1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
23 #include "transaction.h"
24 #include "btrfs_inode.h"
26 #include "print-tree.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
43 #include <asm/cpufeature.h>
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static const struct extent_io_ops btree_extent_io_ops
;
54 static void end_workqueue_fn(struct btrfs_work
*work
);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
57 struct btrfs_fs_info
*fs_info
);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
60 struct extent_io_tree
*dirty_pages
,
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
63 struct extent_io_tree
*pinned_extents
);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
65 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
72 struct btrfs_end_io_wq
{
76 struct btrfs_fs_info
*info
;
78 enum btrfs_wq_endio_type metadata
;
79 struct btrfs_work work
;
82 static struct kmem_cache
*btrfs_end_io_wq_cache
;
84 int __init
btrfs_end_io_wq_init(void)
86 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq
),
91 if (!btrfs_end_io_wq_cache
)
96 void __cold
btrfs_end_io_wq_exit(void)
98 kmem_cache_destroy(btrfs_end_io_wq_cache
);
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
106 struct async_submit_bio
{
109 extent_submit_bio_start_t
*submit_bio_start
;
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
116 struct btrfs_work work
;
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
148 static struct btrfs_lockdep_keyset
{
149 u64 id
; /* root objectid */
150 const char *name_stem
; /* lock name stem */
151 char names
[BTRFS_MAX_LEVEL
+ 1][20];
152 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
153 } btrfs_lockdep_keysets
[] = {
154 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
155 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
156 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
157 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
158 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
159 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
160 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
161 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
162 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
163 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
164 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
165 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
166 { .id
= 0, .name_stem
= "tree" },
169 void __init
btrfs_init_lockdep(void)
173 /* initialize lockdep class names */
174 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
175 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
177 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
178 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
179 "btrfs-%s-%02d", ks
->name_stem
, j
);
183 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
186 struct btrfs_lockdep_keyset
*ks
;
188 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
192 if (ks
->id
== objectid
)
195 lockdep_set_class_and_name(&eb
->lock
,
196 &ks
->keys
[level
], ks
->names
[level
]);
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
205 struct extent_map
*btree_get_extent(struct btrfs_inode
*inode
,
206 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
209 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
210 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
211 struct extent_map
*em
;
214 read_lock(&em_tree
->lock
);
215 em
= lookup_extent_mapping(em_tree
, start
, len
);
217 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
218 read_unlock(&em_tree
->lock
);
221 read_unlock(&em_tree
->lock
);
223 em
= alloc_extent_map();
225 em
= ERR_PTR(-ENOMEM
);
230 em
->block_len
= (u64
)-1;
232 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
234 write_lock(&em_tree
->lock
);
235 ret
= add_extent_mapping(em_tree
, em
, 0);
236 if (ret
== -EEXIST
) {
238 em
= lookup_extent_mapping(em_tree
, start
, len
);
245 write_unlock(&em_tree
->lock
);
251 u32
btrfs_csum_data(const char *data
, u32 seed
, size_t len
)
253 return crc32c(seed
, data
, len
);
256 void btrfs_csum_final(u32 crc
, u8
*result
)
258 put_unaligned_le32(~crc
, result
);
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
265 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
266 struct extent_buffer
*buf
,
269 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
270 char result
[BTRFS_CSUM_SIZE
];
272 unsigned long cur_len
;
273 unsigned long offset
= BTRFS_CSUM_SIZE
;
275 unsigned long map_start
;
276 unsigned long map_len
;
280 len
= buf
->len
- offset
;
282 err
= map_private_extent_buffer(buf
, offset
, 32,
283 &kaddr
, &map_start
, &map_len
);
286 cur_len
= min(len
, map_len
- (offset
- map_start
));
287 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
292 memset(result
, 0, BTRFS_CSUM_SIZE
);
294 btrfs_csum_final(crc
, result
);
297 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
300 memcpy(&found
, result
, csum_size
);
302 read_extent_buffer(buf
, &val
, 0, csum_size
);
303 btrfs_warn_rl(fs_info
,
304 "%s checksum verify failed on %llu wanted %X found %X level %d",
305 fs_info
->sb
->s_id
, buf
->start
,
306 val
, found
, btrfs_header_level(buf
));
310 write_extent_buffer(buf
, result
, 0, csum_size
);
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
322 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
323 struct extent_buffer
*eb
, u64 parent_transid
,
326 struct extent_state
*cached_state
= NULL
;
328 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
330 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
337 btrfs_tree_read_lock(eb
);
338 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
341 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
343 if (extent_buffer_uptodate(eb
) &&
344 btrfs_header_generation(eb
) == parent_transid
) {
348 btrfs_err_rl(eb
->fs_info
,
349 "parent transid verify failed on %llu wanted %llu found %llu",
351 parent_transid
, btrfs_header_generation(eb
));
355 * Things reading via commit roots that don't have normal protection,
356 * like send, can have a really old block in cache that may point at a
357 * block that has been freed and re-allocated. So don't clear uptodate
358 * if we find an eb that is under IO (dirty/writeback) because we could
359 * end up reading in the stale data and then writing it back out and
360 * making everybody very sad.
362 if (!extent_buffer_under_io(eb
))
363 clear_extent_buffer_uptodate(eb
);
365 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
368 btrfs_tree_read_unlock_blocking(eb
);
373 * Return 0 if the superblock checksum type matches the checksum value of that
374 * algorithm. Pass the raw disk superblock data.
376 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
379 struct btrfs_super_block
*disk_sb
=
380 (struct btrfs_super_block
*)raw_disk_sb
;
381 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
384 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
386 char result
[sizeof(crc
)];
389 * The super_block structure does not span the whole
390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
391 * is filled with zeros and is included in the checksum.
393 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
394 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
395 btrfs_csum_final(crc
, result
);
397 if (memcmp(raw_disk_sb
, result
, sizeof(result
)))
401 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
402 btrfs_err(fs_info
, "unsupported checksum algorithm %u",
410 static int verify_level_key(struct btrfs_fs_info
*fs_info
,
411 struct extent_buffer
*eb
, int level
,
412 struct btrfs_key
*first_key
, u64 parent_transid
)
415 struct btrfs_key found_key
;
418 found_level
= btrfs_header_level(eb
);
419 if (found_level
!= level
) {
420 #ifdef CONFIG_BTRFS_DEBUG
423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424 eb
->start
, level
, found_level
);
433 * For live tree block (new tree blocks in current transaction),
434 * we need proper lock context to avoid race, which is impossible here.
435 * So we only checks tree blocks which is read from disk, whose
436 * generation <= fs_info->last_trans_committed.
438 if (btrfs_header_generation(eb
) > fs_info
->last_trans_committed
)
441 btrfs_node_key_to_cpu(eb
, &found_key
, 0);
443 btrfs_item_key_to_cpu(eb
, &found_key
, 0);
444 ret
= btrfs_comp_cpu_keys(first_key
, &found_key
);
446 #ifdef CONFIG_BTRFS_DEBUG
450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451 eb
->start
, parent_transid
, first_key
->objectid
,
452 first_key
->type
, first_key
->offset
,
453 found_key
.objectid
, found_key
.type
,
461 * helper to read a given tree block, doing retries as required when
462 * the checksums don't match and we have alternate mirrors to try.
464 * @parent_transid: expected transid, skip check if 0
465 * @level: expected level, mandatory check
466 * @first_key: expected key of first slot, skip check if NULL
468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info
*fs_info
,
469 struct extent_buffer
*eb
,
470 u64 parent_transid
, int level
,
471 struct btrfs_key
*first_key
)
473 struct extent_io_tree
*io_tree
;
478 int failed_mirror
= 0;
480 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
482 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
483 ret
= read_extent_buffer_pages(io_tree
, eb
, WAIT_COMPLETE
,
486 if (verify_parent_transid(io_tree
, eb
,
489 else if (verify_level_key(fs_info
, eb
, level
,
490 first_key
, parent_transid
))
496 num_copies
= btrfs_num_copies(fs_info
,
501 if (!failed_mirror
) {
503 failed_mirror
= eb
->read_mirror
;
507 if (mirror_num
== failed_mirror
)
510 if (mirror_num
> num_copies
)
514 if (failed
&& !ret
&& failed_mirror
)
515 repair_eb_io_failure(fs_info
, eb
, failed_mirror
);
521 * checksum a dirty tree block before IO. This has extra checks to make sure
522 * we only fill in the checksum field in the first page of a multi-page block
525 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
527 u64 start
= page_offset(page
);
529 struct extent_buffer
*eb
;
531 eb
= (struct extent_buffer
*)page
->private;
532 if (page
!= eb
->pages
[0])
535 found_start
= btrfs_header_bytenr(eb
);
537 * Please do not consolidate these warnings into a single if.
538 * It is useful to know what went wrong.
540 if (WARN_ON(found_start
!= start
))
542 if (WARN_ON(!PageUptodate(page
)))
545 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
546 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
548 return csum_tree_block(fs_info
, eb
, 0);
551 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
552 struct extent_buffer
*eb
)
554 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
555 u8 fsid
[BTRFS_FSID_SIZE
];
558 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
560 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
564 fs_devices
= fs_devices
->seed
;
569 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
570 u64 phy_offset
, struct page
*page
,
571 u64 start
, u64 end
, int mirror
)
575 struct extent_buffer
*eb
;
576 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
577 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
584 eb
= (struct extent_buffer
*)page
->private;
586 /* the pending IO might have been the only thing that kept this buffer
587 * in memory. Make sure we have a ref for all this other checks
589 extent_buffer_get(eb
);
591 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
595 eb
->read_mirror
= mirror
;
596 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
601 found_start
= btrfs_header_bytenr(eb
);
602 if (found_start
!= eb
->start
) {
603 btrfs_err_rl(fs_info
, "bad tree block start, want %llu have %llu",
604 eb
->start
, found_start
);
608 if (check_tree_block_fsid(fs_info
, eb
)) {
609 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
614 found_level
= btrfs_header_level(eb
);
615 if (found_level
>= BTRFS_MAX_LEVEL
) {
616 btrfs_err(fs_info
, "bad tree block level %d on %llu",
617 (int)btrfs_header_level(eb
), eb
->start
);
622 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
625 ret
= csum_tree_block(fs_info
, eb
, 1);
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
634 if (found_level
== 0 && btrfs_check_leaf_full(fs_info
, eb
)) {
635 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
639 if (found_level
> 0 && btrfs_check_node(fs_info
, eb
))
643 set_extent_buffer_uptodate(eb
);
646 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
647 btree_readahead_hook(eb
, ret
);
651 * our io error hook is going to dec the io pages
652 * again, we have to make sure it has something
655 atomic_inc(&eb
->io_pages
);
656 clear_extent_buffer_uptodate(eb
);
658 free_extent_buffer(eb
);
663 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
665 struct extent_buffer
*eb
;
667 eb
= (struct extent_buffer
*)page
->private;
668 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
669 eb
->read_mirror
= failed_mirror
;
670 atomic_dec(&eb
->io_pages
);
671 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
672 btree_readahead_hook(eb
, -EIO
);
673 return -EIO
; /* we fixed nothing */
676 static void end_workqueue_bio(struct bio
*bio
)
678 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
679 struct btrfs_fs_info
*fs_info
;
680 struct btrfs_workqueue
*wq
;
681 btrfs_work_func_t func
;
683 fs_info
= end_io_wq
->info
;
684 end_io_wq
->status
= bio
->bi_status
;
686 if (bio_op(bio
) == REQ_OP_WRITE
) {
687 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
688 wq
= fs_info
->endio_meta_write_workers
;
689 func
= btrfs_endio_meta_write_helper
;
690 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
691 wq
= fs_info
->endio_freespace_worker
;
692 func
= btrfs_freespace_write_helper
;
693 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
694 wq
= fs_info
->endio_raid56_workers
;
695 func
= btrfs_endio_raid56_helper
;
697 wq
= fs_info
->endio_write_workers
;
698 func
= btrfs_endio_write_helper
;
701 if (unlikely(end_io_wq
->metadata
==
702 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
703 wq
= fs_info
->endio_repair_workers
;
704 func
= btrfs_endio_repair_helper
;
705 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
706 wq
= fs_info
->endio_raid56_workers
;
707 func
= btrfs_endio_raid56_helper
;
708 } else if (end_io_wq
->metadata
) {
709 wq
= fs_info
->endio_meta_workers
;
710 func
= btrfs_endio_meta_helper
;
712 wq
= fs_info
->endio_workers
;
713 func
= btrfs_endio_helper
;
717 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
718 btrfs_queue_work(wq
, &end_io_wq
->work
);
721 blk_status_t
btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
722 enum btrfs_wq_endio_type metadata
)
724 struct btrfs_end_io_wq
*end_io_wq
;
726 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
728 return BLK_STS_RESOURCE
;
730 end_io_wq
->private = bio
->bi_private
;
731 end_io_wq
->end_io
= bio
->bi_end_io
;
732 end_io_wq
->info
= info
;
733 end_io_wq
->status
= 0;
734 end_io_wq
->bio
= bio
;
735 end_io_wq
->metadata
= metadata
;
737 bio
->bi_private
= end_io_wq
;
738 bio
->bi_end_io
= end_workqueue_bio
;
742 static void run_one_async_start(struct btrfs_work
*work
)
744 struct async_submit_bio
*async
;
747 async
= container_of(work
, struct async_submit_bio
, work
);
748 ret
= async
->submit_bio_start(async
->private_data
, async
->bio
,
754 static void run_one_async_done(struct btrfs_work
*work
)
756 struct async_submit_bio
*async
;
758 async
= container_of(work
, struct async_submit_bio
, work
);
760 /* If an error occurred we just want to clean up the bio and move on */
762 async
->bio
->bi_status
= async
->status
;
763 bio_endio(async
->bio
);
767 btrfs_submit_bio_done(async
->private_data
, async
->bio
, async
->mirror_num
);
770 static void run_one_async_free(struct btrfs_work
*work
)
772 struct async_submit_bio
*async
;
774 async
= container_of(work
, struct async_submit_bio
, work
);
778 blk_status_t
btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
779 int mirror_num
, unsigned long bio_flags
,
780 u64 bio_offset
, void *private_data
,
781 extent_submit_bio_start_t
*submit_bio_start
)
783 struct async_submit_bio
*async
;
785 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
787 return BLK_STS_RESOURCE
;
789 async
->private_data
= private_data
;
791 async
->mirror_num
= mirror_num
;
792 async
->submit_bio_start
= submit_bio_start
;
794 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
795 run_one_async_done
, run_one_async_free
);
797 async
->bio_offset
= bio_offset
;
801 if (op_is_sync(bio
->bi_opf
))
802 btrfs_set_work_high_priority(&async
->work
);
804 btrfs_queue_work(fs_info
->workers
, &async
->work
);
808 static blk_status_t
btree_csum_one_bio(struct bio
*bio
)
810 struct bio_vec
*bvec
;
811 struct btrfs_root
*root
;
814 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
815 bio_for_each_segment_all(bvec
, bio
, i
) {
816 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
817 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
822 return errno_to_blk_status(ret
);
825 static blk_status_t
btree_submit_bio_start(void *private_data
, struct bio
*bio
,
829 * when we're called for a write, we're already in the async
830 * submission context. Just jump into btrfs_map_bio
832 return btree_csum_one_bio(bio
);
835 static int check_async_write(struct btrfs_inode
*bi
)
837 if (atomic_read(&bi
->sync_writers
))
840 if (static_cpu_has(X86_FEATURE_XMM4_2
))
846 static blk_status_t
btree_submit_bio_hook(void *private_data
, struct bio
*bio
,
847 int mirror_num
, unsigned long bio_flags
,
850 struct inode
*inode
= private_data
;
851 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
852 int async
= check_async_write(BTRFS_I(inode
));
855 if (bio_op(bio
) != REQ_OP_WRITE
) {
857 * called for a read, do the setup so that checksum validation
858 * can happen in the async kernel threads
860 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
861 BTRFS_WQ_ENDIO_METADATA
);
864 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
866 ret
= btree_csum_one_bio(bio
);
869 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
872 * kthread helpers are used to submit writes so that
873 * checksumming can happen in parallel across all CPUs
875 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, 0,
876 bio_offset
, private_data
,
877 btree_submit_bio_start
);
885 bio
->bi_status
= ret
;
890 #ifdef CONFIG_MIGRATION
891 static int btree_migratepage(struct address_space
*mapping
,
892 struct page
*newpage
, struct page
*page
,
893 enum migrate_mode mode
)
896 * we can't safely write a btree page from here,
897 * we haven't done the locking hook
902 * Buffers may be managed in a filesystem specific way.
903 * We must have no buffers or drop them.
905 if (page_has_private(page
) &&
906 !try_to_release_page(page
, GFP_KERNEL
))
908 return migrate_page(mapping
, newpage
, page
, mode
);
913 static int btree_writepages(struct address_space
*mapping
,
914 struct writeback_control
*wbc
)
916 struct btrfs_fs_info
*fs_info
;
919 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
921 if (wbc
->for_kupdate
)
924 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
925 /* this is a bit racy, but that's ok */
926 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
927 BTRFS_DIRTY_METADATA_THRESH
,
928 fs_info
->dirty_metadata_batch
);
932 return btree_write_cache_pages(mapping
, wbc
);
935 static int btree_readpage(struct file
*file
, struct page
*page
)
937 struct extent_io_tree
*tree
;
938 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
939 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
942 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
944 if (PageWriteback(page
) || PageDirty(page
))
947 return try_release_extent_buffer(page
);
950 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
953 struct extent_io_tree
*tree
;
954 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
955 extent_invalidatepage(tree
, page
, offset
);
956 btree_releasepage(page
, GFP_NOFS
);
957 if (PagePrivate(page
)) {
958 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
959 "page private not zero on page %llu",
960 (unsigned long long)page_offset(page
));
961 ClearPagePrivate(page
);
962 set_page_private(page
, 0);
967 static int btree_set_page_dirty(struct page
*page
)
970 struct extent_buffer
*eb
;
972 BUG_ON(!PagePrivate(page
));
973 eb
= (struct extent_buffer
*)page
->private;
975 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
976 BUG_ON(!atomic_read(&eb
->refs
));
977 btrfs_assert_tree_locked(eb
);
979 return __set_page_dirty_nobuffers(page
);
982 static const struct address_space_operations btree_aops
= {
983 .readpage
= btree_readpage
,
984 .writepages
= btree_writepages
,
985 .releasepage
= btree_releasepage
,
986 .invalidatepage
= btree_invalidatepage
,
987 #ifdef CONFIG_MIGRATION
988 .migratepage
= btree_migratepage
,
990 .set_page_dirty
= btree_set_page_dirty
,
993 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
995 struct extent_buffer
*buf
= NULL
;
996 struct inode
*btree_inode
= fs_info
->btree_inode
;
998 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1001 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1003 free_extent_buffer(buf
);
1006 int reada_tree_block_flagged(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1007 int mirror_num
, struct extent_buffer
**eb
)
1009 struct extent_buffer
*buf
= NULL
;
1010 struct inode
*btree_inode
= fs_info
->btree_inode
;
1011 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1014 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1018 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1020 ret
= read_extent_buffer_pages(io_tree
, buf
, WAIT_PAGE_LOCK
,
1023 free_extent_buffer(buf
);
1027 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1028 free_extent_buffer(buf
);
1030 } else if (extent_buffer_uptodate(buf
)) {
1033 free_extent_buffer(buf
);
1038 struct extent_buffer
*btrfs_find_create_tree_block(
1039 struct btrfs_fs_info
*fs_info
,
1042 if (btrfs_is_testing(fs_info
))
1043 return alloc_test_extent_buffer(fs_info
, bytenr
);
1044 return alloc_extent_buffer(fs_info
, bytenr
);
1048 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1050 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1051 buf
->start
+ buf
->len
- 1);
1054 void btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1056 filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1057 buf
->start
, buf
->start
+ buf
->len
- 1);
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1064 * @parent_transid: expected transid of this tree block, skip check if 0
1065 * @level: expected level, mandatory check
1066 * @first_key: expected key in slot 0, skip check if NULL
1068 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1069 u64 parent_transid
, int level
,
1070 struct btrfs_key
*first_key
)
1072 struct extent_buffer
*buf
= NULL
;
1075 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1079 ret
= btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
,
1082 free_extent_buffer(buf
);
1083 return ERR_PTR(ret
);
1089 void clean_tree_block(struct btrfs_fs_info
*fs_info
,
1090 struct extent_buffer
*buf
)
1092 if (btrfs_header_generation(buf
) ==
1093 fs_info
->running_transaction
->transid
) {
1094 btrfs_assert_tree_locked(buf
);
1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1097 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
1099 fs_info
->dirty_metadata_batch
);
1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1101 btrfs_set_lock_blocking(buf
);
1102 clear_extent_buffer_dirty(buf
);
1107 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1109 struct btrfs_subvolume_writers
*writers
;
1112 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1114 return ERR_PTR(-ENOMEM
);
1116 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_NOFS
);
1119 return ERR_PTR(ret
);
1122 init_waitqueue_head(&writers
->wait
);
1127 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1129 percpu_counter_destroy(&writers
->counter
);
1133 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1136 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1138 root
->commit_root
= NULL
;
1140 root
->orphan_cleanup_state
= 0;
1142 root
->last_trans
= 0;
1143 root
->highest_objectid
= 0;
1144 root
->nr_delalloc_inodes
= 0;
1145 root
->nr_ordered_extents
= 0;
1146 root
->inode_tree
= RB_ROOT
;
1147 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1148 root
->block_rsv
= NULL
;
1150 INIT_LIST_HEAD(&root
->dirty_list
);
1151 INIT_LIST_HEAD(&root
->root_list
);
1152 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1153 INIT_LIST_HEAD(&root
->delalloc_root
);
1154 INIT_LIST_HEAD(&root
->ordered_extents
);
1155 INIT_LIST_HEAD(&root
->ordered_root
);
1156 INIT_LIST_HEAD(&root
->logged_list
[0]);
1157 INIT_LIST_HEAD(&root
->logged_list
[1]);
1158 spin_lock_init(&root
->inode_lock
);
1159 spin_lock_init(&root
->delalloc_lock
);
1160 spin_lock_init(&root
->ordered_extent_lock
);
1161 spin_lock_init(&root
->accounting_lock
);
1162 spin_lock_init(&root
->log_extents_lock
[0]);
1163 spin_lock_init(&root
->log_extents_lock
[1]);
1164 spin_lock_init(&root
->qgroup_meta_rsv_lock
);
1165 mutex_init(&root
->objectid_mutex
);
1166 mutex_init(&root
->log_mutex
);
1167 mutex_init(&root
->ordered_extent_mutex
);
1168 mutex_init(&root
->delalloc_mutex
);
1169 init_waitqueue_head(&root
->log_writer_wait
);
1170 init_waitqueue_head(&root
->log_commit_wait
[0]);
1171 init_waitqueue_head(&root
->log_commit_wait
[1]);
1172 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1173 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1174 atomic_set(&root
->log_commit
[0], 0);
1175 atomic_set(&root
->log_commit
[1], 0);
1176 atomic_set(&root
->log_writers
, 0);
1177 atomic_set(&root
->log_batch
, 0);
1178 refcount_set(&root
->refs
, 1);
1179 atomic_set(&root
->will_be_snapshotted
, 0);
1180 atomic_set(&root
->snapshot_force_cow
, 0);
1181 root
->log_transid
= 0;
1182 root
->log_transid_committed
= -1;
1183 root
->last_log_commit
= 0;
1185 extent_io_tree_init(&root
->dirty_log_pages
, NULL
);
1187 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1188 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1189 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1191 root
->defrag_trans_start
= fs_info
->generation
;
1193 root
->defrag_trans_start
= 0;
1194 root
->root_key
.objectid
= objectid
;
1197 spin_lock_init(&root
->root_item_lock
);
1200 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1203 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1205 root
->fs_info
= fs_info
;
1209 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1210 /* Should only be used by the testing infrastructure */
1211 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1213 struct btrfs_root
*root
;
1216 return ERR_PTR(-EINVAL
);
1218 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1220 return ERR_PTR(-ENOMEM
);
1222 /* We don't use the stripesize in selftest, set it as sectorsize */
1223 __setup_root(root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1224 root
->alloc_bytenr
= 0;
1230 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1231 struct btrfs_fs_info
*fs_info
,
1234 struct extent_buffer
*leaf
;
1235 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1236 struct btrfs_root
*root
;
1237 struct btrfs_key key
;
1239 uuid_le uuid
= NULL_UUID_LE
;
1241 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1243 return ERR_PTR(-ENOMEM
);
1245 __setup_root(root
, fs_info
, objectid
);
1246 root
->root_key
.objectid
= objectid
;
1247 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1248 root
->root_key
.offset
= 0;
1250 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1252 ret
= PTR_ERR(leaf
);
1258 btrfs_mark_buffer_dirty(leaf
);
1260 root
->commit_root
= btrfs_root_node(root
);
1261 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1263 root
->root_item
.flags
= 0;
1264 root
->root_item
.byte_limit
= 0;
1265 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1266 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1267 btrfs_set_root_level(&root
->root_item
, 0);
1268 btrfs_set_root_refs(&root
->root_item
, 1);
1269 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1270 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1271 btrfs_set_root_dirid(&root
->root_item
, 0);
1272 if (is_fstree(objectid
))
1274 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1275 root
->root_item
.drop_level
= 0;
1277 key
.objectid
= objectid
;
1278 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1280 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1284 btrfs_tree_unlock(leaf
);
1290 btrfs_tree_unlock(leaf
);
1291 free_extent_buffer(root
->commit_root
);
1292 free_extent_buffer(leaf
);
1296 return ERR_PTR(ret
);
1299 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1300 struct btrfs_fs_info
*fs_info
)
1302 struct btrfs_root
*root
;
1303 struct extent_buffer
*leaf
;
1305 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1307 return ERR_PTR(-ENOMEM
);
1309 __setup_root(root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1311 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1312 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1313 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1316 * DON'T set REF_COWS for log trees
1318 * log trees do not get reference counted because they go away
1319 * before a real commit is actually done. They do store pointers
1320 * to file data extents, and those reference counts still get
1321 * updated (along with back refs to the log tree).
1324 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1328 return ERR_CAST(leaf
);
1333 btrfs_mark_buffer_dirty(root
->node
);
1334 btrfs_tree_unlock(root
->node
);
1338 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1339 struct btrfs_fs_info
*fs_info
)
1341 struct btrfs_root
*log_root
;
1343 log_root
= alloc_log_tree(trans
, fs_info
);
1344 if (IS_ERR(log_root
))
1345 return PTR_ERR(log_root
);
1346 WARN_ON(fs_info
->log_root_tree
);
1347 fs_info
->log_root_tree
= log_root
;
1351 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1352 struct btrfs_root
*root
)
1354 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1355 struct btrfs_root
*log_root
;
1356 struct btrfs_inode_item
*inode_item
;
1358 log_root
= alloc_log_tree(trans
, fs_info
);
1359 if (IS_ERR(log_root
))
1360 return PTR_ERR(log_root
);
1362 log_root
->last_trans
= trans
->transid
;
1363 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1365 inode_item
= &log_root
->root_item
.inode
;
1366 btrfs_set_stack_inode_generation(inode_item
, 1);
1367 btrfs_set_stack_inode_size(inode_item
, 3);
1368 btrfs_set_stack_inode_nlink(inode_item
, 1);
1369 btrfs_set_stack_inode_nbytes(inode_item
,
1371 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1373 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1375 WARN_ON(root
->log_root
);
1376 root
->log_root
= log_root
;
1377 root
->log_transid
= 0;
1378 root
->log_transid_committed
= -1;
1379 root
->last_log_commit
= 0;
1383 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1384 struct btrfs_key
*key
)
1386 struct btrfs_root
*root
;
1387 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1388 struct btrfs_path
*path
;
1393 path
= btrfs_alloc_path();
1395 return ERR_PTR(-ENOMEM
);
1397 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1403 __setup_root(root
, fs_info
, key
->objectid
);
1405 ret
= btrfs_find_root(tree_root
, key
, path
,
1406 &root
->root_item
, &root
->root_key
);
1413 generation
= btrfs_root_generation(&root
->root_item
);
1414 level
= btrfs_root_level(&root
->root_item
);
1415 root
->node
= read_tree_block(fs_info
,
1416 btrfs_root_bytenr(&root
->root_item
),
1417 generation
, level
, NULL
);
1418 if (IS_ERR(root
->node
)) {
1419 ret
= PTR_ERR(root
->node
);
1421 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1423 free_extent_buffer(root
->node
);
1426 root
->commit_root
= btrfs_root_node(root
);
1428 btrfs_free_path(path
);
1434 root
= ERR_PTR(ret
);
1438 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1439 struct btrfs_key
*location
)
1441 struct btrfs_root
*root
;
1443 root
= btrfs_read_tree_root(tree_root
, location
);
1447 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1448 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1449 btrfs_check_and_init_root_item(&root
->root_item
);
1455 int btrfs_init_fs_root(struct btrfs_root
*root
)
1458 struct btrfs_subvolume_writers
*writers
;
1460 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1461 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1463 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1468 writers
= btrfs_alloc_subvolume_writers();
1469 if (IS_ERR(writers
)) {
1470 ret
= PTR_ERR(writers
);
1473 root
->subv_writers
= writers
;
1475 btrfs_init_free_ino_ctl(root
);
1476 spin_lock_init(&root
->ino_cache_lock
);
1477 init_waitqueue_head(&root
->ino_cache_wait
);
1479 ret
= get_anon_bdev(&root
->anon_dev
);
1483 mutex_lock(&root
->objectid_mutex
);
1484 ret
= btrfs_find_highest_objectid(root
,
1485 &root
->highest_objectid
);
1487 mutex_unlock(&root
->objectid_mutex
);
1491 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1493 mutex_unlock(&root
->objectid_mutex
);
1497 /* The caller is responsible to call btrfs_free_fs_root */
1501 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1504 struct btrfs_root
*root
;
1506 spin_lock(&fs_info
->fs_roots_radix_lock
);
1507 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1508 (unsigned long)root_id
);
1509 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1513 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1514 struct btrfs_root
*root
)
1518 ret
= radix_tree_preload(GFP_NOFS
);
1522 spin_lock(&fs_info
->fs_roots_radix_lock
);
1523 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1524 (unsigned long)root
->root_key
.objectid
,
1527 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1528 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1529 radix_tree_preload_end();
1534 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1535 struct btrfs_key
*location
,
1538 struct btrfs_root
*root
;
1539 struct btrfs_path
*path
;
1540 struct btrfs_key key
;
1543 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1544 return fs_info
->tree_root
;
1545 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1546 return fs_info
->extent_root
;
1547 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1548 return fs_info
->chunk_root
;
1549 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1550 return fs_info
->dev_root
;
1551 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1552 return fs_info
->csum_root
;
1553 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1554 return fs_info
->quota_root
? fs_info
->quota_root
:
1556 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1557 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1559 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1560 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1563 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1565 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1566 return ERR_PTR(-ENOENT
);
1570 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1574 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1579 ret
= btrfs_init_fs_root(root
);
1583 path
= btrfs_alloc_path();
1588 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1589 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1590 key
.offset
= location
->objectid
;
1592 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1593 btrfs_free_path(path
);
1597 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1599 ret
= btrfs_insert_fs_root(fs_info
, root
);
1601 if (ret
== -EEXIST
) {
1602 btrfs_free_fs_root(root
);
1609 btrfs_free_fs_root(root
);
1610 return ERR_PTR(ret
);
1613 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1615 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1617 struct btrfs_device
*device
;
1618 struct backing_dev_info
*bdi
;
1621 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1624 bdi
= device
->bdev
->bd_bdi
;
1625 if (bdi_congested(bdi
, bdi_bits
)) {
1635 * called by the kthread helper functions to finally call the bio end_io
1636 * functions. This is where read checksum verification actually happens
1638 static void end_workqueue_fn(struct btrfs_work
*work
)
1641 struct btrfs_end_io_wq
*end_io_wq
;
1643 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1644 bio
= end_io_wq
->bio
;
1646 bio
->bi_status
= end_io_wq
->status
;
1647 bio
->bi_private
= end_io_wq
->private;
1648 bio
->bi_end_io
= end_io_wq
->end_io
;
1649 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1653 static int cleaner_kthread(void *arg
)
1655 struct btrfs_root
*root
= arg
;
1656 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1662 /* Make the cleaner go to sleep early. */
1663 if (btrfs_need_cleaner_sleep(fs_info
))
1667 * Do not do anything if we might cause open_ctree() to block
1668 * before we have finished mounting the filesystem.
1670 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1673 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1677 * Avoid the problem that we change the status of the fs
1678 * during the above check and trylock.
1680 if (btrfs_need_cleaner_sleep(fs_info
)) {
1681 mutex_unlock(&fs_info
->cleaner_mutex
);
1685 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
1686 btrfs_run_delayed_iputs(fs_info
);
1687 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
1689 again
= btrfs_clean_one_deleted_snapshot(root
);
1690 mutex_unlock(&fs_info
->cleaner_mutex
);
1693 * The defragger has dealt with the R/O remount and umount,
1694 * needn't do anything special here.
1696 btrfs_run_defrag_inodes(fs_info
);
1699 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1700 * with relocation (btrfs_relocate_chunk) and relocation
1701 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1702 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1703 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1704 * unused block groups.
1706 btrfs_delete_unused_bgs(fs_info
);
1708 if (kthread_should_park())
1710 if (kthread_should_stop())
1713 set_current_state(TASK_INTERRUPTIBLE
);
1715 __set_current_state(TASK_RUNNING
);
1720 static int transaction_kthread(void *arg
)
1722 struct btrfs_root
*root
= arg
;
1723 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1724 struct btrfs_trans_handle
*trans
;
1725 struct btrfs_transaction
*cur
;
1728 unsigned long delay
;
1732 cannot_commit
= false;
1733 delay
= HZ
* fs_info
->commit_interval
;
1734 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1736 spin_lock(&fs_info
->trans_lock
);
1737 cur
= fs_info
->running_transaction
;
1739 spin_unlock(&fs_info
->trans_lock
);
1743 now
= ktime_get_seconds();
1744 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1745 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
) &&
1746 (now
< cur
->start_time
||
1747 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1748 spin_unlock(&fs_info
->trans_lock
);
1752 transid
= cur
->transid
;
1753 spin_unlock(&fs_info
->trans_lock
);
1755 /* If the file system is aborted, this will always fail. */
1756 trans
= btrfs_attach_transaction(root
);
1757 if (IS_ERR(trans
)) {
1758 if (PTR_ERR(trans
) != -ENOENT
)
1759 cannot_commit
= true;
1762 if (transid
== trans
->transid
) {
1763 btrfs_commit_transaction(trans
);
1765 btrfs_end_transaction(trans
);
1768 wake_up_process(fs_info
->cleaner_kthread
);
1769 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1771 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1772 &fs_info
->fs_state
)))
1773 btrfs_cleanup_transaction(fs_info
);
1774 if (!kthread_should_stop() &&
1775 (!btrfs_transaction_blocked(fs_info
) ||
1777 schedule_timeout_interruptible(delay
);
1778 } while (!kthread_should_stop());
1783 * this will find the highest generation in the array of
1784 * root backups. The index of the highest array is returned,
1785 * or -1 if we can't find anything.
1787 * We check to make sure the array is valid by comparing the
1788 * generation of the latest root in the array with the generation
1789 * in the super block. If they don't match we pitch it.
1791 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1794 int newest_index
= -1;
1795 struct btrfs_root_backup
*root_backup
;
1798 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1799 root_backup
= info
->super_copy
->super_roots
+ i
;
1800 cur
= btrfs_backup_tree_root_gen(root_backup
);
1801 if (cur
== newest_gen
)
1805 /* check to see if we actually wrapped around */
1806 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1807 root_backup
= info
->super_copy
->super_roots
;
1808 cur
= btrfs_backup_tree_root_gen(root_backup
);
1809 if (cur
== newest_gen
)
1812 return newest_index
;
1817 * find the oldest backup so we know where to store new entries
1818 * in the backup array. This will set the backup_root_index
1819 * field in the fs_info struct
1821 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1824 int newest_index
= -1;
1826 newest_index
= find_newest_super_backup(info
, newest_gen
);
1827 /* if there was garbage in there, just move along */
1828 if (newest_index
== -1) {
1829 info
->backup_root_index
= 0;
1831 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1836 * copy all the root pointers into the super backup array.
1837 * this will bump the backup pointer by one when it is
1840 static void backup_super_roots(struct btrfs_fs_info
*info
)
1843 struct btrfs_root_backup
*root_backup
;
1846 next_backup
= info
->backup_root_index
;
1847 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1848 BTRFS_NUM_BACKUP_ROOTS
;
1851 * just overwrite the last backup if we're at the same generation
1852 * this happens only at umount
1854 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1855 if (btrfs_backup_tree_root_gen(root_backup
) ==
1856 btrfs_header_generation(info
->tree_root
->node
))
1857 next_backup
= last_backup
;
1859 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1862 * make sure all of our padding and empty slots get zero filled
1863 * regardless of which ones we use today
1865 memset(root_backup
, 0, sizeof(*root_backup
));
1867 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1869 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1870 btrfs_set_backup_tree_root_gen(root_backup
,
1871 btrfs_header_generation(info
->tree_root
->node
));
1873 btrfs_set_backup_tree_root_level(root_backup
,
1874 btrfs_header_level(info
->tree_root
->node
));
1876 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1877 btrfs_set_backup_chunk_root_gen(root_backup
,
1878 btrfs_header_generation(info
->chunk_root
->node
));
1879 btrfs_set_backup_chunk_root_level(root_backup
,
1880 btrfs_header_level(info
->chunk_root
->node
));
1882 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1883 btrfs_set_backup_extent_root_gen(root_backup
,
1884 btrfs_header_generation(info
->extent_root
->node
));
1885 btrfs_set_backup_extent_root_level(root_backup
,
1886 btrfs_header_level(info
->extent_root
->node
));
1889 * we might commit during log recovery, which happens before we set
1890 * the fs_root. Make sure it is valid before we fill it in.
1892 if (info
->fs_root
&& info
->fs_root
->node
) {
1893 btrfs_set_backup_fs_root(root_backup
,
1894 info
->fs_root
->node
->start
);
1895 btrfs_set_backup_fs_root_gen(root_backup
,
1896 btrfs_header_generation(info
->fs_root
->node
));
1897 btrfs_set_backup_fs_root_level(root_backup
,
1898 btrfs_header_level(info
->fs_root
->node
));
1901 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1902 btrfs_set_backup_dev_root_gen(root_backup
,
1903 btrfs_header_generation(info
->dev_root
->node
));
1904 btrfs_set_backup_dev_root_level(root_backup
,
1905 btrfs_header_level(info
->dev_root
->node
));
1907 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1908 btrfs_set_backup_csum_root_gen(root_backup
,
1909 btrfs_header_generation(info
->csum_root
->node
));
1910 btrfs_set_backup_csum_root_level(root_backup
,
1911 btrfs_header_level(info
->csum_root
->node
));
1913 btrfs_set_backup_total_bytes(root_backup
,
1914 btrfs_super_total_bytes(info
->super_copy
));
1915 btrfs_set_backup_bytes_used(root_backup
,
1916 btrfs_super_bytes_used(info
->super_copy
));
1917 btrfs_set_backup_num_devices(root_backup
,
1918 btrfs_super_num_devices(info
->super_copy
));
1921 * if we don't copy this out to the super_copy, it won't get remembered
1922 * for the next commit
1924 memcpy(&info
->super_copy
->super_roots
,
1925 &info
->super_for_commit
->super_roots
,
1926 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1930 * this copies info out of the root backup array and back into
1931 * the in-memory super block. It is meant to help iterate through
1932 * the array, so you send it the number of backups you've already
1933 * tried and the last backup index you used.
1935 * this returns -1 when it has tried all the backups
1937 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1938 struct btrfs_super_block
*super
,
1939 int *num_backups_tried
, int *backup_index
)
1941 struct btrfs_root_backup
*root_backup
;
1942 int newest
= *backup_index
;
1944 if (*num_backups_tried
== 0) {
1945 u64 gen
= btrfs_super_generation(super
);
1947 newest
= find_newest_super_backup(info
, gen
);
1951 *backup_index
= newest
;
1952 *num_backups_tried
= 1;
1953 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1954 /* we've tried all the backups, all done */
1957 /* jump to the next oldest backup */
1958 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1959 BTRFS_NUM_BACKUP_ROOTS
;
1960 *backup_index
= newest
;
1961 *num_backups_tried
+= 1;
1963 root_backup
= super
->super_roots
+ newest
;
1965 btrfs_set_super_generation(super
,
1966 btrfs_backup_tree_root_gen(root_backup
));
1967 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1968 btrfs_set_super_root_level(super
,
1969 btrfs_backup_tree_root_level(root_backup
));
1970 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1973 * fixme: the total bytes and num_devices need to match or we should
1976 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1977 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1981 /* helper to cleanup workers */
1982 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1984 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
1985 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
1986 btrfs_destroy_workqueue(fs_info
->workers
);
1987 btrfs_destroy_workqueue(fs_info
->endio_workers
);
1988 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
1989 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
1990 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
1991 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
1992 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
1993 btrfs_destroy_workqueue(fs_info
->submit_workers
);
1994 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
1995 btrfs_destroy_workqueue(fs_info
->caching_workers
);
1996 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
1997 btrfs_destroy_workqueue(fs_info
->flush_workers
);
1998 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
1999 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2001 * Now that all other work queues are destroyed, we can safely destroy
2002 * the queues used for metadata I/O, since tasks from those other work
2003 * queues can do metadata I/O operations.
2005 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2006 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2009 static void free_root_extent_buffers(struct btrfs_root
*root
)
2012 free_extent_buffer(root
->node
);
2013 free_extent_buffer(root
->commit_root
);
2015 root
->commit_root
= NULL
;
2019 /* helper to cleanup tree roots */
2020 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2022 free_root_extent_buffers(info
->tree_root
);
2024 free_root_extent_buffers(info
->dev_root
);
2025 free_root_extent_buffers(info
->extent_root
);
2026 free_root_extent_buffers(info
->csum_root
);
2027 free_root_extent_buffers(info
->quota_root
);
2028 free_root_extent_buffers(info
->uuid_root
);
2030 free_root_extent_buffers(info
->chunk_root
);
2031 free_root_extent_buffers(info
->free_space_root
);
2034 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2037 struct btrfs_root
*gang
[8];
2040 while (!list_empty(&fs_info
->dead_roots
)) {
2041 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2042 struct btrfs_root
, root_list
);
2043 list_del(&gang
[0]->root_list
);
2045 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2046 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2048 free_extent_buffer(gang
[0]->node
);
2049 free_extent_buffer(gang
[0]->commit_root
);
2050 btrfs_put_fs_root(gang
[0]);
2055 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2060 for (i
= 0; i
< ret
; i
++)
2061 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2064 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2065 btrfs_free_log_root_tree(NULL
, fs_info
);
2066 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
2070 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2072 mutex_init(&fs_info
->scrub_lock
);
2073 atomic_set(&fs_info
->scrubs_running
, 0);
2074 atomic_set(&fs_info
->scrub_pause_req
, 0);
2075 atomic_set(&fs_info
->scrubs_paused
, 0);
2076 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2077 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2078 fs_info
->scrub_workers_refcnt
= 0;
2081 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2083 spin_lock_init(&fs_info
->balance_lock
);
2084 mutex_init(&fs_info
->balance_mutex
);
2085 atomic_set(&fs_info
->balance_pause_req
, 0);
2086 atomic_set(&fs_info
->balance_cancel_req
, 0);
2087 fs_info
->balance_ctl
= NULL
;
2088 init_waitqueue_head(&fs_info
->balance_wait_q
);
2091 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2093 struct inode
*inode
= fs_info
->btree_inode
;
2095 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2096 set_nlink(inode
, 1);
2098 * we set the i_size on the btree inode to the max possible int.
2099 * the real end of the address space is determined by all of
2100 * the devices in the system
2102 inode
->i_size
= OFFSET_MAX
;
2103 inode
->i_mapping
->a_ops
= &btree_aops
;
2105 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2106 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
, inode
);
2107 BTRFS_I(inode
)->io_tree
.track_uptodate
= 0;
2108 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2110 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2112 BTRFS_I(inode
)->root
= fs_info
->tree_root
;
2113 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2114 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2115 btrfs_insert_inode_hash(inode
);
2118 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2120 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2121 rwlock_init(&fs_info
->dev_replace
.lock
);
2122 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2123 init_waitqueue_head(&fs_info
->dev_replace
.replace_wait
);
2124 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2127 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2129 spin_lock_init(&fs_info
->qgroup_lock
);
2130 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2131 fs_info
->qgroup_tree
= RB_ROOT
;
2132 fs_info
->qgroup_op_tree
= RB_ROOT
;
2133 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2134 fs_info
->qgroup_seq
= 1;
2135 fs_info
->qgroup_ulist
= NULL
;
2136 fs_info
->qgroup_rescan_running
= false;
2137 mutex_init(&fs_info
->qgroup_rescan_lock
);
2140 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2141 struct btrfs_fs_devices
*fs_devices
)
2143 u32 max_active
= fs_info
->thread_pool_size
;
2144 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2147 btrfs_alloc_workqueue(fs_info
, "worker",
2148 flags
| WQ_HIGHPRI
, max_active
, 16);
2150 fs_info
->delalloc_workers
=
2151 btrfs_alloc_workqueue(fs_info
, "delalloc",
2152 flags
, max_active
, 2);
2154 fs_info
->flush_workers
=
2155 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2156 flags
, max_active
, 0);
2158 fs_info
->caching_workers
=
2159 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2162 * a higher idle thresh on the submit workers makes it much more
2163 * likely that bios will be send down in a sane order to the
2166 fs_info
->submit_workers
=
2167 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2168 min_t(u64
, fs_devices
->num_devices
,
2171 fs_info
->fixup_workers
=
2172 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2175 * endios are largely parallel and should have a very
2178 fs_info
->endio_workers
=
2179 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2180 fs_info
->endio_meta_workers
=
2181 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2183 fs_info
->endio_meta_write_workers
=
2184 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2186 fs_info
->endio_raid56_workers
=
2187 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2189 fs_info
->endio_repair_workers
=
2190 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2191 fs_info
->rmw_workers
=
2192 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2193 fs_info
->endio_write_workers
=
2194 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2196 fs_info
->endio_freespace_worker
=
2197 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2199 fs_info
->delayed_workers
=
2200 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2202 fs_info
->readahead_workers
=
2203 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2205 fs_info
->qgroup_rescan_workers
=
2206 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2207 fs_info
->extent_workers
=
2208 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2209 min_t(u64
, fs_devices
->num_devices
,
2212 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2213 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2214 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2215 fs_info
->endio_meta_write_workers
&&
2216 fs_info
->endio_repair_workers
&&
2217 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2218 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2219 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2220 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2221 fs_info
->extent_workers
&&
2222 fs_info
->qgroup_rescan_workers
)) {
2229 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2230 struct btrfs_fs_devices
*fs_devices
)
2233 struct btrfs_root
*log_tree_root
;
2234 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2235 u64 bytenr
= btrfs_super_log_root(disk_super
);
2236 int level
= btrfs_super_log_root_level(disk_super
);
2238 if (fs_devices
->rw_devices
== 0) {
2239 btrfs_warn(fs_info
, "log replay required on RO media");
2243 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2247 __setup_root(log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2249 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2250 fs_info
->generation
+ 1,
2252 if (IS_ERR(log_tree_root
->node
)) {
2253 btrfs_warn(fs_info
, "failed to read log tree");
2254 ret
= PTR_ERR(log_tree_root
->node
);
2255 kfree(log_tree_root
);
2257 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2258 btrfs_err(fs_info
, "failed to read log tree");
2259 free_extent_buffer(log_tree_root
->node
);
2260 kfree(log_tree_root
);
2263 /* returns with log_tree_root freed on success */
2264 ret
= btrfs_recover_log_trees(log_tree_root
);
2266 btrfs_handle_fs_error(fs_info
, ret
,
2267 "Failed to recover log tree");
2268 free_extent_buffer(log_tree_root
->node
);
2269 kfree(log_tree_root
);
2273 if (sb_rdonly(fs_info
->sb
)) {
2274 ret
= btrfs_commit_super(fs_info
);
2282 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2284 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2285 struct btrfs_root
*root
;
2286 struct btrfs_key location
;
2289 BUG_ON(!fs_info
->tree_root
);
2291 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2292 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2293 location
.offset
= 0;
2295 root
= btrfs_read_tree_root(tree_root
, &location
);
2297 ret
= PTR_ERR(root
);
2300 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2301 fs_info
->extent_root
= root
;
2303 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2304 root
= btrfs_read_tree_root(tree_root
, &location
);
2306 ret
= PTR_ERR(root
);
2309 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2310 fs_info
->dev_root
= root
;
2311 btrfs_init_devices_late(fs_info
);
2313 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2314 root
= btrfs_read_tree_root(tree_root
, &location
);
2316 ret
= PTR_ERR(root
);
2319 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2320 fs_info
->csum_root
= root
;
2322 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2323 root
= btrfs_read_tree_root(tree_root
, &location
);
2324 if (!IS_ERR(root
)) {
2325 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2326 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2327 fs_info
->quota_root
= root
;
2330 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2331 root
= btrfs_read_tree_root(tree_root
, &location
);
2333 ret
= PTR_ERR(root
);
2337 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2338 fs_info
->uuid_root
= root
;
2341 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2342 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2343 root
= btrfs_read_tree_root(tree_root
, &location
);
2345 ret
= PTR_ERR(root
);
2348 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2349 fs_info
->free_space_root
= root
;
2354 btrfs_warn(fs_info
, "failed to read root (objectid=%llu): %d",
2355 location
.objectid
, ret
);
2360 * Real super block validation
2361 * NOTE: super csum type and incompat features will not be checked here.
2363 * @sb: super block to check
2364 * @mirror_num: the super block number to check its bytenr:
2365 * 0 the primary (1st) sb
2366 * 1, 2 2nd and 3rd backup copy
2367 * -1 skip bytenr check
2369 static int validate_super(struct btrfs_fs_info
*fs_info
,
2370 struct btrfs_super_block
*sb
, int mirror_num
)
2372 u64 nodesize
= btrfs_super_nodesize(sb
);
2373 u64 sectorsize
= btrfs_super_sectorsize(sb
);
2376 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
2377 btrfs_err(fs_info
, "no valid FS found");
2380 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
2381 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
2382 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
2385 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2386 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
2387 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
2390 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2391 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
2392 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
2395 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2396 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
2397 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
2402 * Check sectorsize and nodesize first, other check will need it.
2403 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2405 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
2406 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2407 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
2410 /* Only PAGE SIZE is supported yet */
2411 if (sectorsize
!= PAGE_SIZE
) {
2413 "sectorsize %llu not supported yet, only support %lu",
2414 sectorsize
, PAGE_SIZE
);
2417 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
2418 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2419 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
2422 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
2423 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
2424 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
2428 /* Root alignment check */
2429 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
2430 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
2431 btrfs_super_root(sb
));
2434 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
2435 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
2436 btrfs_super_chunk_root(sb
));
2439 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
2440 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
2441 btrfs_super_log_root(sb
));
2445 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_FSID_SIZE
) != 0) {
2447 "dev_item UUID does not match fsid: %pU != %pU",
2448 fs_info
->fsid
, sb
->dev_item
.fsid
);
2453 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2456 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
2457 btrfs_err(fs_info
, "bytes_used is too small %llu",
2458 btrfs_super_bytes_used(sb
));
2461 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
2462 btrfs_err(fs_info
, "invalid stripesize %u",
2463 btrfs_super_stripesize(sb
));
2466 if (btrfs_super_num_devices(sb
) > (1UL << 31))
2467 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
2468 btrfs_super_num_devices(sb
));
2469 if (btrfs_super_num_devices(sb
) == 0) {
2470 btrfs_err(fs_info
, "number of devices is 0");
2474 if (mirror_num
>= 0 &&
2475 btrfs_super_bytenr(sb
) != btrfs_sb_offset(mirror_num
)) {
2476 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
2477 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
2482 * Obvious sys_chunk_array corruptions, it must hold at least one key
2485 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
2486 btrfs_err(fs_info
, "system chunk array too big %u > %u",
2487 btrfs_super_sys_array_size(sb
),
2488 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
2491 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
2492 + sizeof(struct btrfs_chunk
)) {
2493 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
2494 btrfs_super_sys_array_size(sb
),
2495 sizeof(struct btrfs_disk_key
)
2496 + sizeof(struct btrfs_chunk
));
2501 * The generation is a global counter, we'll trust it more than the others
2502 * but it's still possible that it's the one that's wrong.
2504 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
2506 "suspicious: generation < chunk_root_generation: %llu < %llu",
2507 btrfs_super_generation(sb
),
2508 btrfs_super_chunk_root_generation(sb
));
2509 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
2510 && btrfs_super_cache_generation(sb
) != (u64
)-1)
2512 "suspicious: generation < cache_generation: %llu < %llu",
2513 btrfs_super_generation(sb
),
2514 btrfs_super_cache_generation(sb
));
2520 * Validation of super block at mount time.
2521 * Some checks already done early at mount time, like csum type and incompat
2522 * flags will be skipped.
2524 static int btrfs_validate_mount_super(struct btrfs_fs_info
*fs_info
)
2526 return validate_super(fs_info
, fs_info
->super_copy
, 0);
2530 * Validation of super block at write time.
2531 * Some checks like bytenr check will be skipped as their values will be
2533 * Extra checks like csum type and incompat flags will be done here.
2535 static int btrfs_validate_write_super(struct btrfs_fs_info
*fs_info
,
2536 struct btrfs_super_block
*sb
)
2540 ret
= validate_super(fs_info
, sb
, -1);
2543 if (btrfs_super_csum_type(sb
) != BTRFS_CSUM_TYPE_CRC32
) {
2545 btrfs_err(fs_info
, "invalid csum type, has %u want %u",
2546 btrfs_super_csum_type(sb
), BTRFS_CSUM_TYPE_CRC32
);
2549 if (btrfs_super_incompat_flags(sb
) & ~BTRFS_FEATURE_INCOMPAT_SUPP
) {
2552 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2553 btrfs_super_incompat_flags(sb
),
2554 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP
);
2560 "super block corruption detected before writing it to disk");
2564 int open_ctree(struct super_block
*sb
,
2565 struct btrfs_fs_devices
*fs_devices
,
2573 struct btrfs_key location
;
2574 struct buffer_head
*bh
;
2575 struct btrfs_super_block
*disk_super
;
2576 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2577 struct btrfs_root
*tree_root
;
2578 struct btrfs_root
*chunk_root
;
2581 int num_backups_tried
= 0;
2582 int backup_index
= 0;
2583 int clear_free_space_tree
= 0;
2586 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2587 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2588 if (!tree_root
|| !chunk_root
) {
2593 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2599 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2604 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2605 (1 + ilog2(nr_cpu_ids
));
2607 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2610 goto fail_dirty_metadata_bytes
;
2613 ret
= percpu_counter_init(&fs_info
->dev_replace
.bio_counter
, 0,
2617 goto fail_delalloc_bytes
;
2620 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2621 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2622 INIT_LIST_HEAD(&fs_info
->trans_list
);
2623 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2624 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2625 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2626 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2627 INIT_LIST_HEAD(&fs_info
->pending_raid_kobjs
);
2628 spin_lock_init(&fs_info
->pending_raid_kobjs_lock
);
2629 spin_lock_init(&fs_info
->delalloc_root_lock
);
2630 spin_lock_init(&fs_info
->trans_lock
);
2631 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2632 spin_lock_init(&fs_info
->delayed_iput_lock
);
2633 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2634 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2635 spin_lock_init(&fs_info
->super_lock
);
2636 spin_lock_init(&fs_info
->qgroup_op_lock
);
2637 spin_lock_init(&fs_info
->buffer_lock
);
2638 spin_lock_init(&fs_info
->unused_bgs_lock
);
2639 rwlock_init(&fs_info
->tree_mod_log_lock
);
2640 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2641 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2642 mutex_init(&fs_info
->reloc_mutex
);
2643 mutex_init(&fs_info
->delalloc_root_mutex
);
2644 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2645 seqlock_init(&fs_info
->profiles_lock
);
2647 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2648 INIT_LIST_HEAD(&fs_info
->space_info
);
2649 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2650 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2651 btrfs_mapping_init(&fs_info
->mapping_tree
);
2652 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2653 BTRFS_BLOCK_RSV_GLOBAL
);
2654 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2655 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2656 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2657 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2658 BTRFS_BLOCK_RSV_DELOPS
);
2659 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2660 atomic_set(&fs_info
->defrag_running
, 0);
2661 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2662 atomic_set(&fs_info
->reada_works_cnt
, 0);
2663 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2665 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2666 fs_info
->metadata_ratio
= 0;
2667 fs_info
->defrag_inodes
= RB_ROOT
;
2668 atomic64_set(&fs_info
->free_chunk_space
, 0);
2669 fs_info
->tree_mod_log
= RB_ROOT
;
2670 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2671 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2672 /* readahead state */
2673 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2674 spin_lock_init(&fs_info
->reada_lock
);
2675 btrfs_init_ref_verify(fs_info
);
2677 fs_info
->thread_pool_size
= min_t(unsigned long,
2678 num_online_cpus() + 2, 8);
2680 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2681 spin_lock_init(&fs_info
->ordered_root_lock
);
2683 fs_info
->btree_inode
= new_inode(sb
);
2684 if (!fs_info
->btree_inode
) {
2686 goto fail_bio_counter
;
2688 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2690 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2692 if (!fs_info
->delayed_root
) {
2696 btrfs_init_delayed_root(fs_info
->delayed_root
);
2698 btrfs_init_scrub(fs_info
);
2699 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2700 fs_info
->check_integrity_print_mask
= 0;
2702 btrfs_init_balance(fs_info
);
2703 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2705 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2706 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2708 btrfs_init_btree_inode(fs_info
);
2710 spin_lock_init(&fs_info
->block_group_cache_lock
);
2711 fs_info
->block_group_cache_tree
= RB_ROOT
;
2712 fs_info
->first_logical_byte
= (u64
)-1;
2714 extent_io_tree_init(&fs_info
->freed_extents
[0], NULL
);
2715 extent_io_tree_init(&fs_info
->freed_extents
[1], NULL
);
2716 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2717 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2719 mutex_init(&fs_info
->ordered_operations_mutex
);
2720 mutex_init(&fs_info
->tree_log_mutex
);
2721 mutex_init(&fs_info
->chunk_mutex
);
2722 mutex_init(&fs_info
->transaction_kthread_mutex
);
2723 mutex_init(&fs_info
->cleaner_mutex
);
2724 mutex_init(&fs_info
->ro_block_group_mutex
);
2725 init_rwsem(&fs_info
->commit_root_sem
);
2726 init_rwsem(&fs_info
->cleanup_work_sem
);
2727 init_rwsem(&fs_info
->subvol_sem
);
2728 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2730 btrfs_init_dev_replace_locks(fs_info
);
2731 btrfs_init_qgroup(fs_info
);
2733 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2734 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2736 init_waitqueue_head(&fs_info
->transaction_throttle
);
2737 init_waitqueue_head(&fs_info
->transaction_wait
);
2738 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2739 init_waitqueue_head(&fs_info
->async_submit_wait
);
2741 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2743 /* Usable values until the real ones are cached from the superblock */
2744 fs_info
->nodesize
= 4096;
2745 fs_info
->sectorsize
= 4096;
2746 fs_info
->stripesize
= 4096;
2748 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2754 __setup_root(tree_root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2756 invalidate_bdev(fs_devices
->latest_bdev
);
2759 * Read super block and check the signature bytes only
2761 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2768 * We want to check superblock checksum, the type is stored inside.
2769 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2771 if (btrfs_check_super_csum(fs_info
, bh
->b_data
)) {
2772 btrfs_err(fs_info
, "superblock checksum mismatch");
2779 * super_copy is zeroed at allocation time and we never touch the
2780 * following bytes up to INFO_SIZE, the checksum is calculated from
2781 * the whole block of INFO_SIZE
2783 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2784 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2785 sizeof(*fs_info
->super_for_commit
));
2788 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2790 ret
= btrfs_validate_mount_super(fs_info
);
2792 btrfs_err(fs_info
, "superblock contains fatal errors");
2797 disk_super
= fs_info
->super_copy
;
2798 if (!btrfs_super_root(disk_super
))
2801 /* check FS state, whether FS is broken. */
2802 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2803 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2806 * run through our array of backup supers and setup
2807 * our ring pointer to the oldest one
2809 generation
= btrfs_super_generation(disk_super
);
2810 find_oldest_super_backup(fs_info
, generation
);
2813 * In the long term, we'll store the compression type in the super
2814 * block, and it'll be used for per file compression control.
2816 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2818 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
2824 features
= btrfs_super_incompat_flags(disk_super
) &
2825 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2828 "cannot mount because of unsupported optional features (%llx)",
2834 features
= btrfs_super_incompat_flags(disk_super
);
2835 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2836 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2837 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2838 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
2839 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
2841 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2842 btrfs_info(fs_info
, "has skinny extents");
2845 * flag our filesystem as having big metadata blocks if
2846 * they are bigger than the page size
2848 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2849 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2851 "flagging fs with big metadata feature");
2852 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2855 nodesize
= btrfs_super_nodesize(disk_super
);
2856 sectorsize
= btrfs_super_sectorsize(disk_super
);
2857 stripesize
= sectorsize
;
2858 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2859 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2861 /* Cache block sizes */
2862 fs_info
->nodesize
= nodesize
;
2863 fs_info
->sectorsize
= sectorsize
;
2864 fs_info
->stripesize
= stripesize
;
2867 * mixed block groups end up with duplicate but slightly offset
2868 * extent buffers for the same range. It leads to corruptions
2870 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2871 (sectorsize
!= nodesize
)) {
2873 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2874 nodesize
, sectorsize
);
2879 * Needn't use the lock because there is no other task which will
2882 btrfs_set_super_incompat_flags(disk_super
, features
);
2884 features
= btrfs_super_compat_ro_flags(disk_super
) &
2885 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2886 if (!sb_rdonly(sb
) && features
) {
2888 "cannot mount read-write because of unsupported optional features (%llx)",
2894 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2897 goto fail_sb_buffer
;
2900 sb
->s_bdi
->congested_fn
= btrfs_congested_fn
;
2901 sb
->s_bdi
->congested_data
= fs_info
;
2902 sb
->s_bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
2903 sb
->s_bdi
->ra_pages
= VM_MAX_READAHEAD
* SZ_1K
/ PAGE_SIZE
;
2904 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
2905 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
2907 sb
->s_blocksize
= sectorsize
;
2908 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2909 memcpy(&sb
->s_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
);
2911 mutex_lock(&fs_info
->chunk_mutex
);
2912 ret
= btrfs_read_sys_array(fs_info
);
2913 mutex_unlock(&fs_info
->chunk_mutex
);
2915 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2916 goto fail_sb_buffer
;
2919 generation
= btrfs_super_chunk_root_generation(disk_super
);
2920 level
= btrfs_super_chunk_root_level(disk_super
);
2922 __setup_root(chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2924 chunk_root
->node
= read_tree_block(fs_info
,
2925 btrfs_super_chunk_root(disk_super
),
2926 generation
, level
, NULL
);
2927 if (IS_ERR(chunk_root
->node
) ||
2928 !extent_buffer_uptodate(chunk_root
->node
)) {
2929 btrfs_err(fs_info
, "failed to read chunk root");
2930 if (!IS_ERR(chunk_root
->node
))
2931 free_extent_buffer(chunk_root
->node
);
2932 chunk_root
->node
= NULL
;
2933 goto fail_tree_roots
;
2935 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2936 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2938 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2939 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2941 ret
= btrfs_read_chunk_tree(fs_info
);
2943 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
2944 goto fail_tree_roots
;
2948 * Keep the devid that is marked to be the target device for the
2949 * device replace procedure
2951 btrfs_free_extra_devids(fs_devices
, 0);
2953 if (!fs_devices
->latest_bdev
) {
2954 btrfs_err(fs_info
, "failed to read devices");
2955 goto fail_tree_roots
;
2959 generation
= btrfs_super_generation(disk_super
);
2960 level
= btrfs_super_root_level(disk_super
);
2962 tree_root
->node
= read_tree_block(fs_info
,
2963 btrfs_super_root(disk_super
),
2964 generation
, level
, NULL
);
2965 if (IS_ERR(tree_root
->node
) ||
2966 !extent_buffer_uptodate(tree_root
->node
)) {
2967 btrfs_warn(fs_info
, "failed to read tree root");
2968 if (!IS_ERR(tree_root
->node
))
2969 free_extent_buffer(tree_root
->node
);
2970 tree_root
->node
= NULL
;
2971 goto recovery_tree_root
;
2974 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2975 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2976 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2978 mutex_lock(&tree_root
->objectid_mutex
);
2979 ret
= btrfs_find_highest_objectid(tree_root
,
2980 &tree_root
->highest_objectid
);
2982 mutex_unlock(&tree_root
->objectid_mutex
);
2983 goto recovery_tree_root
;
2986 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2988 mutex_unlock(&tree_root
->objectid_mutex
);
2990 ret
= btrfs_read_roots(fs_info
);
2992 goto recovery_tree_root
;
2994 fs_info
->generation
= generation
;
2995 fs_info
->last_trans_committed
= generation
;
2997 ret
= btrfs_verify_dev_extents(fs_info
);
3000 "failed to verify dev extents against chunks: %d",
3002 goto fail_block_groups
;
3004 ret
= btrfs_recover_balance(fs_info
);
3006 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3007 goto fail_block_groups
;
3010 ret
= btrfs_init_dev_stats(fs_info
);
3012 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3013 goto fail_block_groups
;
3016 ret
= btrfs_init_dev_replace(fs_info
);
3018 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3019 goto fail_block_groups
;
3022 btrfs_free_extra_devids(fs_devices
, 1);
3024 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
3026 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3028 goto fail_block_groups
;
3031 ret
= btrfs_sysfs_add_device(fs_devices
);
3033 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
3035 goto fail_fsdev_sysfs
;
3038 ret
= btrfs_sysfs_add_mounted(fs_info
);
3040 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3041 goto fail_fsdev_sysfs
;
3044 ret
= btrfs_init_space_info(fs_info
);
3046 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3050 ret
= btrfs_read_block_groups(fs_info
);
3052 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3056 if (!sb_rdonly(sb
) && !btrfs_check_rw_degradable(fs_info
, NULL
)) {
3058 "writeable mount is not allowed due to too many missing devices");
3062 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3064 if (IS_ERR(fs_info
->cleaner_kthread
))
3067 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3069 "btrfs-transaction");
3070 if (IS_ERR(fs_info
->transaction_kthread
))
3073 if (!btrfs_test_opt(fs_info
, NOSSD
) &&
3074 !fs_info
->fs_devices
->rotating
) {
3075 btrfs_set_and_info(fs_info
, SSD
, "enabling ssd optimizations");
3079 * Mount does not set all options immediately, we can do it now and do
3080 * not have to wait for transaction commit
3082 btrfs_apply_pending_changes(fs_info
);
3084 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3085 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
3086 ret
= btrfsic_mount(fs_info
, fs_devices
,
3087 btrfs_test_opt(fs_info
,
3088 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3090 fs_info
->check_integrity_print_mask
);
3093 "failed to initialize integrity check module: %d",
3097 ret
= btrfs_read_qgroup_config(fs_info
);
3099 goto fail_trans_kthread
;
3101 if (btrfs_build_ref_tree(fs_info
))
3102 btrfs_err(fs_info
, "couldn't build ref tree");
3104 /* do not make disk changes in broken FS or nologreplay is given */
3105 if (btrfs_super_log_root(disk_super
) != 0 &&
3106 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3107 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3114 ret
= btrfs_find_orphan_roots(fs_info
);
3118 if (!sb_rdonly(sb
)) {
3119 ret
= btrfs_cleanup_fs_roots(fs_info
);
3123 mutex_lock(&fs_info
->cleaner_mutex
);
3124 ret
= btrfs_recover_relocation(tree_root
);
3125 mutex_unlock(&fs_info
->cleaner_mutex
);
3127 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3134 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3135 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3136 location
.offset
= 0;
3138 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3139 if (IS_ERR(fs_info
->fs_root
)) {
3140 err
= PTR_ERR(fs_info
->fs_root
);
3141 btrfs_warn(fs_info
, "failed to read fs tree: %d", err
);
3148 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3149 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3150 clear_free_space_tree
= 1;
3151 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3152 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3153 btrfs_warn(fs_info
, "free space tree is invalid");
3154 clear_free_space_tree
= 1;
3157 if (clear_free_space_tree
) {
3158 btrfs_info(fs_info
, "clearing free space tree");
3159 ret
= btrfs_clear_free_space_tree(fs_info
);
3162 "failed to clear free space tree: %d", ret
);
3163 close_ctree(fs_info
);
3168 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3169 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3170 btrfs_info(fs_info
, "creating free space tree");
3171 ret
= btrfs_create_free_space_tree(fs_info
);
3174 "failed to create free space tree: %d", ret
);
3175 close_ctree(fs_info
);
3180 down_read(&fs_info
->cleanup_work_sem
);
3181 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3182 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3183 up_read(&fs_info
->cleanup_work_sem
);
3184 close_ctree(fs_info
);
3187 up_read(&fs_info
->cleanup_work_sem
);
3189 ret
= btrfs_resume_balance_async(fs_info
);
3191 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3192 close_ctree(fs_info
);
3196 ret
= btrfs_resume_dev_replace_async(fs_info
);
3198 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3199 close_ctree(fs_info
);
3203 btrfs_qgroup_rescan_resume(fs_info
);
3205 if (!fs_info
->uuid_root
) {
3206 btrfs_info(fs_info
, "creating UUID tree");
3207 ret
= btrfs_create_uuid_tree(fs_info
);
3210 "failed to create the UUID tree: %d", ret
);
3211 close_ctree(fs_info
);
3214 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3215 fs_info
->generation
!=
3216 btrfs_super_uuid_tree_generation(disk_super
)) {
3217 btrfs_info(fs_info
, "checking UUID tree");
3218 ret
= btrfs_check_uuid_tree(fs_info
);
3221 "failed to check the UUID tree: %d", ret
);
3222 close_ctree(fs_info
);
3226 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3228 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3231 * backuproot only affect mount behavior, and if open_ctree succeeded,
3232 * no need to keep the flag
3234 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3239 btrfs_free_qgroup_config(fs_info
);
3241 kthread_stop(fs_info
->transaction_kthread
);
3242 btrfs_cleanup_transaction(fs_info
);
3243 btrfs_free_fs_roots(fs_info
);
3245 kthread_stop(fs_info
->cleaner_kthread
);
3248 * make sure we're done with the btree inode before we stop our
3251 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3254 btrfs_sysfs_remove_mounted(fs_info
);
3257 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3260 btrfs_put_block_group_cache(fs_info
);
3263 free_root_pointers(fs_info
, 1);
3264 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3267 btrfs_stop_all_workers(fs_info
);
3268 btrfs_free_block_groups(fs_info
);
3271 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3273 iput(fs_info
->btree_inode
);
3275 percpu_counter_destroy(&fs_info
->dev_replace
.bio_counter
);
3276 fail_delalloc_bytes
:
3277 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3278 fail_dirty_metadata_bytes
:
3279 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3281 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3283 btrfs_free_stripe_hash_table(fs_info
);
3284 btrfs_close_devices(fs_info
->fs_devices
);
3288 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
3289 goto fail_tree_roots
;
3291 free_root_pointers(fs_info
, 0);
3293 /* don't use the log in recovery mode, it won't be valid */
3294 btrfs_set_super_log_root(disk_super
, 0);
3296 /* we can't trust the free space cache either */
3297 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3299 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3300 &num_backups_tried
, &backup_index
);
3302 goto fail_block_groups
;
3303 goto retry_root_backup
;
3305 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3307 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3310 set_buffer_uptodate(bh
);
3312 struct btrfs_device
*device
= (struct btrfs_device
*)
3315 btrfs_warn_rl_in_rcu(device
->fs_info
,
3316 "lost page write due to IO error on %s",
3317 rcu_str_deref(device
->name
));
3318 /* note, we don't set_buffer_write_io_error because we have
3319 * our own ways of dealing with the IO errors
3321 clear_buffer_uptodate(bh
);
3322 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3328 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3329 struct buffer_head
**bh_ret
)
3331 struct buffer_head
*bh
;
3332 struct btrfs_super_block
*super
;
3335 bytenr
= btrfs_sb_offset(copy_num
);
3336 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3339 bh
= __bread(bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
, BTRFS_SUPER_INFO_SIZE
);
3341 * If we fail to read from the underlying devices, as of now
3342 * the best option we have is to mark it EIO.
3347 super
= (struct btrfs_super_block
*)bh
->b_data
;
3348 if (btrfs_super_bytenr(super
) != bytenr
||
3349 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3359 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3361 struct buffer_head
*bh
;
3362 struct buffer_head
*latest
= NULL
;
3363 struct btrfs_super_block
*super
;
3368 /* we would like to check all the supers, but that would make
3369 * a btrfs mount succeed after a mkfs from a different FS.
3370 * So, we need to add a special mount option to scan for
3371 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3373 for (i
= 0; i
< 1; i
++) {
3374 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3378 super
= (struct btrfs_super_block
*)bh
->b_data
;
3380 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3383 transid
= btrfs_super_generation(super
);
3390 return ERR_PTR(ret
);
3396 * Write superblock @sb to the @device. Do not wait for completion, all the
3397 * buffer heads we write are pinned.
3399 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3400 * the expected device size at commit time. Note that max_mirrors must be
3401 * same for write and wait phases.
3403 * Return number of errors when buffer head is not found or submission fails.
3405 static int write_dev_supers(struct btrfs_device
*device
,
3406 struct btrfs_super_block
*sb
, int max_mirrors
)
3408 struct buffer_head
*bh
;
3416 if (max_mirrors
== 0)
3417 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3419 for (i
= 0; i
< max_mirrors
; i
++) {
3420 bytenr
= btrfs_sb_offset(i
);
3421 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3422 device
->commit_total_bytes
)
3425 btrfs_set_super_bytenr(sb
, bytenr
);
3428 crc
= btrfs_csum_data((const char *)sb
+ BTRFS_CSUM_SIZE
, crc
,
3429 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
3430 btrfs_csum_final(crc
, sb
->csum
);
3432 /* One reference for us, and we leave it for the caller */
3433 bh
= __getblk(device
->bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3434 BTRFS_SUPER_INFO_SIZE
);
3436 btrfs_err(device
->fs_info
,
3437 "couldn't get super buffer head for bytenr %llu",
3443 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3445 /* one reference for submit_bh */
3448 set_buffer_uptodate(bh
);
3450 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3451 bh
->b_private
= device
;
3454 * we fua the first super. The others we allow
3457 op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
;
3458 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3459 op_flags
|= REQ_FUA
;
3460 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3464 return errors
< i
? 0 : -1;
3468 * Wait for write completion of superblocks done by write_dev_supers,
3469 * @max_mirrors same for write and wait phases.
3471 * Return number of errors when buffer head is not found or not marked up to
3474 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3476 struct buffer_head
*bh
;
3479 bool primary_failed
= false;
3482 if (max_mirrors
== 0)
3483 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3485 for (i
= 0; i
< max_mirrors
; i
++) {
3486 bytenr
= btrfs_sb_offset(i
);
3487 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3488 device
->commit_total_bytes
)
3491 bh
= __find_get_block(device
->bdev
,
3492 bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3493 BTRFS_SUPER_INFO_SIZE
);
3497 primary_failed
= true;
3501 if (!buffer_uptodate(bh
)) {
3504 primary_failed
= true;
3507 /* drop our reference */
3510 /* drop the reference from the writing run */
3514 /* log error, force error return */
3515 if (primary_failed
) {
3516 btrfs_err(device
->fs_info
, "error writing primary super block to device %llu",
3521 return errors
< i
? 0 : -1;
3525 * endio for the write_dev_flush, this will wake anyone waiting
3526 * for the barrier when it is done
3528 static void btrfs_end_empty_barrier(struct bio
*bio
)
3530 complete(bio
->bi_private
);
3534 * Submit a flush request to the device if it supports it. Error handling is
3535 * done in the waiting counterpart.
3537 static void write_dev_flush(struct btrfs_device
*device
)
3539 struct request_queue
*q
= bdev_get_queue(device
->bdev
);
3540 struct bio
*bio
= device
->flush_bio
;
3542 if (!test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
3546 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3547 bio_set_dev(bio
, device
->bdev
);
3548 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
3549 init_completion(&device
->flush_wait
);
3550 bio
->bi_private
= &device
->flush_wait
;
3552 btrfsic_submit_bio(bio
);
3553 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3557 * If the flush bio has been submitted by write_dev_flush, wait for it.
3559 static blk_status_t
wait_dev_flush(struct btrfs_device
*device
)
3561 struct bio
*bio
= device
->flush_bio
;
3563 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3566 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3567 wait_for_completion_io(&device
->flush_wait
);
3569 return bio
->bi_status
;
3572 static int check_barrier_error(struct btrfs_fs_info
*fs_info
)
3574 if (!btrfs_check_rw_degradable(fs_info
, NULL
))
3580 * send an empty flush down to each device in parallel,
3581 * then wait for them
3583 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3585 struct list_head
*head
;
3586 struct btrfs_device
*dev
;
3587 int errors_wait
= 0;
3590 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3591 /* send down all the barriers */
3592 head
= &info
->fs_devices
->devices
;
3593 list_for_each_entry(dev
, head
, dev_list
) {
3594 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3598 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3599 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3602 write_dev_flush(dev
);
3603 dev
->last_flush_error
= BLK_STS_OK
;
3606 /* wait for all the barriers */
3607 list_for_each_entry(dev
, head
, dev_list
) {
3608 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3614 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3615 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3618 ret
= wait_dev_flush(dev
);
3620 dev
->last_flush_error
= ret
;
3621 btrfs_dev_stat_inc_and_print(dev
,
3622 BTRFS_DEV_STAT_FLUSH_ERRS
);
3629 * At some point we need the status of all disks
3630 * to arrive at the volume status. So error checking
3631 * is being pushed to a separate loop.
3633 return check_barrier_error(info
);
3638 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3641 int min_tolerated
= INT_MAX
;
3643 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3644 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3645 min_tolerated
= min(min_tolerated
,
3646 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3647 tolerated_failures
);
3649 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3650 if (raid_type
== BTRFS_RAID_SINGLE
)
3652 if (!(flags
& btrfs_raid_array
[raid_type
].bg_flag
))
3654 min_tolerated
= min(min_tolerated
,
3655 btrfs_raid_array
[raid_type
].
3656 tolerated_failures
);
3659 if (min_tolerated
== INT_MAX
) {
3660 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3664 return min_tolerated
;
3667 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3669 struct list_head
*head
;
3670 struct btrfs_device
*dev
;
3671 struct btrfs_super_block
*sb
;
3672 struct btrfs_dev_item
*dev_item
;
3676 int total_errors
= 0;
3679 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3682 * max_mirrors == 0 indicates we're from commit_transaction,
3683 * not from fsync where the tree roots in fs_info have not
3684 * been consistent on disk.
3686 if (max_mirrors
== 0)
3687 backup_super_roots(fs_info
);
3689 sb
= fs_info
->super_for_commit
;
3690 dev_item
= &sb
->dev_item
;
3692 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3693 head
= &fs_info
->fs_devices
->devices
;
3694 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3697 ret
= barrier_all_devices(fs_info
);
3700 &fs_info
->fs_devices
->device_list_mutex
);
3701 btrfs_handle_fs_error(fs_info
, ret
,
3702 "errors while submitting device barriers.");
3707 list_for_each_entry(dev
, head
, dev_list
) {
3712 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3713 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3716 btrfs_set_stack_device_generation(dev_item
, 0);
3717 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3718 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3719 btrfs_set_stack_device_total_bytes(dev_item
,
3720 dev
->commit_total_bytes
);
3721 btrfs_set_stack_device_bytes_used(dev_item
,
3722 dev
->commit_bytes_used
);
3723 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3724 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3725 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3726 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3727 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3729 flags
= btrfs_super_flags(sb
);
3730 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3732 ret
= btrfs_validate_write_super(fs_info
, sb
);
3734 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3735 btrfs_handle_fs_error(fs_info
, -EUCLEAN
,
3736 "unexpected superblock corruption detected");
3740 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
3744 if (total_errors
> max_errors
) {
3745 btrfs_err(fs_info
, "%d errors while writing supers",
3747 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3749 /* FUA is masked off if unsupported and can't be the reason */
3750 btrfs_handle_fs_error(fs_info
, -EIO
,
3751 "%d errors while writing supers",
3757 list_for_each_entry(dev
, head
, dev_list
) {
3760 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3761 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3764 ret
= wait_dev_supers(dev
, max_mirrors
);
3768 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3769 if (total_errors
> max_errors
) {
3770 btrfs_handle_fs_error(fs_info
, -EIO
,
3771 "%d errors while writing supers",
3778 /* Drop a fs root from the radix tree and free it. */
3779 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3780 struct btrfs_root
*root
)
3782 spin_lock(&fs_info
->fs_roots_radix_lock
);
3783 radix_tree_delete(&fs_info
->fs_roots_radix
,
3784 (unsigned long)root
->root_key
.objectid
);
3785 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3787 if (btrfs_root_refs(&root
->root_item
) == 0)
3788 synchronize_srcu(&fs_info
->subvol_srcu
);
3790 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3791 btrfs_free_log(NULL
, root
);
3792 if (root
->reloc_root
) {
3793 free_extent_buffer(root
->reloc_root
->node
);
3794 free_extent_buffer(root
->reloc_root
->commit_root
);
3795 btrfs_put_fs_root(root
->reloc_root
);
3796 root
->reloc_root
= NULL
;
3800 if (root
->free_ino_pinned
)
3801 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3802 if (root
->free_ino_ctl
)
3803 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3804 btrfs_free_fs_root(root
);
3807 void btrfs_free_fs_root(struct btrfs_root
*root
)
3809 iput(root
->ino_cache_inode
);
3810 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3812 free_anon_bdev(root
->anon_dev
);
3813 if (root
->subv_writers
)
3814 btrfs_free_subvolume_writers(root
->subv_writers
);
3815 free_extent_buffer(root
->node
);
3816 free_extent_buffer(root
->commit_root
);
3817 kfree(root
->free_ino_ctl
);
3818 kfree(root
->free_ino_pinned
);
3819 btrfs_put_fs_root(root
);
3822 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3824 u64 root_objectid
= 0;
3825 struct btrfs_root
*gang
[8];
3828 unsigned int ret
= 0;
3832 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3833 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3834 (void **)gang
, root_objectid
,
3837 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3840 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3842 for (i
= 0; i
< ret
; i
++) {
3843 /* Avoid to grab roots in dead_roots */
3844 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3848 /* grab all the search result for later use */
3849 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3851 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3853 for (i
= 0; i
< ret
; i
++) {
3856 root_objectid
= gang
[i
]->root_key
.objectid
;
3857 err
= btrfs_orphan_cleanup(gang
[i
]);
3860 btrfs_put_fs_root(gang
[i
]);
3865 /* release the uncleaned roots due to error */
3866 for (; i
< ret
; i
++) {
3868 btrfs_put_fs_root(gang
[i
]);
3873 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
3875 struct btrfs_root
*root
= fs_info
->tree_root
;
3876 struct btrfs_trans_handle
*trans
;
3878 mutex_lock(&fs_info
->cleaner_mutex
);
3879 btrfs_run_delayed_iputs(fs_info
);
3880 mutex_unlock(&fs_info
->cleaner_mutex
);
3881 wake_up_process(fs_info
->cleaner_kthread
);
3883 /* wait until ongoing cleanup work done */
3884 down_write(&fs_info
->cleanup_work_sem
);
3885 up_write(&fs_info
->cleanup_work_sem
);
3887 trans
= btrfs_join_transaction(root
);
3889 return PTR_ERR(trans
);
3890 return btrfs_commit_transaction(trans
);
3893 void close_ctree(struct btrfs_fs_info
*fs_info
)
3897 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3899 * We don't want the cleaner to start new transactions, add more delayed
3900 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3901 * because that frees the task_struct, and the transaction kthread might
3902 * still try to wake up the cleaner.
3904 kthread_park(fs_info
->cleaner_kthread
);
3906 /* wait for the qgroup rescan worker to stop */
3907 btrfs_qgroup_wait_for_completion(fs_info
, false);
3909 /* wait for the uuid_scan task to finish */
3910 down(&fs_info
->uuid_tree_rescan_sem
);
3911 /* avoid complains from lockdep et al., set sem back to initial state */
3912 up(&fs_info
->uuid_tree_rescan_sem
);
3914 /* pause restriper - we want to resume on mount */
3915 btrfs_pause_balance(fs_info
);
3917 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3919 btrfs_scrub_cancel(fs_info
);
3921 /* wait for any defraggers to finish */
3922 wait_event(fs_info
->transaction_wait
,
3923 (atomic_read(&fs_info
->defrag_running
) == 0));
3925 /* clear out the rbtree of defraggable inodes */
3926 btrfs_cleanup_defrag_inodes(fs_info
);
3928 cancel_work_sync(&fs_info
->async_reclaim_work
);
3930 if (!sb_rdonly(fs_info
->sb
)) {
3932 * The cleaner kthread is stopped, so do one final pass over
3933 * unused block groups.
3935 btrfs_delete_unused_bgs(fs_info
);
3937 ret
= btrfs_commit_super(fs_info
);
3939 btrfs_err(fs_info
, "commit super ret %d", ret
);
3942 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
) ||
3943 test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
))
3944 btrfs_error_commit_super(fs_info
);
3946 kthread_stop(fs_info
->transaction_kthread
);
3947 kthread_stop(fs_info
->cleaner_kthread
);
3949 ASSERT(list_empty(&fs_info
->delayed_iputs
));
3950 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
3952 btrfs_free_qgroup_config(fs_info
);
3953 ASSERT(list_empty(&fs_info
->delalloc_roots
));
3955 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3956 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3957 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3960 btrfs_sysfs_remove_mounted(fs_info
);
3961 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3963 btrfs_free_fs_roots(fs_info
);
3965 btrfs_put_block_group_cache(fs_info
);
3968 * we must make sure there is not any read request to
3969 * submit after we stopping all workers.
3971 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3972 btrfs_stop_all_workers(fs_info
);
3974 btrfs_free_block_groups(fs_info
);
3976 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3977 free_root_pointers(fs_info
, 1);
3979 iput(fs_info
->btree_inode
);
3981 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3982 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
3983 btrfsic_unmount(fs_info
->fs_devices
);
3986 btrfs_close_devices(fs_info
->fs_devices
);
3987 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3989 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3990 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3991 percpu_counter_destroy(&fs_info
->dev_replace
.bio_counter
);
3992 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3994 btrfs_free_stripe_hash_table(fs_info
);
3995 btrfs_free_ref_cache(fs_info
);
3997 while (!list_empty(&fs_info
->pinned_chunks
)) {
3998 struct extent_map
*em
;
4000 em
= list_first_entry(&fs_info
->pinned_chunks
,
4001 struct extent_map
, list
);
4002 list_del_init(&em
->list
);
4003 free_extent_map(em
);
4007 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4011 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4013 ret
= extent_buffer_uptodate(buf
);
4017 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4018 parent_transid
, atomic
);
4024 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4026 struct btrfs_fs_info
*fs_info
;
4027 struct btrfs_root
*root
;
4028 u64 transid
= btrfs_header_generation(buf
);
4031 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4033 * This is a fast path so only do this check if we have sanity tests
4034 * enabled. Normal people shouldn't be using umapped buffers as dirty
4035 * outside of the sanity tests.
4037 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &buf
->bflags
)))
4040 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4041 fs_info
= root
->fs_info
;
4042 btrfs_assert_tree_locked(buf
);
4043 if (transid
!= fs_info
->generation
)
4044 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4045 buf
->start
, transid
, fs_info
->generation
);
4046 was_dirty
= set_extent_buffer_dirty(buf
);
4048 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
4050 fs_info
->dirty_metadata_batch
);
4051 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4053 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4054 * but item data not updated.
4055 * So here we should only check item pointers, not item data.
4057 if (btrfs_header_level(buf
) == 0 &&
4058 btrfs_check_leaf_relaxed(fs_info
, buf
)) {
4059 btrfs_print_leaf(buf
);
4065 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4069 * looks as though older kernels can get into trouble with
4070 * this code, they end up stuck in balance_dirty_pages forever
4074 if (current
->flags
& PF_MEMALLOC
)
4078 btrfs_balance_delayed_items(fs_info
);
4080 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4081 BTRFS_DIRTY_METADATA_THRESH
,
4082 fs_info
->dirty_metadata_batch
);
4084 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4088 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4090 __btrfs_btree_balance_dirty(fs_info
, 1);
4093 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4095 __btrfs_btree_balance_dirty(fs_info
, 0);
4098 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
, int level
,
4099 struct btrfs_key
*first_key
)
4101 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4102 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4104 return btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
,
4108 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4110 /* cleanup FS via transaction */
4111 btrfs_cleanup_transaction(fs_info
);
4113 mutex_lock(&fs_info
->cleaner_mutex
);
4114 btrfs_run_delayed_iputs(fs_info
);
4115 mutex_unlock(&fs_info
->cleaner_mutex
);
4117 down_write(&fs_info
->cleanup_work_sem
);
4118 up_write(&fs_info
->cleanup_work_sem
);
4121 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4123 struct btrfs_ordered_extent
*ordered
;
4125 spin_lock(&root
->ordered_extent_lock
);
4127 * This will just short circuit the ordered completion stuff which will
4128 * make sure the ordered extent gets properly cleaned up.
4130 list_for_each_entry(ordered
, &root
->ordered_extents
,
4132 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4133 spin_unlock(&root
->ordered_extent_lock
);
4136 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4138 struct btrfs_root
*root
;
4139 struct list_head splice
;
4141 INIT_LIST_HEAD(&splice
);
4143 spin_lock(&fs_info
->ordered_root_lock
);
4144 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4145 while (!list_empty(&splice
)) {
4146 root
= list_first_entry(&splice
, struct btrfs_root
,
4148 list_move_tail(&root
->ordered_root
,
4149 &fs_info
->ordered_roots
);
4151 spin_unlock(&fs_info
->ordered_root_lock
);
4152 btrfs_destroy_ordered_extents(root
);
4155 spin_lock(&fs_info
->ordered_root_lock
);
4157 spin_unlock(&fs_info
->ordered_root_lock
);
4160 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4161 struct btrfs_fs_info
*fs_info
)
4163 struct rb_node
*node
;
4164 struct btrfs_delayed_ref_root
*delayed_refs
;
4165 struct btrfs_delayed_ref_node
*ref
;
4168 delayed_refs
= &trans
->delayed_refs
;
4170 spin_lock(&delayed_refs
->lock
);
4171 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4172 spin_unlock(&delayed_refs
->lock
);
4173 btrfs_info(fs_info
, "delayed_refs has NO entry");
4177 while ((node
= rb_first_cached(&delayed_refs
->href_root
)) != NULL
) {
4178 struct btrfs_delayed_ref_head
*head
;
4180 bool pin_bytes
= false;
4182 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4184 if (!mutex_trylock(&head
->mutex
)) {
4185 refcount_inc(&head
->refs
);
4186 spin_unlock(&delayed_refs
->lock
);
4188 mutex_lock(&head
->mutex
);
4189 mutex_unlock(&head
->mutex
);
4190 btrfs_put_delayed_ref_head(head
);
4191 spin_lock(&delayed_refs
->lock
);
4194 spin_lock(&head
->lock
);
4195 while ((n
= rb_first_cached(&head
->ref_tree
)) != NULL
) {
4196 ref
= rb_entry(n
, struct btrfs_delayed_ref_node
,
4199 rb_erase_cached(&ref
->ref_node
, &head
->ref_tree
);
4200 RB_CLEAR_NODE(&ref
->ref_node
);
4201 if (!list_empty(&ref
->add_list
))
4202 list_del(&ref
->add_list
);
4203 atomic_dec(&delayed_refs
->num_entries
);
4204 btrfs_put_delayed_ref(ref
);
4206 if (head
->must_insert_reserved
)
4208 btrfs_free_delayed_extent_op(head
->extent_op
);
4209 delayed_refs
->num_heads
--;
4210 if (head
->processing
== 0)
4211 delayed_refs
->num_heads_ready
--;
4212 atomic_dec(&delayed_refs
->num_entries
);
4213 rb_erase_cached(&head
->href_node
, &delayed_refs
->href_root
);
4214 RB_CLEAR_NODE(&head
->href_node
);
4215 spin_unlock(&head
->lock
);
4216 spin_unlock(&delayed_refs
->lock
);
4217 mutex_unlock(&head
->mutex
);
4220 btrfs_pin_extent(fs_info
, head
->bytenr
,
4221 head
->num_bytes
, 1);
4222 btrfs_put_delayed_ref_head(head
);
4224 spin_lock(&delayed_refs
->lock
);
4227 spin_unlock(&delayed_refs
->lock
);
4232 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4234 struct btrfs_inode
*btrfs_inode
;
4235 struct list_head splice
;
4237 INIT_LIST_HEAD(&splice
);
4239 spin_lock(&root
->delalloc_lock
);
4240 list_splice_init(&root
->delalloc_inodes
, &splice
);
4242 while (!list_empty(&splice
)) {
4243 struct inode
*inode
= NULL
;
4244 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4246 __btrfs_del_delalloc_inode(root
, btrfs_inode
);
4247 spin_unlock(&root
->delalloc_lock
);
4250 * Make sure we get a live inode and that it'll not disappear
4253 inode
= igrab(&btrfs_inode
->vfs_inode
);
4255 invalidate_inode_pages2(inode
->i_mapping
);
4258 spin_lock(&root
->delalloc_lock
);
4260 spin_unlock(&root
->delalloc_lock
);
4263 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4265 struct btrfs_root
*root
;
4266 struct list_head splice
;
4268 INIT_LIST_HEAD(&splice
);
4270 spin_lock(&fs_info
->delalloc_root_lock
);
4271 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4272 while (!list_empty(&splice
)) {
4273 root
= list_first_entry(&splice
, struct btrfs_root
,
4275 root
= btrfs_grab_fs_root(root
);
4277 spin_unlock(&fs_info
->delalloc_root_lock
);
4279 btrfs_destroy_delalloc_inodes(root
);
4280 btrfs_put_fs_root(root
);
4282 spin_lock(&fs_info
->delalloc_root_lock
);
4284 spin_unlock(&fs_info
->delalloc_root_lock
);
4287 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4288 struct extent_io_tree
*dirty_pages
,
4292 struct extent_buffer
*eb
;
4297 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4302 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4303 while (start
<= end
) {
4304 eb
= find_extent_buffer(fs_info
, start
);
4305 start
+= fs_info
->nodesize
;
4308 wait_on_extent_buffer_writeback(eb
);
4310 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4312 clear_extent_buffer_dirty(eb
);
4313 free_extent_buffer_stale(eb
);
4320 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4321 struct extent_io_tree
*pinned_extents
)
4323 struct extent_io_tree
*unpin
;
4329 unpin
= pinned_extents
;
4333 * The btrfs_finish_extent_commit() may get the same range as
4334 * ours between find_first_extent_bit and clear_extent_dirty.
4335 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4336 * the same extent range.
4338 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
4339 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4340 EXTENT_DIRTY
, NULL
);
4342 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4346 clear_extent_dirty(unpin
, start
, end
);
4347 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4348 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4353 if (unpin
== &fs_info
->freed_extents
[0])
4354 unpin
= &fs_info
->freed_extents
[1];
4356 unpin
= &fs_info
->freed_extents
[0];
4364 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache
*cache
)
4366 struct inode
*inode
;
4368 inode
= cache
->io_ctl
.inode
;
4370 invalidate_inode_pages2(inode
->i_mapping
);
4371 BTRFS_I(inode
)->generation
= 0;
4372 cache
->io_ctl
.inode
= NULL
;
4375 btrfs_put_block_group(cache
);
4378 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4379 struct btrfs_fs_info
*fs_info
)
4381 struct btrfs_block_group_cache
*cache
;
4383 spin_lock(&cur_trans
->dirty_bgs_lock
);
4384 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4385 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4386 struct btrfs_block_group_cache
,
4389 if (!list_empty(&cache
->io_list
)) {
4390 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4391 list_del_init(&cache
->io_list
);
4392 btrfs_cleanup_bg_io(cache
);
4393 spin_lock(&cur_trans
->dirty_bgs_lock
);
4396 list_del_init(&cache
->dirty_list
);
4397 spin_lock(&cache
->lock
);
4398 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4399 spin_unlock(&cache
->lock
);
4401 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4402 btrfs_put_block_group(cache
);
4403 spin_lock(&cur_trans
->dirty_bgs_lock
);
4405 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4408 * Refer to the definition of io_bgs member for details why it's safe
4409 * to use it without any locking
4411 while (!list_empty(&cur_trans
->io_bgs
)) {
4412 cache
= list_first_entry(&cur_trans
->io_bgs
,
4413 struct btrfs_block_group_cache
,
4416 list_del_init(&cache
->io_list
);
4417 spin_lock(&cache
->lock
);
4418 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4419 spin_unlock(&cache
->lock
);
4420 btrfs_cleanup_bg_io(cache
);
4424 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4425 struct btrfs_fs_info
*fs_info
)
4427 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4428 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4429 ASSERT(list_empty(&cur_trans
->io_bgs
));
4431 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4433 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4434 wake_up(&fs_info
->transaction_blocked_wait
);
4436 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4437 wake_up(&fs_info
->transaction_wait
);
4439 btrfs_destroy_delayed_inodes(fs_info
);
4440 btrfs_assert_delayed_root_empty(fs_info
);
4442 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4444 btrfs_destroy_pinned_extent(fs_info
,
4445 fs_info
->pinned_extents
);
4447 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4448 wake_up(&cur_trans
->commit_wait
);
4451 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4453 struct btrfs_transaction
*t
;
4455 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4457 spin_lock(&fs_info
->trans_lock
);
4458 while (!list_empty(&fs_info
->trans_list
)) {
4459 t
= list_first_entry(&fs_info
->trans_list
,
4460 struct btrfs_transaction
, list
);
4461 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4462 refcount_inc(&t
->use_count
);
4463 spin_unlock(&fs_info
->trans_lock
);
4464 btrfs_wait_for_commit(fs_info
, t
->transid
);
4465 btrfs_put_transaction(t
);
4466 spin_lock(&fs_info
->trans_lock
);
4469 if (t
== fs_info
->running_transaction
) {
4470 t
->state
= TRANS_STATE_COMMIT_DOING
;
4471 spin_unlock(&fs_info
->trans_lock
);
4473 * We wait for 0 num_writers since we don't hold a trans
4474 * handle open currently for this transaction.
4476 wait_event(t
->writer_wait
,
4477 atomic_read(&t
->num_writers
) == 0);
4479 spin_unlock(&fs_info
->trans_lock
);
4481 btrfs_cleanup_one_transaction(t
, fs_info
);
4483 spin_lock(&fs_info
->trans_lock
);
4484 if (t
== fs_info
->running_transaction
)
4485 fs_info
->running_transaction
= NULL
;
4486 list_del_init(&t
->list
);
4487 spin_unlock(&fs_info
->trans_lock
);
4489 btrfs_put_transaction(t
);
4490 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4491 spin_lock(&fs_info
->trans_lock
);
4493 spin_unlock(&fs_info
->trans_lock
);
4494 btrfs_destroy_all_ordered_extents(fs_info
);
4495 btrfs_destroy_delayed_inodes(fs_info
);
4496 btrfs_assert_delayed_root_empty(fs_info
);
4497 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
4498 btrfs_destroy_all_delalloc_inodes(fs_info
);
4499 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4504 static const struct extent_io_ops btree_extent_io_ops
= {
4505 /* mandatory callbacks */
4506 .submit_bio_hook
= btree_submit_bio_hook
,
4507 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4508 .readpage_io_failed_hook
= btree_io_failed_hook
,
4510 /* optional callbacks */