) {
2200 if (path
->reada
== READA_BACK
&& objectid
) {
2201 btrfs_node_key(node
, &disk_key
, nr
);
2202 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2205 search
= btrfs_node_blockptr(node
, nr
);
2206 if ((search
<= target
&& target
- search
<= 65536) ||
2207 (search
> target
&& search
- target
<= 65536)) {
2208 readahead_tree_block(fs_info
, search
);
2212 if ((nread
> 65536 || nscan
> 32))
2217 static noinline
void reada_for_balance(struct btrfs_fs_info
*fs_info
,
2218 struct btrfs_path
*path
, int level
)
2222 struct extent_buffer
*parent
;
2223 struct extent_buffer
*eb
;
2228 parent
= path
->nodes
[level
+ 1];
2232 nritems
= btrfs_header_nritems(parent
);
2233 slot
= path
->slots
[level
+ 1];
2236 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2237 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2238 eb
= find_extent_buffer(fs_info
, block1
);
2240 * if we get -eagain from btrfs_buffer_uptodate, we
2241 * don't want to return eagain here. That will loop
2244 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2246 free_extent_buffer(eb
);
2248 if (slot
+ 1 < nritems
) {
2249 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2250 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2251 eb
= find_extent_buffer(fs_info
, block2
);
2252 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2254 free_extent_buffer(eb
);
2258 readahead_tree_block(fs_info
, block1
);
2260 readahead_tree_block(fs_info
, block2
);
2265 * when we walk down the tree, it is usually safe to unlock the higher layers
2266 * in the tree. The exceptions are when our path goes through slot 0, because
2267 * operations on the tree might require changing key pointers higher up in the
2270 * callers might also have set path->keep_locks, which tells this code to keep
2271 * the lock if the path points to the last slot in the block. This is part of
2272 * walking through the tree, and selecting the next slot in the higher block.
2274 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2275 * if lowest_unlock is 1, level 0 won't be unlocked
2277 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2278 int lowest_unlock
, int min_write_lock_level
,
2279 int *write_lock_level
)
2282 int skip_level
= level
;
2284 struct extent_buffer
*t
;
2286 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2287 if (!path
->nodes
[i
])
2289 if (!path
->locks
[i
])
2291 if (!no_skips
&& path
->slots
[i
] == 0) {
2295 if (!no_skips
&& path
->keep_locks
) {
2298 nritems
= btrfs_header_nritems(t
);
2299 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2304 if (skip_level
< i
&& i
>= lowest_unlock
)
2308 if (i
>= lowest_unlock
&& i
> skip_level
) {
2309 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2311 if (write_lock_level
&&
2312 i
> min_write_lock_level
&&
2313 i
<= *write_lock_level
) {
2314 *write_lock_level
= i
- 1;
2321 * This releases any locks held in the path starting at level and
2322 * going all the way up to the root.
2324 * btrfs_search_slot will keep the lock held on higher nodes in a few
2325 * corner cases, such as COW of the block at slot zero in the node. This
2326 * ignores those rules, and it should only be called when there are no
2327 * more updates to be done higher up in the tree.
2329 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2333 if (path
->keep_locks
)
2336 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2337 if (!path
->nodes
[i
])
2339 if (!path
->locks
[i
])
2341 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2347 * helper function for btrfs_search_slot. The goal is to find a block
2348 * in cache without setting the path to blocking. If we find the block
2349 * we return zero and the path is unchanged.
2351 * If we can't find the block, we set the path blocking and do some
2352 * reada. -EAGAIN is returned and the search must be repeated.
2355 read_block_for_search(struct btrfs_root
*root
, struct btrfs_path
*p
,
2356 struct extent_buffer
**eb_ret
, int level
, int slot
,
2357 const struct btrfs_key
*key
)
2359 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2362 struct extent_buffer
*b
= *eb_ret
;
2363 struct extent_buffer
*tmp
;
2364 struct btrfs_key first_key
;
2368 blocknr
= btrfs_node_blockptr(b
, slot
);
2369 gen
= btrfs_node_ptr_generation(b
, slot
);
2370 parent_level
= btrfs_header_level(b
);
2371 btrfs_node_key_to_cpu(b
, &first_key
, slot
);
2373 tmp
= find_extent_buffer(fs_info
, blocknr
);
2375 /* first we do an atomic uptodate check */
2376 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2381 /* the pages were up to date, but we failed
2382 * the generation number check. Do a full
2383 * read for the generation number that is correct.
2384 * We must do this without dropping locks so
2385 * we can trust our generation number
2387 btrfs_set_path_blocking(p
);
2389 /* now we're allowed to do a blocking uptodate check */
2390 ret
= btrfs_read_buffer(tmp
, gen
, parent_level
- 1, &first_key
);
2395 free_extent_buffer(tmp
);
2396 btrfs_release_path(p
);
2401 * reduce lock contention at high levels
2402 * of the btree by dropping locks before
2403 * we read. Don't release the lock on the current
2404 * level because we need to walk this node to figure
2405 * out which blocks to read.
2407 btrfs_unlock_up_safe(p
, level
+ 1);
2408 btrfs_set_path_blocking(p
);
2410 if (p
->reada
!= READA_NONE
)
2411 reada_for_search(fs_info
, p
, level
, slot
, key
->objectid
);
2414 tmp
= read_tree_block(fs_info
, blocknr
, gen
, parent_level
- 1,
2418 * If the read above didn't mark this buffer up to date,
2419 * it will never end up being up to date. Set ret to EIO now
2420 * and give up so that our caller doesn't loop forever
2423 if (!extent_buffer_uptodate(tmp
))
2425 free_extent_buffer(tmp
);
2430 btrfs_release_path(p
);
2435 * helper function for btrfs_search_slot. This does all of the checks
2436 * for node-level blocks and does any balancing required based on
2439 * If no extra work was required, zero is returned. If we had to
2440 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2444 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2445 struct btrfs_root
*root
, struct btrfs_path
*p
,
2446 struct extent_buffer
*b
, int level
, int ins_len
,
2447 int *write_lock_level
)
2449 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2452 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2453 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3) {
2456 if (*write_lock_level
< level
+ 1) {
2457 *write_lock_level
= level
+ 1;
2458 btrfs_release_path(p
);
2462 btrfs_set_path_blocking(p
);
2463 reada_for_balance(fs_info
, p
, level
);
2464 sret
= split_node(trans
, root
, p
, level
);
2471 b
= p
->nodes
[level
];
2472 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2473 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 2) {
2476 if (*write_lock_level
< level
+ 1) {
2477 *write_lock_level
= level
+ 1;
2478 btrfs_release_path(p
);
2482 btrfs_set_path_blocking(p
);
2483 reada_for_balance(fs_info
, p
, level
);
2484 sret
= balance_level(trans
, root
, p
, level
);
2490 b
= p
->nodes
[level
];
2492 btrfs_release_path(p
);
2495 BUG_ON(btrfs_header_nritems(b
) == 1);
2505 static void key_search_validate(struct extent_buffer
*b
,
2506 const struct btrfs_key
*key
,
2509 #ifdef CONFIG_BTRFS_ASSERT
2510 struct btrfs_disk_key disk_key
;
2512 btrfs_cpu_key_to_disk(&disk_key
, key
);
2515 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2516 offsetof(struct btrfs_leaf
, items
[0].key
),
2519 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2520 offsetof(struct btrfs_node
, ptrs
[0].key
),
2525 static int key_search(struct extent_buffer
*b
, const struct btrfs_key
*key
,
2526 int level
, int *prev_cmp
, int *slot
)
2528 if (*prev_cmp
!= 0) {
2529 *prev_cmp
= btrfs_bin_search(b
, key
, level
, slot
);
2533 key_search_validate(b
, key
, level
);
2539 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2540 u64 iobjectid
, u64 ioff
, u8 key_type
,
2541 struct btrfs_key
*found_key
)
2544 struct btrfs_key key
;
2545 struct extent_buffer
*eb
;
2550 key
.type
= key_type
;
2551 key
.objectid
= iobjectid
;
2554 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2558 eb
= path
->nodes
[0];
2559 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2560 ret
= btrfs_next_leaf(fs_root
, path
);
2563 eb
= path
->nodes
[0];
2566 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2567 if (found_key
->type
!= key
.type
||
2568 found_key
->objectid
!= key
.objectid
)
2574 static struct extent_buffer
*btrfs_search_slot_get_root(struct btrfs_root
*root
,
2575 struct btrfs_path
*p
,
2576 int write_lock_level
)
2578 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2579 struct extent_buffer
*b
;
2583 /* We try very hard to do read locks on the root */
2584 root_lock
= BTRFS_READ_LOCK
;
2586 if (p
->search_commit_root
) {
2587 /* The commit roots are read only so we always do read locks */
2588 if (p
->need_commit_sem
)
2589 down_read(&fs_info
->commit_root_sem
);
2590 b
= root
->commit_root
;
2591 extent_buffer_get(b
);
2592 level
= btrfs_header_level(b
);
2593 if (p
->need_commit_sem
)
2594 up_read(&fs_info
->commit_root_sem
);
2596 * Ensure that all callers have set skip_locking when
2597 * p->search_commit_root = 1.
2599 ASSERT(p
->skip_locking
== 1);
2604 if (p
->skip_locking
) {
2605 b
= btrfs_root_node(root
);
2606 level
= btrfs_header_level(b
);
2611 * If the level is set to maximum, we can skip trying to get the read
2614 if (write_lock_level
< BTRFS_MAX_LEVEL
) {
2616 * We don't know the level of the root node until we actually
2617 * have it read locked
2619 b
= btrfs_read_lock_root_node(root
);
2620 level
= btrfs_header_level(b
);
2621 if (level
> write_lock_level
)
2624 /* Whoops, must trade for write lock */
2625 btrfs_tree_read_unlock(b
);
2626 free_extent_buffer(b
);
2629 b
= btrfs_lock_root_node(root
);
2630 root_lock
= BTRFS_WRITE_LOCK
;
2632 /* The level might have changed, check again */
2633 level
= btrfs_header_level(b
);
2636 p
->nodes
[level
] = b
;
2637 if (!p
->skip_locking
)
2638 p
->locks
[level
] = root_lock
;
2640 * Callers are responsible for dropping b's references.
2647 * btrfs_search_slot - look for a key in a tree and perform necessary
2648 * modifications to preserve tree invariants.
2650 * @trans: Handle of transaction, used when modifying the tree
2651 * @p: Holds all btree nodes along the search path
2652 * @root: The root node of the tree
2653 * @key: The key we are looking for
2654 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2655 * deletions it's -1. 0 for plain searches
2656 * @cow: boolean should CoW operations be performed. Must always be 1
2657 * when modifying the tree.
2659 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2660 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2662 * If @key is found, 0 is returned and you can find the item in the leaf level
2663 * of the path (level 0)
2665 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2666 * points to the slot where it should be inserted
2668 * If an error is encountered while searching the tree a negative error number
2671 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2672 const struct btrfs_key
*key
, struct btrfs_path
*p
,
2673 int ins_len
, int cow
)
2675 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2676 struct extent_buffer
*b
;
2681 int lowest_unlock
= 1;
2682 /* everything at write_lock_level or lower must be write locked */
2683 int write_lock_level
= 0;
2684 u8 lowest_level
= 0;
2685 int min_write_lock_level
;
2688 lowest_level
= p
->lowest_level
;
2689 WARN_ON(lowest_level
&& ins_len
> 0);
2690 WARN_ON(p
->nodes
[0] != NULL
);
2691 BUG_ON(!cow
&& ins_len
);
2696 /* when we are removing items, we might have to go up to level
2697 * two as we update tree pointers Make sure we keep write
2698 * for those levels as well
2700 write_lock_level
= 2;
2701 } else if (ins_len
> 0) {
2703 * for inserting items, make sure we have a write lock on
2704 * level 1 so we can update keys
2706 write_lock_level
= 1;
2710 write_lock_level
= -1;
2712 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2713 write_lock_level
= BTRFS_MAX_LEVEL
;
2715 min_write_lock_level
= write_lock_level
;
2719 b
= btrfs_search_slot_get_root(root
, p
, write_lock_level
);
2722 level
= btrfs_header_level(b
);
2725 * setup the path here so we can release it under lock
2726 * contention with the cow code
2729 bool last_level
= (level
== (BTRFS_MAX_LEVEL
- 1));
2732 * if we don't really need to cow this block
2733 * then we don't want to set the path blocking,
2734 * so we test it here
2736 if (!should_cow_block(trans
, root
, b
)) {
2737 trans
->dirty
= true;
2742 * must have write locks on this node and the
2745 if (level
> write_lock_level
||
2746 (level
+ 1 > write_lock_level
&&
2747 level
+ 1 < BTRFS_MAX_LEVEL
&&
2748 p
->nodes
[level
+ 1])) {
2749 write_lock_level
= level
+ 1;
2750 btrfs_release_path(p
);
2754 btrfs_set_path_blocking(p
);
2756 err
= btrfs_cow_block(trans
, root
, b
, NULL
, 0,
2759 err
= btrfs_cow_block(trans
, root
, b
,
2760 p
->nodes
[level
+ 1],
2761 p
->slots
[level
+ 1], &b
);
2768 p
->nodes
[level
] = b
;
2770 * Leave path with blocking locks to avoid massive
2771 * lock context switch, this is made on purpose.
2775 * we have a lock on b and as long as we aren't changing
2776 * the tree, there is no way to for the items in b to change.
2777 * It is safe to drop the lock on our parent before we
2778 * go through the expensive btree search on b.
2780 * If we're inserting or deleting (ins_len != 0), then we might
2781 * be changing slot zero, which may require changing the parent.
2782 * So, we can't drop the lock until after we know which slot
2783 * we're operating on.
2785 if (!ins_len
&& !p
->keep_locks
) {
2788 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2789 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2794 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2800 if (ret
&& slot
> 0) {
2804 p
->slots
[level
] = slot
;
2805 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2806 ins_len
, &write_lock_level
);
2813 b
= p
->nodes
[level
];
2814 slot
= p
->slots
[level
];
2817 * slot 0 is special, if we change the key
2818 * we have to update the parent pointer
2819 * which means we must have a write lock
2822 if (slot
== 0 && ins_len
&&
2823 write_lock_level
< level
+ 1) {
2824 write_lock_level
= level
+ 1;
2825 btrfs_release_path(p
);
2829 unlock_up(p
, level
, lowest_unlock
,
2830 min_write_lock_level
, &write_lock_level
);
2832 if (level
== lowest_level
) {
2838 err
= read_block_for_search(root
, p
, &b
, level
,
2847 if (!p
->skip_locking
) {
2848 level
= btrfs_header_level(b
);
2849 if (level
<= write_lock_level
) {
2850 err
= btrfs_try_tree_write_lock(b
);
2852 btrfs_set_path_blocking(p
);
2855 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2857 err
= btrfs_tree_read_lock_atomic(b
);
2859 btrfs_set_path_blocking(p
);
2860 btrfs_tree_read_lock(b
);
2862 p
->locks
[level
] = BTRFS_READ_LOCK
;
2864 p
->nodes
[level
] = b
;
2867 p
->slots
[level
] = slot
;
2869 btrfs_leaf_free_space(fs_info
, b
) < ins_len
) {
2870 if (write_lock_level
< 1) {
2871 write_lock_level
= 1;
2872 btrfs_release_path(p
);
2876 btrfs_set_path_blocking(p
);
2877 err
= split_leaf(trans
, root
, key
,
2878 p
, ins_len
, ret
== 0);
2886 if (!p
->search_for_split
)
2887 unlock_up(p
, level
, lowest_unlock
,
2888 min_write_lock_level
, NULL
);
2895 * we don't really know what they plan on doing with the path
2896 * from here on, so for now just mark it as blocking
2898 if (!p
->leave_spinning
)
2899 btrfs_set_path_blocking(p
);
2900 if (ret
< 0 && !p
->skip_release_on_error
)
2901 btrfs_release_path(p
);
2906 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2907 * current state of the tree together with the operations recorded in the tree
2908 * modification log to search for the key in a previous version of this tree, as
2909 * denoted by the time_seq parameter.
2911 * Naturally, there is no support for insert, delete or cow operations.
2913 * The resulting path and return value will be set up as if we called
2914 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2916 int btrfs_search_old_slot(struct btrfs_root
*root
, const struct btrfs_key
*key
,
2917 struct btrfs_path
*p
, u64 time_seq
)
2919 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2920 struct extent_buffer
*b
;
2925 int lowest_unlock
= 1;
2926 u8 lowest_level
= 0;
2929 lowest_level
= p
->lowest_level
;
2930 WARN_ON(p
->nodes
[0] != NULL
);
2932 if (p
->search_commit_root
) {
2934 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2938 b
= get_old_root(root
, time_seq
);
2943 level
= btrfs_header_level(b
);
2944 p
->locks
[level
] = BTRFS_READ_LOCK
;
2947 level
= btrfs_header_level(b
);
2948 p
->nodes
[level
] = b
;
2951 * we have a lock on b and as long as we aren't changing
2952 * the tree, there is no way to for the items in b to change.
2953 * It is safe to drop the lock on our parent before we
2954 * go through the expensive btree search on b.
2956 btrfs_unlock_up_safe(p
, level
+ 1);
2959 * Since we can unwind ebs we want to do a real search every
2963 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2967 if (ret
&& slot
> 0) {
2971 p
->slots
[level
] = slot
;
2972 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2974 if (level
== lowest_level
) {
2980 err
= read_block_for_search(root
, p
, &b
, level
,
2989 level
= btrfs_header_level(b
);
2990 err
= btrfs_tree_read_lock_atomic(b
);
2992 btrfs_set_path_blocking(p
);
2993 btrfs_tree_read_lock(b
);
2995 b
= tree_mod_log_rewind(fs_info
, p
, b
, time_seq
);
3000 p
->locks
[level
] = BTRFS_READ_LOCK
;
3001 p
->nodes
[level
] = b
;
3003 p
->slots
[level
] = slot
;
3004 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3010 if (!p
->leave_spinning
)
3011 btrfs_set_path_blocking(p
);
3013 btrfs_release_path(p
);
3019 * helper to use instead of search slot if no exact match is needed but
3020 * instead the next or previous item should be returned.
3021 * When find_higher is true, the next higher item is returned, the next lower
3023 * When return_any and find_higher are both true, and no higher item is found,
3024 * return the next lower instead.
3025 * When return_any is true and find_higher is false, and no lower item is found,
3026 * return the next higher instead.
3027 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3030 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3031 const struct btrfs_key
*key
,
3032 struct btrfs_path
*p
, int find_higher
,
3036 struct extent_buffer
*leaf
;
3039 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3043 * a return value of 1 means the path is at the position where the
3044 * item should be inserted. Normally this is the next bigger item,
3045 * but in case the previous item is the last in a leaf, path points
3046 * to the first free slot in the previous leaf, i.e. at an invalid
3052 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3053 ret
= btrfs_next_leaf(root
, p
);
3059 * no higher item found, return the next
3064 btrfs_release_path(p
);
3068 if (p
->slots
[0] == 0) {
3069 ret
= btrfs_prev_leaf(root
, p
);
3074 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3081 * no lower item found, return the next
3086 btrfs_release_path(p
);
3096 * adjust the pointers going up the tree, starting at level
3097 * making sure the right key of each node is points to 'key'.
3098 * This is used after shifting pointers to the left, so it stops
3099 * fixing up pointers when a given leaf/node is not in slot 0 of the
3103 static void fixup_low_keys(struct btrfs_path
*path
,
3104 struct btrfs_disk_key
*key
, int level
)
3107 struct extent_buffer
*t
;
3110 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3111 int tslot
= path
->slots
[i
];
3113 if (!path
->nodes
[i
])
3116 ret
= tree_mod_log_insert_key(t
, tslot
, MOD_LOG_KEY_REPLACE
,
3119 btrfs_set_node_key(t
, key
, tslot
);
3120 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3129 * This function isn't completely safe. It's the caller's responsibility
3130 * that the new key won't break the order
3132 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3133 struct btrfs_path
*path
,
3134 const struct btrfs_key
*new_key
)
3136 struct btrfs_disk_key disk_key
;
3137 struct extent_buffer
*eb
;
3140 eb
= path
->nodes
[0];
3141 slot
= path
->slots
[0];
3143 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3144 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
3146 if (slot
< btrfs_header_nritems(eb
) - 1) {
3147 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3148 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
3151 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3152 btrfs_set_item_key(eb
, &disk_key
, slot
);
3153 btrfs_mark_buffer_dirty(eb
);
3155 fixup_low_keys(path
, &disk_key
, 1);
3159 * try to push data from one node into the next node left in the
3162 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3163 * error, and > 0 if there was no room in the left hand block.
3165 static int push_node_left(struct btrfs_trans_handle
*trans
,
3166 struct btrfs_fs_info
*fs_info
,
3167 struct extent_buffer
*dst
,
3168 struct extent_buffer
*src
, int empty
)
3175 src_nritems
= btrfs_header_nritems(src
);
3176 dst_nritems
= btrfs_header_nritems(dst
);
3177 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3178 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3179 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3181 if (!empty
&& src_nritems
<= 8)
3184 if (push_items
<= 0)
3188 push_items
= min(src_nritems
, push_items
);
3189 if (push_items
< src_nritems
) {
3190 /* leave at least 8 pointers in the node if
3191 * we aren't going to empty it
3193 if (src_nritems
- push_items
< 8) {
3194 if (push_items
<= 8)
3200 push_items
= min(src_nritems
- 8, push_items
);
3202 ret
= tree_mod_log_eb_copy(fs_info
, dst
, src
, dst_nritems
, 0,
3205 btrfs_abort_transaction(trans
, ret
);
3208 copy_extent_buffer(dst
, src
,
3209 btrfs_node_key_ptr_offset(dst_nritems
),
3210 btrfs_node_key_ptr_offset(0),
3211 push_items
* sizeof(struct btrfs_key_ptr
));
3213 if (push_items
< src_nritems
) {
3215 * Don't call tree_mod_log_insert_move here, key removal was
3216 * already fully logged by tree_mod_log_eb_copy above.
3218 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3219 btrfs_node_key_ptr_offset(push_items
),
3220 (src_nritems
- push_items
) *
3221 sizeof(struct btrfs_key_ptr
));
3223 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3224 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3225 btrfs_mark_buffer_dirty(src
);
3226 btrfs_mark_buffer_dirty(dst
);
3232 * try to push data from one node into the next node right in the
3235 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3236 * error, and > 0 if there was no room in the right hand block.
3238 * this will only push up to 1/2 the contents of the left node over
3240 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3241 struct btrfs_fs_info
*fs_info
,
3242 struct extent_buffer
*dst
,
3243 struct extent_buffer
*src
)
3251 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3252 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3254 src_nritems
= btrfs_header_nritems(src
);
3255 dst_nritems
= btrfs_header_nritems(dst
);
3256 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3257 if (push_items
<= 0)
3260 if (src_nritems
< 4)
3263 max_push
= src_nritems
/ 2 + 1;
3264 /* don't try to empty the node */
3265 if (max_push
>= src_nritems
)
3268 if (max_push
< push_items
)
3269 push_items
= max_push
;
3271 ret
= tree_mod_log_insert_move(dst
, push_items
, 0, dst_nritems
);
3273 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3274 btrfs_node_key_ptr_offset(0),
3276 sizeof(struct btrfs_key_ptr
));
3278 ret
= tree_mod_log_eb_copy(fs_info
, dst
, src
, 0,
3279 src_nritems
- push_items
, push_items
);
3281 btrfs_abort_transaction(trans
, ret
);
3284 copy_extent_buffer(dst
, src
,
3285 btrfs_node_key_ptr_offset(0),
3286 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3287 push_items
* sizeof(struct btrfs_key_ptr
));
3289 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3290 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3292 btrfs_mark_buffer_dirty(src
);
3293 btrfs_mark_buffer_dirty(dst
);
3299 * helper function to insert a new root level in the tree.
3300 * A new node is allocated, and a single item is inserted to
3301 * point to the existing root
3303 * returns zero on success or < 0 on failure.
3305 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3306 struct btrfs_root
*root
,
3307 struct btrfs_path
*path
, int level
)
3309 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3311 struct extent_buffer
*lower
;
3312 struct extent_buffer
*c
;
3313 struct extent_buffer
*old
;
3314 struct btrfs_disk_key lower_key
;
3317 BUG_ON(path
->nodes
[level
]);
3318 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3320 lower
= path
->nodes
[level
-1];
3322 btrfs_item_key(lower
, &lower_key
, 0);
3324 btrfs_node_key(lower
, &lower_key
, 0);
3326 c
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3327 &lower_key
, level
, root
->node
->start
, 0);
3331 root_add_used(root
, fs_info
->nodesize
);
3333 btrfs_set_header_nritems(c
, 1);
3334 btrfs_set_node_key(c
, &lower_key
, 0);
3335 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3336 lower_gen
= btrfs_header_generation(lower
);
3337 WARN_ON(lower_gen
!= trans
->transid
);
3339 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3341 btrfs_mark_buffer_dirty(c
);
3344 ret
= tree_mod_log_insert_root(root
->node
, c
, 0);
3346 rcu_assign_pointer(root
->node
, c
);
3348 /* the super has an extra ref to root->node */
3349 free_extent_buffer(old
);
3351 add_root_to_dirty_list(root
);
3352 extent_buffer_get(c
);
3353 path
->nodes
[level
] = c
;
3354 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3355 path
->slots
[level
] = 0;
3360 * worker function to insert a single pointer in a node.
3361 * the node should have enough room for the pointer already
3363 * slot and level indicate where you want the key to go, and
3364 * blocknr is the block the key points to.
3366 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3367 struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
3368 struct btrfs_disk_key
*key
, u64 bytenr
,
3369 int slot
, int level
)
3371 struct extent_buffer
*lower
;
3375 BUG_ON(!path
->nodes
[level
]);
3376 btrfs_assert_tree_locked(path
->nodes
[level
]);
3377 lower
= path
->nodes
[level
];
3378 nritems
= btrfs_header_nritems(lower
);
3379 BUG_ON(slot
> nritems
);
3380 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
3381 if (slot
!= nritems
) {
3383 ret
= tree_mod_log_insert_move(lower
, slot
+ 1, slot
,
3387 memmove_extent_buffer(lower
,
3388 btrfs_node_key_ptr_offset(slot
+ 1),
3389 btrfs_node_key_ptr_offset(slot
),
3390 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3393 ret
= tree_mod_log_insert_key(lower
, slot
, MOD_LOG_KEY_ADD
,
3397 btrfs_set_node_key(lower
, key
, slot
);
3398 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3399 WARN_ON(trans
->transid
== 0);
3400 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3401 btrfs_set_header_nritems(lower
, nritems
+ 1);
3402 btrfs_mark_buffer_dirty(lower
);
3406 * split the node at the specified level in path in two.
3407 * The path is corrected to point to the appropriate node after the split
3409 * Before splitting this tries to make some room in the node by pushing
3410 * left and right, if either one works, it returns right away.
3412 * returns 0 on success and < 0 on failure
3414 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3415 struct btrfs_root
*root
,
3416 struct btrfs_path
*path
, int level
)
3418 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3419 struct extent_buffer
*c
;
3420 struct extent_buffer
*split
;
3421 struct btrfs_disk_key disk_key
;
3426 c
= path
->nodes
[level
];
3427 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3428 if (c
== root
->node
) {
3430 * trying to split the root, lets make a new one
3432 * tree mod log: We don't log_removal old root in
3433 * insert_new_root, because that root buffer will be kept as a
3434 * normal node. We are going to log removal of half of the
3435 * elements below with tree_mod_log_eb_copy. We're holding a
3436 * tree lock on the buffer, which is why we cannot race with
3437 * other tree_mod_log users.
3439 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3443 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3444 c
= path
->nodes
[level
];
3445 if (!ret
&& btrfs_header_nritems(c
) <
3446 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3)
3452 c_nritems
= btrfs_header_nritems(c
);
3453 mid
= (c_nritems
+ 1) / 2;
3454 btrfs_node_key(c
, &disk_key
, mid
);
3456 split
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3457 &disk_key
, level
, c
->start
, 0);
3459 return PTR_ERR(split
);
3461 root_add_used(root
, fs_info
->nodesize
);
3462 ASSERT(btrfs_header_level(c
) == level
);
3464 ret
= tree_mod_log_eb_copy(fs_info
, split
, c
, 0, mid
, c_nritems
- mid
);
3466 btrfs_abort_transaction(trans
, ret
);
3469 copy_extent_buffer(split
, c
,
3470 btrfs_node_key_ptr_offset(0),
3471 btrfs_node_key_ptr_offset(mid
),
3472 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3473 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3474 btrfs_set_header_nritems(c
, mid
);
3477 btrfs_mark_buffer_dirty(c
);
3478 btrfs_mark_buffer_dirty(split
);
3480 insert_ptr(trans
, fs_info
, path
, &disk_key
, split
->start
,
3481 path
->slots
[level
+ 1] + 1, level
+ 1);
3483 if (path
->slots
[level
] >= mid
) {
3484 path
->slots
[level
] -= mid
;
3485 btrfs_tree_unlock(c
);
3486 free_extent_buffer(c
);
3487 path
->nodes
[level
] = split
;
3488 path
->slots
[level
+ 1] += 1;
3490 btrfs_tree_unlock(split
);
3491 free_extent_buffer(split
);
3497 * how many bytes are required to store the items in a leaf. start
3498 * and nr indicate which items in the leaf to check. This totals up the
3499 * space used both by the item structs and the item data
3501 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3503 struct btrfs_item
*start_item
;
3504 struct btrfs_item
*end_item
;
3505 struct btrfs_map_token token
;
3507 int nritems
= btrfs_header_nritems(l
);
3508 int end
= min(nritems
, start
+ nr
) - 1;
3512 btrfs_init_map_token(&token
);
3513 start_item
= btrfs_item_nr(start
);
3514 end_item
= btrfs_item_nr(end
);
3515 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3516 btrfs_token_item_size(l
, start_item
, &token
);
3517 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3518 data_len
+= sizeof(struct btrfs_item
) * nr
;
3519 WARN_ON(data_len
< 0);
3524 * The space between the end of the leaf items and
3525 * the start of the leaf data. IOW, how much room
3526 * the leaf has left for both items and data
3528 noinline
int btrfs_leaf_free_space(struct btrfs_fs_info
*fs_info
,
3529 struct extent_buffer
*leaf
)
3531 int nritems
= btrfs_header_nritems(leaf
);
3534 ret
= BTRFS_LEAF_DATA_SIZE(fs_info
) - leaf_space_used(leaf
, 0, nritems
);
3537 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3539 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info
),
3540 leaf_space_used(leaf
, 0, nritems
), nritems
);
3546 * min slot controls the lowest index we're willing to push to the
3547 * right. We'll push up to and including min_slot, but no lower
3549 static noinline
int __push_leaf_right(struct btrfs_fs_info
*fs_info
,
3550 struct btrfs_path
*path
,
3551 int data_size
, int empty
,
3552 struct extent_buffer
*right
,
3553 int free_space
, u32 left_nritems
,
3556 struct extent_buffer
*left
= path
->nodes
[0];
3557 struct extent_buffer
*upper
= path
->nodes
[1];
3558 struct btrfs_map_token token
;
3559 struct btrfs_disk_key disk_key
;
3564 struct btrfs_item
*item
;
3570 btrfs_init_map_token(&token
);
3575 nr
= max_t(u32
, 1, min_slot
);
3577 if (path
->slots
[0] >= left_nritems
)
3578 push_space
+= data_size
;
3580 slot
= path
->slots
[1];
3581 i
= left_nritems
- 1;
3583 item
= btrfs_item_nr(i
);
3585 if (!empty
&& push_items
> 0) {
3586 if (path
->slots
[0] > i
)
3588 if (path
->slots
[0] == i
) {
3589 int space
= btrfs_leaf_free_space(fs_info
, left
);
3590 if (space
+ push_space
* 2 > free_space
)
3595 if (path
->slots
[0] == i
)
3596 push_space
+= data_size
;
3598 this_item_size
= btrfs_item_size(left
, item
);
3599 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3603 push_space
+= this_item_size
+ sizeof(*item
);
3609 if (push_items
== 0)
3612 WARN_ON(!empty
&& push_items
== left_nritems
);
3614 /* push left to right */
3615 right_nritems
= btrfs_header_nritems(right
);
3617 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3618 push_space
-= leaf_data_end(fs_info
, left
);
3620 /* make room in the right data area */
3621 data_end
= leaf_data_end(fs_info
, right
);
3622 memmove_extent_buffer(right
,
3623 BTRFS_LEAF_DATA_OFFSET
+ data_end
- push_space
,
3624 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
3625 BTRFS_LEAF_DATA_SIZE(fs_info
) - data_end
);
3627 /* copy from the left data area */
3628 copy_extent_buffer(right
, left
, BTRFS_LEAF_DATA_OFFSET
+
3629 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3630 BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(fs_info
, left
),
3633 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3634 btrfs_item_nr_offset(0),
3635 right_nritems
* sizeof(struct btrfs_item
));
3637 /* copy the items from left to right */
3638 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3639 btrfs_item_nr_offset(left_nritems
- push_items
),
3640 push_items
* sizeof(struct btrfs_item
));
3642 /* update the item pointers */
3643 right_nritems
+= push_items
;
3644 btrfs_set_header_nritems(right
, right_nritems
);
3645 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3646 for (i
= 0; i
< right_nritems
; i
++) {
3647 item
= btrfs_item_nr(i
);
3648 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3649 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3652 left_nritems
-= push_items
;
3653 btrfs_set_header_nritems(left
, left_nritems
);
3656 btrfs_mark_buffer_dirty(left
);
3658 clean_tree_block(fs_info
, left
);
3660 btrfs_mark_buffer_dirty(right
);
3662 btrfs_item_key(right
, &disk_key
, 0);
3663 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3664 btrfs_mark_buffer_dirty(upper
);
3666 /* then fixup the leaf pointer in the path */
3667 if (path
->slots
[0] >= left_nritems
) {
3668 path
->slots
[0] -= left_nritems
;
3669 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3670 clean_tree_block(fs_info
, path
->nodes
[0]);
3671 btrfs_tree_unlock(path
->nodes
[0]);
3672 free_extent_buffer(path
->nodes
[0]);
3673 path
->nodes
[0] = right
;
3674 path
->slots
[1] += 1;
3676 btrfs_tree_unlock(right
);
3677 free_extent_buffer(right
);
3682 btrfs_tree_unlock(right
);
3683 free_extent_buffer(right
);
3688 * push some data in the path leaf to the right, trying to free up at
3689 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3691 * returns 1 if the push failed because the other node didn't have enough
3692 * room, 0 if everything worked out and < 0 if there were major errors.
3694 * this will push starting from min_slot to the end of the leaf. It won't
3695 * push any slot lower than min_slot
3697 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3698 *root
, struct btrfs_path
*path
,
3699 int min_data_size
, int data_size
,
3700 int empty
, u32 min_slot
)
3702 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3703 struct extent_buffer
*left
= path
->nodes
[0];
3704 struct extent_buffer
*right
;
3705 struct extent_buffer
*upper
;
3711 if (!path
->nodes
[1])
3714 slot
= path
->slots
[1];
3715 upper
= path
->nodes
[1];
3716 if (slot
>= btrfs_header_nritems(upper
) - 1)
3719 btrfs_assert_tree_locked(path
->nodes
[1]);
3721 right
= read_node_slot(fs_info
, upper
, slot
+ 1);
3723 * slot + 1 is not valid or we fail to read the right node,
3724 * no big deal, just return.
3729 btrfs_tree_lock(right
);
3730 btrfs_set_lock_blocking(right
);
3732 free_space
= btrfs_leaf_free_space(fs_info
, right
);
3733 if (free_space
< data_size
)
3736 /* cow and double check */
3737 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3742 free_space
= btrfs_leaf_free_space(fs_info
, right
);
3743 if (free_space
< data_size
)
3746 left_nritems
= btrfs_header_nritems(left
);
3747 if (left_nritems
== 0)
3750 if (path
->slots
[0] == left_nritems
&& !empty
) {
3751 /* Key greater than all keys in the leaf, right neighbor has
3752 * enough room for it and we're not emptying our leaf to delete
3753 * it, therefore use right neighbor to insert the new item and
3754 * no need to touch/dirty our left leaft. */
3755 btrfs_tree_unlock(left
);
3756 free_extent_buffer(left
);
3757 path
->nodes
[0] = right
;
3763 return __push_leaf_right(fs_info
, path
, min_data_size
, empty
,
3764 right
, free_space
, left_nritems
, min_slot
);
3766 btrfs_tree_unlock(right
);
3767 free_extent_buffer(right
);
3772 * push some data in the path leaf to the left, trying to free up at
3773 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3775 * max_slot can put a limit on how far into the leaf we'll push items. The
3776 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3779 static noinline
int __push_leaf_left(struct btrfs_fs_info
*fs_info
,
3780 struct btrfs_path
*path
, int data_size
,
3781 int empty
, struct extent_buffer
*left
,
3782 int free_space
, u32 right_nritems
,
3785 struct btrfs_disk_key disk_key
;
3786 struct extent_buffer
*right
= path
->nodes
[0];
3790 struct btrfs_item
*item
;
3791 u32 old_left_nritems
;
3795 u32 old_left_item_size
;
3796 struct btrfs_map_token token
;
3798 btrfs_init_map_token(&token
);
3801 nr
= min(right_nritems
, max_slot
);
3803 nr
= min(right_nritems
- 1, max_slot
);
3805 for (i
= 0; i
< nr
; i
++) {
3806 item
= btrfs_item_nr(i
);
3808 if (!empty
&& push_items
> 0) {
3809 if (path
->slots
[0] < i
)
3811 if (path
->slots
[0] == i
) {
3812 int space
= btrfs_leaf_free_space(fs_info
, right
);
3813 if (space
+ push_space
* 2 > free_space
)
3818 if (path
->slots
[0] == i
)
3819 push_space
+= data_size
;
3821 this_item_size
= btrfs_item_size(right
, item
);
3822 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3826 push_space
+= this_item_size
+ sizeof(*item
);
3829 if (push_items
== 0) {
3833 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3835 /* push data from right to left */
3836 copy_extent_buffer(left
, right
,
3837 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3838 btrfs_item_nr_offset(0),
3839 push_items
* sizeof(struct btrfs_item
));
3841 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
) -
3842 btrfs_item_offset_nr(right
, push_items
- 1);
3844 copy_extent_buffer(left
, right
, BTRFS_LEAF_DATA_OFFSET
+
3845 leaf_data_end(fs_info
, left
) - push_space
,
3846 BTRFS_LEAF_DATA_OFFSET
+
3847 btrfs_item_offset_nr(right
, push_items
- 1),
3849 old_left_nritems
= btrfs_header_nritems(left
);
3850 BUG_ON(old_left_nritems
<= 0);
3852 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3853 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3856 item
= btrfs_item_nr(i
);
3858 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3859 btrfs_set_token_item_offset(left
, item
,
3860 ioff
- (BTRFS_LEAF_DATA_SIZE(fs_info
) - old_left_item_size
),
3863 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3865 /* fixup right node */
3866 if (push_items
> right_nritems
)
3867 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3870 if (push_items
< right_nritems
) {
3871 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3872 leaf_data_end(fs_info
, right
);
3873 memmove_extent_buffer(right
, BTRFS_LEAF_DATA_OFFSET
+
3874 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3875 BTRFS_LEAF_DATA_OFFSET
+
3876 leaf_data_end(fs_info
, right
), push_space
);
3878 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3879 btrfs_item_nr_offset(push_items
),
3880 (btrfs_header_nritems(right
) - push_items
) *
3881 sizeof(struct btrfs_item
));
3883 right_nritems
-= push_items
;
3884 btrfs_set_header_nritems(right
, right_nritems
);
3885 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3886 for (i
= 0; i
< right_nritems
; i
++) {
3887 item
= btrfs_item_nr(i
);
3889 push_space
= push_space
- btrfs_token_item_size(right
,
3891 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3894 btrfs_mark_buffer_dirty(left
);
3896 btrfs_mark_buffer_dirty(right
);
3898 clean_tree_block(fs_info
, right
);
3900 btrfs_item_key(right
, &disk_key
, 0);
3901 fixup_low_keys(path
, &disk_key
, 1);
3903 /* then fixup the leaf pointer in the path */
3904 if (path
->slots
[0] < push_items
) {
3905 path
->slots
[0] += old_left_nritems
;
3906 btrfs_tree_unlock(path
->nodes
[0]);
3907 free_extent_buffer(path
->nodes
[0]);
3908 path
->nodes
[0] = left
;
3909 path
->slots
[1] -= 1;
3911 btrfs_tree_unlock(left
);
3912 free_extent_buffer(left
);
3913 path
->slots
[0] -= push_items
;
3915 BUG_ON(path
->slots
[0] < 0);
3918 btrfs_tree_unlock(left
);
3919 free_extent_buffer(left
);
3924 * push some data in the path leaf to the left, trying to free up at
3925 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3927 * max_slot can put a limit on how far into the leaf we'll push items. The
3928 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3931 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3932 *root
, struct btrfs_path
*path
, int min_data_size
,
3933 int data_size
, int empty
, u32 max_slot
)
3935 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3936 struct extent_buffer
*right
= path
->nodes
[0];
3937 struct extent_buffer
*left
;
3943 slot
= path
->slots
[1];
3946 if (!path
->nodes
[1])
3949 right_nritems
= btrfs_header_nritems(right
);
3950 if (right_nritems
== 0)
3953 btrfs_assert_tree_locked(path
->nodes
[1]);
3955 left
= read_node_slot(fs_info
, path
->nodes
[1], slot
- 1);
3957 * slot - 1 is not valid or we fail to read the left node,
3958 * no big deal, just return.
3963 btrfs_tree_lock(left
);
3964 btrfs_set_lock_blocking(left
);
3966 free_space
= btrfs_leaf_free_space(fs_info
, left
);
3967 if (free_space
< data_size
) {
3972 /* cow and double check */
3973 ret
= btrfs_cow_block(trans
, root
, left
,
3974 path
->nodes
[1], slot
- 1, &left
);
3976 /* we hit -ENOSPC, but it isn't fatal here */
3982 free_space
= btrfs_leaf_free_space(fs_info
, left
);
3983 if (free_space
< data_size
) {
3988 return __push_leaf_left(fs_info
, path
, min_data_size
,
3989 empty
, left
, free_space
, right_nritems
,
3992 btrfs_tree_unlock(left
);
3993 free_extent_buffer(left
);
3998 * split the path's leaf in two, making sure there is at least data_size
3999 * available for the resulting leaf level of the path.
4001 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4002 struct btrfs_fs_info
*fs_info
,
4003 struct btrfs_path
*path
,
4004 struct extent_buffer
*l
,
4005 struct extent_buffer
*right
,
4006 int slot
, int mid
, int nritems
)
4011 struct btrfs_disk_key disk_key
;
4012 struct btrfs_map_token token
;
4014 btrfs_init_map_token(&token
);
4016 nritems
= nritems
- mid
;
4017 btrfs_set_header_nritems(right
, nritems
);
4018 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(fs_info
, l
);
4020 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4021 btrfs_item_nr_offset(mid
),
4022 nritems
* sizeof(struct btrfs_item
));
4024 copy_extent_buffer(right
, l
,
4025 BTRFS_LEAF_DATA_OFFSET
+ BTRFS_LEAF_DATA_SIZE(fs_info
) -
4026 data_copy_size
, BTRFS_LEAF_DATA_OFFSET
+
4027 leaf_data_end(fs_info
, l
), data_copy_size
);
4029 rt_data_off
= BTRFS_LEAF_DATA_SIZE(fs_info
) - btrfs_item_end_nr(l
, mid
);
4031 for (i
= 0; i
< nritems
; i
++) {
4032 struct btrfs_item
*item
= btrfs_item_nr(i
);
4035 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4036 btrfs_set_token_item_offset(right
, item
,
4037 ioff
+ rt_data_off
, &token
);
4040 btrfs_set_header_nritems(l
, mid
);
4041 btrfs_item_key(right
, &disk_key
, 0);
4042 insert_ptr(trans
, fs_info
, path
, &disk_key
, right
->start
,
4043 path
->slots
[1] + 1, 1);
4045 btrfs_mark_buffer_dirty(right
);
4046 btrfs_mark_buffer_dirty(l
);
4047 BUG_ON(path
->slots
[0] != slot
);
4050 btrfs_tree_unlock(path
->nodes
[0]);
4051 free_extent_buffer(path
->nodes
[0]);
4052 path
->nodes
[0] = right
;
4053 path
->slots
[0] -= mid
;
4054 path
->slots
[1] += 1;
4056 btrfs_tree_unlock(right
);
4057 free_extent_buffer(right
);
4060 BUG_ON(path
->slots
[0] < 0);
4064 * double splits happen when we need to insert a big item in the middle
4065 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4066 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4069 * We avoid this by trying to push the items on either side of our target
4070 * into the adjacent leaves. If all goes well we can avoid the double split
4073 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4074 struct btrfs_root
*root
,
4075 struct btrfs_path
*path
,
4078 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4083 int space_needed
= data_size
;
4085 slot
= path
->slots
[0];
4086 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4087 space_needed
-= btrfs_leaf_free_space(fs_info
, path
->nodes
[0]);
4090 * try to push all the items after our slot into the
4093 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4100 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4102 * our goal is to get our slot at the start or end of a leaf. If
4103 * we've done so we're done
4105 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4108 if (btrfs_leaf_free_space(fs_info
, path
->nodes
[0]) >= data_size
)
4111 /* try to push all the items before our slot into the next leaf */
4112 slot
= path
->slots
[0];
4113 space_needed
= data_size
;
4115 space_needed
-= btrfs_leaf_free_space(fs_info
, path
->nodes
[0]);
4116 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4129 * split the path's leaf in two, making sure there is at least data_size
4130 * available for the resulting leaf level of the path.
4132 * returns 0 if all went well and < 0 on failure.
4134 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4135 struct btrfs_root
*root
,
4136 const struct btrfs_key
*ins_key
,
4137 struct btrfs_path
*path
, int data_size
,
4140 struct btrfs_disk_key disk_key
;
4141 struct extent_buffer
*l
;
4145 struct extent_buffer
*right
;
4146 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4150 int num_doubles
= 0;
4151 int tried_avoid_double
= 0;
4154 slot
= path
->slots
[0];
4155 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4156 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(fs_info
))
4159 /* first try to make some room by pushing left and right */
4160 if (data_size
&& path
->nodes
[1]) {
4161 int space_needed
= data_size
;
4163 if (slot
< btrfs_header_nritems(l
))
4164 space_needed
-= btrfs_leaf_free_space(fs_info
, l
);
4166 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4167 space_needed
, 0, 0);
4171 space_needed
= data_size
;
4173 space_needed
-= btrfs_leaf_free_space(fs_info
,
4175 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4176 space_needed
, 0, (u32
)-1);
4182 /* did the pushes work? */
4183 if (btrfs_leaf_free_space(fs_info
, l
) >= data_size
)
4187 if (!path
->nodes
[1]) {
4188 ret
= insert_new_root(trans
, root
, path
, 1);
4195 slot
= path
->slots
[0];
4196 nritems
= btrfs_header_nritems(l
);
4197 mid
= (nritems
+ 1) / 2;
4201 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4202 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4203 if (slot
>= nritems
) {
4207 if (mid
!= nritems
&&
4208 leaf_space_used(l
, mid
, nritems
- mid
) +
4209 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4210 if (data_size
&& !tried_avoid_double
)
4211 goto push_for_double
;
4217 if (leaf_space_used(l
, 0, mid
) + data_size
>
4218 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4219 if (!extend
&& data_size
&& slot
== 0) {
4221 } else if ((extend
|| !data_size
) && slot
== 0) {
4225 if (mid
!= nritems
&&
4226 leaf_space_used(l
, mid
, nritems
- mid
) +
4227 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4228 if (data_size
&& !tried_avoid_double
)
4229 goto push_for_double
;
4237 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4239 btrfs_item_key(l
, &disk_key
, mid
);
4241 right
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
4242 &disk_key
, 0, l
->start
, 0);
4244 return PTR_ERR(right
);
4246 root_add_used(root
, fs_info
->nodesize
);
4250 btrfs_set_header_nritems(right
, 0);
4251 insert_ptr(trans
, fs_info
, path
, &disk_key
,
4252 right
->start
, path
->slots
[1] + 1, 1);
4253 btrfs_tree_unlock(path
->nodes
[0]);
4254 free_extent_buffer(path
->nodes
[0]);
4255 path
->nodes
[0] = right
;
4257 path
->slots
[1] += 1;
4259 btrfs_set_header_nritems(right
, 0);
4260 insert_ptr(trans
, fs_info
, path
, &disk_key
,
4261 right
->start
, path
->slots
[1], 1);
4262 btrfs_tree_unlock(path
->nodes
[0]);
4263 free_extent_buffer(path
->nodes
[0]);
4264 path
->nodes
[0] = right
;
4266 if (path
->slots
[1] == 0)
4267 fixup_low_keys(path
, &disk_key
, 1);
4270 * We create a new leaf 'right' for the required ins_len and
4271 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4272 * the content of ins_len to 'right'.
4277 copy_for_split(trans
, fs_info
, path
, l
, right
, slot
, mid
, nritems
);
4280 BUG_ON(num_doubles
!= 0);
4288 push_for_double_split(trans
, root
, path
, data_size
);
4289 tried_avoid_double
= 1;
4290 if (btrfs_leaf_free_space(fs_info
, path
->nodes
[0]) >= data_size
)
4295 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4296 struct btrfs_root
*root
,
4297 struct btrfs_path
*path
, int ins_len
)
4299 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4300 struct btrfs_key key
;
4301 struct extent_buffer
*leaf
;
4302 struct btrfs_file_extent_item
*fi
;
4307 leaf
= path
->nodes
[0];
4308 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4310 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4311 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4313 if (btrfs_leaf_free_space(fs_info
, leaf
) >= ins_len
)
4316 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4317 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4318 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4319 struct btrfs_file_extent_item
);
4320 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4322 btrfs_release_path(path
);
4324 path
->keep_locks
= 1;
4325 path
->search_for_split
= 1;
4326 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4327 path
->search_for_split
= 0;
4334 leaf
= path
->nodes
[0];
4335 /* if our item isn't there, return now */
4336 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4339 /* the leaf has changed, it now has room. return now */
4340 if (btrfs_leaf_free_space(fs_info
, path
->nodes
[0]) >= ins_len
)
4343 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4344 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4345 struct btrfs_file_extent_item
);
4346 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4350 btrfs_set_path_blocking(path
);
4351 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4355 path
->keep_locks
= 0;
4356 btrfs_unlock_up_safe(path
, 1);
4359 path
->keep_locks
= 0;
4363 static noinline
int split_item(struct btrfs_fs_info
*fs_info
,
4364 struct btrfs_path
*path
,
4365 const struct btrfs_key
*new_key
,
4366 unsigned long split_offset
)
4368 struct extent_buffer
*leaf
;
4369 struct btrfs_item
*item
;
4370 struct btrfs_item
*new_item
;
4376 struct btrfs_disk_key disk_key
;
4378 leaf
= path
->nodes
[0];
4379 BUG_ON(btrfs_leaf_free_space(fs_info
, leaf
) < sizeof(struct btrfs_item
));
4381 btrfs_set_path_blocking(path
);
4383 item
= btrfs_item_nr(path
->slots
[0]);
4384 orig_offset
= btrfs_item_offset(leaf
, item
);
4385 item_size
= btrfs_item_size(leaf
, item
);
4387 buf
= kmalloc(item_size
, GFP_NOFS
);
4391 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4392 path
->slots
[0]), item_size
);
4394 slot
= path
->slots
[0] + 1;
4395 nritems
= btrfs_header_nritems(leaf
);
4396 if (slot
!= nritems
) {
4397 /* shift the items */
4398 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4399 btrfs_item_nr_offset(slot
),
4400 (nritems
- slot
) * sizeof(struct btrfs_item
));
4403 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4404 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4406 new_item
= btrfs_item_nr(slot
);
4408 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4409 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4411 btrfs_set_item_offset(leaf
, item
,
4412 orig_offset
+ item_size
- split_offset
);
4413 btrfs_set_item_size(leaf
, item
, split_offset
);
4415 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4417 /* write the data for the start of the original item */
4418 write_extent_buffer(leaf
, buf
,
4419 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4422 /* write the data for the new item */
4423 write_extent_buffer(leaf
, buf
+ split_offset
,
4424 btrfs_item_ptr_offset(leaf
, slot
),
4425 item_size
- split_offset
);
4426 btrfs_mark_buffer_dirty(leaf
);
4428 BUG_ON(btrfs_leaf_free_space(fs_info
, leaf
) < 0);
4434 * This function splits a single item into two items,
4435 * giving 'new_key' to the new item and splitting the
4436 * old one at split_offset (from the start of the item).
4438 * The path may be released by this operation. After
4439 * the split, the path is pointing to the old item. The
4440 * new item is going to be in the same node as the old one.
4442 * Note, the item being split must be smaller enough to live alone on
4443 * a tree block with room for one extra struct btrfs_item
4445 * This allows us to split the item in place, keeping a lock on the
4446 * leaf the entire time.
4448 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4449 struct btrfs_root
*root
,
4450 struct btrfs_path
*path
,
4451 const struct btrfs_key
*new_key
,
4452 unsigned long split_offset
)
4455 ret
= setup_leaf_for_split(trans
, root
, path
,
4456 sizeof(struct btrfs_item
));
4460 ret
= split_item(root
->fs_info
, path
, new_key
, split_offset
);
4465 * This function duplicate a item, giving 'new_key' to the new item.
4466 * It guarantees both items live in the same tree leaf and the new item
4467 * is contiguous with the original item.
4469 * This allows us to split file extent in place, keeping a lock on the
4470 * leaf the entire time.
4472 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4473 struct btrfs_root
*root
,
4474 struct btrfs_path
*path
,
4475 const struct btrfs_key
*new_key
)
4477 struct extent_buffer
*leaf
;
4481 leaf
= path
->nodes
[0];
4482 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4483 ret
= setup_leaf_for_split(trans
, root
, path
,
4484 item_size
+ sizeof(struct btrfs_item
));
4489 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4490 item_size
, item_size
+
4491 sizeof(struct btrfs_item
), 1);
4492 leaf
= path
->nodes
[0];
4493 memcpy_extent_buffer(leaf
,
4494 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4495 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4501 * make the item pointed to by the path smaller. new_size indicates
4502 * how small to make it, and from_end tells us if we just chop bytes
4503 * off the end of the item or if we shift the item to chop bytes off
4506 void btrfs_truncate_item(struct btrfs_fs_info
*fs_info
,
4507 struct btrfs_path
*path
, u32 new_size
, int from_end
)
4510 struct extent_buffer
*leaf
;
4511 struct btrfs_item
*item
;
4513 unsigned int data_end
;
4514 unsigned int old_data_start
;
4515 unsigned int old_size
;
4516 unsigned int size_diff
;
4518 struct btrfs_map_token token
;
4520 btrfs_init_map_token(&token
);
4522 leaf
= path
->nodes
[0];
4523 slot
= path
->slots
[0];
4525 old_size
= btrfs_item_size_nr(leaf
, slot
);
4526 if (old_size
== new_size
)
4529 nritems
= btrfs_header_nritems(leaf
);
4530 data_end
= leaf_data_end(fs_info
, leaf
);
4532 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4534 size_diff
= old_size
- new_size
;
4537 BUG_ON(slot
>= nritems
);
4540 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4542 /* first correct the data pointers */
4543 for (i
= slot
; i
< nritems
; i
++) {
4545 item
= btrfs_item_nr(i
);
4547 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4548 btrfs_set_token_item_offset(leaf
, item
,
4549 ioff
+ size_diff
, &token
);
4552 /* shift the data */
4554 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4555 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4556 data_end
, old_data_start
+ new_size
- data_end
);
4558 struct btrfs_disk_key disk_key
;
4561 btrfs_item_key(leaf
, &disk_key
, slot
);
4563 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4565 struct btrfs_file_extent_item
*fi
;
4567 fi
= btrfs_item_ptr(leaf
, slot
,
4568 struct btrfs_file_extent_item
);
4569 fi
= (struct btrfs_file_extent_item
*)(
4570 (unsigned long)fi
- size_diff
);
4572 if (btrfs_file_extent_type(leaf
, fi
) ==
4573 BTRFS_FILE_EXTENT_INLINE
) {
4574 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4575 memmove_extent_buffer(leaf
, ptr
,
4577 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4581 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4582 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4583 data_end
, old_data_start
- data_end
);
4585 offset
= btrfs_disk_key_offset(&disk_key
);
4586 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4587 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4589 fixup_low_keys(path
, &disk_key
, 1);
4592 item
= btrfs_item_nr(slot
);
4593 btrfs_set_item_size(leaf
, item
, new_size
);
4594 btrfs_mark_buffer_dirty(leaf
);
4596 if (btrfs_leaf_free_space(fs_info
, leaf
) < 0) {
4597 btrfs_print_leaf(leaf
);
4603 * make the item pointed to by the path bigger, data_size is the added size.
4605 void btrfs_extend_item(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
4609 struct extent_buffer
*leaf
;
4610 struct btrfs_item
*item
;
4612 unsigned int data_end
;
4613 unsigned int old_data
;
4614 unsigned int old_size
;
4616 struct btrfs_map_token token
;
4618 btrfs_init_map_token(&token
);
4620 leaf
= path
->nodes
[0];
4622 nritems
= btrfs_header_nritems(leaf
);
4623 data_end
= leaf_data_end(fs_info
, leaf
);
4625 if (btrfs_leaf_free_space(fs_info
, leaf
) < data_size
) {
4626 btrfs_print_leaf(leaf
);
4629 slot
= path
->slots
[0];
4630 old_data
= btrfs_item_end_nr(leaf
, slot
);
4633 if (slot
>= nritems
) {
4634 btrfs_print_leaf(leaf
);
4635 btrfs_crit(fs_info
, "slot %d too large, nritems %d",
4641 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4643 /* first correct the data pointers */
4644 for (i
= slot
; i
< nritems
; i
++) {
4646 item
= btrfs_item_nr(i
);
4648 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4649 btrfs_set_token_item_offset(leaf
, item
,
4650 ioff
- data_size
, &token
);
4653 /* shift the data */
4654 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4655 data_end
- data_size
, BTRFS_LEAF_DATA_OFFSET
+
4656 data_end
, old_data
- data_end
);
4658 data_end
= old_data
;
4659 old_size
= btrfs_item_size_nr(leaf
, slot
);
4660 item
= btrfs_item_nr(slot
);
4661 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4662 btrfs_mark_buffer_dirty(leaf
);
4664 if (btrfs_leaf_free_space(fs_info
, leaf
) < 0) {
4665 btrfs_print_leaf(leaf
);
4671 * this is a helper for btrfs_insert_empty_items, the main goal here is
4672 * to save stack depth by doing the bulk of the work in a function
4673 * that doesn't call btrfs_search_slot
4675 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4676 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4677 u32 total_data
, u32 total_size
, int nr
)
4679 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4680 struct btrfs_item
*item
;
4683 unsigned int data_end
;
4684 struct btrfs_disk_key disk_key
;
4685 struct extent_buffer
*leaf
;
4687 struct btrfs_map_token token
;
4689 if (path
->slots
[0] == 0) {
4690 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4691 fixup_low_keys(path
, &disk_key
, 1);
4693 btrfs_unlock_up_safe(path
, 1);
4695 btrfs_init_map_token(&token
);
4697 leaf
= path
->nodes
[0];
4698 slot
= path
->slots
[0];
4700 nritems
= btrfs_header_nritems(leaf
);
4701 data_end
= leaf_data_end(fs_info
, leaf
);
4703 if (btrfs_leaf_free_space(fs_info
, leaf
) < total_size
) {
4704 btrfs_print_leaf(leaf
);
4705 btrfs_crit(fs_info
, "not enough freespace need %u have %d",
4706 total_size
, btrfs_leaf_free_space(fs_info
, leaf
));
4710 if (slot
!= nritems
) {
4711 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4713 if (old_data
< data_end
) {
4714 btrfs_print_leaf(leaf
);
4715 btrfs_crit(fs_info
, "slot %d old_data %d data_end %d",
4716 slot
, old_data
, data_end
);
4720 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4722 /* first correct the data pointers */
4723 for (i
= slot
; i
< nritems
; i
++) {
4726 item
= btrfs_item_nr(i
);
4727 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4728 btrfs_set_token_item_offset(leaf
, item
,
4729 ioff
- total_data
, &token
);
4731 /* shift the items */
4732 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4733 btrfs_item_nr_offset(slot
),
4734 (nritems
- slot
) * sizeof(struct btrfs_item
));
4736 /* shift the data */
4737 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4738 data_end
- total_data
, BTRFS_LEAF_DATA_OFFSET
+
4739 data_end
, old_data
- data_end
);
4740 data_end
= old_data
;
4743 /* setup the item for the new data */
4744 for (i
= 0; i
< nr
; i
++) {
4745 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4746 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4747 item
= btrfs_item_nr(slot
+ i
);
4748 btrfs_set_token_item_offset(leaf
, item
,
4749 data_end
- data_size
[i
], &token
);
4750 data_end
-= data_size
[i
];
4751 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4754 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4755 btrfs_mark_buffer_dirty(leaf
);
4757 if (btrfs_leaf_free_space(fs_info
, leaf
) < 0) {
4758 btrfs_print_leaf(leaf
);
4764 * Given a key and some data, insert items into the tree.
4765 * This does all the path init required, making room in the tree if needed.
4767 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4768 struct btrfs_root
*root
,
4769 struct btrfs_path
*path
,
4770 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4779 for (i
= 0; i
< nr
; i
++)
4780 total_data
+= data_size
[i
];
4782 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4783 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4789 slot
= path
->slots
[0];
4792 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4793 total_data
, total_size
, nr
);
4798 * Given a key and some data, insert an item into the tree.
4799 * This does all the path init required, making room in the tree if needed.
4801 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4802 const struct btrfs_key
*cpu_key
, void *data
,
4806 struct btrfs_path
*path
;
4807 struct extent_buffer
*leaf
;
4810 path
= btrfs_alloc_path();
4813 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4815 leaf
= path
->nodes
[0];
4816 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4817 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4818 btrfs_mark_buffer_dirty(leaf
);
4820 btrfs_free_path(path
);
4825 * delete the pointer from a given node.
4827 * the tree should have been previously balanced so the deletion does not
4830 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4831 int level
, int slot
)
4833 struct extent_buffer
*parent
= path
->nodes
[level
];
4837 nritems
= btrfs_header_nritems(parent
);
4838 if (slot
!= nritems
- 1) {
4840 ret
= tree_mod_log_insert_move(parent
, slot
, slot
+ 1,
4841 nritems
- slot
- 1);
4844 memmove_extent_buffer(parent
,
4845 btrfs_node_key_ptr_offset(slot
),
4846 btrfs_node_key_ptr_offset(slot
+ 1),
4847 sizeof(struct btrfs_key_ptr
) *
4848 (nritems
- slot
- 1));
4850 ret
= tree_mod_log_insert_key(parent
, slot
, MOD_LOG_KEY_REMOVE
,
4856 btrfs_set_header_nritems(parent
, nritems
);
4857 if (nritems
== 0 && parent
== root
->node
) {
4858 BUG_ON(btrfs_header_level(root
->node
) != 1);
4859 /* just turn the root into a leaf and break */
4860 btrfs_set_header_level(root
->node
, 0);
4861 } else if (slot
== 0) {
4862 struct btrfs_disk_key disk_key
;
4864 btrfs_node_key(parent
, &disk_key
, 0);
4865 fixup_low_keys(path
, &disk_key
, level
+ 1);
4867 btrfs_mark_buffer_dirty(parent
);
4871 * a helper function to delete the leaf pointed to by path->slots[1] and
4874 * This deletes the pointer in path->nodes[1] and frees the leaf
4875 * block extent. zero is returned if it all worked out, < 0 otherwise.
4877 * The path must have already been setup for deleting the leaf, including
4878 * all the proper balancing. path->nodes[1] must be locked.
4880 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4881 struct btrfs_root
*root
,
4882 struct btrfs_path
*path
,
4883 struct extent_buffer
*leaf
)
4885 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4886 del_ptr(root
, path
, 1, path
->slots
[1]);
4889 * btrfs_free_extent is expensive, we want to make sure we
4890 * aren't holding any locks when we call it
4892 btrfs_unlock_up_safe(path
, 0);
4894 root_sub_used(root
, leaf
->len
);
4896 extent_buffer_get(leaf
);
4897 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4898 free_extent_buffer_stale(leaf
);
4901 * delete the item at the leaf level in path. If that empties
4902 * the leaf, remove it from the tree
4904 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4905 struct btrfs_path
*path
, int slot
, int nr
)
4907 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4908 struct extent_buffer
*leaf
;
4909 struct btrfs_item
*item
;
4916 struct btrfs_map_token token
;
4918 btrfs_init_map_token(&token
);
4920 leaf
= path
->nodes
[0];
4921 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4923 for (i
= 0; i
< nr
; i
++)
4924 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4926 nritems
= btrfs_header_nritems(leaf
);
4928 if (slot
+ nr
!= nritems
) {
4929 int data_end
= leaf_data_end(fs_info
, leaf
);
4931 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4933 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
4934 last_off
- data_end
);
4936 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4939 item
= btrfs_item_nr(i
);
4940 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4941 btrfs_set_token_item_offset(leaf
, item
,
4942 ioff
+ dsize
, &token
);
4945 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4946 btrfs_item_nr_offset(slot
+ nr
),
4947 sizeof(struct btrfs_item
) *
4948 (nritems
- slot
- nr
));
4950 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4953 /* delete the leaf if we've emptied it */
4955 if (leaf
== root
->node
) {
4956 btrfs_set_header_level(leaf
, 0);
4958 btrfs_set_path_blocking(path
);
4959 clean_tree_block(fs_info
, leaf
);
4960 btrfs_del_leaf(trans
, root
, path
, leaf
);
4963 int used
= leaf_space_used(leaf
, 0, nritems
);
4965 struct btrfs_disk_key disk_key
;
4967 btrfs_item_key(leaf
, &disk_key
, 0);
4968 fixup_low_keys(path
, &disk_key
, 1);
4971 /* delete the leaf if it is mostly empty */
4972 if (used
< BTRFS_LEAF_DATA_SIZE(fs_info
) / 3) {
4973 /* push_leaf_left fixes the path.
4974 * make sure the path still points to our leaf
4975 * for possible call to del_ptr below
4977 slot
= path
->slots
[1];
4978 extent_buffer_get(leaf
);
4980 btrfs_set_path_blocking(path
);
4981 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
4983 if (wret
< 0 && wret
!= -ENOSPC
)
4986 if (path
->nodes
[0] == leaf
&&
4987 btrfs_header_nritems(leaf
)) {
4988 wret
= push_leaf_right(trans
, root
, path
, 1,
4990 if (wret
< 0 && wret
!= -ENOSPC
)
4994 if (btrfs_header_nritems(leaf
) == 0) {
4995 path
->slots
[1] = slot
;
4996 btrfs_del_leaf(trans
, root
, path
, leaf
);
4997 free_extent_buffer(leaf
);
5000 /* if we're still in the path, make sure
5001 * we're dirty. Otherwise, one of the
5002 * push_leaf functions must have already
5003 * dirtied this buffer
5005 if (path
->nodes
[0] == leaf
)
5006 btrfs_mark_buffer_dirty(leaf
);
5007 free_extent_buffer(leaf
);
5010 btrfs_mark_buffer_dirty(leaf
);
5017 * search the tree again to find a leaf with lesser keys
5018 * returns 0 if it found something or 1 if there are no lesser leaves.
5019 * returns < 0 on io errors.
5021 * This may release the path, and so you may lose any locks held at the
5024 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5026 struct btrfs_key key
;
5027 struct btrfs_disk_key found_key
;
5030 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5032 if (key
.offset
> 0) {
5034 } else if (key
.type
> 0) {
5036 key
.offset
= (u64
)-1;
5037 } else if (key
.objectid
> 0) {
5040 key
.offset
= (u64
)-1;
5045 btrfs_release_path(path
);
5046 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5049 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5050 ret
= comp_keys(&found_key
, &key
);
5052 * We might have had an item with the previous key in the tree right
5053 * before we released our path. And after we released our path, that
5054 * item might have been pushed to the first slot (0) of the leaf we
5055 * were holding due to a tree balance. Alternatively, an item with the
5056 * previous key can exist as the only element of a leaf (big fat item).
5057 * Therefore account for these 2 cases, so that our callers (like
5058 * btrfs_previous_item) don't miss an existing item with a key matching
5059 * the previous key we computed above.
5067 * A helper function to walk down the tree starting at min_key, and looking
5068 * for nodes or leaves that are have a minimum transaction id.
5069 * This is used by the btree defrag code, and tree logging
5071 * This does not cow, but it does stuff the starting key it finds back
5072 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5073 * key and get a writable path.
5075 * This honors path->lowest_level to prevent descent past a given level
5078 * min_trans indicates the oldest transaction that you are interested
5079 * in walking through. Any nodes or leaves older than min_trans are
5080 * skipped over (without reading them).
5082 * returns zero if something useful was found, < 0 on error and 1 if there
5083 * was nothing in the tree that matched the search criteria.
5085 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5086 struct btrfs_path
*path
,
5089 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5090 struct extent_buffer
*cur
;
5091 struct btrfs_key found_key
;
5097 int keep_locks
= path
->keep_locks
;
5099 path
->keep_locks
= 1;
5101 cur
= btrfs_read_lock_root_node(root
);
5102 level
= btrfs_header_level(cur
);
5103 WARN_ON(path
->nodes
[level
]);
5104 path
->nodes
[level
] = cur
;
5105 path
->locks
[level
] = BTRFS_READ_LOCK
;
5107 if (btrfs_header_generation(cur
) < min_trans
) {
5112 nritems
= btrfs_header_nritems(cur
);
5113 level
= btrfs_header_level(cur
);
5114 sret
= btrfs_bin_search(cur
, min_key
, level
, &slot
);
5116 /* at the lowest level, we're done, setup the path and exit */
5117 if (level
== path
->lowest_level
) {
5118 if (slot
>= nritems
)
5121 path
->slots
[level
] = slot
;
5122 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5125 if (sret
&& slot
> 0)
5128 * check this node pointer against the min_trans parameters.
5129 * If it is too old, old, skip to the next one.
5131 while (slot
< nritems
) {
5134 gen
= btrfs_node_ptr_generation(cur
, slot
);
5135 if (gen
< min_trans
) {
5143 * we didn't find a candidate key in this node, walk forward
5144 * and find another one
5146 if (slot
>= nritems
) {
5147 path
->slots
[level
] = slot
;
5148 btrfs_set_path_blocking(path
);
5149 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5152 btrfs_release_path(path
);
5158 /* save our key for returning back */
5159 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5160 path
->slots
[level
] = slot
;
5161 if (level
== path
->lowest_level
) {
5165 btrfs_set_path_blocking(path
);
5166 cur
= read_node_slot(fs_info
, cur
, slot
);
5172 btrfs_tree_read_lock(cur
);
5174 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5175 path
->nodes
[level
- 1] = cur
;
5176 unlock_up(path
, level
, 1, 0, NULL
);
5179 path
->keep_locks
= keep_locks
;
5181 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5182 btrfs_set_path_blocking(path
);
5183 memcpy(min_key
, &found_key
, sizeof(found_key
));
5188 static int tree_move_down(struct btrfs_fs_info
*fs_info
,
5189 struct btrfs_path
*path
,
5192 struct extent_buffer
*eb
;
5194 BUG_ON(*level
== 0);
5195 eb
= read_node_slot(fs_info
, path
->nodes
[*level
], path
->slots
[*level
]);
5199 path
->nodes
[*level
- 1] = eb
;
5200 path
->slots
[*level
- 1] = 0;
5205 static int tree_move_next_or_upnext(struct btrfs_path
*path
,
5206 int *level
, int root_level
)
5210 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5212 path
->slots
[*level
]++;
5214 while (path
->slots
[*level
] >= nritems
) {
5215 if (*level
== root_level
)
5219 path
->slots
[*level
] = 0;
5220 free_extent_buffer(path
->nodes
[*level
]);
5221 path
->nodes
[*level
] = NULL
;
5223 path
->slots
[*level
]++;
5225 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5232 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5235 static int tree_advance(struct btrfs_fs_info
*fs_info
,
5236 struct btrfs_path
*path
,
5237 int *level
, int root_level
,
5239 struct btrfs_key
*key
)
5243 if (*level
== 0 || !allow_down
) {
5244 ret
= tree_move_next_or_upnext(path
, level
, root_level
);
5246 ret
= tree_move_down(fs_info
, path
, level
);
5250 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5251 path
->slots
[*level
]);
5253 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5254 path
->slots
[*level
]);
5259 static int tree_compare_item(struct btrfs_path
*left_path
,
5260 struct btrfs_path
*right_path
,
5265 unsigned long off1
, off2
;
5267 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5268 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5272 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5273 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5274 right_path
->slots
[0]);
5276 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5278 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5285 #define ADVANCE_ONLY_NEXT -1
5288 * This function compares two trees and calls the provided callback for
5289 * every changed/new/deleted item it finds.
5290 * If shared tree blocks are encountered, whole subtrees are skipped, making
5291 * the compare pretty fast on snapshotted subvolumes.
5293 * This currently works on commit roots only. As commit roots are read only,
5294 * we don't do any locking. The commit roots are protected with transactions.
5295 * Transactions are ended and rejoined when a commit is tried in between.
5297 * This function checks for modifications done to the trees while comparing.
5298 * If it detects a change, it aborts immediately.
5300 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5301 struct btrfs_root
*right_root
,
5302 btrfs_changed_cb_t changed_cb
, void *ctx
)
5304 struct btrfs_fs_info
*fs_info
= left_root
->fs_info
;
5307 struct btrfs_path
*left_path
= NULL
;
5308 struct btrfs_path
*right_path
= NULL
;
5309 struct btrfs_key left_key
;
5310 struct btrfs_key right_key
;
5311 char *tmp_buf
= NULL
;
5312 int left_root_level
;
5313 int right_root_level
;
5316 int left_end_reached
;
5317 int right_end_reached
;
5325 left_path
= btrfs_alloc_path();
5330 right_path
= btrfs_alloc_path();
5336 tmp_buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
5342 left_path
->search_commit_root
= 1;
5343 left_path
->skip_locking
= 1;
5344 right_path
->search_commit_root
= 1;
5345 right_path
->skip_locking
= 1;
5348 * Strategy: Go to the first items of both trees. Then do
5350 * If both trees are at level 0
5351 * Compare keys of current items
5352 * If left < right treat left item as new, advance left tree
5354 * If left > right treat right item as deleted, advance right tree
5356 * If left == right do deep compare of items, treat as changed if
5357 * needed, advance both trees and repeat
5358 * If both trees are at the same level but not at level 0
5359 * Compare keys of current nodes/leafs
5360 * If left < right advance left tree and repeat
5361 * If left > right advance right tree and repeat
5362 * If left == right compare blockptrs of the next nodes/leafs
5363 * If they match advance both trees but stay at the same level
5365 * If they don't match advance both trees while allowing to go
5367 * If tree levels are different
5368 * Advance the tree that needs it and repeat
5370 * Advancing a tree means:
5371 * If we are at level 0, try to go to the next slot. If that's not
5372 * possible, go one level up and repeat. Stop when we found a level
5373 * where we could go to the next slot. We may at this point be on a
5376 * If we are not at level 0 and not on shared tree blocks, go one
5379 * If we are not at level 0 and on shared tree blocks, go one slot to
5380 * the right if possible or go up and right.
5383 down_read(&fs_info
->commit_root_sem
);
5384 left_level
= btrfs_header_level(left_root
->commit_root
);
5385 left_root_level
= left_level
;
5386 left_path
->nodes
[left_level
] =
5387 btrfs_clone_extent_buffer(left_root
->commit_root
);
5388 if (!left_path
->nodes
[left_level
]) {
5389 up_read(&fs_info
->commit_root_sem
);
5393 extent_buffer_get(left_path
->nodes
[left_level
]);
5395 right_level
= btrfs_header_level(right_root
->commit_root
);
5396 right_root_level
= right_level
;
5397 right_path
->nodes
[right_level
] =
5398 btrfs_clone_extent_buffer(right_root
->commit_root
);
5399 if (!right_path
->nodes
[right_level
]) {
5400 up_read(&fs_info
->commit_root_sem
);
5404 extent_buffer_get(right_path
->nodes
[right_level
]);
5405 up_read(&fs_info
->commit_root_sem
);
5407 if (left_level
== 0)
5408 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5409 &left_key
, left_path
->slots
[left_level
]);
5411 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5412 &left_key
, left_path
->slots
[left_level
]);
5413 if (right_level
== 0)
5414 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5415 &right_key
, right_path
->slots
[right_level
]);
5417 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5418 &right_key
, right_path
->slots
[right_level
]);
5420 left_end_reached
= right_end_reached
= 0;
5421 advance_left
= advance_right
= 0;
5424 if (advance_left
&& !left_end_reached
) {
5425 ret
= tree_advance(fs_info
, left_path
, &left_level
,
5427 advance_left
!= ADVANCE_ONLY_NEXT
,
5430 left_end_reached
= ADVANCE
;
5435 if (advance_right
&& !right_end_reached
) {
5436 ret
= tree_advance(fs_info
, right_path
, &right_level
,
5438 advance_right
!= ADVANCE_ONLY_NEXT
,
5441 right_end_reached
= ADVANCE
;
5447 if (left_end_reached
&& right_end_reached
) {
5450 } else if (left_end_reached
) {
5451 if (right_level
== 0) {
5452 ret
= changed_cb(left_path
, right_path
,
5454 BTRFS_COMPARE_TREE_DELETED
,
5459 advance_right
= ADVANCE
;
5461 } else if (right_end_reached
) {
5462 if (left_level
== 0) {
5463 ret
= changed_cb(left_path
, right_path
,
5465 BTRFS_COMPARE_TREE_NEW
,
5470 advance_left
= ADVANCE
;
5474 if (left_level
== 0 && right_level
== 0) {
5475 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5477 ret
= changed_cb(left_path
, right_path
,
5479 BTRFS_COMPARE_TREE_NEW
,
5483 advance_left
= ADVANCE
;
5484 } else if (cmp
> 0) {
5485 ret
= changed_cb(left_path
, right_path
,
5487 BTRFS_COMPARE_TREE_DELETED
,
5491 advance_right
= ADVANCE
;
5493 enum btrfs_compare_tree_result result
;
5495 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5496 ret
= tree_compare_item(left_path
, right_path
,
5499 result
= BTRFS_COMPARE_TREE_CHANGED
;
5501 result
= BTRFS_COMPARE_TREE_SAME
;
5502 ret
= changed_cb(left_path
, right_path
,
5503 &left_key
, result
, ctx
);
5506 advance_left
= ADVANCE
;
5507 advance_right
= ADVANCE
;
5509 } else if (left_level
== right_level
) {
5510 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5512 advance_left
= ADVANCE
;
5513 } else if (cmp
> 0) {
5514 advance_right
= ADVANCE
;
5516 left_blockptr
= btrfs_node_blockptr(
5517 left_path
->nodes
[left_level
],
5518 left_path
->slots
[left_level
]);
5519 right_blockptr
= btrfs_node_blockptr(
5520 right_path
->nodes
[right_level
],
5521 right_path
->slots
[right_level
]);
5522 left_gen
= btrfs_node_ptr_generation(
5523 left_path
->nodes
[left_level
],
5524 left_path
->slots
[left_level
]);
5525 right_gen
= btrfs_node_ptr_generation(
5526 right_path
->nodes
[right_level
],
5527 right_path
->slots
[right_level
]);
5528 if (left_blockptr
== right_blockptr
&&
5529 left_gen
== right_gen
) {
5531 * As we're on a shared block, don't
5532 * allow to go deeper.
5534 advance_left
= ADVANCE_ONLY_NEXT
;
5535 advance_right
= ADVANCE_ONLY_NEXT
;
5537 advance_left
= ADVANCE
;
5538 advance_right
= ADVANCE
;
5541 } else if (left_level
< right_level
) {
5542 advance_right
= ADVANCE
;
5544 advance_left
= ADVANCE
;
5549 btrfs_free_path(left_path
);
5550 btrfs_free_path(right_path
);
5556 * this is similar to btrfs_next_leaf, but does not try to preserve
5557 * and fixup the path. It looks for and returns the next key in the
5558 * tree based on the current path and the min_trans parameters.
5560 * 0 is returned if another key is found, < 0 if there are any errors
5561 * and 1 is returned if there are no higher keys in the tree
5563 * path->keep_locks should be set to 1 on the search made before
5564 * calling this function.
5566 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5567 struct btrfs_key
*key
, int level
, u64 min_trans
)
5570 struct extent_buffer
*c
;
5572 WARN_ON(!path
->keep_locks
);
5573 while (level
< BTRFS_MAX_LEVEL
) {
5574 if (!path
->nodes
[level
])
5577 slot
= path
->slots
[level
] + 1;
5578 c
= path
->nodes
[level
];
5580 if (slot
>= btrfs_header_nritems(c
)) {
5583 struct btrfs_key cur_key
;
5584 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5585 !path
->nodes
[level
+ 1])
5588 if (path
->locks
[level
+ 1]) {
5593 slot
= btrfs_header_nritems(c
) - 1;
5595 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5597 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5599 orig_lowest
= path
->lowest_level
;
5600 btrfs_release_path(path
);
5601 path
->lowest_level
= level
;
5602 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5604 path
->lowest_level
= orig_lowest
;
5608 c
= path
->nodes
[level
];
5609 slot
= path
->slots
[level
];
5616 btrfs_item_key_to_cpu(c
, key
, slot
);
5618 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5620 if (gen
< min_trans
) {
5624 btrfs_node_key_to_cpu(c
, key
, slot
);
5632 * search the tree again to find a leaf with greater keys
5633 * returns 0 if it found something or 1 if there are no greater leaves.
5634 * returns < 0 on io errors.
5636 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5638 return btrfs_next_old_leaf(root
, path
, 0);
5641 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5646 struct extent_buffer
*c
;
5647 struct extent_buffer
*next
;
5648 struct btrfs_key key
;
5651 int old_spinning
= path
->leave_spinning
;
5652 int next_rw_lock
= 0;
5654 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5658 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5663 btrfs_release_path(path
);
5665 path
->keep_locks
= 1;
5666 path
->leave_spinning
= 1;
5669 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5671 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5672 path
->keep_locks
= 0;
5677 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5679 * by releasing the path above we dropped all our locks. A balance
5680 * could have added more items next to the key that used to be
5681 * at the very end of the block. So, check again here and
5682 * advance the path if there are now more items available.
5684 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5691 * So the above check misses one case:
5692 * - after releasing the path above, someone has removed the item that
5693 * used to be at the very end of the block, and balance between leafs
5694 * gets another one with bigger key.offset to replace it.
5696 * This one should be returned as well, or we can get leaf corruption
5697 * later(esp. in __btrfs_drop_extents()).
5699 * And a bit more explanation about this check,
5700 * with ret > 0, the key isn't found, the path points to the slot
5701 * where it should be inserted, so the path->slots[0] item must be the
5704 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5709 while (level
< BTRFS_MAX_LEVEL
) {
5710 if (!path
->nodes
[level
]) {
5715 slot
= path
->slots
[level
] + 1;
5716 c
= path
->nodes
[level
];
5717 if (slot
>= btrfs_header_nritems(c
)) {
5719 if (level
== BTRFS_MAX_LEVEL
) {
5727 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5728 free_extent_buffer(next
);
5732 next_rw_lock
= path
->locks
[level
];
5733 ret
= read_block_for_search(root
, path
, &next
, level
,
5739 btrfs_release_path(path
);
5743 if (!path
->skip_locking
) {
5744 ret
= btrfs_try_tree_read_lock(next
);
5745 if (!ret
&& time_seq
) {
5747 * If we don't get the lock, we may be racing
5748 * with push_leaf_left, holding that lock while
5749 * itself waiting for the leaf we've currently
5750 * locked. To solve this situation, we give up
5751 * on our lock and cycle.
5753 free_extent_buffer(next
);
5754 btrfs_release_path(path
);
5759 btrfs_set_path_blocking(path
);
5760 btrfs_tree_read_lock(next
);
5762 next_rw_lock
= BTRFS_READ_LOCK
;
5766 path
->slots
[level
] = slot
;
5769 c
= path
->nodes
[level
];
5770 if (path
->locks
[level
])
5771 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5773 free_extent_buffer(c
);
5774 path
->nodes
[level
] = next
;
5775 path
->slots
[level
] = 0;
5776 if (!path
->skip_locking
)
5777 path
->locks
[level
] = next_rw_lock
;
5781 ret
= read_block_for_search(root
, path
, &next
, level
,
5787 btrfs_release_path(path
);
5791 if (!path
->skip_locking
) {
5792 ret
= btrfs_try_tree_read_lock(next
);
5794 btrfs_set_path_blocking(path
);
5795 btrfs_tree_read_lock(next
);
5797 next_rw_lock
= BTRFS_READ_LOCK
;
5802 unlock_up(path
, 0, 1, 0, NULL
);
5803 path
->leave_spinning
= old_spinning
;
5805 btrfs_set_path_blocking(path
);
5811 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5812 * searching until it gets past min_objectid or finds an item of 'type'
5814 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5816 int btrfs_previous_item(struct btrfs_root
*root
,
5817 struct btrfs_path
*path
, u64 min_objectid
,
5820 struct btrfs_key found_key
;
5821 struct extent_buffer
*leaf
;
5826 if (path
->slots
[0] == 0) {
5827 btrfs_set_path_blocking(path
);
5828 ret
= btrfs_prev_leaf(root
, path
);
5834 leaf
= path
->nodes
[0];
5835 nritems
= btrfs_header_nritems(leaf
);
5838 if (path
->slots
[0] == nritems
)
5841 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5842 if (found_key
.objectid
< min_objectid
)
5844 if (found_key
.type
== type
)
5846 if (found_key
.objectid
== min_objectid
&&
5847 found_key
.type
< type
)
5854 * search in extent tree to find a previous Metadata/Data extent item with
5857 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5859 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5860 struct btrfs_path
*path
, u64 min_objectid
)
5862 struct btrfs_key found_key
;
5863 struct extent_buffer
*leaf
;
5868 if (path
->slots
[0] == 0) {
5869 btrfs_set_path_blocking(path
);
5870 ret
= btrfs_prev_leaf(root
, path
);
5876 leaf
= path
->nodes
[0];
5877 nritems
= btrfs_header_nritems(leaf
);
5880 if (path
->slots
[0] == nritems
)
5883 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5884 if (found_key
.objectid
< min_objectid
)
5886 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5887 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5889 if (found_key
.objectid
== min_objectid
&&
5890 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)